局限性在于能够处理的系统的大小有限,计算所需要的CPU时间 和存储器容量随着系统中电子数的增加而急剧增加,能够处理的 原子数量一般在1000个原子以内。
只能研究尺寸较小的纳米结构,或得到局部性质,如表面/界面等。
7
-
泛函密度理论的框架
物质的电子结构由多粒子体系哈密顿函数和薛定格方程 描述
通过Born-Oppenheimer 近似,实现离子和电子自由度的 分离
ZnO纳米线激子束缚能与半径的关系(a) L=0轻空穴 (b) L=±1重空穴。
1s,2s和3s分别对应于基态,第一激发态和第二激发态的结合能。
32
-
Z方向波函数的平方在Z方向的分布
33
-
• 沿Z方向的波函数的平方 在Z方向的分布,其中的 实线代表考虑了介电失 配的结果,而虚线代表 没有考虑介电失配的结 果。
26
-
缺陷对ZnO纳米线能带结构的影响
存在VZn, Pi, Oi, PZn-2VZn, VO和 Zni缺陷时ZnO纳米线的 27 - 电子能带结构图。费米能级设定为零。
掺杂对电子结构的影响(费米面处态密度分布)
用SIESTA软件计算的Na、Ga和N掺杂ZnO纳米线在费米面附近的态 密度分布的等高面
带隙与表面原子比
近似线性关系表明带隙随纳米线直径的变化是由表面原子引 21 - 起的。Eg~d的关系可以用来调控发光波长。
Eg与纳米带度/厚度的关系
ZnO纳米带的LDA带隙宽度(EgLDA)随纳米带截面积的尺寸相关变化。 (a)点线连接具有相同宽度不同厚度的纳米带 ,A、B、C代表具有相近
截面积,但不同禁带宽度的情况
(b) 点线连接具有相同厚度不同宽度的纳米带
22
-