函数的切线问题专题强化训练及答案
- 格式:pdf
- 大小:365.92 KB
- 文档页数:8
切线判定练习题切线判定练习题在微积分中,切线是一个重要的概念。
它是曲线上某一点处与曲线相切的直线。
切线的判定是微积分中的基础知识之一,对于理解和应用微积分具有重要意义。
本文将介绍一些切线判定的练习题,帮助读者加深对切线判定的理解。
题目一:判定曲线的切线方程给定曲线方程 $y = x^3 - 2x^2 + x + 1$,求曲线上点 $(2,3)$ 处的切线方程。
解析:首先,我们需要求出曲线上点 $(2,3)$ 处的切线斜率。
切线斜率可以通过求曲线方程的导数得到。
对于给定的曲线方程 $y = x^3 - 2x^2 + x + 1$,求导得到 $y' = 3x^2 - 4x + 1$。
将点 $(2,3)$ 的横坐标 $x = 2$ 代入导数方程,得到切线斜率 $m = 3(2)^2 - 4(2) + 1 = 9$。
接下来,我们可以利用点斜式来确定切线方程。
点斜式的一般形式为 $y - y_1= m(x - x_1)$,其中 $(x_1, y_1)$ 是切线上的一点,$m$ 是切线的斜率。
将点$(2,3)$ 和斜率 $m = 9$ 代入点斜式,得到切线方程 $y - 3 = 9(x - 2)$。
题目二:判定曲线的切线是否与直线平行给定曲线方程 $y = 2x^2 - 3x + 1$,判断曲线上的点 $(1,0)$ 处的切线是否与直线 $y = 3x - 1$ 平行。
解析:要判断两条直线是否平行,我们需要比较它们的斜率。
对于曲线方程 $y = 2x^2 - 3x + 1$,求导得到 $y' = 4x - 3$。
将点 $(1,0)$ 的横坐标 $x = 1$ 代入导数方程,得到切线斜率 $m = 4(1) - 3 = 1$。
直线 $y = 3x - 1$ 的斜率为 $m = 3$。
由于切线的斜率 $m = 1$ 不等于直线的斜率 $m = 3$,所以切线与直线不平行。
题目三:判定曲线的切线是否与直线垂直给定曲线方程 $y = \sqrt{x}$,判断曲线上的点 $(4,2)$ 处的切线是否与直线 $y = -\frac{1}{2}x + 3$ 垂直。
函数切线以及最值极值问题-带有答案1.已知f (x )为偶函数,当x <0时,f (x )=ln (﹣x )+3x ,求曲线y=f (x ) 在点(1,﹣3)处的切线方程2.求与直线240x y -+= 的平行的抛物线2y x = 的切线.3.求过曲线32y x x =- 上的点(11)-, 的切线方程.4.函数y=xe x 在其极值点处的切线方程.22/5.()(),()(0,(0))4 1,2x x f x ae be cx f x y f x f c a b -=--=- 已知函数的导函数为偶函数且曲线在点处的切线的斜率为若C=3,()求的,判断该函值 数的单调性 ();6.已知函数()1x af x x e =-+(a R ∈,e 为自然对数的底数). (1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值; (2)求函数()f x 的极值;37.()ln ,,()(1,(1))421.(1)(2)()2x a f x x a R y f x f x y x a f x =+--∈== 已知函数其中且曲线在点处的 切线垂直于直线求的值 求函数的单调区间和极值8.已知函数f (x )=ln x -ax (a ∈R). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值.9.已知函数f (x )=ax -e x(a >0).(1)若a =12,求函数f (x )的单调区间; (2)当1≤a ≤1+e 时,求证:f (x )≤x .10.设函数f (x )=12x 2+e x-x e x . (1)求f (x )的单调区间;(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.函数切线以及最值极值问题1. 2x +y +1=0 .2.210x y --=3. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|.∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--.解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.4. y=﹣5. (1)对求导得,由为偶函数,知,,因 不恒成立,所以又 ,故.(2)当时,,那么故在 上为增函数.6.[解] (1)由f (x )=x -1+a e x ,得f ′(x )=1-a e x .又曲线y =f (x )在点(1,f (1))处的切线平行于x 轴, 得f ′(1)=0,即1-ae =0,解得a =e.(2)f ′(x )=1-aex ,①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值.②当a >0时,令f ′(x )=0,得e x =a ,即x =ln a . x ∈(-∞,ln a ),f ′(x )<0;x ∈(ln a ,+∞),f ′(x )>0, 所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (x )在x =ln a 处取得极小值, 且极小值为f (ln a )=ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值.7---(1)的值为; 2 当时,,在上单调递减;当时,,在上单调递增;所以当时,取得极小值,无极大值。
导数求切线方程的练习题及答案精品文档导数求切线方程的练习题及答案类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数f?,并代入点斜式方程即可( 例1 曲线y?x3?3x2?1在点处的切线方程为 ,(y?3x?4,(y??3x?,(y?4x?5类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解( 例求过点且与曲线y?例已知函数y?x3?3x,过点A作曲线y?f的切线,切线方程(1x相切的直线方程(,(y??4x?3类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决(例与直线2x?y?4?0的平行的抛物线y?x的切线方程是2,(2x?y?3?0 ,(2x?y?1?0,(2x?y?3?0 ,(2x?y?1?01 / 6精品文档类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法(例求过曲线y?x3?2x上的点的切线方程(高二数学第1页共2页高二数学第2页共2页学校数学学科导学案编制人: 审核人: 授课日期: 月日姓名: 班级: 编号:第周号运用导数求切线方程的专项训练11.对任意x,有f?=4x3,f=,1,则此函数为A.f=x4,2C.f=x3B.f=x4+D.f=,x42.如果质点A按规律s=2t3运动,则在t=s时的瞬时速度为A. B.1C.5 D.813(曲线y=x3,3x2+1在点处的切线方程为A.y=3x,4B.y=,3x+2C.y=,4x+D.y=4x,54.函数f=的导数是A.x2,x+1B.C.3xD.3x2+15.曲线y=f在点)处的切线方程为3x+y+3=0,则A. f?>0B. f? 6. 曲线y?x在点?1,1?处的切线方程为2x?12 / 6精品文档A. x?y?2?0B. x?y?2?0C.x?4y?5?0D. x?4y?5?07. 在平面直角坐标系xoy中,点P在曲线C:y?x?10x?3上,且在第二象限内,已知曲线C在点P处的切线的斜率为2,则点P的坐标为.8. 曲线f?lnx?x在点处的切线的倾斜角为_______.9(曲线y?xe?2x?1在点处的切线方程为。
切线的判定练习题切线的判定练习题切线是数学中的一个重要概念,它在几何学、微积分和物理学中都有广泛的应用。
切线的判定是切线问题中的基本内容,掌握切线的判定方法对于解决相关问题至关重要。
本文将通过一些练习题来帮助读者更好地理解和掌握切线的判定。
题目一:给定函数y = x^2 + 2x + 1,判断点P(1, 4)是否在曲线y = x^2 + 2x + 1上,并求出曲线在点P处的切线方程。
解析:首先,我们将点P的坐标代入函数y = x^2 + 2x + 1中,得到y = 1^2 + 2 × 1 + 1 = 4。
由此可知,点P在曲线y = x^2 + 2x + 1上。
接下来,我们需要求出曲线在点P处的切线方程。
切线的斜率可以通过求函数在该点的导数来得到。
对函数y = x^2 + 2x + 1求导得到y' = 2x + 2。
将x = 1代入导数表达式中,得到斜率k = 2 × 1 + 2 = 4。
切线方程的一般形式为y - y1 = k(x - x1),其中(x1, y1)为切点的坐标。
代入点P 的坐标和斜率k,得到切线方程为y - 4 = 4(x - 1)。
题目二:已知函数y = 3x^3 - 4x^2 + 2x + 1,求曲线y = 3x^3 - 4x^2 + 2x + 1在点Q(2, 19)处的切线方程。
解析:与题目一类似,首先将点Q的坐标代入函数y = 3x^3 - 4x^2 + 2x + 1中,得到y = 3 × 2^3 - 4 × 2^2 + 2 × 2 + 1 = 19。
因此,点Q在曲线y =3x^3 - 4x^2 + 2x + 1上。
接下来,我们需要求出曲线在点Q处的切线方程。
对函数y = 3x^3 - 4x^2 + 2x + 1求导得到y' = 9x^2 - 8x + 2。
将x = 2代入导数表达式中,得到斜率k =9 × 2^2 - 8 × 2 + 2 = 14。
利用导数的几何意义研究函数的切线问题一、亮点1.导数的几何意义作为高中数学的重点章节,经常出现的高考中,在考试中占据重要地位;2.函数切线以及与函数切线相关的问题,往往是考察的重点,也是学生的易错点;3.本篇导数几何意义问题涉及面广,知识点多,会覆盖到极值点、最值等知识点,故本篇适合章节复习、综合复习.二、教学目标1.掌握导数的几何意义这类问题的基本列式方法及其解题对应思路;2.熟练掌握已知切点P(x0,y0)时,切线的求法;3.熟练掌握未知切点时,先设切点P(x0,y0),再通过题目条件列方程组,解决问题的方法.三、考情总结导数的几何意义:函数y=f(x)在x0处的导数f′(x0)的几何意义为函数y=f(x)图像在点(x0,f(x0))处的切线斜率.用导数的几何意义研究曲线y=f(x)的切线方程的两种类型及方法:类型1:已知切点P(x0,y0)问题已知切点P(x0,y0),求y=f(x)过点P的切线方程,解题过程为:先求出切线的斜率k切,即=f′(x0) ,再通过题目已知条件(可用点斜式),写出方程.k切类型2:未知切点P(x0,y0)问题若未知切点P,解题过程为:先设切出点P(x0,y0),利用导数写出切线斜率k切=f′(x0)一个等量关系,再利用条件列出x0的另一个等量关系,求解方程(组)解得x0,求出斜率,再求出直线方程.1四、精品题单考点一:已知切点P(x0,y0)问题.学情分析:由于已知切点坐标,此类题目比较简单,直接求在切点处的导数,即为切线的斜率,带入点斜式就能解题.注意切点务必明确位置.这类题型的易错点有以下几个:(1)复杂函数求导易错,要注意方法和技巧,仔细求导;(2)明确切点位置易错,特别是一些相交问题中,必须要明确具体切点位置;(3)导数问题与其他问题结合易错,注意要用到数列、函数等其他知识综合解决.练1.(2019·南通模拟)已知x=1是函数f(x)=(x2+ax)e x的一个极值点,则曲线y=f(x)在点(0,f(0))处的切线斜率为__________.【推荐理由】易错题,经典题【思路点拨】注意求导方法,求导要仔细【答案】−32【解析】解:由题意,函数f(x)=(x2+ax)e x,则f′(x0)=(x2+ax+2x+a)e x又由x=1是函数f(x)=(x2+ax)e x的一个极值点,所以f′(1)=(3+2a)e=0,解得a=−32,即f′(x)=(x2+12x−32)e x所以f′(0)=−32所以函数f(x)在点(0,f(0))处切线的斜率为−32.故答案为−32.2练2:(2019·无锡校级月考)已知f(x)=lnx,g(x)=12x2+mx+72(m<0),直线l与函数f(x),g(x)的图象都相切,且与f(x)图象的切点为(1,f(1)),则m的值为__________【推荐理由】易错题,考察思路【思路点拨】同时相切,导数相同,列方程组【答案】−2【解析】解:由题意得,f(x)=ln x的导数为f′(x)=1x ,g(x)=12x2+mx+72(m<0)的导数为g′(x)=x+m,∴与f(x)图象的切点为(1,f(1))的切线l的斜率k=f′(1)=1,且f(1)=ln1=0,所以切点为(1,0),∴直线l的方程为:y=x−1,∵直线l与g(x)的图象也相切,∴{y=x−1y=12x2+mx+72此方程组只有一解,即12x2+(m−1)x+92=0只有一解,∴Δ=(m−1)2−4×12×92=0,解得m=−2或m=4(舍去).故答案为−2.练3:(2019·南通模拟)设曲线y=x n+1(n∈N∗)在点(1,1)处的切线与x轴的交点的横坐标为x n,令a n=lgx n,则a1+a2+⋯+a99的值为______.【推荐理由】综合题,导数与数列结合3【思路点拨】注意求导后,形成的数列表达式的推导【答案】−2【解析】解:∵曲线y=x n+1(n∈N∗),∴y′=(n+1)x n,∴f′(1)=n+1,∴曲线y=x n+1(n∈N∗)在(1,1)处的切线方程为y−1=(n+1)(x−1),该切线与x轴的交点的横坐标为x n=nn+1,∵a n=lgx n,∴a n=lgn−lg(n+1),∴a1+a2+⋯+a99=(lg1−lg2)+(lg2−lg3)+(lg3−lg4)+(lg4−lg5)+(lg5−lg6)+⋯+(lg99−lg100)=lg1−lg100=−2故答案为−2.练4:(2019·泰州调研)己知函数f(x)是定义在R上的奇函数,且当x<0时,f(x)=1−2ln(−x)x则曲线y=f(x)在点(1,f(1))处的切线方程为__________.【推荐理由】导数与函数奇偶性结合问题,综合性问题【思路点拨】注意奇函数求另一半的基本技巧.【答案】3x+y−4=0【解析】解:设x>0,则−x<0,所以f(−x)=1−2lnx−x因为f(x)为奇函数,则f(−x)=−f(x),所以f(x)=1−2lnxx (x>0),则f′(x)=2lnx−3x2,所以切线的斜率为k=f′(1)=−3又f(1)=1,即切点坐标为(1,1),所以切线的方程为y−1=−3(x−1),即3x+y−4= 0.故答案为3x+y−4=0.45练5.(2019·苏州模拟)在平面直角坐标系xOy 中,若曲线y =ax 2+bx (a ,b 为常数)过点P(2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是______. 【推荐理由】已知切线斜率,求参数问题 【思路点拨】已知斜率,求导解方程 【答案】−3【解析】解:∵直线7x +2y +3=0的斜率k =−72,曲线y =ax 2+bx (a ,b 为常数)过点P(2,−5),且该曲线在点P 处的切线与直线7x +2y +3=0平行, ∴y ′=2ax −b x 2,∴{4a +b 2=−54a −b4=−72,解得:{a =−1b =−2,故a +b =−3. 故答案为−3.练6:(2019·南京模拟)设函数f(x)=x 2+c 与函数g(x)=ae x 的图象的一个公共点为P(2,t),且曲线y =f(x),y =g(x)在点P 处有相同的切线,若函数f(x)−g(x)的唯一零点在区间(k ,k +1)(k ∈Z)内,则k = 【推荐理由】易错题【思路点拨】相同切线问题,找方程组【答案】−1【解析】解:f′(x)=2x,g′(x)=ae x,∵曲线y=f(x),y=g(x)在P(2,t)点处有相同的切线,∴f′(2)=g′(2),即4=ae2,①又P为两曲线的公共点,∴f(2)=g(2),即4+c=ae2,②,由①②解得c=0,a=4e2⋅e x=x2−4e x−2,令ℎ(x)=f(x)−g(x)=x2−4e2则ℎ′(x)=2x−4e x−2,当x⩽0时,ℎ′(x)<0,∴ℎ(x)在(−∞,0)上递减,又ℎ(−1)=1−4e−3>0,ℎ(0)=−4e−2<0,∴ℎ(x)在(−1,0)内有唯一零点,由题意知(k,k+1)=(−1,0),∴k=−1.故答案为−1.考点二:未知切点P(x0,y0)问题学情分析:此类题型是切线问题中的难题,关键在于要主动设切点坐标,利用导数的几何意义、切点坐标、切线斜率之间的关系来构造方程组求解.这类题型的易错点有以下几个:(1)设切点后找方程组过程易错,需仔细审题后找到对应的方程组;(2)方程组解题易错,要注意解方程组技巧;(3)审题不仔细易错,此类题目条件比较复杂,必须仔细审题,找到切入点解题.练1:(2019·江苏卷)在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(−e,−1)(e为自然对数的底数),则点A的坐标是______.6【推荐理由】高考题,典型题【思路点拨】设切点坐标【答案】(e,1)【解析】解:设A(x0,lnx0),由y=lnx,得y′=1x,∴y′|x=x0=1x 0,则该曲线在点A处的切线方程为y−lnx0=1x(x−x0),∵切线经过点(−e,−1),∴−1−lnx0=−ex0−1,即lnx0=e x,则x0=e.由右图可知e是唯一解∴A点坐标为(e,1).故答案为:(e,1).练2:(2019·苏北四市二模改编)过曲线y=x−1x(x>0)上一点P(x0,y0)处的切线分别与x轴,y轴交于点A、B,O是坐标原点,若ΔOAB的面积为13,则x0=_________【推荐理由】综合性强,易错题【思路点拨】注意方程组和面积的表达【答案】√5【解析】解:由题意可得y0=x0− 1x0,x0>0,,∴切线的斜率为1+1x02,则切线的方程为y−x0+1x0=(1+1x02)(x−x0),令x=0可得y=−2x0,令y=0可得x=2x01+x02,7∴ΔOAB的面积S=12·2x0·2x01+x02=13,解得x0=√5负的舍去).故答案为√5.练3:(2019·江苏卷改编)若曲线y=xlnx上点P处的切线平行于直线2x−y+1=0,则点P的坐标是______.【推荐理由】高考题改编【思路点拨】已知斜率,求导解方程【答案】(e,e)【解析】解:函数的定义域为(0,+∞),函数的导数为f′(x)=lnx+x⋅1x=1+lnx,直线2x−y+1=0的斜率k=2,∵曲线y=xlnx上点P处的切线平行于直线2x−y+1=0,∴f′(x)=1+lnx=2,即lnx=1,解得x=e,此时y=elne=e,故点P的坐标是(e,e),故答案为:(e,e).练4:(2019·连云港校级模拟)若曲线f(x)=ln x+12ax2−(a+2)x+1上存在某点处的切线斜率不大于−5,则正实数a的最小值为________.8【推荐理由】易错题【思路点拨】设点坐标求导,解不等式【答案】9【解析】解:因为f(x)=ln x+12ax2−(a+2)x+1,所以f′(x)=1x+ax−(a+2).因为f(x)上存在某点处的切线斜率不大于−5,设切点为(x,y) 所以存在x∈(0,+∞),1x+ ax−(a+2)≤−5,得到2√(1x )·ax−(a+2)≤−5,当且仅当1x=ax时取“=”,化简得a−2√a−3≥0,解得a≥9.则正实数a的最小值为9.故答案为9.练5:(2019·宿迁模拟)点P在曲线y=x3−x+23上移动,设在点P处的切线的倾斜角为为α,则α的取值范围是_____________【推荐理由】切线斜率是导数【思路点拨】求的是切线斜率范围,就是求所有导函数的值域【答案】[0,π2)∪[3π4,π)【解析】解:∵tanα=3x2−1,∴tanα∈[−1,+∞).当tanα∈[0,+∞)时,α∈[0,π2);当tanα∈[−1,0)时,α∈[3π4,π).∴α∈[0,π2)∪[3π4,π)故答案为[0,π2)∪[3π4,π).9练6:(2019·淮安模拟)若曲线y=x−lnx与曲线y=ax2+x在公共点处有相同的切线,则实数a=_________.【推荐理由】易错题【思路点拨】注意相同切线问题,斜率相同,列方程组【答案】−12e【解析】解:设曲线y=x−lnx与曲线y=ax2+x在它们的公共点P(s,t),,{1−1s=2as+1 (1)s−lns=as2+s (2)由(1)得a=12s2,代入(2)式,解得a=−12e,故答案为a=−12e.练7:(2019·盐城模拟)已知函数f(x)=x3.设曲线y=f(x)在点P(x1,f(x1))处的切线与该曲线交于另一点Q(x2,f(x2)),记f′(x)为函数f(x)的导数,则f′(x1)f′(x2)的值为_______.【推荐理由】综合性强,易错题【思路点拨】利用导数的几何意义、切点坐标、切线斜率之间的关系来构造方程组求解.【答案】14【解析】解:∵函数f(x)=x3,∴f′(x)=3x2,则曲线y=f(x)在点P(x1,f(x1))处的切线斜率为f′(x1)=3x12则曲线y=f(x)在点P(x1,f(x1))处的切线方程为y−x13=3x12(x−1011x 1),与y =x 3联立,得x 3−3xx 12+2x 13=(x −x 1)2(x +2x 1)=0,即x 2=−2x 1,,∴f ′(x 2)=3x 22=12x 12 , f ′(x 1)f ′(x 2)=14练8:(2019·徐州二模改编)已知点P 在曲线C :y =12x 2上,曲线C 在点P 处的切线为l ,过点P 且与直线l 垂直的直线与曲线C 的另一交点为Q ,O 为坐标原点,若OP ⊥OQ ,则点P 的纵坐标为________.【推荐理由】易错题,关键题【思路点拨】利用导数的几何意义、切点坐标、切线斜率之间的关系来构造方程组求解.【答案】1【解析】解:设P (t ,12t 2),因为y′=x ,所以切线l 的斜率k =t ,且t ≠0,则直线PQ :y −12t 2=−1t (x −t),即y =−1t x +12t 2+1,由{y =−1t x +12t 2+1,y =12x 2,消y 得:tx 2+2x −t 3−2t =0,设Q(x 1,y 1),则x 1+t =−2t ,即x 1=−t −2t ,又因为点Q 在曲线C 上,所以y 1=12x 12=12(−t −2t )2=12t 2+2+2t 2, 故Q (−t −2t ,12t 2+2+2t 2).因为OP ⊥OQ ,所以OP ⃗⃗⃗⃗⃗ ⋅OQ⃗⃗⃗⃗⃗⃗ =0, 即t ⋅(−t −2t )+12t 2⋅(12t 2+2+2t 2)=0, 化简得t 4=4,则t 2=2,所以点P 的纵坐标为1.12练9:(2019·苏州校级模拟)设曲线y =(ax −1)e x 在点A(x 0,y 1)处的切线为l 1,曲线y =1−x e x 在点B(x 0,y 2)处的切线为l 2.若存在x 0∈[0,32],使得l 1⊥l 2,则实数a 的取值范围是________.【推荐理由】综合性强 【思路点拨】利用导数的几何意义、切点坐标、切线斜率之间的关系来构造方程组求解.【答案】1≤a ≤32 【解析】解:函数y =(ax −1)e x 的导数为y′=(ax +a −1)e x ,∴l 1的斜率为k 1=(ax 0+a −1)e x 0,函数y =(1−x)e −x 的导数为y′=(x −2)e −x∴l 2的斜率为k 2=(x 0−2)e −x 0,由题设有k 1⋅k 2=−1从而有(ax 0+a −1)e x 0(x 0−2)e −x 0=−1∴a(x 02−x 0−2)=x 0−3,∵x 0∈[0,32]得到x 02−x 0−2≠0, 所以a =x 0−3x 02−x 0−2, 又a′=−(x 0−1)(x 0−5)(x 02−x 0−2)2,令导数大于0,解得1<x 0<5,故x 0−3x 02−x 0−2在(0,1)是减函数,在(1,32)上是增函数, x 0=0时取得最大值为32;x 0=1时取得最小值为1.∴1≤a ≤32故答案为1≤a ≤32.13练10:(2019·常州模拟)在平面直角坐标系xOy 中,已知点P 为函数y =2lnx 的图像与圆M :(x −3)2+y 2=r 2的公共点,且它们在点P 处有公切线,若二次函数y =f(x)的图像经过点O ,P ,M ,则y =f(x)的最大值为________.【推荐理由】综合性强【思路点拨】利用导数的几何意义、切点坐标、切线斜率之间的关系来构造方程组求解.【答案】98【解析】解:设点P(x 0,2lnx 0),则因为y =2lnx ,所以,故函数y =2lnx .在点P 处的切线的斜率为k 1=2x 0, 又k PM =2ln x 0x 0−3,从而圆在点P 处的切线的斜率为k 2=−x 0−32ln x0, 从而k 1=k 2,即2x 0=−x 0−32ln x 0,故4ln x0x 02−3x 0=−1. 因为函数f(x)过点O(0,0),M(3,0),所以设f(x)=ax(x −3),又过点P ,所以2lnx 0=ax 0(x 0−3),解得a =2ln x 0x0(x 0−3)=−12, 从而得f(x)=−12x(x −3)=−12(x −32)2+98≤98,当x =32时,f(x)max =98.练11:(2019·镇江模拟)在平面直角坐标系xOy 中,点P 是第一象限内曲线y =−x 3+1上的一14个动点,点P 处的切线与两个坐标轴交于A ,B 两点,则△AOB 的面积的最小值为 .【推荐理由】综合性强 ,计算要求高【思路点拨】利用导数的几何意义、切点坐标、切线斜率之间的关系来构造方程组求解.【答案】3√234【解析】解:根据题意设P 的坐标为(t ,−t 3+1),且0<t <1,求导得:y′=−3x 2,故切线的斜率k =y′|x=t =−3t 2,所以切线方程为:y −(−t 3+1)=−3t 2(x −t),令x =0,解得:y =2t 3+1;令y =0,解得:x =2t 3+13t 2, 所以△AOB 的面积S =12(2t 3+1)·2t 3+13t 2=16(2t 2+1t )2,设f(t)=2t 2+1t ,则f ′(t )=4t −1t 2=4t 3−1t 2 令f ′(t )=0则t =√143, 当0<t <√143时, f ′(t )<0,f(t)单调递减, 当t >√143时, f ′(t )>0,f(t)单调递增,所以当t =√143时,f(t)取得最小值,此时S 也取最小值为3√234. 故答案为3√234.。
学习好资料欢迎下载姓名:4月21日课后作业与1、求由曲线所围成的封闭图形的面积。
1答案:2、求由直线2y=2x与抛物线y=3-x所围成的阴影部分的面积。
D.【解析】,故选、求函数处的切线与坐标轴所围成的三角形的面积。
3,所以切线方程为,所以在处的切线斜率为【解析】,所以所求三角形的面积,得,令,令,得为4,求点取自阴影部分的概率。
、已知从如图所示的长方形区域内任取一个点,长方形的面积为【答案】【解析】,阴影部分的面积为欢迎下载学习好资料。
所以点取自阴影部分的概率为、求定积分5【解析】,21,S?S?6,、已知数列6{a}是等差数列,{a}的前n项和为S nnn63n a2.项和{T}的前na(1)求数列{}的通项公式;(2)求数列nnn n=答案:a n)ba,m?(Δ7、已知ABC的角A、B、C所对的边分别是a、b、c,,设向量2)a2,(A i p?b?n?n?(si B,s,.nm为等腰三角形;ABC//(1)若,求证:Δ?m p C =c = 2⊥,角(2ABC的面积. )若,边长,求Δ3vvu ba?ba??,?Bb sin//n,?a sin A Q m外接圆半ABC,其中R即证明:(1)是三角形RR22ABCa?b??为等腰三角形径,vuvu abb??a?0b(a?2)?m//p?0,即a(b?2)?解(2)由题意可知22221)??4(舍去ab?ab?0??ab)3ab?4ab?(a?b)?3ab即(?4?a?b余弦定理?113sin?C sin??S??4?ab 322关于导数中切线问题的专题训练能力提升(选做)2的图象在a∈R)f)函数(x)=2ln x+x>0-bx+a(b,1. (2014·北大附中河南分校高考押题() 处的切线斜率的最小值是点(b,f(b))1.D 2 C.3 2A.2 B.2222A. ,(b)≥2 ·2b=2b(2x)=+x-b,∴f′b)=+2b-=+b,∵b,∴>0f′f解∵′(bxbb23的取值α-3x+上的任意一点,P点处的切线倾斜角为α,则2. 设点P是曲线y=x3)范围为(πππ5252????????????ππ,πππ,ππ,,0,,0 B. C. D.∪∪A.????????????623623222,x=3x′∵)y,P解析答案[]A []设(x,f()==x切线的斜率-3,∴k33-000.欢迎下载学习好资料π2????2π,π,0A. .故应选∈∴≥α-∪α=3x3.-3∴tan????0323.(云南省昆明市2013届高三复习适应性检测数学(理)试题)若函数11x?x??)??e?x?3xy?e(?的最小值是则的图象上任意点处切线的倾斜角为 ,22????35(A)(B)(C)(D) 4664【答案】 B2+2x+3上的点,且曲线C在点P处切线=(2010·福州高二期末)设P为曲线C:yx4.π倾斜角的取值范围为[0,],则点P横坐标的取值范围为()411D.[,1]1,0] C.[0,1] -A.[1,-]B.[-22π[答案]A [解析]∵y′=2x+2,且切线倾斜角θ∈[0,],∴切线的斜率k满足0≤k≤1,41即0≤2x+2≤1,∴-1≤x≤-.2关于导数其他问题的专题训练132+2xx-[0,4]内任取的一个数,那么函数f(x)=江西八校联考1. (2014·)已知m是区间32x +3在x∈R上是增函数的概率是()m1112A. B. C. D. 4323132222≥0在x+m(x)=x4xx)=--2x′+mx+3在R上是增函数,∴f(C答案:解析:∵f32≤0,解得m≤-2或m≥2.又∵0≤m≤4,∴2≤m≤4.m=R上恒成立,∴Δ16-421故所求的概率为P==.422.(2014·贵阳二中模拟)已知函数f(x)的导函数f′(x)的图象如图所示,那么函数f(x)的图象最有可能的是(),)>0x(′f时,<0x2<单调递减;当-)x(f,)<0x(′f时,>0x或2-<x当解析:A答案:欢迎下载学习好资料A.单调递增.故选f(x)x2的一个极值点,则下)e(x=-1为函数f+bx+c(a,b,c∈R),若x(3.设函数fx)=ax)(x)的图象的是(=列图象不可能为yfx2xx2x x)e由.ax+bx+)e+,则h′(x)=(2axb)e b+(ax++bx+c)e ax=(c+2)解析:设h(x=f(x2x=x)=ca.∴f(x)e(的极值点,当x=-1时,ax2+ax+bx+b+c=c-a=0,∴=-1为函数fa22==1,D中图象一定不满足该条件.axa+bx+.若ax,则+bx+a=0有两根x,xxx2112a的取值范围是k单调递增,则 4.(2014新课标Ⅱ,文11)若函数f(x)=kx-ln x在区间(1,+∞)) () +∞∞,-1] C.[2,+∞)D.[1,-A.(-∞,-2]B.(,,则f'(x)≥0在x)上恒成立∈(1,+∞在)D答案:解析:由f'(x=k-,又f(x)(1,+∞)上单调递增D.≥<<1,故k1.故选∞)k即≥在x∈(1,+∞上恒成立.又当x∈(1,+)时,02t的值为则当|MN|达到最小时,x 5. 设直线x=t与函数f()=x),g(x=ln x图象分别交于点M,N212.A1BD.C ..222212t=令ln t(t>0),F'(t)=20,得t-=t|MN|=F:答案.或t=-(舍去)易知D解析由题意,设(t)=-22t2222??也为,t> t(t(Ft)在0)取得极小值t,上单调递减在t故上单调递增,时t=,F()=t-ln 222.故选D达到最小最小值,即|MN|,数函若)题试)理(学数测检性应适习复三高届2013市明昆省南云( 6.欢迎下载学习好资料11x?x??)x??3x(?y?e??e ,则的图象上任意点处切线的倾斜角为的最小值是22????35 (D)(A)(B)(C)4664B【答案】??)(?fxfy(x))f(x)(xf1)?f(4R的的导函数,已知为上的函数,定义在 7.满足b?2a b1)?f(2a?b的取值范围是满足、,则图象如图所示,若两个正数a?21111)??)(,3((,)??,)?(3,)(??,3 D B. CA...2232C 【答案】ππ2________.sin x,则f′())的导函数为f′(x)且f(x=x=f′()+y8.已知函数=f(x)33ππππ32×2′()=)′(x=2xf′()+cos 答案x.所以f)因为f(x=x+f′()sin x,所以f33334π-6πππ3f′()+cos.所以f′()=.3336-4π12+4x-3ln x在[t,t+1]上不单调,则t的取值范围是____________.=-9.已知函数f(x)x22?x-1??x-3?-x+4x-33答案0<t<1或2<t<3解析f′(x)=-x+4-==-,由f′(x)=0xxx得函数的两个极值点1,3,则只要这两个极值点在区间(t,t+1)内,函数在区间[t,t+1]上就不单调,由t<1<t+1或t<3<t+1,解得0<t<1或2<t<3. ?)100(?x????x1)(x2)(x3)(x(0)?f____________ f已知函数(=x),则10.答案:100!=1×2×3×…×100。
切线判定练习题一、选择题1. 若曲线 $y=3x^2+x-2$ 上有唯一一条切线,则切点的横坐标为()。
A. $-\frac{1}{6}$B. $\frac{1}{6}$C. $-\frac{1}{2}$D. $\frac{1}{2}$2. 函数 $y=\frac{1}{4}x^2$ 的图像在点 $(2,-1)$ 处有切线,则切线方程为()。
A. $y=-\frac{1}{2}x-2$B. $y=-\frac{1}{2}x+1$C.$y=\frac{1}{2}x-3$ D. $y=\frac{1}{2}x+1$3. 曲线 $y=ax^2-b$ 和曲线 $y=x^2+2a$ 相切,则 $a$ 的值为()。
A. $-\frac{1}{4}$B. $\frac{1}{4}$C. $-\frac{1}{2}$D. $\frac{1}{2}$4. 曲线 $y=\frac{1}{3}x^2$ 上的切线与曲线 $y=ax-b$ 相切,则$a$ 和 $b$ 的值分别为()。
A. $a=\frac{1}{6}, b=-\frac{1}{18}$B. $a=\frac{1}{2}, b=-\frac{1}{6}$ C. $a=\frac{1}{2}, b=-\frac{1}{12}$ D.$a=\frac{1}{3}, b=-\frac{1}{9}$二、解答题1. 已知函数 $y=3x^2-2x+1$,求该函数在点 $(a,a^2)$ 处的切线方程。
解:设 $(x_0,y_0)=(a,a^2)$ 为切点,则切线的斜率为:$$k=\lim_{\Delta x \to 0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x \to0}\frac{f(a+\Delta x)-f(a)}{\Delta x}$$代入函数 $y=3x^2-2x+1$:$$k=\lim_{\Delta x \to 0}\frac{3(a+\Delta x)^2-2(a+\Delta x)+1-(3a^2-2a+1)}{\Delta x}$$$$k=\lim_{\Delta x \to 0}\frac{6a\Delta x+3(\Delta x)^2-2\Deltax}{\Delta x}$$$$k=6a-2$$切线方程为:$$y-y_0=k(x-x_0)$$代入切点坐标 $(a,a^2)$ 和斜率 $k=6a-2$:$$y-a^2=(6a-2)(x-a)$$2. 函数 $y=\frac{1}{3}x^3-2x^2+3$ 的图像上是否存在切线与直线$y=2x-1$ 平行?解:函数 $y=\frac{1}{3}x^3-2x^2+3$ 的导数为:$$\frac{dy}{dx}=x^2-4x$$切线的斜率与导数相等,所以需要求解方程:$$x^2-4x=2$$化简为:$$x^2-4x-2=0$$解这个方程得到两个根:$x_1=2+\sqrt{6}, x_2=2-\sqrt{6}$对于根 $x_1=2+\sqrt{6}$,将其代入函数 $y=\frac{1}{3}x^3-2x^2+3$,得到对应的纵坐标为:$$y_1=\frac{1}{3}(2+\sqrt{6})^3-2(2+\sqrt{6})^2+3$$对于根 $x_2=2-\sqrt{6}$,将其代入函数 $y=\frac{1}{3}x^3-2x^2+3$,得到对应的纵坐标为:$$y_2=\frac{1}{3}(2-\sqrt{6})^3-2(2-\sqrt{6})^2+3$$根据直线 $y=2x-1$ 的斜率 $2$,我们可以求得该直线与坐标轴的交点为 $(-\frac{1}{2},-2)$。
第5讲导数切线方程11类【原卷版】【题型一】求切线基础型:给切点求切线【典例分析】已知函数()2sin 1xf x x =+,则曲线()y f x =在点()0,0处的切线的方程为__________.【变式演练】1.曲线()()1xf x x e x =++在点()0,1处的切线方程为______.2.已知点()1,1P -在曲线2xy x a=+上,则曲线在点P 处的切线方程为_________.3.已知曲线2()ln x f x x a=+在点(1,(1))f 处的切线的倾斜角为3π4,则a 的值为()A .1B .1-C .12-D .4-【题型二】求切线基础型:有切线无切点求切点【典例分析】曲线()32f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为()A .()1,0B .()2,8C .()1,0和()1,4--D .()2,8和()1,4--【变式演练】1.已知函数()x x af x e e=+为偶函数,若曲线()y f x =的一条切线与直线230x y +=垂直,则切点的横坐标为()AB .2C .2ln 2D .ln 22.过曲线cos y x =上一点π1,32P ⎛⎫⎪⎝⎭且与曲线在点P 处的切线垂直的直线的方程为()A .2π2032x -=B 2103y +--=C .2π203x -=D 210y +=3.曲线sin 21y x x =++在点P 处的切线方程是310x y -+=,则切点P 的坐标是____________.【题型三】求切线基础:无切点求参【典例分析】已知曲线3y x =在点(),a b 处的切线与直线310x y ++=垂直,则a 的取值是()A .-1B .±1C .1D .3±【变式演练】1.若曲线ln (0)y x x =>的一条切线是直线12y x b =+,则实数b 的值为___________2.已知曲线3y ax =与直线640x y --=相切,则实数a 的值为__________.3.已知x 轴为曲线()()34411f x x a x =+-+的切线,则a 的值为________.【题型四】无切点多参【典例分析】若直线2y x b =+是曲线2ln y a x =的切线,且0a >,则实数b 的最小值是______.【变式演练】1已知函数f (x )=axlnx ﹣bx (a ,b ∈R )在点(e ,f (e ))处的切线方程为y =3x ﹣e ,则a +b =_____.2.若曲线()xf x mxe n =+在()()1,1f 处的切线方程为y ex =,则m n +=__________3.已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则()A .,1a eb ==-B .,1a eb ==C .1,1a eb -==D .1,1a eb -==-【题型五】“过点”型切线【典例分析】过原点作曲线ln y x =的切线,则切点的坐标为___________,切线的斜率为__________.【变式演练】1.过点(1,1)--与曲线x y e x =+相切的直线方程为______________.2.过点(0,1)-作曲线ln f x =(0x >)的切线,则切点坐标为________.3.已知直线y ax =是曲线ln y x =的切线,则实数a =()A .12B .12eC .1e D .21e 【题型六】判断切线条数【典例分析】已知曲线3:3S y x x =-,则过点()2,2P 可向S 引切线,其切线条数为()A .1B .2C .3D .0【变式演练】1.已知过点A(a,0)作曲线C:y=x•e x的切线有且仅有两条,则实数a 的取值范围是()A .(﹣∞,﹣4)∪(0,+∞)B .(0,+∞)C .(﹣∞,﹣1)∪(1,+∞)D .(﹣∞,﹣1)2.已知函数()=-xa f x x e 存在单调递减区间,且()y f x =的图象在0x =处的切线l 与曲线x y e =相切,符合情况的切线l ()A .有3条B .有2条C .有1条D .不存在3.已知函数()3291,f x x ax x a R =+-+∈,当01x ≠时,曲线()y f x =在点()()00,x f x 与点()()02,2x f x --处的切线总是平行时,则由点(),a a 可作曲线()y f x =的切线的条数为()A .1B .2C .3D .无法确定【题型七】多函数(多曲线)的公切线【典例分析】直线y kx b =+与曲线()y f x =相切也与曲线()y g x =相切,则称直线y kx b =+为曲线()y f x =和曲线()y g x =的公切线,已知函数2(),()ln ,f x x g x a x ==,其中0a ≠,若曲线()y f x =和曲线()y g x =的公切线有两条,则a 的取值范围为()A .0a <B .1a <-C .02ea <<D .20a e<<【变式演练】1.函数()ln 1mxf x x x =++与2()1g x x =+有公切线,(0)y ax a =>,则实数m 的值为()A .4B .2C .1D .122.曲线1()x f x e -=与曲线()ln g x x =有()条公切线.A .1B .2C .3D .43.若函数()ln (0)f x x x =>与函数2()g x x a =+有公切线,则实数a 的最小值为()A .11ln222--B .ln 21--C .12-D .ln 2-【题型八】切线的应用:距离最值【典例分析】点P 在函数ln y x =的图像上,若满足到直线y x a =+的距离为1的点P 有且仅有1个,则a =()A1B 1C .1-D .1【变式演练】1.点A 在直线y =x 上,点B 在曲线ln y x =上,则AB 的最小值为()A2B .1C D .22.已知点M 在函数()x f x e =图象上,点N 在函数()ln g x x =图象上,则||MN 的最小值为()A .1B C .2D .33.抛物线上的一动点到直线距离的最小值是A .B .C .D .【题型九】切线的应用:距离公式转化型【典例分析】若12,x x R ∈,则()()212212e e x x x x -+-的最小值是A .1B .2C .3D .4【变式演练】1.若12,x x R ∈,则()()212212e e x x x x -+-的最小值是A .1B .2C .3D .42.设0b <,当224()()a b a b++-取得最小值c 时,函数()||||f x x b x c =-+-的最小值为___________.3.已知a R ∈,b R ∈______.【题型十】切线的应用:恒成立求参等应用【典例分析】已知a 为实数,则“e x ax >对任意的实数x 恒成立”是“02a <<”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【变式演练】1.已知函数()(0,1)x f x a a a =>≠的图象在(0,1)处的切线方程为21y x =+,若()f x mx x ≥+恒成立,则m 的取值范围为()A .[]1,21e --B .(,21]e -∞-C .[]1,1e --D .(,1]e -∞-2.若曲线ln y x =在点()11,P x y 处的切线与曲线x y e =相切于点()22,Q x y ,则12111x x x ++=-__________.3.已知函数()ln f x x =,()1g x ax =+,若存在01x e≥使得()()00f x g x =-,则实数a 的取值范围是()A .212,e e ⎡⎤-⎢⎥⎣⎦B .21,2e e ⎡⎤-⎢⎥⎣⎦C .21,2e e ⎡⎤⎢⎥⎣⎦D .21,2e e ⎡⎤⎢⎥⎣⎦【题型十一】切线的应用:零点等【典例分析】已知函数()f x 满足1()()f x f x =,当[1,3]x ∈时,()ln f x x =,若在区间1[,3]3内,函数()()g x f x ax =-与x 轴有三个不同的交点,则实数a 的取值范围是.【变式演练】1.已知函数sin(),2,2()2223sin(),2,2()222x x k k k z y x x k k k z ππππππππππ⎧⎡⎫+∈-+∈⎪⎪⎢⎪⎣⎭=⎨⎡⎫⎪-+∈++∈⎪⎢⎪⎣⎭⎩的图象与直线(2)(0)y m x m =+>恰有四个公共点11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,其中1334x x x x <<<,则44(2)tan x x +=______.2.关于x 的方程sin ((0,1))kx x k =∈在(3,3)ππ-内有且仅有5个根,设最大的根是α,则α与tan α的大小关系是A .tan αα>B .tan αα<C .tan αα=D .以上都不对3.已知函数()f x 满足()()11f x f x +=-,且21,x e ⎡⎤∈⎣⎦时,()ln f x x =,若22,1x e ⎡⎤∈-⎣⎦时,方程()()2f x k x =-有三个不同的根,则k 的取值范围为()A .221,e e ⎛⎤ ⎥⎝⎦B .1,e ⎛⎫-∞ ⎪⎝⎭C .212,e e ⎛⎤-- ⎥⎝⎦D .1,e ⎛⎫-+∞ ⎪⎝⎭【课后练习】1.已知函数()ln()f x a x =+在()()0,0f 处的切线方程为y x =,则满足()021f x ≤-≤的x 的取值范围为_________.2.已知函数()2ln xf x ax x=-,若曲线()y f x =在()()1,1f 处的切线与直线210x y -+=平行,则a =______.3.已知过点(,0)A a 作曲线:x C y x e =⋅的切线有且仅有1条,则实数a 的取值是()A .0B .4C .0或-4D .0或44.已知直线0x y -=是函数ln ()a xf x x=图像的一条切线,且关于x 的方程(())f f x t =恰有一个实数解,则()A .{}ln 2t e ∈B .[0,ln 2]t e ∈C .[0,2]t ∈D .(,0]t ∈-∞5..函数()ln f x x =在点()()00,P x f x 处的切线l 与函数()xg x e =的图象也相切,则满足条件的切点P 的个数有()A.0个B.1个C.2个D.3个6.已知过点(),0M m 作曲线C :ln y x x =⋅的切线有且仅有两条,则实数m 的取值范围是______.7.已知函数21()44,()f x x x g x x -=-+=,则()f x 和()g x 的公切线的条数为A .三条B .二条C .一条D .0条8.若两曲线21y x =-与ln 1y a x =-存在公切线,则正实数a 的取值范围是__________.9.已知函数()21f x x =+,()ln g x x =,若曲线()y f x =与()y g x =的公切线与曲线()y f x =切于点()11,x y ,则()211ln 2x x -=___________.10.已知ln 0a b -=,1c d -=,求22()()a c b d -+-的最小值________.11.已知方程cos (0)xk k x=>有且仅有两个不同的实数解θ,()ϕθϕ>,则以下有关两根关系的结论正确的是A .cos sin ϕϕθ=B .sin cos ϕϕθ=-C .cos cos θθϕ=D .sin sin θθϕ=-12.已知11,1()4ln ,1x x f x x x ⎧+≤⎪=⎨⎪>⎩,则方程()f x ax =恰有2个不同的实根,实数a 取值范围__________________.13.已知函数()3.f x x x =-(1)求曲线()y f x =在点()1,0M 处的切线方程;(2)如果过点()1,b 可作曲线()y f x =的三条切线,求实数b 的取值范围第5讲导数切线方程11类【解析版】【题型一】求切线基础型:给切点求切线【典例分析】已知函数()2sin 1xf x x =+,则曲线()y f x =在点()0,0处的切线的方程为__________.【答案】20x y -=【解析】【分析】先求导函数,求得在切点处的直线斜率;再根据点斜率求得切线方程.【详解】因为()()()221cos 2sin 1x x xf x x +-'=+,所以()02k f ='=,则所求切线的方程为2y x =.故答案为:20x y -=.【变式演练】1.曲线()()1xf x x e x =++在点()0,1处的切线方程为______.【答案】310x y -+=【分析】利用导数的几何意义求解,先对函数求导,然后将点()0,1的横坐标代入导函数所得的值就是切线的斜率,再利用点斜式可与出切线方程.解:由()()1xf x x e x =++,得()'(1)1x x fx e x e =+++,所以在点()0,1处的切线的斜率为()'000(01)13fe e =+++=,所以所求的切线方程为13(0)y x -=-,即310x y -+=,故答案为:310x y -+=,2.已知点()1,1P -在曲线2x y x a=+上,则曲线在点P 处的切线方程为_________.【答案】 32y x =--【分析】将点P 的坐标代入曲线方程,可求得a 的值,然后利用导数的几何意义可求得曲线在点P 处的切线方程.【详解】因为点()1,1P -在曲线2x y x a=+上,111a ∴=-,可得2a =,所以,22x y x =+,对函数求导得()()()222222422x x x x xy x x +-+'==++,则曲线在点P 处的切线斜率为13x k y =-'==-,因此,曲线在点P 处的切线方程为()131y x -=-+,即32y x =--.故答案为:32y x =--.3.已知曲线2()ln x f x x a=+在点(1,(1))f 处的切线的倾斜角为3π4,则a 的值为()A .1B .1-C .12-D .4-【答案】B【分析】求出函数()2ln x f x x a=+的导数'12()x f x x a =+,利用函数f(x)在x=1处的倾斜角为34π得'(1)1f =-,由此可求a 的值.解:函数()2ln x f x x a =+的导数'12()x f x x a =+,函数f(x)在x=1处的倾斜角为34π,∴'(1)1f =-,∴211a+=-,∴1a =-故选B.【题型二】求切线基础型:有切线无切点求切点【典例分析】曲线()32f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为()A .()1,0B .()2,8C .()1,0和()1,4--D .()2,8和()1,4--【答案】C 【详解】令()'2314f x x =+=,解得1x =±,()()10,14f f =-=-,故0p 点的坐标为()()1,0,1,4--,故选C.【点睛】本小题考查直线的斜率,考查导数与斜率的对应关系,考查运算求解能力,属于基础题.【变式演练】1.已知函数()xx af x e e=+为偶函数,若曲线()y f x =的一条切线与直线230x y +=垂直,则切点的横坐标为()A B .2C .2ln 2D .ln 2【答案】D【分析】先根据偶函数求参数1a =,再求导数,根据导数几何意义得斜率,最后根据直线垂直关系得结果.【详解】()f x 为偶函数,则()()(1)0xxx x x x a a f x e e e e a e e----=+=+∴--=∴1a =,()x x f x e e -∴=+,'().x x f x e e -∴=-设切点得横坐标为0x ,则0003'().2x x f x e e -=-=解得02x e =,(负值舍去)所以0ln 2x =.故选:D2.过曲线cos y x =上一点π1,32P ⎛⎫⎪⎝⎭且与曲线在点P 处的切线垂直的直线的方程为()A.2π203x -=B210y +-=C.2π2032x -=D2103y +-+=【答案】A 【分析】求出函数得导函数,根据导数得几何意义即可求得切线得斜率,从而可求得与切线垂直得直线方程.【详解】解:∵cos y x =,∴sin y x '=-,曲线在点π1,32P ⎛⎫⎪⎝⎭处的切线斜率是π3πsin32x y ='=-=,∴过点P 且与曲线在点P∴所求直线方程为1π23y x ⎫-=-⎪⎭,即2π203x -=.故选:A.3.曲线sin 21y x x =++在点P 处的切线方程是310x y -+=,则切点P 的坐标是____________.【答案】()0,1【分析】由导数的几何意义,求得切点P 处的切线的斜率,得到0cos 1x =,求得02()x k k Z π=∈,分类讨论,即可求解.【详解】由函数sin 21y x x =++,则cos 2y x '=+,设切点P 的坐标为()00,x y ,则斜率00cos 23x x k y x ==+'==,所以0cos 1x =,解得02()x k k Z π=∈,当0k =时,切点为()0,1,此时切线方程为310x y -+=;当0k ≠,切点为(2,41)()k k k Z ππ+∈,不满足题意,综上可得,切点为()0,1.故答案为:()0,1.【题型三】求切线基础:无切点求参【典例分析】已知曲线3y x =在点(),a b 处的切线与直线310x y ++=垂直,则a 的取值是()A .-1B .±1C .1D .3±【答案】B【分析】求导得到()2'3f x x =,根据垂直关系得到()2'33f a a ==,解得答案.【详解】()3y f x x ==,()2'3f x x =,直线310x y ++=,13k =-,故()2'33f a a ==,解得1a =±.故选:B .【变式演练】1.若曲线ln (0)y x x =>的一条切线是直线12y x b =+,则实数b 的值为___________【答案】1ln 2-+【解析】【分析】先设切点为00(,)x y ,对函数求导,根据切线斜率,求出切点坐标,代入切线方程,即可得出结果.【详解】设切点为00(,)x y ,对函数ln y x =求导,得到1y x'=,又曲线ln (0)y x x =>的一条切线是直线12y x b =+,所以切线斜率为0112x =,∴02x =,因此0ln 2y =,即切点为()2,ln 2,代入切线12y x b =+,可得1ln 2b =-+.故答案为:1ln 2-+.2.已知曲线3y ax =与直线640x y --=相切,则实数a 的值为__________.【答案】2【分析】先设出切点坐标(,)m n ,然后由切点是公共点和切点处的导数等于切的斜率列方程组可求得结果.解:设切点为(,)m n ,由3y ax =得'23y ax =,则由题意得,2336640am m n n am ⎧=⎪--=⎨⎪=⎩,解得1,2,2m n a ===,故答案为:23.已知x 轴为曲线()()34411f x x a x =+-+的切线,则a 的值为________.【答案】14【分析】设x 轴与曲线()f x 的切点为()0,0x ,由题意结合导数的几何意义可得()()()3002004411012410x a x f x x a ⎧+-+=⎪⎨=+-='⎪⎩,解方程即可得解.【详解】由题意()()21241f x x a '=+-,设x 轴与曲线()f x 的切点为()0,0x ,则()()()302004411012410x a x f x x a ⎧+-+=⎪⎨=+-='⎪⎩,解得01214x a ⎧=⎪⎪⎨⎪=⎪⎩.故答案为:14.【题型四】无切点多参【典例分析】若直线2y x b =+是曲线2ln y a x =的切线,且0a >,则实数b 的最小值是______.【答案】2-【解析】【分析】求出2ln y a x =的导数,设切线为(,)m n ,由切点处的导数值为切线斜率求出m a =,再由切点坐标可把b 表示为a 的函数,再利用导数可求得b 的最小值.【详解】2ln y a x =的导数为2a y x '=,由于直线2y x b =+是曲线2ln y a x =的切线,设切点为(),m n ,则22am=,∴m a =,又22ln m b a m +=,∴2ln 2b a a a =-(0a >),()2ln 122ln b a a '=+-=,当1a >时,0b '>,函数b 递增,当01a <<时,0b '<,函数b 递减,∴1a =为极小值点,也为最小值点,∴b 的最小值为2ln122-=-.故答案为:2-.【变式演练】1已知函数f (x )=axlnx ﹣bx (a ,b ∈R )在点(e ,f (e ))处的切线方程为y =3x ﹣e ,则a +b =_____.【答案】0【分析】由题意()()'2,3f e e fe ==,列方程组可求,a b ,即求+a b .【详解】∵在点()(),e f e 处的切线方程为3y x e =-,()2f e e ∴=,代入()ln f x ax x bx =-得2a b -=①.又()()()''1ln ,23f x a x b f e a b =+-∴=-=②.联立①②解得:1,1a b ==-.0a b ∴+=.故答案为:0.2.若曲线()xf x mxe n =+在()()1,1f 处的切线方程为y ex =,则m n +=__________【答案】12e +解:将1x =代入y ex =,得切点为()1,e ,∴e me n =+①,又()()1xf x me x '=+,∴()12f me e '==,12m =②.联立①②解得:12m =,2e n =,故11222e e m n ++=+=.故答案为:12e +.3.已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则()A .,1a e b ==-B .,1a eb ==C .1,1a eb -==D .1,1a eb -==-【答案】D【详解】ln 1,x y ae x '=++1|12x k y ae ='==+=,1a e -∴=将(1,1)代入2y x b =+得21,1b b +==-,故选D .【题型五】“过点”型切线【典例分析】过原点作曲线ln y x =的切线,则切点的坐标为___________,切线的斜率为__________.【答案】(),1e 1e【分析】设切点坐标为(,)x lnx ;利用导数求切线方程并求切点坐标.解:设切点坐标为(,)x lnx ;1y x '=;故由题意得,1lnx x x=;解得,x e =;故切点坐标为(,1)e ;切线的斜率为1e;故切线方程为1()1y x e e =-+,整理得0x ey -=.故答案为:(,1)e ;1e.【变式演练】1.过点(1,1)--与曲线x y e x =+相切的直线方程为______________.【答案】21y x =+.【详解】设切点坐标为()000,e xx x +,由x y e x =+得e 1x y '=+,∴切线方程为()()0000e 1e x x y x x x =+-++,切线过点()1,1--,∴()()00001e 11e x xx x -=+--++,即00e 0x x =,∴00x =,即所求切线方程为21y x =+.故答案为:21y x =+.2.过点(0,1)-作曲线ln f x =(0x >)的切线,则切点坐标为________.【答案】【分析】先求出曲线的方程,再根据导数值为切线斜率,求出切点坐标.【详解】由ln f x =(0x >),则2()ln ,0f x x x =>,化简得()2ln ,0f x x x =>,则2()f x x'=,设切点为00(,2ln )x x ,显然(0,1)-不在曲线上,则0002ln 12x x x +=,得0x =,则切点坐标为.故答案为:.3.已知直线y ax =是曲线ln y x =的切线,则实数a =()A .12B .12eC .1eD .21e 【答案】C【分析】设切点为00(,ln )x x ,求出切线方程00ln 1xy x x =+-,即得001ln 10a x x ⎧=⎪⎨⎪-=⎩,解方程即得a 的值.【详解】设切点为00(,ln )x x ,∴切线方程是000001ln ()ln 1xy x x x y x x x -=-⇒=+-,∴0011ln 10a x a e x ⎧=⎪⇒=⎨⎪-=⎩,故答案为:C 【题型六】判断切线条数【典例分析】已知曲线3:3S y x x =-,则过点()2,2P 可向S 引切线,其切线条数为()A .1B .2C .3D .0【答案】C 【解析】【分析】设切点为()3,3t t t-,利用导数求出曲线S 在切点()3,3t t t -处的切线方程,再将点P 的坐标代入切线方程,可得出关于t 的方程,解出该方程,得出该方程根的个数,即为所求.【详解】设在曲线S 上的切点为()3,3t t t -,33y x x =-,则233y x '=-,所以,曲线S 在点()3,3t t t-处的切线方程为()()()32333y t t t x t --=--,将点()2,2P 的坐标代入切线方程得32320t t -+=,即()()21220t t t ---=,解得11t =,21t =+31t =.因此,过点()2,2P 可向S 引切线,有三条.故选:C.【变式演练】1.已知过点A(a,0)作曲线C:y=x•e x的切线有且仅有两条,则实数a 的取值范围是()A .(﹣∞,﹣4)∪(0,+∞)B .(0,+∞)C .(﹣∞,﹣1)∪(1,+∞)D .(﹣∞,﹣1)【答案】A【详解】设切点为()000,e xx x ,(1)x y x e =+',000(1)x x x y x e =∴=+⋅',则切线方程为:()00000=1()x x y x e x e x x -+⋅-,切线过点(,0)A a 代入得:()00000=1()x x x e x e a x -+⋅-2001x a x ∴=+,即方程2000x ax a --=有两个解,则有2400a a a ∆=+>⇒>或4a <-.故答案为:A.2.已知函数()=-xa f x x e 存在单调递减区间,且()y f x =的图象在0x =处的切线l 与曲线x y e =相切,符合情况的切线l ()A .有3条B .有2条C .有1条D .不存在【答案】D 【解析】试题分析:()1x a e f x a=-',依题意,()0f x '<在R 上有解.当0a <时,()0f x '<在R 上无解,不符合题意;当0a >时,()0,,ln x af x a e x a a <'符合题意,故0a >.易知曲线()y f x =在0x =处的切线为111y x a ⎛⎫=-- ⎪⎝⎭.假设该直线与x y e =相切,设切点为()00,x y ,即有0011111xe x a a ⎛⎫=-=-- ⎪⎝⎭,消去a 化简得0001x x ex e =-,分别画出,1x x e xe -的图像,观察可知它们交点横坐标01x >,0x e e >,这与111a-<矛盾,故不存在.3.已知函数()3291,f x x ax x a R =+-+∈,当01x ≠时,曲线()y f x =在点()()00,x f x 与点()()02,2x f x --处的切线总是平行时,则由点(),a a 可作曲线()y f x =的切线的条数为()A .1B .2C .3D .无法确定【答案】C 【解析】分析:由曲线()y f x =在点()()00,x f x 与点()()002,2x f x --处的切线总是平行,可得导函数的对称轴,从而求出a 的值,设出切点坐标,可得关于切点横坐标的方程有三个解,从而可得结果.详解:由()3291f x x ax x =+-+,得()2'329f x x ax =+-,曲线()y f x =在点()()00,x f x 与点()()002,2x f x --处的切线总是平行,()'y f x ∴=关于1x =对称,即133aa -=⇒=-,点(),a a ,即为()3,3--,所以()32391f x x x x =--+,()2'329f x x ax =+-,设切点为()(),t f t 切线的方程为()()3'3y f t x +=+,将点()32,391t t t t --+代入切线方程可得()()3223933693t t t t t t --+=--+,化为322636310t t t ---=,设()32263631g t t t t =---()2'61218g t t t =--令()'0g t >得3t >或1t <-,令()'0g t <得10t -<<,()32263631g t t t t =---在()(),1,3,-∞-+∞上递增,在()1,3-上递减,t ∴在1-处有极大值,在3处有极小值,()110g ∴-=>且()31390g =-<,()32263631g t t t t =---与x 有三个交点,∴方程()0g t =有三个根,即过(),a a 的切线有3条,故答案为3.【题型七】多函数(多曲线)的公切线【典例分析】直线y kx b =+与曲线()y f x =相切也与曲线()y g x =相切,则称直线y kx b =+为曲线()y f x =和曲线()y g x =的公切线,已知函数2(),()ln ,f x x g x a x ==,其中0a ≠,若曲线()y f x =和曲线()y g x =的公切线有两条,则a 的取值范围为()A .0a <B .1a <-C .02ea <<D .20a e<<【答案】C 【解析】【分析】设切点求出两个函数的切线方程,根据这个两个方程表示同一直线,可得方程组,化简方程组,可以得到变量a 关于其中一个切点横坐标的函数形式,求导,求出函数的单调性,结合该函数的正负性,画出图象图形,最后利用数形结合求出a 的取值范围.【详解】设曲线2()f x x =的切点为:2(,)s s ,2'()()2f x x f x x ⇒==,所以过该切点的切线斜率为'()2f s s =,因此过该切点的切线方程为:222()2y s s x s y sx s -=-⇒=-;设曲线()y g x =的切点为:(,ln )t a t ,'()ln ()a g x a x g x x =⇒=,所以过该切点的切线斜率为'()a g t t=,因此过该切点的切线方程为:ln ()ln a ay a t x t y x a a t t t-=-⇒=-+,则两曲线的公切线应该满足:2224(1ln )ln a s a t t t s a a t⎧=⎪⇒=-⎨⎪-=-+⎩,构造函数2'()4(1ln )(0)()4(12ln )h t t t t h t t t =->⇒=-,当12t e>时,'()0,()h t h t <单调递减,当120t e<<时,'()0,()h t h t >单调递增,所以函数有最大值为:12()2h e e =,当t e >时,()0h t <,当0t e <<,()0h t >,函数的图象大致如下图所示:要想有若曲线()y f x =和曲线()y g x =的公切线有两条,则a 的取值范围为02e a <<.故选:C【变式演练】1.函数()ln 1mxf x x x =++与2()1g x x =+有公切线,(0)y ax a =>,则实数m 的值为()A .4B .2C .1D .12【答案】A 【解析】【分析】设两个切点A ()11x y ,和B ()22x y ,,然后求函数的导函数(),()f x g x '',由()g x 的导函数()g x '分析求解参数2a =,再由()f x 的导函数和公切线分析得出关于m 的方程组,求解即可得出答案.【详解】设公切线,(0)y ax a =>与两个函数()ln 1mxf x x x =++与2()1g x x =+图象的切点分别为A ()11x y ,和B ()22x y ,,由()21()1m f x x x '=++,()2g x x '=,可得()22222222()21g x x ay ax g x x y⎧==⎪=='⎨⎪+=⎩解得2a =,所以有()1211111111111()21()ln 12m f x a x x mx f x x y x y ax x ⎧=+==⎪+⎪⎪⎪=+'=⎨+⎪⎪==⎪⎪⎩化简得21112ln 10x x x -+-=,令()22ln 1h x x x x =-+-()0x >,则()11304h x x x'+-≥>=恒成立,即得函数()22ln 1h x x x x =-+-()0x >在定义域上为增函数,又因()10h =,则可解得方程21112ln 10x x x -+-=,11x =,则由()21(1)2111mf '=+=+解得4m =.故选:A.2.曲线1()x f x e -=与曲线()ln g x x =有()条公切线.A .1B .2C .3D .4【答案】B 【详解】设()010,x x e -是曲线()f x 图像上任意一点,()'1x f x e-=,所以()01'0x fx e -=,所以过点()010,x x e -的切线方程为()00110x x y e e x x ---=-,整理得()001101x x y e x x e --=⋅+-①.令()01'1x g x e x-==,解得011x x e -=,则()101g x x =-,所以曲线()g x 上过点()010,1x e x --的切线方程为:()()001101x x y x e x e ----=-,整理得010x y e x x -=⋅-②.由于切线①②重合,故()01001x x e x --=-,即()010010x x ex --⋅-=③.构造函数()()11x h x x e x -=--,则()'11x h x xe -=-,()()''11x h x x e -=+,故当1x <-时()()'''0,h x h x <递减、当1x >-时()()'''0,h x h x >递增,注意到当0x <时()'0h x <,且()'10h =,所以当1x <时()()'0,h x h x <递减,当1x >时,()()'0,h x h x >递增,而()()()22110,110,220h h h e e-=->=-<=->,根据零点存在性定理可知在区间()()1,1,1,2-各存在()h x 的一个零点,也即()h x 有两个零点,也即方程③有两个根,也即曲线()f x 和曲线()g x 有两条公切线.故选:B 3.若函数()ln (0)f x x x =>与函数2()g x x a =+有公切线,则实数a 的最小值为()A .11ln 222--B .ln 21--C .12-D .ln 2-【答案】A 【解析】【分析】求出()f x 导数,设出切点,求出切线,将其与2()g x x a =+联立,通过判别式为零,可得切点坐标的关系式,整理得到关于一个坐标变量的方程,借助于函数的极值和最值,即可得到a 的最小值.【详解】解:'1()f x x=,设公切线与曲线()ln f x x =相切的切点为(),ln ,0m m m >,则公共切线为()1ln y x m m m=-+,即ln 0x my m m m --+=,其与2y x a =+相切,联立消去y 得:2ln 0mx x am m m m -++-=,则()14ln 0m am m m m ∆=-+-=有解,即211ln 4a m m=-+有解,令()211ln 4h m m m=-+,0m >,则()2'33112122m h m m m m -=-+=,令232102m m -=,得22m =,则()211ln 4h m m m =-+在0,2⎛⎫ ⎪ ⎪⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,则()2min11ln 224211ln 222h m h ⎛⎫==-+= ⎪ ⎪⎛⎫⎝⎭ ⎪⎝--⎭,则11ln 222a --≥,所以实数a 的最小值为11ln 222--.故选:A.【题型八】切线的应用:距离最值【典例分析】点P 在函数ln y x =的图像上,若满足到直线y x a =+的距离为1的点P 有且仅有1个,则a =()A1+B1C.1-D.1【答案】B 【分析】先求导,设直线y x m =+与ln y x =相切于点00(,)x y ,利用导数几何意义和切点在曲线、直线上求得切点()1,0,再利用()1,0到直线y x a =+的距离为1,结合图象解得参数即可.【详解】函数ln y x =的导函数为1y x=,设直线y x m =+与ln y x =相切于点00(,)x y ,则00000ln 11y x y x m x ⎧⎪=⎪⎪=+⎨⎪⎪=⎪⎩,解得切点为()1,0,由题可知()1,0到直线y x a =+的距离为1,1=,解得1a =,结合图象可知,1a =-.故选:B.【变式演练】1.点A 在直线y =x 上,点B 在曲线ln y x =上,则AB 的最小值为()A.2B .1CD .2【答案】A设平行于直线y =x 的直线y =x +b 与曲线ln y x =相切,将题意转化为两平行线间的距离,由导数的几何意义可得b 的值,进而可得结果.【详解】设平行于直线y =x 的直线y =x +b 与曲线ln y x =相切,则两平行线间的距离即为AB 的最小值.设直线y =x +b 与曲线ln y x =的切点为(,ln )m m ,则由切点还在直线y =x +b 上可得ln m m b =+,由切线斜率等于切点的导数值可得11m=,联立解得m =1,b =-1,由平行线间的距离公式可得AB=故选:A.2.已知点M 在函数()x f x e =图象上,点N 在函数()ln g x x =图象上,则||MN 的最小值为()A .1BC .2D .3【答案】B 【分析】根据函数()x f x e =与函数()ln g x x =互为反函数,将问题转化为求函数()x f x e =的图象与直线y x =平行的切线的切点00(,)x y 到直线y x =的距离的两倍,利用导数求出切点坐标,根据点到直线的距离公式可得结果.【详解】因为函数()x f x e =与函数()ln g x x =互为反函数,它们的图象关于直线y x =对称,所以||MN 的最小值为函数()x f x e =的图象上的点M 到直线y x =的距离的2倍,即为函数()x f x e =的图象与直线y x =平行的切线的切点00(,)x y 到直线y x =的距离的两倍,因为()x f x e '=,所以函数()x f x e =的图象上与直线y x =平行的切线的斜率01x k e ==,所以00x =,所以切点为(0,1),它到直线y x =的距离d ==所以||MN 故选:B.3.抛物线上的一动点到直线距离的最小值是A .B .C .D .【答案】A试题分析:对y=x 2求导可求与直线x-y-1=0平行且与抛物线y=x 2相切的切线方程,然后利用两平行线的距离公司可得所求的最小距离d .解:(法一)对y=x 2求导可得y′=2x ,令y′=2x=1可得x=∴与直线x-y-1=0平行且与抛物线y=x 2相切的切点(,),切线方程为y-=x-即x-y-=0由两平行线的距离公司可得所求的最小距离d=,故选A.【题型九】切线的应用:距离公式转化型【典例分析】若12,x x R ∈,则()()212212e e x x x x -+-的最小值是A .1B .2C .3D .4【答案】B 【分析】原题等价于函数x y e =上的点()11,x A x e 与函数ln y x =上的点()22,xB e x 间的距离最小值的平方,结合两个函数关于y x =对称,将其转化为函数ln y x =与y x =的距离的最小值2倍的平方,利用导数求切线方程最后转化求两平行线间的距离平方即可.【详解】由题意可转化为点()11,x A x e 与点()22,xB e x 间的距离最小值的平方,点A 在函数x y e =上,点B 在函数ln y x =上,这两个函数关于y x =对称,所以转化为函数ln y x =与y x =的距离的最小值2倍的平方,此时11y x '==,∴ln y x =斜率为1的切线方程为1y x =-,它与y x =的距离为2.故原式的最小值为2.故选:B .【变式演练】1.若12,x x R ∈,则()()212212e e x x x x -+-的最小值是A .1B .2C .3D .4【答案】B 【分析】原题等价于函数x y e =上的点()11,x A x e 与函数ln y x =上的点()22,xB e x 间的距离最小值的平方,结合两个函数关于y x =对称,将其转化为函数ln y x =与y x =的距离的最小值2倍的平方,利用导数求切线方程最后转化求两平行线间的距离平方即可.【详解】由题意可转化为点()11,x A x e 与点()22,xB e x 间的距离最小值的平方,点A 在函数x y e =上,点B 在函数ln y x =上,这两个函数关于y x =对称,所以转化为函数ln y x =与y x =的距离的最小值2倍的平方,此时11y x'==,∴ln y x =斜率为1的切线方程为1y x =-,它与y x =的距离为2.故原式的最小值为2.故选:B .2.设0b <,当224()()a b a b++-取得最小值c 时,函数()||||f x x b x c =-+-的最小值为___________.【答案】10【分析】224()(a b a b ++-表示点(,)a a 与点4(,b b -距离的平方,而点(,)a a 是直线y x =上任一点,点4(,b b-(0b <)是反比例函数4y x=-在第四象限上的点,然后由反比例函数和正比例函数的性质可求得0,2a b ==-,从而得8c =,再利用绝对值三角不等式可求出函数()f x 的最小值【详解】解:224()()a b a b++-表示点(,)A a a 与点4(,B b b -距离的平方,而点A 是直线y x =上任一点,点B 是反比例函数4y x =-在第四象限上的点,当B 是斜率为1的直线与4y x=-相切的切点时,点B 到直线y x =的距离即为||AB 的最小值,由2244,|1,2(0),(2,2)x b y y b b B x b ='='==∴=>-,min ||8AB c ∴===,所以()|||||2||8|(2)(8)10f x x b x c x x x x =-+-=++-≥+--=,当且仅当28x -≤≤取等号,所以函数()||||f x x b x c =-+-的最小值为10,故答案为:103.已知a R ∈,b R ∈______.【分析】利用算术根的几何意义,把所求转化为两个图形上点的距离最小值即可作答.【详解】(),1a a -到点(),bb e 的距离,而点(),1a a -的轨迹是直线1y x =-,点(),b b e 的轨迹是曲线()xf x e =,则所求最小值可转化为曲线()x f x e =上的点到直线1y x =-距离的最小值,而曲线()xf x e =在直线1y x =-上方,平移直线1y x =-使其与曲线()xf x e =相切,则切点到直线1y x =-距离即为所求,设切点00(,)xx e ,()x f x e '=,由()001x f x e '==得00x =,切点为(0,1)则(0,1)到直线1y x =-距离d ==.【题型十】切线的应用:恒成立求参等应用【典例分析】已知a 为实数,则“e x ax >对任意的实数x 恒成立”是“02a <<”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【分析】先根据导数的几何意义求出直线y kx =与曲线x y e =相切时k 的值,再数形结合将e x ax >对任意的实数x 恒成立转化为0a e ≤<,最后判断充要关系即可得解.【详解】设直线y kx =与曲线x y e =相切,且切点为()00,xx e ,则000xx k e e kx ⎧=⎪⎨=⎪⎩,解得01x =,所以切点为()1,e ,k e =,所以切线方程为y ex =.数形结合可知,e x ax >对任意的实数x 恒成立等价于0a e ≤<.而由0a e ≤<不能得到02a <<,故充分性不成立;反之,由02a <<可得到0a e ≤<,故必要性成立.故选:B .【变式演练】1.已知函数()(0,1)x f x a a a =>≠的图象在(0,1)处的切线方程为21y x =+,若()f x mx x ≥+恒成立,则m 的取值范围为()A .[]1,21e --B .(,21]e -∞-C .[]1,1e --D .(,1]e -∞-【答案】A 【分析】由题意求得a ,代入函数解析式,把问题转化为2x e mx x + 恒成立,对x 分类讨论,分离参数m ,再由导数求最值得答案.【详解】解:因为()x f x a =,所以()ln x f x a a '=,又函数()f x 的图象在(0,1)处的切线方程为21y x =+,所以0(0)ln 2f a a '==,解得2e a =,所以2()e x f x =,因为()f x mx x ≥+恒成立,所以2e x mx x ≥+恒成立.当0x =时,0e 0≥成立.当0x ≠时,令2e ()1x g x x =-,则22e (21)()x x g x x -'=.当1(,0)0,2x ⎛⎫∈-∞⋃ ⎪⎝⎭时,()0g x '<,()g x 在(,0)-∞和10,2⎛⎫⎪⎝⎭上单调递减.当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '>,()g x 单调递增,当0x >时,e 1xm x ≤-恒成立,所以2mine 112e 12x m g x ⎛⎫⎛⎫≤-==- ⎪⎪⎝⎭⎝⎭;当0x <时,2e 1xm x ≥-恒成立,而2e ()11xg x x=-<-,所以1m ≥-.综上,12e 1m ≤≤-一,所以m 的取值范围为[1,2e 1]--.故选:A 2.若曲线ln y x =在点()11,P x y 处的切线与曲线x y e =相切于点()22,Q x y ,则12111x x x ++=-__________.【答案】0【分析】利用导数的几何意义分别求解出ln y x =在点()11,P x y 处的切线方程以及x y e =在点()22,Q x y 处的切线方程,根据两切线重合,求解出12,x x 之间的关系式,由此可化简计算出12111x x x ++-的值.【详解】ln y x =的导数为1y x'=,可得曲线ln y x =在点()11,P x y 处的切线方程为()1111ln y x x x x -=-,x y e =的导数为e x y '=,可得曲线x y e =在点()22,Q x y 处的切线的方程为()222x xy e e x x -=-,由两条切线重合的条件,可得211x e x =,且()212ln 11xx e x -=-,则21ln x x =-,即有()1111ln 11ln x x x -=+,可得1111ln 1x x x +=-,则121111ln ln 01x x x x x ++=-=-.故答案为:03.已知函数()ln f x x =,()1g x ax =+,若存在01x e≥使得()()00f x g x =-,则实数a 的取值范围是()A .212,e e ⎡⎤-⎢⎥⎣⎦B .21,2e e ⎡⎤-⎢⎥⎣⎦C .21,2e e ⎡⎤⎢⎥⎣⎦D .21,2e e ⎡⎤⎢⎥⎣⎦【答案】B 【分析】利用()()00f x g x =-,把问题转化为ln y x =与1y ax =-+在1x e≥有交点,利用数形结合进行分析,即可求解【详解】()()00f x g x =-,所以,00ln 1x ax =-+,即ln y x =与1y ax =-+在1x e≥有交点,分情况讨论:①直线1y ax =-+过点1(,1)e -,即11ae-=-+,得2a e =;②直线1y ax =-+与ln y x =相切,设切点为(,)m n ,得1ln 1am m a m -+=⎧⎪⎨-=⎪⎩⇒221m e a e ⎧=⎪⎨=-⎪⎩,切点为2(,2)e ,故实数a 的取值范围是21,2e e ⎡⎤-⎢⎥⎣⎦故选:B【题型十一】切线的应用:零点等【典例分析】已知函数()f x 满足1()(f x f x =,当[1,3]x ∈时,()ln f x x =,若在区间1[,3]3内,函数()()g x f x ax =-与x 轴有三个不同的交点,则实数a 的取值范围是.【答案】ln 31[,)3e 【解析】试题分析:由题意知,ln ,[1,3]()12ln ,[,1)3x x f x x x ∈⎧⎪=⎨-∈⎪⎩,∵在区间1[,3]3内,函数()()g x f x ax =-与x 轴有三个不同的交点,∴函数ln ,[1,3]()12ln ,[,1)3x x f x x x ∈⎧⎪=⎨-∈⎪⎩与y ax =在区间1[,3]3内有三个不同的交点,合图象可知,当直线y ax =与()ln f x x =相切时,ln 1x x x =,解得:x e =;此时1a e =;当直线y ax =过点(3,ln 3)时,ln 33a =;故ln 313a e≤<.【变式演练】1.已知函数sin(),2,2()2223sin(2,2()222x x k k k z y x x k k k z ππππππππππ⎧⎡⎫+∈-+∈⎪⎪⎢⎪⎣⎭=⎨⎡⎫⎪-+∈++∈⎪⎢⎪⎣⎭⎩的图象与直线(2)(0)y m x m =+>恰有四个公共点11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,其中1334x x x x <<<,则44(2)tan x x +=______.【答案】1-函数的图象如下图所示:直线(2)(0)y m x m =+>过定点(2,0)-,当3,22x ππ⎡⎤∈⎢⎥⎣⎦时,()cos f x x =-,()sin f x x '=,由图象可知切点坐标为()44,cos x x -,切线方程为:()444cos sin y x x x x +=-,又因为切线过点(2,0)-,则有()444cos sin 2x x x =--,即44(2)tan 1.x x +=-2.关于x 的方程sin ((0,1))kx x k =∈在(3,3)ππ-内有且仅有5个根,设最大的根是α,则α与tan α的大小关系是A .tan αα>B .tan αα<C .tan αα=D .以上都不对【答案】C 【分析】由题,先做出图像,然后找到最大根α,利用斜率公式可得α与tan α的大小关系.【详解】由题意作出y kx =与sin y x =在(3,3)ππ-的图象,如图所示:∵方程sin ((0,1))kx x k =∈在(3,3)ππ-内有且仅有5个根,最大的根是α.∴α必是y kx =与sin y x =在(2,3)ππ内相切时切点的横坐标设切点为()00,x y ,052,2x ππ⎛⎫∈ ⎪⎝⎭,则0x α=,斜率0cos k x =则000sin cos cos tan y x x ααααα=∴=⋅∴=故选C.3.已知函数()f x 满足()()11f x f x +=-,且21,x e ⎡⎤∈⎣⎦时,()ln f x x =,若22,1x e ⎡⎤∈-⎣⎦时,方程()()2f x k x =-有三个不同的根,则k 的取值范围为()A .221,e e ⎛⎤ ⎝⎦B .1,e ⎛⎫-∞ ⎪⎝⎭C .212,e e ⎛⎤-- ⎥⎝⎦D .1,e ⎛⎫-+∞ ⎪⎝⎭【答案】C 【分析】由()()11f x f x +=-,可得函数()f x 的图像关于直线1x =对称,由此可画出函数图像,而直线()2y k x =-为过定点()2,0的一条直线,当直线与当22,1x e ⎡⎤∈-⎣⎦时的函数()f x 的图像相切时,直线与()f x 在22,1e ⎡⎤-⎣⎦的图像有两个公共点,然后利用导数求出切线的斜率,再结合图像可得答案【详解】因为()()11f x f x +=-,所以函数()f x 的图像关于直线1x =对称.当21,x e ⎡⎤∈⎣⎦时,()ln f x x =,则当22,1x e ⎡⎤∈-⎣⎦时,()f x 的图像如图所示,直线()2y k x =-为过定点()2,0的一条直线.当直线与当22,1x e ⎡⎤∈-⎣⎦时的函数()f x 的图像相切时,直线与()f x 在22,1e ⎡⎤-⎣⎦的图像有两个公共点.当22,1x e ⎡⎤∈-⎣⎦时,函数()()()2ln 2f x f x x =-=-,()12x f x '=-,设切点为()()00,ln 2x x -,切线的斜率012k x =-,则切线方程为()()0001ln 22y x x x x --=--,把点()2,0代入得02x e =-,所以1k e =-;当直线过点()22,2e -时,22k e =-,所以k 的取值范围为212,e e ⎛⎤-- ⎥⎝⎦,故选:C.【课后练习】1.已知函数()ln()f x a x =+在()()0,0f 处的切线方程为y x =,则满足()021f x ≤-≤的x 的取值范围。