2018年全国高考新课标3卷理科数学试题
- 格式:doc
- 大小:21.29 MB
- 文档页数:16
2018年高考理科数学全国三卷试题和答案解析2018年高考理科全国三卷1.已知集合 $A=\{1,2,3,4\}。
B=\{2,3,4\}。
C=\{3,4\}。
D=\{4\}$,则 $(A\cup B)\cap (C\cup D)$ 的元素为 $\{3,4\}$。
2.设 $f(x)=\dfrac{1-x}{1+x}$,则 $f(f(x))=\dfrac{x-1}{x+1}$。
3.中国古建筑借助榫卯将木构件连接起来,构建的突出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头。
若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是选项 B。
4.若 $\log_2 a=3$,$\log_3 b=4$,$\log_5 c=5$,则$a^2bc=\dfrac{2^6\cdot 3^8\cdot 5^{10}}{15}$。
5.$x^6+(x+1)^6$ 的展开方式中 $x^2$ 的系数为 $40$。
6.直线 $y=x+1$,$y=-x+3$ 分别与 $x$ 轴,$y$ 轴交于两点,点在圆 $x^2+y^2=1$ 上,则面积 $S$ 的取值范围是$0<S<2\pi$。
7.函数 $f(x)=\sqrt{1-x^2}$,$g(x)=\dfrac{1}{2}$,则$h(x)=f(x)g(x)+\dfrac{1}{2}$ 的图像大致为一个半径为$\dfrac{1}{2}$,圆心在 $y$ 轴上方 $\dfrac{1}{2}$ 的圆。
8.某群体中的每位成员使用移动支付的概率为 $0.8$,各成员的支付方式相互独立。
设使用移动支付的人数为 $n$,则$P(n\leq 3)$ 的概率为 $0.008+0.096+0.345+0.409=0.858$。
9.已知 $\triangle ABC$ 中,$\angle A=120^\circ$,$AB=AC$,$BC=2$,则 $S_{\triangle ABC}=\sqrt{3}$,$\sinA=\dfrac{\sqrt{3}}{2}$,$\cos A=-\dfrac{1}{2}$。
绝密★启封并使用完毕前试题类型:2018年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量1(,22BA =uu v ,1),2BC =uu u v 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A) 各月的平均最低气温都在00C以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =(A (B (C )- (D )-(9)如图,格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18+(B )54+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 (A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个(B )16个(C )14个(D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)若x,y满足约束条件{x−y+1≥0 x−2y≪0x+2y−2≪0则z=x+y的最大值为_____________.(14)函数y=sin x−√3cos x的图像可由函数 y=sin x+√3cos x的图像至少向右平移_____________个单位长度得到。
2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则A .B .C .D . 2. A .B .C .D .3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若,则 A .B .C .D . {}|10A x x =-≥{}012B =,,A B ={}0{}1{}12,{}012,,()()1i 2i +-=3i --3i -+3i -3i+1sin 3α=cos2α=897979-89-5.的展开式中的系数为A .10B .20C .40D .806.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是 A .B .C .D .7.函数的图像大致为8.某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则 A .0.7B .0.6C .0.4D .0.39.的内角的对边分别为,,,若的面积为,则A .B .C .D .10.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为则三棱锥体积的最大值为522x x ⎛⎫+ ⎪⎝⎭4x 20x y ++=x y A B P ()2222x y -+=ABP △[]26,[]48,⎡⎣422y x x =-++p X 2.4DX =()()46P X P X =<=p =ABC △A B C ,,a b c ABC △2224a b c +-C =π2π3π4π6A B C D ,,,ABC △D ABC -A .B .C .D .11.设是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为 AB .2CD12.设,,则A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分.13.已知向量,,.若,则________.14.曲线在点处的切线的斜率为,则________. 15.函数在的零点个数为________.16.已知点和抛物线,过的焦点且斜率为的直线与交于,两点.若 ,则________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)等比数列中,. (1)求的通项公式;(2)记为的前项和.若,求. 18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:12F F ,22221x y C a b-=:00a b >>,O 2F C P 1PF =C 0.2log 0.3a =2log 0.3b =0a b ab +<<0ab a b <+<0a b ab +<<0ab a b <<+()=1,2a ()=2,2-b ()=1,λc ()2∥c a +b λ=()1e xy ax =+()01,2-a =()πcos 36f x x ⎛⎫=+ ⎪⎝⎭[]0π,()11M -,24C y x =:C k C A B 90AMB =︒∠k ={}n a 15314a a a ==,{}n a n S {}n a n 63m S =m(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异? 附:,19.(12分)如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.20.(12分)已知斜率为的直线与椭圆交于,两点,线段的中点为. (1)证明:; m m m()()()()()22n ad bc K a b c d a c b d -=++++ABCD CD M CD C D AMD ⊥BMC M ABC -MAB MCD k l 22143x y C +=:A B AB ()()10M m m >,12k <-(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差. 21.(12分)已知函数.(1)若,证明:当时,;当时,; (2)若是的极大值点,求.(二)选考题:共10分,请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点. (1)求的取值范围;学.(2)求中点的轨迹的参数方程. 23.[选修4—5:不等式选讲](10分)设函数. (1)画出的图像;(2)当,,求的最小值.F C P C FP FA FB ++=0FA FP FB ()()()22ln 12f x x ax x x =+++-0a =10x -<<()0f x <0x >()0f x >0x =()f x a xOy O ⊙cos sin x y θθ=⎧⎨=⎩,θ(0,αl O ⊙A B ,αAB P ()211f x x x =++-()y f x =[)0x +∞∈,()f x ax b +≤a b +参考答案:13.14. 15. 16.2 17.(12分)解:(1)设的公比为,由题设得.由已知得,解得(舍去),或.故或.(2)若,则.由得,此方程没有正整数解.若,则.由得,解得.综上,. 18.(12分)解:(1)第二种生产方式的效率更高. 理由如下:(i )由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii )由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高. (iv )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,123-3{}n a q 1n n a q -=424q q =0q =2q =-2q =1(2)n n a -=-12n n a -=1(2)n n a -=-1(2)3n n S --=63m S =(2)188m-=-12n n a -=21n n S =-63m S =264m=6m =6m =故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.*网以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知. 列联表如下:(3)由于,所以有99%的把握认为两种生产方式的效率有差异. 19.(12分)解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM . 又 BCCM =C ,所以DM ⊥平面BMC .而DM 平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz .当三棱锥M −ABC 体积最大时,M 为的中点.由题设得,7981802m +==2240(151555)10 6.63520202020K ⨯-⨯==>⨯⨯⨯⊂CD ⊂DA CD (0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,1,1)D A B C M (2,1,1),(0,2,0),(2,0,0)AM AB DA =-==设是平面MAB 的法向量,则即 可取.是平面MCD 的法向量,因此,, 所以面MAB 与面MCD 所成二面角的正弦值是. 20.(12分)解:(1)设,则. 两式相减,并由得. 由题设知,于是 .① 由题设得,故. (2)由题意得,设,则.由(1)及题设得.(,,)x y z =n 0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩n n 20,20.x y z y -++=⎧⎨=⎩(1,0,2)=n DA 5cos ,5||||DA DA DA ⋅==n nn 2sin ,5DA =n 51221(,),(,)A y x y x B 222212121,14343y x y x +=+=1221y x y k x -=-1122043y x y k x +++⋅=12121,22x y x ym ++==34k m=-302m <<12k <-(1,0)F 33(,)P x y 331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=3321213()1,()20y y x x y x m =-+==-+=-<又点P 在C 上,所以,从而,. 于是.同理. 所以. 故,即成等差数列. 设该数列的公差为d ,则.② 将代入①得. 所以l 的方程为,代入C 的方程,并整理得. 故,代入②解得.或21.(12分)解:(1)当时,,. 设函数,则. 当时,;当时,.故当时,,且仅当时,,从而,且仅当时,.34m =3(1,)2P -3||2FP =1||(22xFA x ===-2||22x FB =-121||||4()32FA FB x x +=-+=2||||||FP FA FB =+||,||,||FA FP FB 1212||||||||||2FB FA x x d =-=-=34m =1k =-74y x =-+2171404x x -+=121212,28x x x x +==||28d =0a =()(2)ln(1)2f x x x x =++-()ln(1)1xf x x x'=+-+()()ln(1)1x g x f x x x '==+-+2()(1)x g x x '=+10x -<<()0g x '<0x >()0g x '>1x >-()(0)0g x g ≥=0x =()0g x =()0f x '≥0x =()0f x '=所以在单调递增.学#又,故当时,;当时,.(2)(i )若,由(1)知,当时,,这与是的极大值点矛盾. (ii )若,设函数.由于当时,,故与符号相同. 又,故是的极大值点当且仅当是的极大值点..如果,则当,且时,,故不是的极大值点.如果,则存在根,故当,且时,,所以不是的极大值点. 如果,则.则当时,;当时,.所以是的极大值点,从而是的极大值点 综上,. 22.[选修4—4:坐标系与参数方程](10分)【解析】(1)的直角坐标方程为.当时,与交于两点. ()f x (1,)-+∞(0)0f =10x -<<()0f x <0x >()0f x >0a ≥0x >()(2)ln(1)20(0)f x x x x f ≥++->=0x =()f x 0a <22()2()ln(1)22f x xh x x x ax x ax ==+-++++||min{x <220x ax ++>()h x ()f x (0)(0)0h f ==0x =()f x 0x =()h x 2222222212(2)2(12)(461)()1(2)(1)(2)x ax x ax x a x ax a h x x x ax x ax x ++-++++'=-=++++++610a +>6104a x a +<<-||min{x <()0h x '>0x =()h x 610a +<224610a x ax a +++=10x <1(,0)x x∈||min{x <()0h x '<0x =()h x 610a +=322(24)()(1)(612)x x h x x x x -'=+--(1,0)x ∈-()0h x '>(0,1)x ∈()0h x '<0x =()h x 0x =()f x 16a =-O 221x y +=2απ=l O当时,记,则的方程为.与交于两点当且仅当,解得或,即或. 综上,的取值范围是. (2)的参数方程为为参数,. 设,,对应的参数分别为,,,则,且,满足. 于是,.又点的坐标满足 所以点的轨迹的参数方程是为参数,. 23.[选修4—5:不等式选讲](10分)【解析】(1)的图像如图所示. 2απ≠tan k α=l y kx =lO ||1<1k <-1k >(,)42αππ∈(,)24απ3π∈α(,)44π3πl cos ,(sin x t t y t αα=⎧⎪⎨=⎪⎩44απ3π<<)A B P A t B t P t 2A B P t t t +=A t Bt 2sin 10t α-+=A B t t α+=P t α=P (,)xy cos ,sin .P P x t y t αα=⎧⎪⎨=⎪⎩P 2,2cos 222x y αα⎧=⎪⎪⎨⎪=--⎪⎩(α44απ3π<<)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x =(2)由(1)知,的图像与轴交点的纵坐标为,且各部分所在直线斜率的最大值为,故当且仅当且时,在成立,因此的最小值为.()y f x =y 233a ≥2b ≥()f x ax b ≤+[0,)+∞a b +5。
2018年高考理数真题试卷(全国Ⅲ卷)一、选择题: (共12题;共24分)1.(2分)已知集合 A ={x|x −1≥0},B ={0,1,2} ,则 A ∩B = ( )A .{0}B .{1}C .{1,2}D .{0,1,2}2.(2分)(1+i)(2−i) =( )A .-3-iB .-3+iC .3-iD .3+i3.(2分)中国古建筑借助榫卯将木构件连接起来,构建的突出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A .B .C .D .4.(2分)若 sinα=13,则 cos2α =( )A .89B .79C .- 79D .- 895.(2分)(x 2+2x)5的展开式中x 4的系数为( )A .10B .20C .40D .806.(2分)直线 x +y +2=0 分别与 x 轴, y 轴交于点 A ,B 两点,点 P 在圆 (x −2)2+y 2=2 上,则 ΔABP 面积的取值范围是( ) A .[2,6]B .[4,8]C .[√2,3√2]D .[2√2,3√2]7.(2分)函数 y =−x 4+x 2+2 的图像大致为( )A .B .C .D .8.(2分)某群体中的每位成员使用移动支付的概率都为 p ,各成员的支付方式相互独立,设 X 为该群体的10位成员中使用移动支付的人数, DX =2.4 , P(X =4)<P(X =6) ,则 p = ( ) A .0.7B .0.6C .0.4D .0.39.(2分)ΔABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,若 ΔABC 的面积为 a 2+b 2−c 24,则C =( )A.π2B.π3C.π4D.π610.(2分)设A,B,C,D是同一个半径为4的球的球面上四点,ΔABC为等边三角形且其面积为9√3,则三棱锥D−ABC体积的最大值为()A.12√3B.18√3C.24√3D.54√311.(2分)设F1 , F2是双曲线C:x 2a2−y2b2=1(a>0 , b>0)的左,右焦点,O是坐标原点。
绝密★启封并使用完毕前试题类型:2018年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量1(,22BA =uu v ,1),2BC =uu u v 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A) 各月的平均最低气温都在00C以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =(A (B (C )- (D )-(9)如图,格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18+(B )54+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 (A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个(B )16个(C )14个(D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)若x,y满足约束条件{x−y+1≥0 x−2y≪0x+2y−2≪0则z=x+y的最大值为_____________.(14)函数y=sin x−√3cos x的图像可由函数 y=sin x+√3cos x的图像至少向右平移_____________个单位长度得到。
2018年全国新课标Ⅲ卷全国3卷高考理科数学试卷及参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5.00分)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}2.(5.00分)(1+i)(2-i)=( )A.-3-iB.-3+iC.3-iD.3+i3.(5.00分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A. B. C. D.4.(5.00分)若sinα=,则cos2α=( )A. B. C.- D.-5.(5.00分)(x2+)5的展开式中x4的系数为( )A.10B.20C.40D.806.(5.00分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是( )A.[2,6]B.[4,8]C.[,3]D.[2,3]7.(5.00分)函数y=-x4+x2+2的图象大致为( )A. B. C.D.8.(5.00分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.39.(5.00分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=( )A. B. C. D.10.(5.00分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D-ABC体积的最大值为( )A.12B.18C.24D.5411.(5.00分)设F1,F2是双曲线C:-=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为( )A. B.2 C. D.12.(5.00分)设a=log0.20.3,b=log20.3,则( )A.a+b<ab<0B.ab<a+b<0C.a+b<0<abD.ab<0<a+b二、填空题:本题共4小题,每小题5分,共20分。
1. (2018 年新课标III 理)己知集合 A={x|x-1^0),B=(0, 1,2},则 ADB=( )A. {0}B. {1}C. {1,2}D. {0,1,2}C 【解析】A={4r —lL0} = {x|x21},则 AnB={4xNl}n{0, 1,2} = {1,2}.2. (2018 年新课标III 理)(l+i)(2-i)=( )A, —3—i B. —3+i C. 3—i D 【解析】(l+i)(2—i)=2—i+2i —i2=3+i.D. 3+i 3. (2018年新课标III 理)中国古建筑借助棒卯将木构件连接起来.构件的凸出部分叫桦头,凹 进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()俯视方向A 【解析】由题意可知木构件与某一带卯眼的木构件咬合成长方体,小的长方体是棒头,从 图形看出轮廓是长方形,内含一个长方形,且一条边重合,另外3边是虚线.故选A.4. (2018 年新课标III 理)若 sin ct=|,则 cos 2a=()8 7 7A. g B. gC. —gD.1 7B 【解析】cos 2<x=l —2sin 2a=l —2X-=-5. (2018年新课标III 理)错误!5的展开式中x 4的系数为()A. 10B. 20C. 40D.80C【解析】错误!5的展开式的通项为7ki=C错误好产,错误!,=2,C错误成0.由10-3r=4,解得r=2.错误!5的展开式中/的系数为22。
错误!=40.6.(2018年新课标III理)直线x+y+2=0分别与x辄y轴交于A,B两点,点P在圆(x-2)2+寸=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[^2,3y[2]D.[2^2,3^2]A【解析】易得A(—2,0),3(0,—2), |AB|=2«.圆的圆心为(2,0),半径r=屯.圆心(2,0)到直线x+y+2=0的距离d='^^^=2^/2,.•.点F至(J直线x+y+2=0的距离h的取值范围为[2皿一广,2皿+刀,即[彖,3国又△ABP的面积S=^\AB\•h=季2,.\S的取值范围是[2,6].7.(2018年新课标III理)函数>=一工4+j+2的图象大致为()C DD【解析】函数过定点(0,2),排除A,B;函数的导数/=~4x3+2x=~2x(2^~1),由y>0解得X<-错误域0<x<错误!,此时函数单调递增,排除C.故选D.8.(2018年新课标III理)某群体中的每位成员使用移动支付的概率都为饱各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,QX=2.4,F(X=4)<F(X=6),则p=()A. 0.7B.0.6C. 0.4D. 0.3B 【解析】某群体中的每位成员使用移动支付的概率都为p,为独立重复事件,满足X 〜 3(10, p ).由 P (X=4)<P (X=6),可得 CV (1 -p )6<CV (1 ~P )4, 解得 P>\-因为 QX=2.4,所 以 10p (l —p )=2.4,解得,=0.6 或,=0.4(舍去).9. (2018年新课标III 理)A ABC 的内角A, B,C 的对边分别为a, b, c.若△A3。
2018新课标全国3卷(理数)概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=()A.0.7 B.0.6 C.0.4D.0.39.(2018•新课标Ⅲ)△ABC内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A. B. C. D.10.(2018•新课标Ⅲ)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18 C.24D.5411.(2018•新课标Ⅲ)设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()A. B.2 C. D.12.(2018•新课标Ⅲ)设a=log0.20.3,b=log20.3,则()A.a+b<ab<0 B.ab<a+b<0 C.a+b<0<ab D.ab<0<a+b二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量=(1,2),=(2,﹣2),=(1,λ).若∥(2+),则λ= .14.曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,则a= .15.函数f(x)=cos(3x+)在[0,π]的零点个数为.16.已知点M(﹣1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k= .三、解答题:共70分。
17.(12分)等比数列{an }中,a1=1,a5=4a3.(1)求{an}的通项公式;(2)记Sn 为{an}的前n项和.若Sm=63,求m.18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:K 2=,19.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧所在平面垂直,M 是上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ﹣ABC 体积最大时,求面MAB 与面MCD 所成二面角的正弦值.20.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<﹣;(2)设F为C的右焦点,P为C上一点,且++=.证明:||,||,||成等差数列,并求该数列的公差.21.已知函数f(x)=(2+x+ax2)ln(1+x)﹣2x.(1)若a=0,证明:当﹣1<x<0时,f(x)<0;当x >0时,f(x)>0;(2)若x=0是f(x)的极大值点,求a.[选修4-4:坐标系与参数方程](10分)22.在平面直角坐标系xOy中,⊙O的参数方程为,(θ为参数),过点(0,﹣)且倾斜角为α的直线l与⊙O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.[选修4-5:不等式选讲](10分)23.(2018•新课标Ⅲ)设函数f(x)=|2x+1|+|x﹣1|.(1)画出y=f(x)的图象;(2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.2018年全国统一高考数学试卷(理科)(新课标Ⅲ)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
梦想不会辜负每一个努力的人绝密★启用前2018 年一般高等学校招生全国一致考试理科数学注意事项:1.答卷前,考生务势必自己的姓名和准考据号填写在答题卡上。
2.回答选择题时,选出每题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需变动,用橡皮擦洁净后,再选涂其余答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:此题共12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1.已知会合 A x | x1≥ 0 , B 0 ,1,2 ,则 A I BA .0B .1 C.1,2 D .0,1,22.1i 2 iA . 3 iB . 3 i C.3 i D .3i3.中国古建筑借助榫卯将木构件连结起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右侧的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图能够是4.若 sin 1,则 cos2 3A .8B .7C.7 D .8 9 9 9 95. x22 5的睁开式中 x4的系数为x梦想不会辜负每一个努力的人A .10B .20C .40D . 806.直线 x y2 0 分别与 x 轴, y 轴交于 A , B 两点,点 P 在圆 x222 上,则 △ ABP 面积的取2y值范围是A . 2,6B . 4,8C . 2,3 2D .22,327.函数 yx 4 x 2 2 的图像大概为8.某集体中的每位成员使用挪动支付的概率都为p ,各成员的支付方式互相独立,设X 为该集体的 10 位成员中使用挪动支付的人数, DX 2.4, P X4PX6 ,则 pA .0.7B .0.6C .0.4D .0.32 229. △ABC 的内角 A ,B ,C 的对边分别为 a , b , c ,若 △ ABC 的面积为ab c ,则 C4 A .π B .πC .πD .π 234610.设 A ,B ,C ,D 是同一个半径为4 的球的球面上四点, △ ABC 为等边三角形且其面积为 9 3 ,则三棱锥 D ABC 体积的最大值为A .12 3B .18 3C .24 3D .54 3梦想不会辜负每一个努力的人2211.设 F 1 ,F 2 是双曲线 C :x2y 2 1( a 0,b 0 )的左、右焦点, O 是坐标原点.过 F 2 作 C 的一条渐近ab线的垂线,垂足为 P .若 PF 1 6 OP ,则 C 的离心率为A . 5B . 2C . 3D . 212.设 alog 0.2 0.3 , b log 2 0.3 ,则A . a b ab 0B . ab a b 0C . a b 0 abD . ab 0 a b二、填空题:此题共4 小题,每题5 分,共 20 分.13.已知向量 a= 1,2 , b= 2, 2 , c= 1,λ.若 c ∥ 2a + b ,则________.14.曲线 yax 1 e x在点 0,1 处的切线的斜率为2 ,则 a ________.15.函数 f xcos 3xπ在 0 ,π的零点个数为 ________.616.已知点 M1,1 和抛物线 C :y 24x ,过 C 的焦点且斜率为 k 的直线与 C 交于 A , B 两点.若∠AMB 90 ,则 k________.三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第17~21 题为必考题,每个试题考生 都一定作答.第 22、 23 题为选考题,考生依据要求作答.学科 .网(一)必考题:共 60 分. 17.( 12 分)等比数列 a n 中, a 1 1 ,a 5 4a 3 .( 1)求 a n 的通项公式;(2)记 S 为 a 的前 n 项和.若 S63 ,求 m .n n m18.( 12 分)某工厂为提升生产效率,睁开技术创新活动,提出了达成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选用 40 名工人,将他们随机分红两组,每组 20 人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.依据工人达成生产任务的工作时间(单位: min )绘制了以下茎叶图:( 1)依据茎叶图判断哪一种生产方式的效率更高?并说明原因;( 2)求 40 名工人达成生产任务所需时间的中位数 m ,并将达成生产任务所需时间超出 m 和不超出 m 的工人数填入下边的列联表:超出 m不超出m第一种生产方式第二种生产方式( 3)依据( 2)中的列联表,可否有99%的掌握以为两种生产方式的效率有差别?n ad 2 附: K2bca b c d ,a cb dP K 2≥ k 0.050 0.010 0.001 k 3.841 6.635 10.828 19.( 12 分)如图,边长为 2 的正方形ABCD 所在的平面与半圆弧? ?CD 所在平面垂直,M 是CD上异于 C,D的点.( 1)证明:平面AMD ⊥平面 BMC ;( 2)当三棱锥M ABC 体积最大时,求面MAB 与面 MCD 所成二面角的正弦值.20.( 12 分)已知斜率为 k 的直线 l 与椭圆C:x2y2 1交于A,B两点,线段AB的中点为M 1,m m 0.4 3( 1)证明:k 1 ;2uuur uuur uuur uuur uuur uuur(2)设F为C的右焦点,P为C上一点 ,且 FP FA FB 0.证明: FA , FP ,FB 成等差数列,并求该数列的公差.21.( 12 分)已知函数 f x 2 x ax2 ln 1 x 2x .( 1)若a 0 ,证明:当 1 x 0 时, f x 0 ;当x 0 时, f x 0 ;( 2)若x0 是 f x 的极大值点,求 a .(二)选考题:共10 分,请考生在第22、 23 题中任选一题作答,假如多做,则按所做的第一题计分.22. [选修 4— 4:坐标系与参数方程] ( 10 分)在平面直角坐标系x cos ,为参数),过点0 , 2 且倾斜角为xOy 中,⊙O 的参数方程为(y sin的直线 l 与⊙O 交于 A,B 两点.(1)求的取值范围;(2)求AB中点P的轨迹的参数方程.23. [选修 4— 5:不等式选讲]( 10 分)设函数 f x2x 1 x 1 .(1)画出y f x的图像;(2)当x∈0,,f x≤ax b,求a b的最小值.参照答案:1 2 3 4 5 6 7 8 9 10 11 12C D A B C A D B C B C B114. 3 15. 3 16.213.217.(12 分 )解:( 1)设{ a n}的公比为q,由题设得a n q n 1 .由已知得 q4 4q2 ,解得 q 0 (舍去), q 2 或 q 2 .故 a n ( 2)n 1或 a n 2n 1.( 2)若a n ( 2)n 1,则 S n 1 ( 2) n .由S m 63得( 2) m 188 ,此方程没有正整数解.3若 a n 2n 1,则 S n 2n 1 .由S m 63 得2m 64 ,解得m 6 .综上, m 6 .18.( 12 分)解:( 1)第二种生产方式的效率更高 .原因以下:( i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人达成生产任务所需时间起码80 分钟,用第二种生产方式的工人中,有 75%的工人达成生产任务所需时间至多79 分钟 .所以第二种生产方式的效率更高 .( ii )由茎叶图可知:用第一种生产方式的工人达成生产任务所需时间的中位数为85.5 分钟,用第二种生产方式的工人达成生产任务所需时间的中位数为73.5 分钟 .所以第二种生产方式的效率更高 .( iii )由茎叶图可知:用第一种生产方式的工人达成生产任务均匀所需时间高于80 分钟;用第二种生产方式的工人达成生产任务均匀所需时间低于80 分钟,所以第二种生产方式的效率更高.( iv )由茎叶图可知:用第一种生产方式的工人达成生产任务所需时间散布在茎8 上的最多,对于茎 8 大概呈对称散布;用第二种生产方式的工人达成生产任务所需时间散布在茎7 上的最多,对于茎7 大致呈对称散布,又用两种生产方式的工人达成生产任务所需时间散布的区间同样,故能够以为用第二种生产方式达成生产任务所需的时间比用第一种生产方式达成生产任务所需的时间更少,所以第二种生产方式的效率更高 .以上给出了 4 种原因,考生答出此中随意一种或其余合理原因均可得分.梦想不会辜负每一个努力的人( 2)由茎叶图知 m79 81 80 .2列联表以下:超出 m 不超出 m第一种生产方式 15 5 第二种生产方式515(3)因为 K 240(15 15 5 5) 210 6.635 ,所以有 99%的掌握以为两种生产方式的效率有差别.20 20 20 2019.( 12 分)解:( 1)由题设知 ,平面 CMD ⊥平面 ABCD ,交线为 CD.因为 BC ⊥ CD,BC平面 ABCD ,所以 BC ⊥平面 CMD ,故 BC ⊥DM .因为 M 为?上异于 C ,D 的点 ,且 DC 为直径,所以 DM ⊥CM.CD又 BC I CM =C,所以 DM ⊥平面 BMC.而 DM 平面 AMD ,故平面 AMD ⊥平面 BMC .uuur( 2)以 D 为坐标原点 , DA 的方向为 x 轴正方向 ,成立以下图的空间直角坐标系D- xyz.当三棱锥 M- ABC 体积最大时, M 为 CD ?的中点 .由题设得 D(0,0,0), A(2,0,0), B(2,2,0), C(0,2,0), M (0,1,1),uuuur uuur uuur AM ( 2,1,1), AB (0, 2,0), DA(2,0,0)设 n ( x, y, z) 是平面 MAB 的法向量 ,则n uuuur 0,2x y z 0, AM n uuur0.即0.AB2y可取 n (1,0,2) .梦想不会辜负每一个努力的人uuurDA 是平面MCD的法向量,所以uuur n uuur5 DAcos n, DA uuur ,| n ||DA | 5uuur 2 5sin n, DA5 ,所以面 MAB 与面 MCD 所成二面角的正弦值是2 5.520.( 12 分)解:( 1)设A( x1, y1), B( x2, y2),则x12y1 2 1, x2 2 y2 2 1.4 3 4 3两式相减,并由y1 y2k 得x1 x2x1 x24由题设知x1x2 1,y1y2 m ,于是2 2y1y233k 0 .k由题设得 0 m 3 1,故 k .2 2( 2)由题意得 F (1,0) ,设 P( x3 , y3 ) ,则.①4m( x3 1, y3 ) ( x1 1, y1 ) ( x2 1, y2 ) (0,0) . 由( 1)及题设得x3 3 (x1 x2 ) 1, y3 ( y1 y2 ) 2m 0 .又点 P 在 C 上,所以m 3 3 uuur 3 ,进而 P(1,2),|FP| .4 2于是uuur 2 ( x1 1)2 2 1)2 x1 x 1 .|FA | y1 ( x1 3(1 ) 24 2梦想不会辜负每一个努力的人uuur2 x 2 .同理 | FB|2uuur uuur 所以 | FA | | FB | 4 1( x1 x2 ) 3.2uuur uuur uuur uuur uuur uuur故 2|FP | |FA| | FB | ,即 | FA |,| FP |,| FB | 成等差数列. 设该数列的公差为d,则uuur uuur| 1( x1 x2 ) 22 | d | || FB | | FA || 1| x1 x2 4x1x2.②2 2将 m 31 . 代入①得 k4所以 l 的方程为y x 7 ,代入 C 的方程,并整理得7 x2 14x 1 0 .4 4故 x1 x2 2, x1 x2 1 ,代入②解得 | d | 3 21 .28 28所以该数列的公差为 3 21 或 3 21 .28 2821.(12 分 )解:( 1)当a 0 时, f (x) (2 x)ln(1 x) 2x , f ( x) ln(1 x) x .1 x设函数 g ( x) f ( x) ln(1 x)x ,则g (x)x.1 x (1 x) 2当 1 x 0 时,g (x) 0 ;当x 0 时, g ( x) 0 .故当x 1 时,g( x) g(0) 0 ,且仅当x 0 时, g ( x) 0 ,进而 f ( x) 0 ,且仅当x 0 时, f ( x) 0 .所以 f ( x) 在 ( 1, ) 单一递加.又 f (0) 0 ,故当 1 x 0 时, f ( x) 0 ;当x 0 时, f (x) 0 .( 2)( i)若a 0 ,由(1)知,当 x 0 时, f ( x) (2 x)ln(1 x) 2x 0 f (0) ,这与x 0 是f ( x) 的极大值点矛盾 .( ii )若a 0 ,设函数h( x)f (x)ln(1 x)2x2 x ax2 2 x ax 2.梦想不会辜负每一个努力的人因为当 | x | min{1, 1}时,2 x ax2 0 ,故 h( x) 与 f (x) 符号同样. | a|又 h(0) f (0) 0 ,故x 0 是f (x)的极大值点当且仅当x 0 是h( x)的极大值点.h ( x)1 2(2 x ax 2 ) 2x(1 2ax) x2 ( a2 x2 4ax 6a 1) 1 x (2 x ax2 )2 (x 1)(ax 2 x 2)2.假如 6a 1 0 ,则当 0 x 6a 1 ,且 | x | min{1, 1 } 时,h ( x) 0 ,故x 0 不是h( x)的极4a | a|大值点 .假如 6a 1 0 ,则 a2 x2 4ax 6a 1 0 存在根 x1 0 ,故当 x (x1,0) ,且| x | min{1,1}时,| a|h ( x) 0 ,所以x 0 不是h( x)的极大值点.假如 6a 1 0 ,则h ( x)x3 ( x 24)2 .则当x ( 1,0) 时, h ( x) 0 ;当 x (0,1) 时,( x 1)( x 2 6x 12)h ( x) 0 .所以x 0是 h( x) 的极大值点,进而x 0 是f (x)的极大值点综上,a 1 .622. [选修 4— 4:坐标系与参数方程](10 分)【分析】( 1)e O的直角坐标方程为x2 y2 1.当时, l 与 e O 交于两点.2当时,记 tan k ,则 l 的方程为y kx 2 .l与e O交于两点当且仅当 | 2 | 1,解2 1 k2得 k 1 或 k 1 ,即( , ) 或( , ) .4 2 2 4综上,的取值范围是 ( , ) .4 4( 2)l的参数方程为x t cos ,(t 为参数,) .y 2 t sin 4 4设 A , B , P 对应的参数分别为t A, t B, t P,则 t P t A t B ,且 t A, t B知足t2 2 2t sin 1 0 .2于是t A t B 2 2 sin , t P 2 sinx t P cos ,.又点 P 的坐标(x, y)知足2 t P sin .y2018年全国卷Ⅲ理数高考试题文档版(含答案) 11 / 11梦想不会辜负每一个努力的人x 2 sin 2 ,所以点 P 的轨迹的参数方程是 2( 为参数,) . y 2 4 4 2 cos22 223. [选修 4— 5:不等式选讲 ]( 10 分)3x, x 1,2【分析】( 1) f (x)x 2, 1 x 1, y f ( x) 的图像以下图.23x, x 1.( 2)由( 1)知, y f ( x) 的图像与 y 轴交点的纵坐标为 2 ,且各部分所在直线斜率的最大值为 3, 故当且仅当 a 3 且 b 2 时, f (x) ax b 在 [0, ) 成立,所以 a b 的最小值为 5 .。
2018年高考全国卷3理科数学试题及参考答案2018年高考全国卷3理科数学试题及参考答案1.已知集合A={x∣x-1≥0},B={0,1,2},则A∩B=A{0} B{1} C{1,2} D{0,1,2}2.(1+i)(2-i)=A-3-i B-3+i C3-i D3+i3.中国古建筑借助棒卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头。
若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A.AB.BC.CD. D4.若,则A B CD5.的展开式中的系数为A.10B.20C.40D.806.直线x+y+2=0分别与x轴,y交于A,.两点,点P在圆(x-2)²+y²=2上,则∆ABP面积的取值范围是A[2,6] B[4,8] C D7.函数y=-+x²+2的图像大致为A. BC. DA.AB.BC.CD.D8.某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<p(x=6),则p=< span="">A.0.7B.0.6C.0.4D.0.39.∆ABC的内角A,B,C的对边分别为a,b,c,若∆ABC的面积为,则C=A B C D10.设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥D-ABC体积的最大值为A12B18C24D5411.设F1、F2是双曲线的左、右焦点,O是坐标原点,过F2作C的一条渐近线的垂线,垂足为P,若,则C的离心率为A B2 C D分值: 5分查看题目解析>A.AB.BC.CD.D13、已知向a=(1,2),b=(2,-2),c=(1,),若c//(2a+b),则λ=__________14.曲线y=(ax+1)ex在点(0,1)处的切线的斜率为-2,则a= 。
2018年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2} 2.(5分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i3.(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.4.(5分)若sinα=,则cos2α=()A.B.C.﹣D.﹣5.(5分)(x2+)5的展开式中x4的系数为()A.10B.20C.40D.806.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3] 7.(5分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.<P(X=6),则p=()9.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.10.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.5411.(5分)设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()A.B.2C.D.12.(5分)设a=log2A.a+b<ab<0B.ab<a+b<0C.a+b<0<ab D.ab<0<a+b 二、填空题:本题共4小题,每小题5分,共20分。
高考真题汇编卷 第1页(共6页)高考真题汇编卷 第2页(共6页) 2018年普通高等学校招生全国统一考试 理 科 数 学 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合) 1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =I ( ) A .{}0 B .{}1 C .{}12, D .{}012,, 2.()()12i i +-=( ) A .3i -- B .3i -+ C .3i - D .3i + 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( ) 4.若1sin 3α=,则cos2α=( ) A .89 B .79 C .79- D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( ) A .10 B .20 C .40 D .80 6.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是( ) A .[]26, B .[]48, C .232⎡⎤⎣⎦, D .2232⎡⎤⎣⎦, 7.函数422y x x =-++的图像大致为( ) 8.某群体中的每位成品使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =( ) A .0.7 B .0.6 C .0.4 D .0.3 9.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C =( ) A .2π B .3π C .4π D .6π 此卷只装订不密封 班级姓名准考证号考场号座位号高考真题汇编卷 第3页(共6页)高考真题汇编卷 第4页(共6页) 10.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为( ) A .123 B .183 C .243 D .54311.设12F F ,是双曲线22221x yC a b -=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为( )A .5B .2C .3D .212.设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+二、填空题(本题共4小题,每小题5分,共20分)13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.14.曲线()1x y ax e =+在点()01,处的切线的斜率为2-,则a =________.15.函数()cos 36f x x π⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.16.已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤,第17~31题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.) (一)必考题:共60分。
2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答案卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =I A .{}0 B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-= A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos2α=A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值围是 A .[]26, B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,7.函数422y x x =-++的图像大致为8.某群体中的每位成品使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =A .0.7B .0.6C .0.4D .0.3 9.ABC △的角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C = A .π2 B .π3 C .π4 D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为93三棱锥D ABC -体积的最大值为A .123B .183C .243D .54311.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为 A 5B .2C 3D 212.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+ 二、填空题:本题共4小题,每小题5分,共20分。
2018年普通高等学校招生全国统一考试新课标3卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答案卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0} B.{1} C.{1,2} D.{0,1,2}解析:选C2.(1+i)(2-i)=( )A.-3-i B.-3+i C.3-i D.3+i解析:选D3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )解析:选A4.若sin α=13,则cos2α= ( )A .89B .79C .- 79D .- 89解析:选B cos2α=1-2sin 2α=1-19=895.(x 2+2x)5的展开式中x 4的系数为( )A .10B .20C .40D .80解析:选C 展开式通项为T r+1=C 5rx10-2r(2x)r= C 5r 2r x 10-3r ,r=2, T 3= C 5222x 4,故选C 6.直线x+y+2=0分别与x 轴,y 轴交于A,B 两点,点P 在圆(x-2)2+y 2=2上,则ΔABP 面积的取值范围是( ) A .[2,6]B .[4,8]C .[2,32]D .[22,32]解析:选A ,线心距d=22,P 到直线的最大距离为32,最小距离为2,|AB|=22,S min =2, S max =67.函数y=-x 4+x 2+2的图像大致为( )解析:选D 原函数为偶函数,设t=x 2,t ≥0,f(t)=-t 2+t+2,故选D8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数,DX=,P(X=4)<P(X=6),则p=( ) A .0.7B .0.6C .0.4D .0.3解析:选B X ~B(10,p),DX=10p(1-p)=,解得p=或p=,p=时,p(X=4)=C 10446>P(X=6)= C 10664,不合。
9.ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若ΔABC 的面积为a 2+b 2-c 24,则C=( ) A .π2B .π3C .π4D .π6解析:选C a 2+b 2-c 2=2abcosC,S=12absinC=a 2+b 2-c 24=12abcosC tanC=110.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ΔABC 为等边三角形且其面积为93,则三棱锥D-ABC 体积的最大值为( ) A .12 3B .18 3C .24 3D .54 3解析:选B ,ΔABC 的边长为a=6, ΔABC 的高为33,球心O 到ΔABC 的距离=42-(23)2=2,当D 到ΔABC 的距离为R+2=6时,D-ABC 体积的最大,最大值=13×93×6=18311.设F 1,F 2是双曲线C: x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP|,则C 的离心率为( ) A . 5B .2C . 3D . 2解析:选C 设P(t,- b a t),∵PF 2与y=- b a x 垂直,∴-bt a(t-c)=a b 解得t=a 2c 即P(a 2c ,-abc) ∴|OP|=(a 2c )2+(-ab c)2=a ,|PF 1|=(a 2c +c)2+(-ab c )2,依题有(a2c+c)2+(- ab c)2=6a 2, 化简得c 2=3a 2,故选C 12.设a=,b=,则( ) A .a+b<ab<0 B .ab<a+b<0 C .a+b<0<abD .ab<0<a+b解析:选B 0<a<1,b<-1,a+b<0,ab<0,0<a+b ab =1a +1b=错误!=错误!=错误!<1,a+b>ab二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量a=(1,2),b=(2,-2),c=(1,λ).若c//(2a+b),则λ=________. 解析:2a+b=(4,2), c//(2a+b)则4λ=2,λ=1214.曲线y=(ax+1)e x 在点(0,1)处的切线的斜率为-2,则a=________. 解析:f′(x)=(ax+a+1) e x ,f′(0)=a+1=-2,a=-315.函数f(x)=cos(3x+π6)在[0,π]的零点个数为________. 解析:由3x+π6=k π+π2得x=k π3+π9,k ∈Z ,π9,4π9,7π9为[0,π]的零点16.已知点M(-1,1)和抛物线C:y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A,B两点.若∠AMB=900,则k=________. 解析:k=2三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23为选考题。
考生根据要求作答。
(一)必考题:共60分。
17.(12分)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m .解:(1)设{a n }的公比为q ,由已知得q 4=4q 2,解得q=0(舍去),q=-2或q=2. 故a n =(-2)n-1或a n =2n-1.(2)若a n =(-2)n-1,则S m =1-(-2)m3.由S m =63得(-2)m =-188,此方程没有正整数解.若a n =2n-1,则S m =2n -1.由S m =63得2m =64,解得m=6.综上,m=6. 18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:(3)根据(2)中的列表,能否有99%的把握认为两种生产方式的效率有差异附:K2=n(ad-bc)2(a+b)(a+c)(b+d)(c+d),临界值表:解:(1)第二种生产方式的效率更高.理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.※以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知m=79+812=80.列联表如下:(3)由于K 2=40(15×15-5×5)220×20×20×20=10>,所以有99%的把握认为两种生产方式的效率有差异. 19.(12分)如图,边长为2的正方形ABCD 所在平面与半圆弧CD ⌢ 所在平面垂直,M 是CD ⌢ 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M-ABC 体积最大时,求面MAB 与面MCD 所成二面角的正弦值.19.解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD⌢ 上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM .又 BC ∩CM=C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz .当三棱锥M −ABC 体积最大时,M 为CD ⌢ 的中点.由题设得D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),M(0,1,1), AM→=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0) 设n=(x,y,z)是平面MAB 的法向量,则⎩⎨⎧-2x+y+z=0 2y=0可取n=(1,0,2).DA →是平面MCD 的法向量,因此cos<n, DA →>=55 ,sin<n, DA →>=255所以面MAB 与面MCD 所成二面角的正弦值是255. 20.(12分)已知斜率为k 的直线l 与椭圆C: x 24+y 23=1交于A ,B 两点.线段AB 的中点为M(1,m)(m>0).(1)证明:k<- 12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0.证明:|FA →|,|FP →|,|FB →|成等差数列,并求该数列的公差.解:(1)设A(x 1,y 1),B(x 2,y 2),则x 124+y 123=1,x 224+y 223=1.两式相减,并由k=y 1-y 2x 1-x 2得x 1+x 24+y 1+y 23k=0由题设知x 1+x 22=1,y 1+y 22=m ,于是k= - 34m .① 由题设得0<m<32,故k<- 12.(2)由题意得F(1,0),设P(x 3,y 3),则(x 3-1,y 3)+( x 1-1,y 1)+( x 2-1,y 2)=(0,0) 由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m<0. 又点P 在C 上,所以m=34,从而P(1,- 32),|FP→|=32. 于是|FA→|=(x 1-1)2+y 12=(x 1-1)2+3(1-x 124)=2-x 12 同理|FB →|=2-x 22. 所以|FA→|+|FB →|=3. 故2|FP→|=|FA →|+|FB →|,即|FA →|,|FP →|,|FB →|成等差数列. 设该数列的公差为d ,则2|d|=12|x 1-x 2|=12(x 1+x 2)2-4x 1x 2② 将m=34代入①得k=-1.所以l 的方程为y=-x+74,代入C 的方程,并整理得7x 2-14x+14=0.故x 1+x 2=2, x 1x 2=128,代入②解得|d|=32128.所以该数列的公差为32128或-32128.21.(12分)已知函数f(x)=(2+x+ax 2)ln(1+x)-2x .(1)若a=0,证明:当-1<x<0时,f(x)<0;当x>0时,f(x)>0; (2)若x=0是f(x)的极大值点,求a .解:(1)当a=0时,f(x)=(2+x)ln(1+x)-2x ,f′(x)=ln(1+x)- x1+x .设函数g(x)= f′(x)=ln(1+x)- x 1+x ,则g ′(x)= x(1+x)2.当-1<x<0时,g ′(x)<0;当x>0时,g ′(x)>0.故当x>-1时,g(x)≥g(0)=0,且仅当x=0时,g(x)=0,从而f′(x)≥0,且仅当x=0时,f′(x)=0.所以f(x)在(-1,+∞)单调递增.又f(0)=0,故当-1<x<0时,f(x)<0;当x>0时,f(x)>0. (2)(i )若a ≥0,由(1)知,当x>0时,f(x)≥(2+x)ln(1+x)-2x>0=f(0),与x=0是f(x)的极大值点矛盾.(ii )若a<0,设函数h(x)= f(x)2+x+ax 2=ln(1+x)- 2x2+x+ax 2由于当|x|<min{1,1|a|}时,2+x+ax 2>0,故h(x)与f(x)符号相同. 又h(0)=f(0)=0,故x=0是f(x)的极大值点当且仅当x=0是h(x)的极大值点. h ′(x)= 11+x - 2(2+x+ax 2)-2x(1+2ax)(2+x+ax 2)2=x 2(a 2x 2+4ax+6a+1)(x+1)(2+x+ax 2)2如果6a+1>0,则当0<x<- 6a+14a ,且|x|<min{1,1|a|}时,h ′(x)>0,故x=0不是h(x)的极大值点.如果6a+1<0,则a 2x 2+4ax+6a+1=0存在根x 1<0,故当x ∈(x 1,0),且|x|<min{1, 1|a|}时,h ′(x)<0,所以x=0不是h(x)的极大值点. 如果6a+1=0,则h ′(x)= x 3(x-24)(x+1)(-12-6x+x 2)2.则当x ∈(-1,0)时,h ′(x)>0;当x ∈(0,1)时,h ′(x)<0.所以x=0是h(x)的极大值点,从而x=0是f(x)的极大值点综上,a= -16.(二)选考题:共10分。