小学奥数行程问题之相遇问题KKK
- 格式:ppt
- 大小:1.66 MB
- 文档页数:42
行程问题之相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。
这类应用题叫做相遇问题。
【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1:甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
解: “两人在距中点3千米处相遇”是正确理解本题题意的关键。
从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,相遇时间=(3×2)÷(15-13)=3(小时)两地距离=(15+13)×3=84(千米)答:两地距离是84千米。
例2:甲、乙两辆汽车分别以不同的速度同时从A、B两地相对而行,途中相遇,相遇点距A地60千米。
相遇后两车以原速前进,到底目的地后,两车立即返回,在途中又第二次相遇,这时距A地40千米。
问第一次相遇点距B地多少千米?【解析】:甲、乙两辆汽车同时从A、B两地相对而行,行驶情况如下图:蓝色线条表示甲车行驶路线,红色线条表示乙车行驶路线;细线条是第一次相遇前两车行驶路程,粗线条表示两车从第一次相遇到第二次相遇之间行使的路程。
从图中可以看出,从出发到第一次相遇,两车合走了1个全程(细线条);从第一次相遇到第二次相遇,两车合走了2个全程(粗线条);两车总共合走了3个全程。
每辆汽车的速度是一定的,所以它们各自行驶的路程与时间成正比例。
解法一:如上图,第一次相遇时,即两车合走1个全程的时间里,甲走了60千米。
两车总共合走了3个全程,则甲车从A地出发,经过B地到达第二次相遇地点,总共行驶了3个60千米(蓝色线条全长),加上第二次相遇地点到A地40千米,共2个全程。
所以A、B两地的距离为:(60×3+40)÷2=110(千米)。
小学四年级奥数行程问题相遇问题教案(总7页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除行程问题之相遇问题相遇问题关系式:速度和×相遇时间=相遇路程相遇路程÷相遇时间=速度和相遇路程÷速度和=相遇时间例1.甲、乙两人分别从A、B两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,两人经过3小时相遇。
问A、B两地相距多少千米?例2.例3.小明和小华两家相距3千米,他俩同时从家里出发相向而行,小明骑车每分钟行175千米,小华步行每分钟行75米,多少分钟后两人相遇?例4.例5.甲、乙两辆汽车从A、B两地同时相向开出,出发后2小时,两车相距141千米;出发后5小时,两车相遇。
A、B两地相距多少千米?例6.例7.甲、乙两车分别从A、B两地同时相向而行,甲车每小时行70千米,乙车每小时行65千米,两车相遇点距中点20千米。
求A、B两地相距多少千米?例8.路程差÷速度差=相遇时间例9.甲、乙两地相距300米,小明和小军各从甲、乙两地相背而行,7分后两人相距860米。
小明每分走多少米?例10.例11.A、B两村相距2800米,小明从A村出发步行5分钟后,小军骑车从B村出发,有经过10分钟两人相遇。
已知小军骑车比小明步行每分钟多行160米,小明步行速度是每分钟多少米?例12.例13.甲、乙两艘舰船,由相距418千米的两个港口同时相对开出,甲舰船每小时航行36千米,乙舰船每小时航行34千米,开出1小时候,甲舰船因有紧急任务,返回原港,又立即起航与乙舰船继续相对开出,经过几小时两舰船相遇?例14.例15.一支1800米长的队伍以每分钟90米的速度行进,队伍前端的通讯员用9分钟的时间跑到队伍末尾传达命令,通讯员每分钟跑多少米?例16.例17.甲、乙两车从相距360千米的两地同时出发相向而行,甲车每小时行70千米,乙车每小时行50千米。
行程之相遇问题甲从A地到B地,乙从B地到A地,然后两人在途中相遇,实质上是甲和乙一起走了A,B之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.一般地,相遇问题的关系式为:速度和×相遇时间=路程和。
解决行程问题,常常要借助于线段图。
【例1】★一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。
3.5小时两车相遇。
甲、乙两个城市的路程是多少千米?【小试牛刀】两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。
甲、乙两车相遇时,各行了多少千米?典型例题知识梳理【例2】大头儿子的家距离学校3000米,小头爸爸从家去学校接大头儿子放学,大头儿子从学校回家,他们同时出发,小头爸爸每分钟比大头儿子多走24米,50分钟后两人相遇,那么大头儿子的速度是每分钟走多少米?【小试牛刀】聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇,你知道聪聪家和明明家的距离吗?【例3】A、B两地相距90米,包子从A地到B地需要30秒,菠萝从B地到A地需要15秒,现在包子和菠萝从A、B两地同时相对而行,相遇时包子与B地的距离是多少米?【例4】甲、乙两车分别从相距360千米的A、B两城同时出发,相对而行,已知甲车到达B城需4小时,乙车到达A城需12小时,问:两车出发后多长时间相遇?【例5】甲、乙两辆汽车分别从A、B两地出发相对而行,甲车先行1小时,甲车每小时行48千米,乙车每小时行50千米,5小时相遇,求A、B两地间的距离.【小试牛刀】甲、乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?【例6】甲、乙两辆汽车分别从A、B两地出发相向而行,甲车先行3小时后乙车从B地出发,乙车出发5小时后两车还相距15千米.甲车每小时行48千米,乙车每小时行50千米.求A、B两地间相距多少千米?【小试牛刀】甲、乙两辆汽车从A、B两地同时相向开出,出发后2小时,两车相距141千米;出发后5小时,两车相遇.A、B两地相距多少千米?【例7】两列城铁从两城同时相对开出,一列城铁每小时走40千米,另一列城铁每小时走45千米,在途中每列车先后各停车4次,每次停车15分钟,经过7小时两车相遇,求两城的距离?【小试牛刀】两列城铁从两城同时相对开出,一列城铁每小时走40千米,另一列城铁每小时走45千米,在途中每列车先后各停车5次,每次停车12分钟,经过7小时两车相遇,求两城的距离?【例8】夏夏和冬冬同时从两地相向而行,夏夏每分钟行50米,冬冬每分钟行60米,两人在距两地中点50米处相遇,求两地的距离是多少米?【小试牛刀】甲乙两人同时从两地相向而行.甲每小时行5千米,乙每小时行4千米.两人相遇时乙比甲少行3千米.两地相距多少千米?【例9】甲乙二人同时分别自A、B两地出发相向而行,相遇之地距A、B中点300米,已知甲每分钟行100米,乙每分钟行70米,求A地至B地的距离.【小试牛刀】李明和王亮同时分别从两地骑车相向而行,李明每小时行18千米,王亮每小时行16千米,两人相遇时距全程中点3千米.问全程长多少千米?【例10】甲、乙两车分别同时从、B 两地相对开出,第一次在离A 地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B 地25千米处相遇.求、两地间的距离.【小试牛刀】甲、乙两车分别同时从A 、B 两地相对开出,第一次在离A 地90千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B 地30千米处相遇.求A 、B 两地间的距离?1.甲、乙两列火车从相距144千米的两地相向而行,甲车每小时行28千米,乙车每小时行22千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?2.妈妈从家出发到学校去接小红,妈妈每分钟走75米.妈妈走了3分钟后,小红从学校出发,小红每分钟走60米.再经过20分钟妈妈和小红相遇.从小红家到学校有多少米?3.甲乙两座城市相距530千米,货车和客车从两城同时出发,相向而行.货车每小时行50千米,客车每小时行70千米.客车在行驶中因故耽误1小时,然后继续向前行驶与货车相遇.问相遇时客车、货车各行驶多少千米?A AB 课后作业4.甲、乙两列火车从相距366千米的两个城市对面开来,甲列火车每小时行37千米,乙列火车每小时行36千米,甲列火车先开出2小时后,乙列火车才开出,问乙列火车行几小时后与甲列火车相遇?5.夏夏和冬冬同时从两地相向而行,两地相距1100米,夏夏每分钟行50米,冬冬每分钟行60米,问两人在距两地中点多远处相遇?6.王老师从甲地到乙地,每小时步行5千米,张老师从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离.7.树叶和月亮同时分别从两地骑车相向而行,树叶每小时行18千米,月亮每小时行16千米,两人相遇时距全程中点5千米.问全程长多少千米?8.甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
第七讲行程问题之一—--相遇问题【知识要点】路程、速度、时间是行程问题中常常出现的量,它们有如下的关系:路程=速度⨯时间.这一关系也可以写成速度=路程÷时间或时间=路程÷速度相遇问题是行程问题中最常见的问题之一,主要研究物体相向运动中的速度、时间和路程三者之间关系的问题,常用的基本数量关系是:相遇路程=速度和×相遇时间这一关系也可以写成相遇时间=相遇路程÷速度和或速度和=相遇路程÷相遇时间【典型题解】例1:两地相距30千米,甲乙两人分别从A、B同时出发,相向而行。
甲每小时行3千米,乙每小时行2千米。
问:几小时后两人相遇?练习1:A、B两地相距80千米。
甲乙两人分别从A、B同时骑自行车出发,相向而行。
甲每小时行19千米,乙每小时行21千米。
问:几小时后两人相遇?相遇点距离A 点多少千米?例2:甲乙两人从A、B两地同时出发,相向而行。
甲每小时走3千米,乙每小时走2千米,6小时候两人相遇。
问:A、B相距多少千米?练习2:甲乙两人从A、B两地同时出发,相向而行。
甲每小时走3千米,6小时候两人相遇。
A、B两地相距30千米。
问:乙每小时走多少千米?例3:A、B两地相距600千米。
上午8点客车以每小时60千米的速度从A开往B。
又有一列货以每小时50千米的速度从B开往A。
要使两车在AB的中点相遇,货车应在什么时候出发?练习3:李琳骑自行车、何英骑摩托车分别A、B两地同时出发,相向而行。
3小时后相遇,自行车比摩托车少走120千米。
摩托车每小时行50千米。
问:A、B相距多少千米?例4:两列火车分别从A、B两地同时出发,相向而行。
第一次相遇在离A地500千米的C地。
相遇后,两车继续前进,到达B或A后各自折回。
在离B地300千米的D 地第二次相遇。
问:A、B相距多远?练习4:小明从A地向B地走。
小红同时从B地向A地走。
各自到达目的地后立刻返回。
行走过程中,速度都保持不变。
小升初行程问题专项训练之相遇问题追及问题一、基本公式:1、路程=速度×时间2、相遇问题:相遇路程=速度和×相遇时间3、追及问题:相差路程=速度差×追及时间二、行程问题(一)-----相遇问题例题:1.XXX和XXX同时从两地相对出发,XXX步行每分钟走8米,XXX骑自行车的速度是XXX步行的3倍,经过5分钟后两人相遇,问这两地相距多少米?2.在一条笔直的公路上,XXX和XXX骑车从相距900米的A、B两地同时出发,XXX每分钟行200米,XXX每分钟行250米,经过多少时间两人相距2700米?(分析各种情况)3.客货两车同时从甲、乙两地相对开出,客车每小时行44千米,货车每小时行52千米,两车相遇后继续以原速度前进,到达乙、甲两地后立即返回,第二次相遇时,货车比客车多行60千米。
问甲、乙两地相距多千米?4.XXX从甲地向乙地走,XXX同时从乙地向甲地走,当各自到达终点后,又迅速返回,各自速度不变,两人第一次相遇在距甲地40米处,第二次相遇在距乙地15米处,问甲、乙两地相距多少米?5.甲村、乙村相距6千米,XXX与XXX分别从甲、乙两村出发,在两村之间往返行走(到达另一村后就马上返回)。
在出发后40分钟两人第一次相遇。
小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇。
问XXX和XXX两人的速度各是多少?6.XXX与XXX划分从甲、乙两村动身,在两村之间往返行走(抵达另一村后就马上返回)。
他们离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇。
问他们两人第四次相遇的地址离乙村有多远?(相遇指迎面相遇)7.甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。
问:东西两地间的距离是多少千米?8.甲、乙两地相距15千米,小聪和XXX划分从甲、乙两地同时相向而行,2小时后在离中点0.5千米处相遇,求小聪和XXX的速率。
行程问题之相遇问题例题解析一)相遇问题两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。
它的特点是两个运动物体共同走完整个路程。
小学数学教材中的行程问题,一般是指相遇问题。
相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。
它们的基本关系式如下:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度1.求路程(1)求两地间的距离例1 两辆汽车同时从甲、乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经过4小时后相遇。
甲乙两地相距多少千米?(适于五年级程度)解:两辆汽车从同时相对开出到相遇各行4小时。
一辆汽车的速度乘以它行驶的时间,就是它行驶的路程;另一辆汽车的速度乘以它行驶的时间,就是这辆汽车行驶的路程。
两车行驶路程之和,就是两地距离。
56×4=224(千米)63×4=252(千米)224+252=476(千米)综合算式:56×4+63×4=224+252=476(千米)答略。
例2 两列火车同时从相距480千米的两个城市出发,相向而行,甲车每小时行驶40千米,乙车每小时行驶42千米。
5小时后,两列火车相距多少千米?(适于五年级程度)解:此题的答案不能直接求出,先求出两车5小时共行多远后,从两地的距离480千米中,减去两车5小时共行的路程,所得就是两车的距离。
480-(40+42)×5=480-82×5=480-410=70(千米)答:5小时后两列火车相距70千米。
例4 两列火车从甲、乙两地同时出发对面开来,第一列火车每小时行驶60千米,第二列火车每小时行驶55千米。
两车相遇时,第一列火车比第二列火车多行了20千米。
求甲、乙两地间的距离。
(适于五年级程度)解:两车相遇时,两车的路程差是20千米。
小学奥数知识点之相遇问题小学奥数知识点之相遇问题奥数试题及答案:二次相遇问题知识要点提示:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。
一般知道AC和AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍。
例题:1.甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。
请问A、B两地相距多少千米?A.120B.100C.90D.80【答案】A。
解析:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120。
2.两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇。
两城市相距()千米A.200B.150C.120D.100【答案】D。
解析:第一次相遇时两车共走一个全程,第二次相遇时两车共走了两个全程,从A城出发的汽车在第二次相遇时走了52×2=104千米,从B城出发的汽车走了52+44=94千米,故两城间距离为(104+96)÷2=100千米。
绕圈问题:3.在一个圆形跑道上,甲从A点、乙从B点同时出发反向而行,8分钟后两人相遇,再过6分钟甲到B点,又过10分钟两人再次相遇,则甲环行一周需要()?A.24分钟B.26分钟C.28分钟D.30分钟【答案】C。
解析:甲、乙两人从第一次相遇到第二次相遇,用了6+10=16分钟。
也就是说,两人16分钟走一圈。
从出发到两人第一次相遇用了8分钟,所以两人共走半圈,即从A到B是半圈,甲从A 到B用了8+6=14分钟,故甲环行一周需要14×2=28分钟。
也是一个倍数关系。
六年级奥数试题及解答:二次相遇问题甲、乙两人骑自行车分别从A、B两地同时相向而行,第一次两人在距离B地7千米处相遇,相遇后,两人继续行驶,到达目的地后又立即返回,在距离A地4千米处又相遇了,求A、B两地相距多少千米?分析:根据题意,第一次相遇时,两人共行了一个全程,第二次相遇时,两人行了三个全程.根据第一次两人在距离B地7千米处相遇,可知两人加在一起行一个全程时,乙行了7千米,则两人加在一起行三个全程时,乙应走7×3=21千米;乙所走的`21千米,是走了一个全程后,又加上了返回的4千米,再减去返回的4千米就是全程的距离.解答:解:根据题意与分析可得:7×3-4,=21-4,=17(千米).答:A、B两地相距17千米.点评:本题的关键是两人两次相遇时共走了3个全程,从第一次相遇时可以得出两人走完一个全程,乙行的路程,第二次相遇时,乙行了一个全程还多走了4千米,然后再进一步解答即可.六年级奥数试题及答案:多次相遇问题(高难度)1.甲、乙两个运动员分别从相距100米的直跑道两端同时相对出发,甲以每秒6.25米,乙以每秒3.75米的速度来回匀速跑步,他们共同跑了8分32秒,在这段时间内两人多次相遇(两人同时到达同一地点叫做相遇).他们最后一次相遇的地点离乙的起点有()米.甲追上乙()次,甲与乙迎面相遇()次.解析请看下一页分析:8分32秒=512(秒).①当两人共行1个单程时第1次迎面相遇,共行3个单程时第2次迎面相遇,共行2n-1个单程时第n次迎面相遇.因为共行1个单程需100÷(6.25+3.75)=10(秒),所以第n 次相遇需10×(2n-1)秒,由10×(2n-1)=510,解得n=26,即510秒时第26次迎面相遇.②此时,乙共行3.75×510=1912.5(米),离10个来回还差200×10-1912.5=87.5(米),即最后一次相遇地点距乙的起点87.5米.③类似的,当甲比乙多行1个单程时,甲第1次追上乙,多行3个单程时,甲第2次追上乙,多行2n-1个单程时,甲第n次追上乙.因为多行1个单程需100÷(6.25-3.75)=40(秒),所以第n 次追上乙需40×(2n-1)秒.当n=6时,40×(2n-1)=440<512;当n=7时,40×(2n-1)=520>512,所以在512秒内甲共追上乙6次.解答:解:①当两人共行1 个单程时第1 次迎面相遇,共行3 个单程时第2 次迎面相遇,共行2n-1个单程时第n次迎面相遇.因为共行1 个单程需100÷(6.25+3.75)=10(秒),8 分32秒=512秒,(512-10)÷(10×2)≈25(次),所以25+1=26(次).②最后一次相遇地点距乙的起点:200×10-3.75×510,=2000-1912.5,=87.5(米).③多行1个单程需100÷(6.25-3.75)=40(秒),所以第n次追上乙需40×(2n-1)秒.当n=6时,40×(2n-1)=440<512;当n=7时,40×(2n-1)=520>512,所以在512秒内甲共追上乙6次.故答案为:87.5米;6次;26次.点评:此题属于多次相遇问题,比较复杂,要认真分析,考查学生分析判断能力.奥数试题及答案:二次相遇问题例题1、快车和慢车同时从东、西两站相对开除,第一次在中点西侧10千米处相遇,相遇后两车以原速前进,到达对方出发地后,两车立即返回,在途中第二次相遇,这时相遇点距东站40千米。
小学奥数知识之相遇问题知识点两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。
它的特点是两个运动物体共同走完整个路程。
相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。
它们的基本关系式如下:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度求路程(1)求两地间的距离例1:两辆汽车同时从甲、乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经过4小时后相遇。
甲乙两地相距多少千米?(适于五年级程度)解:两辆汽车从同时相对开出到相遇各行4小时。
一辆汽车的速度乘以它行驶的时间,就是它行驶的路程;另一辆汽车的速度乘以它行驶的时间,就是这辆汽车行驶的路程。
两车行驶路程之和,就是两地距离。
56×4=224(千米)63×4=252(千米)224+252=476(千米)综合算式:56×4+63×4=224+252=476(千米)答略。
例2;两列火车同时从相距480千米的两个城市出发,相向而行,甲车每小时行驶40千米,乙车每小时行驶42千米。
5小时后,两列火车相距多少千米?(适于五年级程度)解:此题的答案不能直接求出,先求出两车5小时共行多远后,从两地的距离480千米中,减去两车5小时共行的路程,所得就是两车的距离。
480-(40+42)×5=480-82×5=480-410=70(千米)答:5小时后两列火车相距70千米。
例3:两列火车从甲、乙两地同时出发对面开来,第一列火车每小时行驶60千米,第二列火车每小时行驶55千米。
两车相遇时,第一列火车比第二列火车多行了20千米。
求甲、乙两地间的距离。
(适于五年级程度)解:两车相遇时,两车的路程差是20千米。
出现路程差的原因是两车行驶的速度不同,第一列火车每小时比第二列火车多行(60-55)千米。
实用文案行程问题---相遇问题1、甲乙两人分别从相距27.3千米的两地同时出发相向而行,甲每小时走 6.2千米,乙每小时走 4.3千米。
两人几小时后相遇?2、甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18.5千米,乙船每小时行驶15.6千米,经过6小时两船在途中相遇。
两地间的水路长多少千米?3、甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。
两车出发后多少小时相遇?4、一列快车和一列慢车分别从甲乙两地同时相向而行。
快车10小时可以到达乙地,慢车15小时可以到达甲地。
已知快车每小时比慢车多行20千米,两车出发后几小时相遇?5、甲、乙两车同时从东、西两地相向开出,甲车每小时行56.4千米,乙车每小时行48.6千米。
两车在距中点42.9千米处相遇,东、西两地相距多少千米?6、.甲、乙两汽车同时从两地出发,相向而行。
甲汽车每小时行52.6千米,乙汽车每小时行55.4千米,两车在距中点16.8千米处相遇。
求两地之间的路程是多少千米?7、一辆汽车和一辆摩托车同时从A、B两城相对开出,汽车每小时行62.5千米,摩托车每小时行70千米,当摩托车行到两地中点处时,与汽车还相距30千米。
求A、B两城之间的距离?8、甲乙两地相距60千米,甲乙两人都骑自行车从A城同时出发,甲比乙每小时慢4千米,乙到B城当即折返,于距B城12千米处与甲相遇,那么甲的速度是多少?标准文档9、快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?10、兄弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?11.汽车从甲地开往乙地,每小时行32千米。
4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到达乙地?12、甲乙两车同时从A、B两地相对开出,4小时后相遇,甲车再开3小时到达B地。
一、相遇甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A ,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=t S V 和和二、追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=t S V 差差例如:假设甲乙两人站在100米的跑道上,甲位于起点(0米)处,乙位于中间5米处,经过时间t 后甲乙同时到达终点,甲乙的速度分别为v 甲和v 乙,那么我们可以看到经过时间t 后,甲比乙多跑了5米,或者可以说,在时间t 内甲的路程比乙的路程多5米,甲用了时间t 追了乙5米知识框架相遇与追及三、相遇和追及在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同(2)在整个运行过程中,2个物体所走的是同一路径。
例题精讲【例 1】一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。
3.5小时两车相遇。
甲、乙两个城市的路程是多少千米?【巩固】聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇,你知道聪聪家和明明家的距离吗?【例 2】A、B两地相距90米,包子从A地到B地需要30秒,菠萝从B地到A地需要15秒,现在包子和菠萝从A、B两地同时相对而行,相遇时包子与B地的距离是多少米?【巩固】两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。
应用题板块-行程问题之相遇追及(小学四年级奥数题)【一、题型要领】1. 相遇问题【基本概念】小王在A地要去B地,小张在B地要去A地(下图左侧部分),两人分别行走一段时间后,就会在途中相遇(下图右侧部分)。
【基本公式】(1)总路程= 小王行走的路程+ 小张行走的路程(2)小王行走的路程= 小王行走的速度* 小王行走的时间(3)小张行走的路程= 小张行走的速度* 小张行走的时间由(1)(2)(3)可得(4)总路程= 小王行走的速度* 小王行走的时间+ 小张行走的速度* 小张行走的时间如果小张和小王同时出发,可得(5)总路程=(小王行走的速度 + 小张行走的速度)* 行走的时间【解题关键】两地相距的距离等于小王行走的路程加上小张行走的路程,再分别根据两人的速度和时间去计算两人行走的路程即可2. 追及问题【基本概念】小张在前方行走,小王在后方与小张同方向行走(下图左侧部分),如果小王行走的速度大于小张,则经过一段时间以后,小王就会追上小张(下图右侧部分)【基本公式】(1)小王和小张相距的路程= 小王行走的路程- 小张行走的路程(2)小王行走的路程= 小王行走的速度* 小王行走的时间(3)小张行走的路程= 小张行走的速度* 小张行走的时间由(1)(2)(3)可得(4)小王和小张相距的路程 = 小王行走的速度* 小王行走的时间- 小张行走的速度* 小张行走的时间如果小张和小王同时出发,可得(5)小王和小张相距的路程 =(小王行走的速度 - 小张行走的速度)* 行走的时间【解题关键】小王和小张相距的距离等于小王行走的路程减去小张行走的路程,再分别根据两人的速度和时间去计算两人行走的路程即可【举一反三】有一类题目是为赶时间,题目描述“为了节省XX时间从原本的速度x变成了之后的速度y”,解题时可以假象成另一个人以原速度提前走了XX 时间,而自身以修改后的速度从原地出发,最终两人同时到达终点,即可用“追及”问题解答【二、重点例题】例题1【题目】小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟,他们同时出发,几分钟后两人相遇?【分析】走同样长的距离,小张花费的时间是小王花费时间的36 ÷ 12 = 3(倍),因此自行车的速度是步行速度的3倍。
行程问题之相遇问题例题解析两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。
它的特点是两个运动物体共同走完整个路程。
小学数学教材中的行程问题,一般是指相遇问题。
相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。
它们的基本关系式如下:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度1.求路程(1)求两地间的距离例1 两辆汽车同时从甲、乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经过4小时后相遇。
甲乙两地相距多少千米?(适于五年级程度)解:两辆汽车从同时相对开出到相遇各行4小时。
一辆汽车的速度乘以它行驶的时间,就是它行驶的路程;另一辆汽车的速度乘以它行驶的时间,就是这辆汽车行驶的路程。
两车行驶路程之和,就是两地距离。
56×4=224(千米)63×4=252(千米)224+252=476(千米)综合算式:56×4+63×4=224+252=476(千米)答略。
例2 两列火车同时从相距480千米的两个城市出发,相向而行,甲车每小时行驶40千米,乙车每小时行驶42千米。
5小时后,两列火车相距多少千米?(适于五年级程度)解:此题的答案不能直接求出,先求出两车5小时共行多远后,从两地的距离480千米中,减去两车5小时共行的路程,所得就是两车的距离。
480-(40+42)×5=480-82×5=480-410=70(千米)答:5小时后两列火车相距70千米。
例4 两列火车从甲、乙两地同时出发对面开来,第一列火车每小时行驶60千米,第二列火车每小时行驶55千米。
两车相遇时,第一列火车比第二列火车多行了20千米。
求甲、乙两地间的距离。
(适于五年级程度)解:两车相遇时,两车的路程差是20千米。
出现路程差的原因是两车行驶的速度不同,第一列火车每小时比第二列火车多行(60-55)千米。