)
Uc (x,
y, z)
Ae jkr
U
( x,
y,
z)
U( x, y, z) Ae jkr Aexp jk( x cos y cos z cos )
Uc ( x, y, z) Ae jkr U ( x, y, z)
共轭光波的数学表达式为原光波复振幅的共轭复数。
已知 于是
参考波
R
记录介质上的的总光强为 I( x, y) O( x, y) R( x, y) 2
O
物波
记录介质
O( x, y) 2 R( x, y) 2 R( x, y)O( x, y) R( x, y)O( x, y)
O(x, y) 2 R(x, y) 2 2r(x, y)O0(x, y)cos (x, y) (x, y)
参考波
R
O
物波
记录介质
上图为波前记录的示意图,设传播到记录介质上的物光波前复振幅(对于理 想单色光,其空间的复振幅分布是不随时间变化的)为
O( x, y) Oo ( x, y)exp j ( x, y)
传播到记录介质上的参考光波前复振幅
R( x, y) r( x, y)exp j ( x, y)
全息图片
全息图片
当照明光波与参考光波均为正入射的平面波时,入射到 全息上的相位可取为零。这时U3和U4中的系数均为实 数,无附加相位因子,全息图衍射场中的+1级和-1级光 波严格镜像对称。由共轭光波U4所产生的实像,对观察 者而言,该实像的凹凸与原物体正好相反,因而给人以 某种特殊的感觉,这种像称为赝像。
如何得到三维的图像呢?
如果我们能够用某一种方法把物体光波(其中包含振幅和 相位信息)以某种方式记录下来,则当我们想办法把物光波 再现出来的话,就能再现三维的物体。