第11章图象编码基础(数字图像处理)
- 格式:ppt
- 大小:1.03 MB
- 文档页数:56
数字图像处理第一章1、1解释术语(2) 数字图像:为了便于用计算机对图像进行处理,通过将二维连续(模拟)图像在空间上离散化,也即采样,并同时将二维连续图像的幅值等间隔的划分成多个等级(层次)也即均匀量化,以此来用二维数字阵列并表示其中各个像素的空间位置与每个像素的灰度级数的图像形式称为数字图像。
(3)图像处理:就是指对图像信息进行加工以满足人的视觉或应用需求的行为。
1、7 包括图像变化、图像增强、图像恢复、图像压缩编码、图像的特征提取、形态学图像处理方法等。
彩色图像、多光谱图像与高光谱图像的处理技术沿用了前述的基本图像处理技术,也发展除了一些特有的图像处理技术与方法。
1、8基本思路就是,或简单地突出图像中感兴趣的特征,或想方法显现图像中那些模糊了的细节,以使图像更清晰地被显示或更适合于人或及其的处理与分析。
1、9基本思路就是,从图像退化的数学或概率模型出发,研究改进图像的外观,从而使恢复以后的图像尽可能地反映原始图像的本来面目,从而获得与景物真实面貌相像的图像。
1、10基本思路就是,,在不损失图像质量或少损失图像质量的前提下,尽可能的减少图像的存储量,以满足图像存储与实时传输的应用需求。
1、11基本思路就是,通过数学方法与图像变换算法对图像的某种变换,以便简化图像进一步处理过程,或在进一步的图像处理中获得更好的处理效果。
1、12基本目的就是,找出便于区分与描述一幅图像中背景与目标的方法,以方便图像中感兴趣的目标的提取与描述。
第二章2、1解释下列术语(18)空间分辨率:定义为单位距离内可分辨的最少黑白线对的数目,用于表示图像中可分辨的最小细节,主要取决于采样间隔值的大小。
(19)灰度分辨率:就是指在灰度级别中可分辨的最小变化,通常把灰度级数L称为图像的灰度级分辨率。
(20)像素的4邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻与垂直相邻的4个像素称为该像素的4邻域像素,她们的坐标分别为(x-1,y)(x,y-1)(x,y+1)(x+1,y)。
1. 图像处理的主要方法分几大类?答:图字图像处理方法分为大两类:空间域处理(空域法)和变换域处理(频域法)。
空域法:直接对获取的数字图像进行处理。
频域法:对先对获取的数字图像进行正交变换,得到变换系数阵列,然后再进行处理,最后再逆变换到空间域,得到图像的处理结果2. 图像处理的主要内容是什么?答:图形数字化(图像获取):把连续图像用一组数字表示,便于用计算机分析处理。
图像变换:对图像进行正交变换,以便进行处理。
图像增强:对图像的某些特征进行强调或锐化而不增加图像的相关数据。
图像复原:去除图像中的噪声干扰和模糊,恢复图像的客观面目。
图像编码:在满足一定的图形质量要求下对图像进行编码,可以压缩表示图像的数据。
图像分析:对图像中感兴趣的目标进行检测和测量,从而获得所需的客观信息。
图像识别:找到图像的特征,以便进一步处理。
图像理解:在图像分析的基础上得出对图像内容含义的理解及解释,从而指导和规划行为。
3. 名词解释:灰度、像素、图像分辨率、图像深度、图像数据量。
答:像素:在卫星图像上,由卫星传感器记录下的最小的分立要素(有空间分量和谱分量两种)。
通常,表示图像的二维数组是连续的,将连续参数 x,y ,和 f 取离散值后,图像被分割成很多小的网格,每个网格即为像素 图像分辨率:指对原始图像的采样分辨率,即图像水平或垂直方向单位长度上所包含的采样点数。
单位是“像素点/单位长度”图像深度是指存储每个像素所用的位数,也用于量度图像的色彩分辨率.图像深度确定彩色图像的每个像素可能有的颜色数,或者确定灰度图像的每个像素可能有的灰度级数.它决定了彩色图像中可出现的最多颜色数,或灰度图像中的最大灰度等级(图像深度:位图图像中,各像素点的亮度或色彩信息用二进制数位来表示,这一数据位的位数即为像素深度,也叫图像深度。
图像深度越深,能够表现的颜色数量越多,图像的色彩也越丰富。
)图像数据量:图像数据量是一幅图像的总像素点数目与每个像素点所需字节数的乘积。
图像编码的基本原理图像编码是数字图像处理中的重要环节,它通过对图像进行压缩和编码,实现对图像信息的有效存储和传输。
在图像编码的过程中,需要考虑到图像的信息量、保真度、压缩比等多个因素,因此,图像编码的基本原理显得尤为重要。
首先,图像编码的基本原理包括两个主要方面,压缩和编码。
压缩是指通过一定的算法和技术,减少图像数据的存储空间和传输带宽,而编码则是将压缩后的图像数据转换成数字信号,以便于存储和传输。
在实际的图像编码过程中,通常会采用有损压缩和无损压缩两种方式,以满足不同应用场景的需求。
有损压缩是指在压缩图像数据的同时,会损失一定的信息量,但可以获得更高的压缩比。
常见的有损压缩算法包括JPEG、MPEG等,它们通过对图像进行离散余弦变换、量化、熵编码等步骤,实现对图像数据的有损压缩。
而无损压缩则是在不损失图像信息的前提下,实现对图像数据的压缩。
无损压缩算法主要包括LZW、Huffman编码等,它们通过对图像数据的统计特性进行编码,实现对图像数据的无损压缩。
除了压缩和编码外,图像编码的基本原理还包括了对图像信息的分析和处理。
在图像编码的过程中,需要对图像进行预处理、采样、量化等操作,以便于后续的压缩和编码。
同时,还需要考虑到图像的特性和人眼的视觉感知特点,以实现对图像信息的高效编码和保真传输。
总的来说,图像编码的基本原理涉及到压缩、编码和图像信息处理等多个方面,它是数字图像处理中的重要环节,直接影响到图像的存储、传输和显示质量。
因此,对图像编码的基本原理进行深入理解和研究,对于提高图像处理技术和应用具有重要意义。
希望本文的介绍能够帮助读者更好地理解图像编码的基本原理,为相关领域的研究和应用提供参考。
图像编码入门指南图像编码是一种将图像数据进行压缩和编码的技术,广泛应用于数字图像处理、通信和存储等领域。
本文将介绍图像编码的基本原理、常见的编码算法和应用。
一、图像编码的基本原理图像编码的基本原理是利用图像中的冗余性进行压缩。
图像中的冗余性包括空间冗余、时间冗余和精度冗余。
空间冗余指的是图像中相邻像素之间的相关性;时间冗余指的是连续视频帧之间的相关性;精度冗余是指图像中像素值的冗余,即像素值在某一范围内的重复程度。
二、常见的图像编码算法1. 无损压缩算法:无损压缩算法能够在不丢失图像质量的情况下进行压缩。
常见的无损压缩算法有Huffman编码、LZW压缩算法和无损JPEG压缩。
- Huffman编码通过统计图像中像素值的出现频率,将出现频率高的像素值用较短的编码表示,从而达到压缩的效果。
- LZW压缩算法根据图像中出现的连续子串进行编码,并在解码时进行还原。
该算法常用于GIF图像的压缩。
- 无损JPEG压缩算法通过预测、去除冗余和差分编码等技术进行压缩,以减小图像文件的体积。
2. 有损压缩算法:有损压缩算法在压缩的过程中会丢失图像的一定信息,从而导致图像质量的损失。
常见的有损压缩算法有JPEG压缩、Fractal压缩和小波变换压缩。
- JPEG压缩是一种广泛应用的图像压缩算法,通过将图像转换到频域,并基于量化表对图像的高频信息进行舍弃,从而减小图像的体积。
- Fractal压缩算法通过寻找图像中的自相似结构来进行压缩。
该算法在有损压缩领域有着重要的应用。
- 小波变换压缩将图像转换为其在小波基函数下的系数,通过对系数进行量化和编码,从而达到压缩的目的。
三、图像编码的应用图像编码广泛应用于数字媒体、电视广播、医学影像、安防监控等领域。
1. 数字媒体:在数字媒体领域,图像编码可以用于图像的存储和传输。
通过图像编码,可以减小图像文件的体积,从而提高存储和传输的效率。
2. 电视广播:在电视广播领域,图像编码可以用于数字电视的压缩传输。
第一章1.连续图像中,图像为一个二维平面,(x,y)图像中的任意一点,f(x,y)为图像于(x,y)于处的值。
连续图像中,(x,y)的取值是连续的,f(x,y)也是连续的数字图像中,图像为一个由有限行有限列组成的二维平面,(i,j)为平面中的任意一点,g(i,j)则为图像在(i,j)处的灰度值,数字图像中,(i,j) 的取值是不连续的,只能取整数,对应第i行j列,g(i,j) 也是不连续的,表示图像i行j列处图像灰度值。
联系:数字图像g(i,j)是对连续图像f(x,y)经过采样和量化这两个步骤得到的。
其中g(i,j)=f(x,y)|x=i,y=j2. 图像工程的内容可分为图像处理、图像分析和图像理解三个层次,这三个层次既有联系又有区别,如下图所示。
图像处理的重点是图像之间进行的变换。
尽管人们常用图像处理泛指各种图像技术,但比较狭义的图像处理主要是对图像进行各种加工,以改善图像的视觉效果并为自动识别奠定基础,或对图像进行压缩编码以减少所需存储空间图像分析主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息,从而建立对图像的描述。
如果说图像处理是一个从图像到图像的过程,则图像分析是一个从图像到数据的过程。
这里的数据可以是目标特征的测量结果,或是基于测量的符号表示,它们描述了目标的特点和性质。
图像理解的重点是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行动。
如果说图像分析主要以观察者为中心来研究客观世界,那么图像理解在一定程度上是以客观世界为中心,借助知识、经验等来把握整个客观世界(包括没有直接观察到的事物)的。
联系:图像处理、图像分析和图像理解处在三个抽象程度和数据量各有特点的不同层次上。
图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。
图像分析则进入了中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式的描述。
第一章名词解释:(2)数字图像:指由被称作像素的小块区域组成的二维矩阵。
将物理图像行列划分后,每个小块称为像素。
(4)数字图像处理:计算机技术或其他数字技术,对图像信息进行某些数字运算和各种加工处理,以改善图像的视觉效果和提高数字实用性的技术。
第二章名词解释(12)图像采样:将空间上连续的图像变换成离散点的操作称为采样,就是对图像的连续空间坐标x和y的离散化。
(14)图像灰度级量化:对图像函数的幅值 f 的离散化.(28)欧氏距离:像素p和q之间的欧氏(Euclidean)距离定义为:De(p,q)=[(x—u)2+(y—v)2]1/2 (2。
12)也即,所有距像素点(x,y)的欧氏距离小于或等于d的像素都包含在以(x,y)为中心,以d为半径的圆平面中。
(29)街区距离:像素p和q之间的D4距离,也即街区(city-block)距离,定义为:D4(p,q)=|x-u| + |y-v| (2.13)也即,所有相距像素点(x,y)的D4距离为小于d或等于d的像素组成一个中心点在(x,y)的菱形。
(30)棋盘距离:像素p和q之间的D8距离,也即棋盘距离,定义为:D8(p,q)=max(|x—u|,|y—v|) (2.14)也即,所有距像素点(x,y)的D8距离为小于d或等于d的像素组成一个中心点在(x,y)的方形(33)调色板:在16色或256色显示系统中,将图像中出现最频繁的16中或256中颜色组成一个颜色表,并将他们分别编号为0—15或0—255,这样就是每一个4位或8位的颜色编号与颜色表中4位颜色值相对应.这种4位或者8位的颜色编号成为颜色的索引号,有颜色索引号及其对应的24位颜色值组成的表成为颜色查找表,也即调色板。
第四章名词解释(1)空间域图像增强:在图像平面中对图像的像素灰度值进行运算处理,使之更适合于人眼的观察或机器的处理的一种技术. (7)图像锐化:图像锐化是一种突出和加强图像中景物的边缘和轮廓的技术。
《数字图像处理》课程教学大纲课程信息课程代码:课程名称:数字图像处理/Digital Image Process课程类型:专业任选课学时学分:48学时/3学分适用专业:计算机科学与技术开课部门:灾害信息工程系一、课程的地位、目的和任务本课程是计算机科学与技术本科专业任选课。
课程的主要内容包括:(1)数字图像处理的基本概念,包括数字图像格式,数字图像显示,灰度直方图,点运算,代数运算和几何运算等概念。
(2)介绍二维傅氏变换、离散余弦变换、离散图像变换和小波变换的基本原理与方法。
(3)重点介绍图像的增强方法,包括空间域方法和变换域方法。
(4)图像恢复和重建基本原理与方法。
(5)图像压缩编码的基本原理与方法以及一些国际标准。
(6)图像的分析和模式识别基本原理。
通过本课程的学习使学生掌握数字图像处理的基本概念、基本原理和实现方法和实用技术,了解数字图像处理基本应用和当前国内外的发展方向。
要求学生通过该课程学习,具备通过程序解决智能化检测与应用问题的初步能力,为在计算机视觉、模式识别等领域从事研究与开发打下扎实的理论基础。
二、课程与相关课程的联系与分工要求学生先修课程为:《C语言程序设计》、《数据结构》、《线性代数》、《高等数学》、《概率与数理统计》后继课程:生产实习三、教学内容与基本要求第一章概述1.教学内容1.1 数字图像的发展历史1.2 图像工程的概述1.3 数字图像处理的应用及其发展趋势1.4 VC++ 运行环境的介绍1.5 BMP文件的基本介绍2.重点难点VC运行环境;BMP文件格式;3.基本要求了解图像工程的概念;熟悉数字图像的应用领域;熟悉VC运行环境;掌握BMP文件结构形式;能够在vc环境下,从内存显示BMP图像。
第二章图像采集1.教学内容2.1.视觉过程2.2.成像中的空间关系2.3.光度学和亮度学2.4.采样和量化2.重点成像中的空间关系。
3.难点采样和量化。
4.基本要求了解视觉过程及其原理;掌握几何投影和齐次坐标下的成像变换;熟悉光强度、照度、景深等概念;了解成像模型;理解采样和量化的原理;掌握图像数字化的原理好过程。