数学第六章 实数知识归纳总结及解析
- 格式:doc
- 大小:829.50 KB
- 文档页数:17
人教版七年级下册第六章实数知识点
实数是数学中最基本的概念之一,是指可以用数字表示的所有数。
实数由有理数和无理数两部分组成。
有理数是可以表示成两个整数之比的数,包括整数、分数、小数等,而无理数则不能表示成有理数的形式,如圆周率π、自然对数的底数e等。
在七年级数学下册第六章中,我们将学习实数的相关知识,包括实数的分类、实数的运算、实数的比较等。
一、实数的分类
1.有理数:有理数包括正整数、负整数、零、正分数、负分数和整数。
2.无理数:无理数是不能表示成有理数的形式的数,它们包括无限不循环小数和根号下无理数等。
二、实数的运算
1.加法:实数的加法满足交换律、结合律和分配律。
2.减法:实数的减法可以转化成加法,即a-b=a+(-b)。
3.乘法:实数的乘法满足交换律、结合律和分配律。
4.除法:实数的除法可以转化成乘法,即a÷b=a×(1/b),其中b≠0。
5.乘方:实数的乘方表示数的自我乘积,即a的n次幂表示为an。
三、实数的比较
1.正数比较大小:正数比较大小时,数值越大的数越大。
2.负数比较大小:负数比较大小时,数值越小的数越大。
3.正数和负数比较大小:正数比负数大。
4.零和正数、负数比较大小:零比负数大,比正数小。
5.一般实数比较大小:需要将实数转化成同一种形式再比较大小。
以上就是七年级数学下册第六章实数知识点的简单介绍,希望对大家有所帮助。
在学习实数时,我们需要多做练习,多思考,才能真正掌握实数的相关知识。
第六章 实数主要知识点6.1 平方根1、平方根(1)平方根的定义:如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根.即:如果a x =2,那么x 叫做a 的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。
(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算;0的平方根是0.(5)符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.(6)a x =2 <—> a x ±=a 是x 的平方 x 的平方是ax 是a 的平方根(除0外,x 的值一正一负互为相反数)a 的平方根是x(除0外,x 的值一正一负互为相反数)2、算术平方根(1)算术平方根的定义: 一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式a x =2 (x≥0)中,规定a x =。
(2)a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数。
(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。
(4)夹值法及估计一个(无理)数的大小(5)a x =2 (x≥0) <—> a x =a 是x 的平方 x 的平方是ax 是a 的算术平方根(x 的取值为非负数) a 的算术平方根是x(x 的取值为非负数)(6)正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥0(7)平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。
第六章 实数知识点总结及解析一、选择题1.设记号*表示求,a b 算术平均数的运算,即*2a b a b +=,那么下列等式中对于任意实数,,a b c 都成立的是( )①()()()**a b c a b a c +=++;②()()**a b c a b c +=+;③()()()**a b c a b a c +=++;④()()**22a a b c b c +=+ A .①②③ B .①②④ C .①③④D .②④ 2.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则7×6!的值为( )A .42!B .7!C .6!D .6×7!3 ) A .5和6 B .6和7 C .7和8D .8和9 4.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,……,根据这个规律,则21+22+23+24+…+22019的末位数字是( )A .0B .2C .4D .65.给出下列各数①0.32,②227,③π0.2060060006(每两个6之间依次多个0 ) A .②④⑤ B .①③⑥ C .④⑤⑥ D .③④⑤6.1的值( )A .在6和7之间B .在5和6之间C .在4和5之间D .在7和8之间7.下列命题中,是真命题的有( )①两条直线被第三条直线所截,同位角的角平分线互相平行;②立方根等于它本身的数只有0;③两条边分别平行的两个角相等;④互为邻补角的两个角的平分线互相垂直A .4个B .3个C .2个D .1个8.下列各数中3.14,0.1010010001…,﹣17,2π有理数的个数有( ) A .1个 B .2个 C .3个D .4个9.b-4=0,则a +b 的值为( )A .﹣2B .﹣1C .0D .210.估计2 )A .1到2之间B .2到3之间C .3到4之间D .4到5之间二、填空题11.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.12.若x +1是125的立方根,则x 的平方根是_________.13.一个数的平方为16,这个数是 . 14.实数,,a b c 在数轴上的点如图所示,化简()()222a a b c b c ++---=__________.15.若()221210a b c -+-=,则a b c ++=__________.16.23(2)0y x --=,则y x -的平方根_________.17.定义新运算a ☆b =3a ﹣2b ,则(﹣2)☆1=_____. 18.设a ,b 都是有理数,规定 3*=a b a b ()()48964***-⎡⎤⎣⎦=__________. 19.已知a 、b 为两个连续整数,且 a <6-b ,则 a + b _______.20.已知2(21)10a b ++-=,则22004a b +=________.三、解答题21.先阅读内容,然后解答问题: 因为:111111111111,,12223233434910910=-=-=-=-⨯⨯⨯⨯ 所以:1111122334910+++⋯+⨯⨯⨯⨯=1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭… =1﹣111111122334910+-+-+- =1﹣191010= 问题:(1)请你猜想(化为两个数的差):120152016⨯= ;120142016⨯= ;(2)若a 、b 为有理数,且|a ﹣1|+(ab ﹣2)2=0,求111(1)(1)(2)(2)ab a b a b +++++++…+1(2018)(2018)a b ++的值. 22.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”,一般地,把n aa a a a ÷÷÷⋯÷个 (a≠0)记作a ⓝ,读作“a 的圈 n 次方”. (初步探究)(1)直接写出计算结果:2③=___,(12)⑤=___; (2)关于除方,下列说法错误的是___A .任何非零数的圈2次方都等于1;B .对于任何正整数n ,1ⓝ=1;C .3④=4③;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(-3)④=___; 5⑥=___;(-12)⑩=___. (2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于___;(3)算一算:212÷(−13)④×(−2)⑤−(−13)⑥÷3323.对于实数a,我们规定用}{a}为 a 的根整数.如}=4.(1)计算?(2)若{m}=2,写出满足题意的m 的整数值;(3)现对a 进行连续求根整数,直到结果为2为止.例如对12进行连续求根整数,第一次}=4,再进行第二次求根整数}=2,表示对12连续求根整数2次可得结果为2.对100进行连续求根整数, 次后结果为2.24.对于有理数a ,b ,定义运算:a ⊕b =ab -2a -2b +1.(1)计算5⊕4的值;(2)计算[(-2)⊕6]⊕3的值;(3)定义的新运算“⊕”交换律是否还成立?请写出你的探究过程.25.我们规定:a p -=1p a(a ≠0),即a 的负P 次幂等于a 的p 次幂的倒数.例:24-=214 (1)计算:25-=__;22-(﹣)=__;(2)如果2p -=18,那么p =__;如果2a -=116,那么a =__;(3)如果a p -=19,且a 、p 为整数,求满足条件的a 、p 的取值. 26.我们在学习“实数”时画了这样一个图,即“以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O 为圆心,正方形的对角线长为半径画弧交数轴于点A”,请根据图形回答下列问题:(1)线段OA 的长度是多少?(要求写出求解过程)(2)这个图形的目的是为了说明什么?(3)这种研究和解决问题的方式体现了 的数学思想方法.(将下列符合的选项序号填在横线上)A .数形结合B .代入C .换元D .归纳【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据材料新定义运算的描述,把等式的两边进行变形比较即可.【详解】①中()*2b c a b c a ++=+,()*()22a b a c b c a b a c a ++++++==+,所以①成立; ②中()2a b c a b c ++*+=,()*2a b c a b c +++=,所以②成立; ③中,()()32*2a b c a b a c ++++=,()2*2a b c a b c +++=,所以③不成立; ④中()2a b a b c c +*+=+,22(*2)22222a abc a b c a b b c c +++++=+==+,所以④成立.故选:B .【点睛】 考核知识点:代数式.理解材料中算术平均数的定义是关键.2.B解析:B【分析】直接根据题目所给新定义化简计算即可.【详解】根据题中的新定义得:原式=7×6×5×4×3×2×1=7!.故选:B.【点睛】本题考查的知识点是有理数的混合运算,读懂题意,理解题目所给定义的运算方法是解此题的关键.3.B解析:B【分析】6<7.【详解】所以6<7.故选:B.【点睛】的取值范围是解题关键.4.C解析:C【分析】观察已知等式,发现末位数字以2,4,8,6进行循环,每4个数一个循环的和位数为0,只要把原式的数的个数除以4得出余数即可求解.【详解】∵21=2,22=4,23=8,24=16,25=32,26=64,……∴末位数字以2,4,8,6循环∵2019÷4=504…3,∴21+22+23+24+…+22019的末位数字与(2+4+8+6)×504+2+4+8的末位数字相同为4故选:C.【点睛】本题考查了尾数特征,弄清题中的数字循环规律是解本题的关键.5.D解析:D【分析】无理数就是无限不循环小数.初中范围内学习的无理数有:π,开方开不尽的数,以及像0.1010010001…,等有这样规律的数.由此逐一判断即可得答案.【详解】①0.32是有限小数,是有理数,②227是分数,是有理数,③π是无限循环小数,是无理数,⑤0.2060060006(每两个6之间依次多个0)是无限循环小数,是无理数,,是整数,是有理数,综上所述:无理数是③④⑤,故选:D.【点睛】此题主要考查了无理数的定义,初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数;熟练掌握定义是解题关键.6.B解析:B【分析】利用36<38<49得到671进行估算.【详解】解:∵36<38<49,∴67,∴51<6.故选:B.【点睛】本题考查了估算无理数的大小,熟练掌握运算法则是解本题的关键.7.D解析:D【分析】利用平行线的性质、立方根及互补的定义分别判断后即可确定正确的选项.【详解】解:①两条平行直线被第三条直线所截,同位角的角平分线互相平行,故错误,是假命题;②立方根等于它本身的数有0,±1,故错误,是假命题;③两条边分别平行的两个角相等或互补,故错误,是假命题;④互为邻补角的两个角的平分线互相垂直,正确,是真命题,真命题有1个,故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、立方根及互补的定义等知识,难度不大.8.C【分析】直接利用有理数的定义进而判断得出答案.【详解】解:3.14,0.1010010001…,-17 ,2π 3.14,-17=-2共3个.故选C .【点睛】此题主要考查了有理数,正确把握有理数的定义是解题关键. 9.D解析:D【分析】根据绝对值与算术平方根的非负性,列出关于a 、b 的方程组,解之即可.【详解】b-4=0,∴2a+b =0,b ﹣4=0,∴a =﹣2,b =4,∴a+b =2,故选D .【点睛】本题考查了绝对值与算术平方根的非负性,正确列出方程是解题的关键.10.D解析:D【分析】2与3之间,所以2在4与5之间.【详解】解:∵22=4,32=9,∴23,∴2+2<3+2,则4<2+<5,故选:D .【点睛】键.二、填空题【解析】解:该圆的周长为2π×2=4π,所以A′与A 的距离为4π,由于圆形是逆时针滚动,所以A′在A 的左侧,所以A′表示的数为-4π,故答案为-4π. 解析:-4π【解析】解:该圆的周长为2π×2=4π,所以A ′与A 的距离为4π,由于圆形是逆时针滚动,所以A ′在A 的左侧,所以A ′表示的数为-4π,故答案为-4π.12.±2【分析】先根据立方根得出x 的值,然后求平方根.【详解】∵x+1是125的立方根∴x+1=,解得:x=4∴x 的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正解析:±2【分析】先根据立方根得出x 的值,然后求平方根.【详解】∵x+1是125的立方根∴x+1=3125,解得:x=4∴x 的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.13.【详解】解:这个数是解析:【详解】解:2(4)16,±=∴这个数是4±14.0【分析】由数轴可知,,则,即可化简算术平方根求值.解:由数轴可知,,则,,故答案为:0.【点睛】此题考查数轴上数的大小关系,算术平方根的性质,整式的加减计算. 解析:0【分析】由数轴可知,0b c a <<<,则0,0a b b c +<-<,即可化简算术平方根求值.【详解】解:由数轴可知,0b c a <<<,则0,0a b b c +<-<,||()()0c a a b c b c a a b c b c =-+++-=--++-=, 故答案为:0.【点睛】此题考查数轴上数的大小关系,算术平方根的性质,整式的加减计算.15.【分析】先根据绝对值、算术平方根、偶次方的非负性求出a 、b 、c 的值,再代入即可得.【详解】由题意得:,解得,则,故答案为:.【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用 解析:12- 【分析】先根据绝对值、算术平方根、偶次方的非负性求出a 、b 、c 的值,再代入即可得.【详解】由题意得:2102010a b c -=⎧⎪+=⎨⎪-=⎩,解得1221a b c ⎧=⎪⎪=-⎨⎪=⎪⎩,则()112122a b c ++=+-+=-, 故答案为:12-. 【点睛】 本题考查了绝对值、算术平方根、偶次方的非负性的应用等知识点,熟练掌握绝对值、算术平方根、偶次方的非负性是解题关键.16.【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可.【详解】解:,且,∴y -3=0,x-2=0,..的平方根是.故答案为:.【点睛】此题考查算术平解析:±1【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可.【详解】解:23(2)0y x -+-=20,(2)0x -≥,∴y-3=0,x-2=0,3,2y x ∴==.1y x ∴-=.y x ∴-的平方根是±1.故答案为:±1.【点睛】此题考查算术平方根的性质及乘方的性质,求一个数的平方根,根据算术平方根的性质及乘方的性质求出x 与y 的值是解题的关键.17.﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,解析:﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.18.1【分析】根据规定,利用算术平方根与立方根的定义计算即可得答案.【详解】∵,∴=()()=(2+2)(3-4)=4(-1)==2-1=1.故答案为:1【点睛】本题考查平方解析:1【分析】根据规定,利用算术平方根与立方根的定义计算即可得答案.【详解】∵*=a b∴()()48964***-⎡⎤⎣⎦=*)=(2+2)*(3-4)=4*(-1)==2-1=1.故答案为:1【点睛】本题考查平方根与立方根,正确理解规定,熟练掌握平方根和立方根的定义是解题关键.19.【分析】先估算出的范围,求出a 、b 的值,即可求出答案.【详解】解:∵,∴,∵a、a为两个连续整数,∴,,∴;故答案为:;【点睛】本题考查了估算无理数的大小的应用,能估算出的解析:5-【分析】的范围,求出a 、b 的值,即可求出答案.【详解】解:∵23<<,∴32-<<-,∵a 、b 为两个连续整数,∴3a =-,2b =-,∴3(2)5a b +=-+-=-;故答案为:5-;【点睛】的范围是解此题的关键.20.【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵,∴2a+1=0,b −1=0,∴a=,b =1,∴,故答案为:.【点睛】本题考查了非负数 解析:54【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵2(21)0a +=,∴2a +1=0,b−1=0,∴a =12-,b =1, ∴222004200411511244a b ⎛⎫+=-+=+= ⎪⎝⎭, 故答案为:54. 【点睛】 本题考查了非负数的性质,几个非负数的和为0时,这几个非负数都为0.三、解答题21.(1)1120152016-,1140284032-;(2)20192020. 【分析】(1)根据题目中式子的特点可以写出猜想;(2)根据|a-1|+(ab-2)2=0,可以取得a 、b 的值,代入然后由规律对数进行拆分,从而可以求得所求式子的值.【详解】解:(1)1112015201620152016=-⨯, 111111()2014201622014201640284032=⨯-=-⨯, 故答案为:1120152016-,1140284032-; (2)∵|a ﹣1|+(ab ﹣2)2=0,∴a ﹣1=0,ab ﹣2=0,解得,a =1,b =2,∴1111+(1)(1)(2)(2)(2018)(2018) ab a b a b a b +++++++++……=1111 12233420192020 +++⋯+⨯⨯⨯⨯=1﹣1111111+ 2233420192020 +-+-+-……=1﹣1 2020=2019 2020.【点睛】本题考查数字的变化类、非负数的性质、有理数的混合运算,解答本题的关键是明确题意,求出所求式子的值.22.初步探究:(1)12,8;(2)C;深入思考:(1)213,415,82;(2)21na-;(3)-5.【分析】初步探究:(1)根据除方运算的定义即可得出答案;(2)根据除方运算的定义逐一判断即可得出答案;深入思考:(1)根据除方运算的定义即可得出答案;(2)根据(1)即可总结出(2)中的规律;(3)先按照除方的定义将每个数的圈n次方算出来,再根据有理数的混合运算法则即可得出答案.【详解】解:初步探究:(1)2③=2÷2÷2=1 2(12)⑤=11111822222÷÷÷÷=(2)A:任何非零数的圈2次方就是两个相同数相除,所以都等于1,故选项A错误; B:因为多少个1相除都是1,所以对于任何正整数n,1ⓝ都等于1,故选项B错误;C:3④=3÷3÷3÷3=19,4③=4÷4÷4=14,3④≠4③,故选项C正确;D:负数的圈奇数次方,相当于奇数个负数相除,则结果是负数;负数的圈偶数次方,相当于偶数个负数相除,则结果是正数,故选项D错误;故答案选择:C.深入思考:(1)(-3)④=(-3)÷(-3)÷(-3) ÷(-3)=213 5⑥=5÷5÷5÷5÷5÷5=415 (-12)⑩=8111111111122222222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-÷-÷-÷-÷-÷-÷-÷-÷-÷-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)a ⓝ=a÷a÷a…÷a=21n a -(3)原式=()4252621111442711233---÷⨯-÷-⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ =1144981278⎛⎫÷⨯--÷ ⎪⎝⎭=23--=-5【点睛】本题主要考查了除方运算,运用到的知识点是有理数的混合运算,掌握有理数混合运算的法则是解决本题的关键.23.(1)3;(2)2,3,4(3)3【分析】(1的大小,再根据新定义可得结果;(2)根据定义可知12,可得满足题意的m 的整数值;(3)根据定义对100进行连续求根整数,可得3次之后结果为2.【详解】解:(1)根据新定义可得,,故答案为3;(2)∵{m}=2,根据新定义可得,1,可得m 的整数值为2,3,4,故答案为2,3,4; (3)∵{100}=10,{10}=4,{4}=2,∴对100进行连续求根整数,3次后结果为2;故答案为3.【点睛】本题考查了估算无理数的大小的应用,主要考查了对新定义的理解能力,准确理解新定义是解题的关键.24.(1)3;(2)-24;(3)成立.【解析】【分析】(1)按照给定的运算程序,一步一步计算即可;(2)先按新定义运算,先计算(-2)⊕6、再将所得结果-19与3计算规定运算可得;(3)成立,按新定义分别运算即可说明理由.【详解】(1)5⊕4=5×4-2×5-2×4+1=20-10-8+1=2+1=3.(2)原式=[-2×6-2×(-2)-2×6+1]⊕3=(-12+4-12+1)⊕3=-19⊕3=-19×3-2×(-19)-2×3+1=-24.(3)成立.∵a⊕b=ab-2a-2b+1,b⊕a=ab-2b-2a+1,∴a⊕b=b⊕a,∴定义的新运算“⊕”交换律还成立.【点睛】此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.25.(1)125;14;(2)3;±4.(3)当a=9时,p=1;当a=3时,p=2;当a=﹣3时,p=2.【分析】(1)根据题意规定直接计算.(2)将已知条件代入等式中,倒推未知数.(3)根据定义,分别讨论当a为不同值时,p的取值即可解答.【详解】解:(1)5﹣2=125;(﹣2)﹣2=14;(2)如果2﹣p=18,那么p=3;如果a﹣2=116,那么a=±4;(3)由于a、p为整数,所以当a=9时,p=1;当a=3时,p=2;当a=﹣3时,p=2.故答案为(1)125;14;(2)3;±4.(3)当a=9时,p=1;当a=3时,p=2;当a=﹣3时,p=2.【点睛】本题考查新定义,能够理解a的负P次幂等于a的p次幂的倒数这个规定定义是解题关键.26.;(2)数轴上的点和实数是一一对应关系;(3)A.【分析】(1)首先根据勾股定理求出线段OB的长度,然后结合数轴的知识即可求解;(2)根据数轴上的点与实数的对应关系即可求解;(3)本题利用实数与数轴的对应关系即可解答.【详解】解:(1)OB2=12+12=2,∴OB,∴OA=(2)数轴上的点和实数是一一对应关系(3) 这种研究和解决问题的方式,体现的数学思想方法是数形结合.故选A.【点睛】本题主要考查了实数与数轴之间的关系,此题综合性较强,不仅要结合图形,还需要熟悉平方根的定义.也要求学生了解数形结合的数学思想.。
七年级初一数学第六章 实数知识归纳总结附解析一、选择题1.下列说法中正确的是( )A .4的算术平方根是±2B .平方根等于本身的数有0、1C .﹣27的立方根是﹣3D .﹣a 一定没有平方根2.圆的面积增加为原来的m 倍,则它的半径是原来的( )A .m 倍B .2m 倍C 倍D .2m 倍3.下列命题中,真命题是( )A .实数包括正有理数、0和无理数B .有理数就是有限小数C .无限小数就是无理数D .无论是无理数还是有理数都是实数4.2-是( )A .负有理数B .正有理数C .自然数D .无理数 5.下列数中,有理数是( )A B .﹣0.6 C .2π D .0.151151115… 6.若2a a a -=,则实数a 在数轴上的对应点一定在( )A .原点左侧B .原点或原点左侧C .原点右侧D .原点或原点右侧7.有四个有理数1,2,3,﹣5,把它们平均分成两组,假设1,3分为一组,2,﹣5分为另一组,规定:A =|1+3|+|2﹣5|,已知,数轴上原点右侧从左到右有两个有理数m 、n ,再取这两个数的相反数,那么,所有A 的和为( )A .4mB .4m +4nC .4nD .4m ﹣4n8.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3- 9.下列说法中不正确的是( )A .是2的平方根B 2的平方根C .2D .2 10.估计20的算术平方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间 二、填空题11.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2kn 为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 .12.观察下列各式: 123415⨯⨯⨯+=; 2345111⨯⨯⨯+=; 3456119⨯⨯⨯+=;121314151a ⨯⨯⨯+=,则a =_____.13.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______.14.如果一个数的平方根和它的立方根相等,则这个数是______. 15.定义新运算a ☆b =3a ﹣2b ,则(﹣2)☆1=_____.16.规定用符号[]x 表示一个实数的整数部分,如[3.65]3,31⎡==⎣,按此规定113⎡=⎣_____. 17.34330035.12=30.3512x =-,则x =_____________.18.下列说法: ()210-10-=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________19.任何实数,可用[a]表示不超过a 的最大整数如[4]=4,5=2,现对72进行如下操作:72[72]8[8]2[2]1→=→=→=,这样对72只需进行3次操作后变为1,类似地,对正整数x 只进行3次操作后的结果是1,则x 在最大值是_____. 20.如果36a =b 7的整数部分,那么ab =_______.三、解答题21.数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘. 你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试: ①3310001000000100==,又1000593191000000<<,31059319100∴<<,∴能确定59319的立方根是个两位数.②∵59319的个位数是9,又39729=,∴能确定59319的立方根的个位数是9. ③如果划去59319后面的三位319得到数59,<<34<<,可得3040<<,由此能确定59319的立方根的十位数是3因此59319的立方根是39.(1)现在换一个数195112,按这种方法求立方根,请完成下列填空.①它的立方根是_______位数.②它的立方根的个位数是_______.③它的立方根的十位数是__________.④195112的立方根是________.(2)请直接填写....结果:=________.=________.22.定义:如果2b n =,那么称b 为n 的布谷数,记为()b g n =.例如:因为328=,所以()3(8)23g g ==, 因为1021024=,所以()10(1024)210g g ==. (1)根据布谷数的定义填空:g (2)=________________,g (32)=___________________. (2)布谷数有如下运算性质:若m ,n 为正整数,则()()()=+g mn g m g n ,()()m g g m g n n ⎛⎫=-⎪⎝⎭. 根据运算性质解答下列各题:①已知(7) 2.807g =,求 (14)g 和74g ⎛⎫⎪⎝⎭的值; ②已知(3)g p =.求(18)g 和316g ⎛⎫⎪⎝⎭的值. 23.观察下列等式: ①111122=-⨯, ②1112323=-⨯, ③1113434=-⨯. 将以上三个等式两边分别相加,得1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)请写出第④个式子 (2)猜想并写出:1n(n 1)+= . (3)探究并计算:111244668+++⨯⨯⨯ (1100102)⨯. 24.我们规定:a p -=1p a (a ≠0),即a 的负P 次幂等于a 的p 次幂的倒数.例:24-=214 (1)计算:25-=__;22-(﹣)=__;(2)如果2p -=18,那么p =__;如果2a -=116,那么a =__; (3)如果a p -=19,且a 、p 为整数,求满足条件的a 、p 的取值.25.z 是64的方根,求x y z -+的平方根26.对非负实数x “四舍五入”到各位的值记为x <>.即:当n 为非负整数时,如果12n x -≤<1n 2+,则x n <>=;反之,当n 为非负整数时,如果x n <>=,则1122n x n -<+≤. 例如: 00.480<>=<>=,0.64 1.491, 3.5 4.124<>=<>=<>=<>=.(1)计算: 1.87<>= ;= ;(2)①求满足12x <->=的实数x 的取值范围, ②求满足43x x <>=的所有非负实数x 的值; (3)若关于x 的方程21122a x x -<>+-=-有正整数解,求非负实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据立方根与平方根的定义即可求出答案.【详解】解:A 、4的算术平方根是2,故A 错误;B 、平方根等于本身的数是0,故B 错误;C 、(-3)3=-27,所以-27的立方根是-3,故C 正确;D 、﹣a 大于或等于0时,可以有平方根,故D 错误.故选:C.【点睛】本题考查了算术平方根、平方根、立方根的定义,熟记定义是解决此题的关键.注意平方根和算术平方根的异同.2.C解析:C【分析】设面积增加后的半径为R,增加前的半径为r,根据题意列出关系式计算即可.【详解】设面积增加后的半径为R,增加前的半径为r,根据题意得:πR2=mπr2,∴,故选:C.【点睛】此题主要考查了实数的运算,要注意,圆的面积和半径之间是平方关系而非正比例关系.3.D解析:D【分析】直接利用实数以及有理数、无理数的定义分析得出答案.【详解】A、实数包括有理数和无理数,故此命题是假命题;B、有理数就是有限小数或无限循环小数,故此命题是假命题;C、无限不循环小数就是无理数,故此命题是假命题;D、无论是无理数还是有理数都是实数,是真命题.故选:D.【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键.4.A解析:A【解析】【分析】由于开不尽方才是无理数,无限不循环小数为无理数,根据有理数和无理数的定义及分类作答.【详解】∵2-是整数,整数是有理数,∴D错误;∵2-小于0,正有理数大于0,自然数不小于0,∴B、C错误;∴2-是负有理数,A正确.故选:A.【点睛】本题考查了有理数和实数的定义及分类,其中开不尽方才是无理数,无限不循环小数为无理数.5.B解析:B【分析】根据有理数的定义选出即可.【详解】解:A是无理数,故选项错误;B、﹣0.6是有理数,故选项正确;C、2π是无理数,故选项错误;D、0.l51151115…是无理数,故选项错误.故选:B.【点睛】本题考查了实数,注意有理数是指有限小数和无限循环小数,包括整数和分数.6.B解析:B【分析】根据非正数的绝对值是它的相反数,可得答案.【详解】解:由a-|a|=2a,得|a|=-a,故a是负数或0,∴实数a在数轴上的对应点在原点或原点左侧故选:B.【点睛】本题考查了实数与数轴,利用了非负数的绝对值,非正数与数轴的关系:非正数位于原点及原点的左边.7.C解析:C【分析】根据题意得到m,n的相反数,分成三种情况⑴m,n;-m,-n ⑵m,-m;n,-n ⑶m,-n;n,-m 分别计算,最后相加即可.【详解】解:依题意,m,n(m<n)的相反数为﹣m,﹣n,则有如下情况:m,n为一组,﹣m,﹣n为一组,有A=|m+n|+|(﹣m)+(﹣n)|=2m+2nm,﹣m为一组,n,﹣n为一组,有A=|m+(﹣m)|+|n+(﹣n)|=0m,﹣n为一组,n,﹣m为一组,有A=|m+(﹣n)|+|n+(﹣m)|=2n﹣2m所以,所有A的和为2m+2n+0+2n﹣2m=4n故选:C.【点睛】本题主要考查了新定义的理解,注意分类讨论是解题的关键.8.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、227是有理数,故选项A不符合题意;B、3.1415926是有理数,故选项B不符合题意;C、2.010010001是有理数,故选项C不符合题意;D、π3是无理数,故选项D题意;故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.C解析:C【详解】解:A. 是2的平方根,正确;是2的平方根,正确;C. 2的平方根是±,故原选项不正确;D. 2,正确.故选C.10.C解析:C【解析】试题分析:∵16<20<25,∴∴4<5.故选C.考点:估算无理数的大小.二、填空题11..【详解】第一次:3×449+5=1352,第二次:,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5解析:8.【详解】第一次:3×449+5=1352,第二次:13522k,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5=8;第六次:82k,因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为201是奇数,所以第201次运算结果是8.故答案为8.12.181【分析】观察各式得出其中的规律,再代入求解即可.【详解】由题意得将代入原式中故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.解析:181【分析】观察各式得出其中的规律,再代入12n=求解即可.【详解】由题意得()31n n=⨯++将12n=代入原式中12151181a==⨯+=故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.13.或【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}=321413x x+++-=2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x+3,5x}= min{2,52,52}=2,成立;②2x+1=-x+3,x=23,此时min{2,-x+3,5x}= min{2,73,103}=2,不成立;③2x+1=5x,x=13,此时min{2,-x+3,5x}= min{2,83,53}=53,成立,∴x=12或13,故答案为12或13.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.14.0【解析】试题解析:平方根和它的立方根相等的数是0.解析:0【解析】试题解析:平方根和它的立方根相等的数是0.15.﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,解析:﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.16.-3【分析】先确定的范围,再确定的范围,然后根据题意解答即可.【详解】解:∵3<<4∴-3<<-2∴-3故答案为-3.【点睛】本题考查了无理数整数部分的有关计算,确定的范围是解答本解析:-3【分析】1⎡⎣的范围,然后根据题意解答即可.【详解】解:∵34∴-3<1--2∴1⎡=⎣-3故答案为-3.【点睛】17.-0.0433【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x的值.【详解】从35.12变为-0.3512,缩小了100倍,且添解析:-0.0433【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x的值.【详解】从35.12变为-0.3512,缩小了100倍,且添加了“-”∴根据规律,三次根式内的式子应该缩小1000000倍,且添加“-”故答案为:-0.0433【点睛】本题考查三次根式的规律,二次根式规律类似:二次根号内的式子扩大或缩小100倍,则得到的结果扩大或缩小10倍.18.2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即解析:2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【详解】=,故①错误;①10②数轴上的点与实数成一一对应关系,故说法正确;③两条平行直线被第三条直线所截,同位角相等;故原说法错误;④在同一平面内,垂直于同一条直线的两条直线互相平行,故原说法错误;与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②⑥共2个.故答案为:2个.此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无π也是无理数. 19.255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵,,,∴只解析:255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵1=,3=,15=,∴只进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.【点睛】本题考查了估算无理数大小的应用,主要考查学生的阅读能力和逆推思维能力. 20.12【分析】先根据算术平方根的定义求出a 的值,再根据无理数的估算得出b 的值,然后计算有理数的乘法即可.【详解】,即的整数部分是2,即则故答案为:.【点睛】本题考查了算术平方根的解析:12先根据算术平方根的定义求出a 的值,再根据无理数的估算得出b 的值,然后计算有理数的乘法即可.【详解】6a ==479<<<<23<<∴的整数部分是2,即2b =则6212ab =⨯=故答案为:12.【点睛】本题考查了算术平方根的定义、无理数的估算,根据无理数的估算方法得出b 的值是解题关键.三、解答题21.(1)①两;②8;③5;④58;(2)①24;②56.【分析】(1)①根据例题进行推理得出答案;②根据例题进行推理得出答案;③根据例题进行推理得出答案;④根据②③得出答案;(2)①先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论; ②先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论.【详解】(1)①31000100==,10001951121000000<< ,∴10100<<,∴能确定195112的立方根是一个两位数,故答案为:两;②∵195112的个位数字是2,又∵38512=,∴能确定195112的个位数字是8,故答案为:8;③如果划去195112后面三位112得到数195,<<∴56<<,可得5060<<,由此能确定195112的立方根的十位数是5,故答案为:5;④根据②③可得:195112的立方根是58,故答案为:58;(2)①13824的立方根是两位数,立方根的个位数是4,十位数是2,∴13824的立方根是24,故答案为:24;②175616的立方根是两位数,立方根的个位数是6,十位数是5,∴175616的立方根是56,故答案为:56.【点睛】此题考查立方根的性质,一个数的立方数的特点,正确理解题意仿照例题解题的能力,掌握一个数的立方数的特点是解题的关键.22.(1)1;5;(2)①3.807,0.807;②12p +;4p -.【分析】(1)根据布谷数的定义把2和32化为底数为2的幂即可得出答案;(2)①根据布谷数的运算性质, g (14)=g (2×7)=g (2)+g (7),7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭,再代入数值可得解; ②根据布谷数的运算性质, 先将两式化为2(18)(2)(3)g g g =+,3()(3)(16)16g g g =-,再代入求解.【详解】解:(1)g (2)=g (21)=1,g (32)=g (25)=5;故答案为1,32;(2)①g (14)=g (2×7)=g (2)+g (7),∵g (7)=2.807,g (2)=1,∴g (14)=3.807;7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭g (4)=g (22)=2, ∴74g ⎛⎫ ⎪⎝⎭=g (7)-g (4)=2.807-2=0.807; 故答案为3.807,0.807;②∵()3g p =.∴22(18)(23)(2)(3)12g g g g p =⨯=+=+; 3()(3)(16)416g g g p =-=-. 【点睛】本题考查有理数的乘方运算,新定义;能够将新定义的运算转化为有理数的乘方运算是解题的关键.23.(1)1114545=-⨯;(2)111(1)1n n n n =-++;(3)2551. 【解析】试题分析:(1)规律:相邻的两个数的积的倒数等于它们的倒数的差,故第四个式子为:1114545=-⨯; (2)根据以上规律直接写出即可;(3)各项提出12之后即可应用(1)中的方法进行计算. 解:(1)答案为:1114545=-⨯; (2)答案为:()11111n n n n =-++; (3)111244668+++⨯⨯⨯ (1100102)⨯ =12×(111122334++⨯⨯⨯+…+15051⨯) =12×5051=2551. 点睛:本题是一道找规律问题.解题的重点要根据所给式子中的数字变化归纳出规律,而难点在于第(3)问中要灵活应用所总结出来的公式.24.(1)125;14;(2)3;±4.(3)当a =9时,p =1;当a =3时,p =2;当a =﹣3时,p =2.【分析】(1)根据题意规定直接计算.(2)将已知条件代入等式中,倒推未知数.(3)根据定义,分别讨论当a 为不同值时,p 的取值即可解答.【详解】解:(1)5﹣2=125;(﹣2)﹣2=14; (2)如果2﹣p =18,那么p =3;如果a ﹣2=116,那么a =±4; (3)由于a 、p 为整数,所以当a =9时,p =1;当a =3时,p =2;当a =﹣3时,p =2.故答案为(1)125;14;(2)3;±4.(3)当a =9时,p =1;当a =3时,p =2;当a =﹣3时,p =2.【点睛】 本题考查新定义,能够理解a 的负P 次幂等于a 的p 次幂的倒数这个规定定义是解题关键.25.【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出x 、y 的值,然后求出z 的值,再根据平方根的定义解答.【详解】,∴x+1=0,2-y=0,解得x=-1,y=2,∵z 是64的方根,∴z=8所以,x y z -+=-1-2+8=5,所以,x y z -+的平方根是【点睛】此题考查非负数的性质,相反数,平方根的定义,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.26.(1)2,3 (2)①5722x ≤<②330,,42(3)00.5a ≤< 【分析】(1)根据新定义的运算规则进行计算即可;(2)①根据新定义的运算规则即可求出实数x 的取值范围;②根据新定义的运算规则和43x 为整数,即可求出所有非负实数x 的值; (3)先解方程求得22x a =-<>,再根据方程的解是正整数解,即可求出非负实数a 的取值范围.【详解】(1) 1.87<>=2;=3;(2)①∵12x <->= ∴1121222x --<+≤解得5722x ≤<; ②∵43x x <>=∴41413232x x x -<+≤ 解得3322x -<≤ ∵43x 为整数 ∴333,0,,442x =- 故所有非负实数x 的值有330,,42; (3)21122a x x -<>+-=- 1241a x x -<>+-=-22x a =-<>∵方程的解为正整数∴21a -<>=或2①当21a -<>=时,2x =是方程的增根,舍去 ②当22a -<>=时,00.5a ≤<.【点睛】本题考查了新定义下的运算问题,掌握新定义下的运算规则是解题的关键.。
七年级数学下册第六章实数知识集锦单选题1、如图,若数轴上的点A,B,C,D表示数−1,1,2,3,则表示数4−√11的点应在()A.A,O之间B.B,C之间C.C,D之间D.O,B之间答案:D分析:先估算出4−√11的值,再确定出其位置即可.解:∵9<11<16,∴3<√11<4,∴−4<−√11<−3,∴4−4<4−√11<4−3,即0<4−√11<1∴表示数4−√11的点应在O,B之间.故选:D.小提示:本题考查的是实数与数轴.熟知实数与数轴上各点是一一对应关系,能够正确估算出√11的值是解答此题的关键.2、若一个正方形的面积是12,则它的边长是()A.2√3B.3C.3√2D.4答案:A分析:根据正方形的面积公式即可求解.解:由题意知:正方形的面积等于边长×边长,设边长为a,故a²=12,∴a=±2√3,又边长大于0∴边长a=2√3.故选:A.小提示:本题考查了正方形的面积公式,开平方运算等,属于基础题.3、对多项式x−y−z−m−n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x−y)−(z−m−n)=x−y−z+m+n,x−y−(z−m)−n=x−y−z+m−n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3答案:D分析:给x−y添加括号,即可判断①说法是否正确;根据无论如何添加括号,无法使得x的符号为负号,即可判断②说法是否正确;列举出所有情况即可判断③说法是否正确.解:∵(x−y)−z−m−n=x−y−z−m−n∴①说法正确∵x−y−z−m−n−x+y+z+m+n=0又∵无论如何添加括号,无法使得x的符号为负号∴②说法正确③第1种:结果与原多项式相等;第2种:x-(y-z)-m-n=x-y+z-m-n;第3种:x-(y-z)-(m-n)=x-y+z-m+n;第4种:x-(y-z-m)-n=x-y+z+m-n;第5种:x-(y-z-m-n)=x-y+z+m+n;第6种:x-y-(z-m)-n=x-y-z+m-n;第7种:x-y-(z-m-n)=x-y-z+m+n;第8种:x-y-z-(m-n)=x-y-z-m+n;故③符合题意;∴共有8种情况∴③说法正确∴正确的个数为3故选D .小提示:本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.4、已知min {a,b,c }表示取三个数中最小的那个数,例加:min{−1,−2,−3}=−3,当min{√x,x 2,x}=181时,则x 的值为( )A .181B .127C .13D .19 答案:D分析:根据题意可知√x,x 2,x 都小于1且大于0,根据平方根求得x 的值即可求解.解:∵min{√x,x 2,x}=181∴√x,x 2,x 都小于1且大于0∴x 2<x <√x∴x 2=181∴x =19(负值舍去)故选D小提示:本题考查了求一个数的平方根,判断√x,x 2,x 的范围是解题的关键.5、定义:若10x =N ,则x =log 10N ,x 称为以10为底的N 的对数,简记为lgN ,其满足运算法则:lgM +lgN =lg(M ⋅N)(M >0,N >0).例如:因为102=100,所以2=lg100,亦即lg100=2;lg4+lg3=lg12.根据上述定义和运算法则,计算(lg2)2+lg2⋅lg5+lg5的结果为( )A .5B .2C .1D .0答案:C分析:根据新运算的定义和法则进行计算即可得.解:原式=lg2⋅(lg2+lg5)+lg5,=lg2⋅lg10+lg5,=lg2+lg5,=1,故选:C.小提示:本题考查了新定义下的实数运算,掌握理解新运算的定义和法则是解题关键.6、在四个实数−2,0,−√3,−1中,最小的实数是()A.−2B.0C.−√3D.−1答案:A分析:根据实数比较大小的方法直接求解即可.解:∵−2<−√3<−1<0,∴四个实数−2,0,−√3,−1中,最小的实数是−2,故选:A.小提示:本题考查了有理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.7、下列说法正确的是()A.−81平方根是−9B.√81的平方根是±9C.平方根等于它本身的数是1和0D.√a2+1一定是正数答案:D分析:A、根据平方根的概念即可得到答案;B、√81的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出a2+1>0,再利用算术平方根的性质直接得到答案.A、−81是负数,负数没有平方根,不符合题意;B、√81=9,9的平方根是±3,不符合题意;C、平方根等于它本身的数是0,1的平方根是±1,不符合题意;D、a2+1>0,正数的算术平方根大于0,符合题意.小提示:此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.8、按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1答案:D分析:逐项代入,寻找正确答案即可.解:A选项满足m≤n,则y=2m+1=3;B选项不满足m≤n,则y=2n-1=-1;C选项满足m≤n,则y=2m+1=3;D选项不满足m≤n,则y=2n-1=1;故答案为D;小提示:本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确地代入代数式及代入的值.9、−√64的立方根等于()A.−8B.−4C.−2D.±2答案:C分析:先求出−√64=−8,再求出-8的立方根即可得.3=−2,解:∵−√64=−8,√−8∴−√64的立方根等于-2,故选:C.小提示:本题考查了立方根的意义,解题的关键是掌握立方根.10、下列说法正确的是()A.-4是(-4)2的算术平方根B.±4是(-4)2的算术平方根C.√16的平方根是-2D.-2是√16的一个平方根答案:D分析:根据算术平方根、平方根的定义逐项判断即可得.A、(−4)2=16,16的算术平方根是4,则此项错误,不符题意;B、(−4)2=16,16的算术平方根是4,则此项错误,不符题意;C、√16=4,4的平方根是±2,则此项错误,不符题意;D、√16=4,4的平方根是±2,则−2是√16的一个平方根,此项正确,符合题意;故选:D.小提示:本题考查了算术平方根、平方根,掌握理解定义是解题关键.填空题11、根据图中呈现的运算关系,可知a=______,b=______.答案:-2020 -2020分析:根据立方根和平方根的定义进行求解即可.解:∵2020的立方根是m,a的立方根是-m,∴m3=2020,∴(−m)3=−m3=−2020,∴a=−2020;∵n的两个平方根分别为2020、b,∴b =−2020,所以答案是:-2020,-2020.小提示:本题主要考查了平方根和立方根,熟知二者的定义是解题的关键.12、比较大小:√22______√33(填写“>”或“<”或“=”).答案:>分析:比较两者平方后的值即可.解:∵(√22)2=12,(√33)2=13,∵12>13, ∴ √22>√33. 所以答案是:>.小提示:本题考查了实数的大小比较,解题的关键是灵活变通,比较两者平方后的结果.13、写出一个比√2大且比√15小的整数______.答案:2(或3)分析:先分别求出√2与√15在哪两个相邻的整数之间,依此即可得到答案.∵1<√2<2,3<√15<4,∴比√2大且比√15小的整数是2或3.所以答案是:2(或3)小提示:本题主要考查了实数的大小比较,也考查了无理数的估算的知识,分别求出√2与√15在哪两个相邻的整数之间是解答此题的关键.14、若√a +13与√a 2−53互为相反数,则a 3+5a 2﹣4的值为 _____.答案:12分析:先根据相反数的定义得√a +13+√a 2−53=0,再利用立方根的意义进行整理,最后利用整体代入的方法即可求得答案 .解:由题意得:√a +13+√a 2−53=03∴√a+13=−√a2−5∴a+1=﹣(a2﹣5).∴a2+a=4.∴a3+a2=4a.∴a3=﹣a2+4a.∴a3+5a2﹣4=﹣a2+4a+5a2﹣4=4a2+4a﹣4=4(a2+a)﹣4=4×4﹣4=12.所以答案是:12.小提示:本题考查的相反数的应用,立方根的应用,解题的关键是在于整理出所需形式,利用整体代入求解.15、若实数a的立方等于27,则a=________.答案:3分析:根据立方根的定义即可得.3=3,解:由题意得:a=√27所以答案是:3.小提示:本题考查了立方根,熟练掌握立方根的运算是解题关键.解答题16、据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出:39.你知道他是怎么快速准确地计算出来的吗?请研究解决下列问题:(1)已知x3=10648,且x为整数.∵1000=103<10648<1003=1000000,∴x一定是一个两位数;∵10648的个位数字是8,∴x的个位数字一定是______;划去10648后面的三位648得10,∵8=23<10<33=27,∴x的十位数字一定是______;∴x=______.(2)y3=614125,且y为整数,按照以上思考方法,请你求出y的值.答案:(1)2#,2#,22#(2)y=85分析:(1)根据立方根的定义和题意即可得出答案;(2)根据(1)中的方法计算书写即可得出结果.(1)解:∵x3=10648,且x为整数.∵1000=103<10648<1003=1000000,∴x一定是一个两位数;∵10648的个位数字是8,∴x的个位数字一定是2;划去10648后面的三位648得10,∵8=23<10<33=27,∴x的十位数字一定是2;∴x=22.所以答案是:2,2,22.(2)∵1000=103<614125<1003=100000,∴y一定是两位数;∵614125的个位数字是5,∴y的个位数字一定是5;划去614125后面的三位125得614,∵512=83<614<93=729,∴y的十位数字一定是8;∴y=85.小提示:本题考查立方根,灵活运用立方根的计算是解题的关键.17、如图,把图(1)中两个小正方形纸片分别沿对角线剪开,将所得的4个直角三角形拼在一起,就得到如图(2)的大正方形.问题发现若大正方形的面积为32cm2,则小正方形的面积是__________cm2,边长为___________cm;知识迁移某兴趣小组想将图(1)中的一个小正方形纸片,沿与边平行的方向剪裁出面积为12cm2,且长宽之比为3∶2的长方形纸片.兴趣小组能否剪裁出符合要求的长方形纸片?请说明理由.拓展延伸如图(3)是由5个边长为1的小正方形组成的纸片,能否把它剪开并拼成一个大正方形?若能,请画出示意图,并写出边的长度,若不能,请说明理由.答案:问题发现:小正方形的面积为16cm2,边长为4cm知识迁移:不能裁出符合要求的长方形纸片拓展延伸:能把它剪开并拼成一个大正方形,示意图见解析,大正方形边长为√5分析:问题发现:先求出小正方形的面积,再根据正方形的面积等于边长的平方求边长;知识迁移:设长和宽分别为3x、2x,利用面积列方程,最后检验即可;拓展延伸:新的大正方形面积为5,则边长为√5,可以把它剪开并拼成一个大正方形.问题发现:小正方形的面积为32÷2=16cm2,∴小正方形的边长为4cm.所以答案是:16;4.知识迁移:设长和宽分别为3x、2x,由题意得:3x⋅2x=12,整理得:x2=2,∵实际问题x为正数,∴x=√2,∴长方形的长为3x=3√2≈5.19>4,即裁剪后的长方形的长大于小正方形的边长,∴不能裁出符合要求的长方形纸片.拓展延伸:能把它剪开并拼成一个大正方形,裁剪示意图如图所示:∵原图形的面积是5,∴裁剪后的正方形面积也是5,∴大正方形边长为√5.小提示:本题考查了算术平方根的实际应用、正方形的面积和正方形的有关画图,巧妙地根据网格的特点画出正方形是解此题的关键.18、求下列式子中的x :(1)25(x ﹣35)2=49;(2)12(x +1)2=32. 答案:(1)x 1=2,x 2=−45(2)x 1=7,x 2=﹣9分析:(1)两边同时除以25,再开平方解一元一次方程即可;(2)方程两边同时乘以2,再开平方解一元一次方程即可.(1)解: 25(x ﹣35)2=49,(x ﹣35)2=4925, x ﹣35=±75,x ﹣35=75或x ﹣35=﹣75,解得:x 1=2,x 2=−45;(2)12(x +1)2=32, (x +1)2=32×2,(x +1)2=64, x +1=±8,x +1=8或x +1=﹣8,解得:x 1=7,x 2=﹣9.小提示:此题考查了利用平方根定义解方程,正确理解并掌握平方根的定义是解题的关键.。
第六章实数知识网络:考点一、实数的概念及分类1、实数的分类2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等(这类在初三会出现)判断一个数是否是无理数,不能只看形式,要看运算结果,如0,16π是有理数,而不是无理数。
3、有理数与无理数的区别(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
考点二、平方根、算术平方根、立方根1、概念、定义(1)如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。
(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
如果,那么x叫做a的平方根。
(3)如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。
如果,那么x叫做a的立方根。
2、运算名称(1)求一个正数a的平方根的运算,叫做开平方。
平方与开平方互为逆运算。
(2)求一个数的立方根的运算,叫做开立方。
开立方和立方互为逆运算。
3、运算符号(1)正数a的算术平方根,记作“a”。
(2)a(a≥0)的平方根的符号表达为。
(3)一个数a的立方根,用表示,其中a是被开方数,3是根指数。
4、运算公式4、开方规律小结(1)若a≥0,则a的平方根是a a a它们互为相反数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。
实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。
正数的立方根是正数,负数的立方根是负数,0的立方根是0。
(2)若a<0,则a 没有平方根和算术平方根;若a 为任意实数,则a 的立方根是。
第六章实数知识点总结(一)
第六章实数知识点总结
前言
在第六章中,我们学习了实数的相关知识,这个章节是数学学习的基础,对于后续的数学学习非常重要。
本文将对第六章实数知识点进行总结,帮助大家更好地理解和掌握这些概念。
正文
实数的基本性质
•实数是有理数和无理数的总称,包括有限小数、无限循环小数和无限不循环小数。
•实数的四则运算,包括加法、减法、乘法和除法。
•实数的整除性、因数分解和素数判断。
实数的范围
•实数集的包含关系:自然数、整数、有理数、实数的集合关系。
•有理数和无理数的区别和关系,以及无理数的分类。
实数的大小比较
•实数的大小比较原则,包括利用大小关系解决实际问题。
•绝对值的性质和应用,包括绝对值的大小比较和解绝对值不等式。
实数的运算性质
•实数运算与数轴的关系,包括实数加减法的几何意义。
•实数的数轴划分和运算规律,包括实数乘法的几何意义。
•实数的乘方和开方,包括实数乘方的运算规律和开方的性质。
实数的近似表示
•实数的近似表示,包括十进制近似和科学记数法表示。
•实数的修约和有效数字。
结尾
通过本章学习,我们对实数的性质、范围、大小比较、运算性质
和近似表示等方面有了更深入的了解。
实数是数学中的基础概念,对
于后续的数学学习至关重要。
希望大家通过不断的练习和实践,能够
更好地掌握和运用这些实数知识点,为之后的学习打下坚实的基础。
第六章实数1. 实数的引入实数是我们日常生活中最常见的数,包括整数、分数和无限不循环小数。
实数的引入是为了解决无理数的存在问题。
1.1 有理数的不足有理数可以用分数表示,但有些数无法用有限的小数或分数表示,例如根号2、圆周率π等。
这些数被称为无理数。
1.2 实数的定义实数是有理数和无理数的集合,记作R。
2. 实数的性质实数具有一些基本性质,包括有序性、稠密性和连续性。
2.1 有序性实数集可以通过大小关系进行排序,即对于任意两个实数a和b,要么a>b,要么a<b,或者a=b。
2.2 稠密性实数集中的任意两个不相等的实数之间,总存在一个实数。
2.3 连续性实数集上的连续性指的是实数集中的任意一个非空有界集合都有上确界和下确界。
3. 实数的表示实数可以通过有限小数、无限循环小数和无限不循环小数进行表示。
3.1 有限小数有限小数是指小数部分有限位数的实数,可以通过有限位数的小数表示。
3.2 无限循环小数无限循环小数是指小数部分有限位数,并且从某一位开始循环的实数,可以通过循环节表示。
3.3 无限不循环小数无限不循环小数是指小数部分无限位数且没有循环的实数,无法用有限位数或循环节表示。
4. 实数的运算实数具有加法、减法、乘法和除法四种基本运算。
4.1 加法和减法实数的加法和减法遵循交换律、结合律和分配律。
4.2 乘法和除法实数的乘法和除法也遵循交换律、结合律和分配律。
4.3 乘方和开方实数的乘方和开方是指将一个实数自乘或自开方。
5. 实数的性质实数具有许多重要的性质,包括有界性、保号性和密度性。
5.1 有界性实数集中的一个集合称为有界集合,如果存在两个实数a和b,使得集合中的所有元素都在a和b之间。
5.2 保号性实数的乘法和平方具有保号性,即正数相乘、负数相乘或正数平方仍为正数,负数平方仍为正数。
5.3 密度性实数集中的任意两个不相等的实数之间,总存在一个实数,即实数集是稠密的。
6. 实数的应用实数在数学和其他学科中有广泛的应用,包括几何、物理、经济等领域。
第六章实数知识点总结摘要:一、实数的定义与分类1.实数的定义2.实数的分类二、实数的性质与运算1.实数的性质2.实数的运算三、实数与数轴1.数轴的概念2.实数与数轴的关系四、实数的比较与大小1.实数的大小比较2.实数的大小关系五、实数的应用1.实数在数学中的应用2.实数在其他学科中的应用正文:实数是数学中的一个重要概念,它包括有理数和无理数。
实数的定义是指数轴上的点,可以表示为有序对(a,b),其中a 表示点的横坐标,b 表示点的纵坐标。
根据横坐标a 的值,实数可以分为负数、零和正数。
实数的性质包括:1.实数具有连续性,即任意两个实数之间总存在一个实数;2.实数具有完备性,即每个实数都可以用无限接近的有理数表示;3.实数具有可数性,即实数集中的每个元素都可以与自然数集建立一一对应关系。
实数的运算包括加法、减法、乘法、除法、乘方和开方。
这些运算遵循交换律、结合律和分配律等基本运算法则。
实数的运算不仅限于实数,还可以扩展到复数。
实数与数轴有密切的关系。
数轴是一个直线,规定了原点、正方向和单位长度。
实数可以表示为数轴上的点,根据横坐标a 的值,实数可以分为负数、零和正数。
数轴上的点与实数之间的对应关系是一一映射。
实数的大小比较和大小关系是数学中常见的问题。
实数的大小比较遵循“大于一切小于它的数,小于一切大于它的数”的原则。
实数的大小关系可以通过数轴来直观表示。
实数在数学中有广泛的应用,如微积分、实分析等。
实数在其他学科中也有应用,如物理、化学、生物等。
实数的概念、性质和运算等基础知识是解决实际问题的关键。
总之,实数是数学中的一个基本概念,它具有重要的理论意义和实际应用价值。
数学第六章 实数知识归纳总结及解析一、选择题1.设n 为正整数,且20191n n <<+,则n 的值为( ) A .42 B .43 C .44 D .452.已知4a ++(b ﹣3)2=0,则(a +b )2019等于( )A .1B .﹣1C .﹣2019D .20193.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .ac >0B .|b |<|c |C .a >﹣dD .b +d >0 4.在0, 3.14159,3π, 2,227, 39, 0.7, 32中, 无理数有几个( ) A .2 B .3 C .4 D .55.对于两数a 、b ,定义运算:a*b=a+b —ab ,则在下列等式中,①a*2=2*a ;②(-2)*a=a*(-2);③(2*a )*3=2*(a*3);④0*a=a ,正确的为( )①a*2=2*a ②(-2)*a=a*(-2) ③(2*a )*3=2*(a*3) ④0*a=aA .① ③B .① ② ③C .① ② ③ ④D .① ② ④6.若15的整数部分为a ,小数部分为b ,则a-b 的值为()A .615-B .156-C .815-D .158-7.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0 8.在3.14,237,2-,327,π这几个数中,无理数有( ) A .1个 B .2个 C .3个 D .4个9.下列各数中3.14,5,0.1010010001…,﹣17,2π,﹣38有理数的个数有( ) A .1个 B .2个 C .3个D .4个 10.若33=0x y +,则x 和y 的关系是( ).A .x =y =0B .x 和y 互为相反数C .x 和y 相等D .不能确定二、填空题11.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=. 例如:(-3)☆2= 32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____.12.若已知()21230a b c -+++-=,则a b c -+=_____.13.一个数的平方为16,这个数是 .14.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的是________.15.符号“f ”表示一种运算,它对一些数的运算结果如下:(1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…;(2)f (12)=2,f (13)=3,f (14)=4,f (15)=5,… 利用以上规律计算:1(2019)()2019f f ____. 16116的算术平方根为_______. 17.规定用符号[]x 表示一个实数的整数部分,如[3.65]3,31⎡==⎣,按此规定113⎡=⎣_____. 18.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]3.93,55,4π==-=-,若[]6a =-,则[]2a 的值为______.19.若x 、y 分别是811-2x -y 的值为________.20.任何实数,可用[a]表示不超过a 的最大整数如[4]=4,5=2,现对72进行如下操作:72[72]8[8]2[2]1→=→=→=,这样对72只需进行3次操作后变为1,类似地,对正整数x 只进行3次操作后的结果是1,则x 在最大值是_____.三、解答题21.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由33101000,1001000000==,因为1000327681000000<<332768______位数;(2)由32768的个位上的数是8332768________,划去32768后面的三位数768得到32,因为333=27,4=64332768_____________(3)已知13824和110592-分别是两个数的立方,仿照上面的计算过程,请计算:332768=____;3-110592________= 22.在有理数的范围内,我们定义三个数之间的新运算法则“⊕”:a ⊕b ⊕c =2a b c a b c --+++.如:(1)-⊕2⊕3=123(1)2352---+-++=. ①根据题意,3⊕(7)-⊕113的值为__________; ②在651128,,,,0,,,,777999---这15个数中,任意取三个数作为a ,b ,c 的值,进行“a ⊕b ⊕c ”运算,在所有计算结果中的最大值为__________;最小值为__________.23.规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈 3 次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作:“(﹣3)的圈 4 次方”.一般地,把个记作 a ⓝ,读作 “a 的圈 n 次方” (初步探究)(1)直接写出计算结果:2③,(﹣12)③. (深入思考) 2④21111112222222⎛⎫=⨯⨯⨯=⨯= ⎪⎝⎭我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(2)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式.5⑥;(﹣12)⑩. (3)猜想:有理数 a (a ≠0)的圈n (n ≥3)次方写成幂的形式等于多少.(4)应用:求(-3)8×(-3)⑨-(﹣12)9×(﹣12)⑧ 24.观察下列各式的计算结果 2113131-1-24422===⨯ 2118241-1-39933===⨯ 21115351-1-4161644===⨯ 21124461-1-5252555===⨯ (1)用你发现的规律填写下列式子的结果:211-6= × ; 211-10= × ; (2)用你发现的规律计算: 22222111111-1-1-1-1-23420162017⨯⨯⨯⋯⨯⨯()()()()()(3)计算()2222211111111112341n n ⎡⎤⎛⎫-⨯-⨯-⨯⨯-⨯-⎢⎥ ⎪⎝⎭-⎢⎥⎣⎦()()()(直接写出结果) 25.我们规定:a p -=1p a(a ≠0),即a 的负P 次幂等于a 的p 次幂的倒数.例:24-=214 (1)计算:25-=__;22-(﹣)=__;(2)如果2p -=18,那么p =__;如果2a -=116,那么a =__; (3)如果a p -=19,且a 、p 为整数,求满足条件的a 、p 的取值. 26.我们在学习“实数”时画了这样一个图,即“以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O 为圆心,正方形的对角线长为半径画弧交数轴于点A”,请根据图形回答下列问题:(1)线段OA 的长度是多少?(要求写出求解过程)(2)这个图形的目的是为了说明什么?(3)这种研究和解决问题的方式体现了 的数学思想方法.(将下列符合的选项序号填在横线上)A .数形结合B .代入C .换元D .归纳【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先确定2019介于1936、2025这两个平方数之间,从而可以得到44201945<<,再根据已知条件即可求得答案.【详解】解:∵193620192025<<∴2244201945<<.<∴4445<<∵n 为正整数,且1n n <<+ ∴44n =.故选:C【点睛】本题考查了无理数的估算,“夹逼法”是估算的一种常用方法,找到与2019临界的两个完全平方数是解决问题的关键.2.B解析:B【分析】根据非负数的性质,非负数的和为0,即每个数都为0,可求得a 、b 的值,代入所求式子即可.【详解】根据题意得,a +4=0,b ﹣3=0,解得a =﹣4,b =3,∴(a +b )2019=(﹣4+3)2019=﹣1,故选:B .【点睛】本题考查了非负数的性质,以及-1的奇次方是-1,理解非负数的性质是解题关键.3.D解析:D【分析】根据实数在数轴上的位置判断大小,结合实数运算法则可得.【详解】根据数轴,﹣4<a <﹣3,﹣2<b <﹣1,0<c <1,2<d <3,∵﹣4<a <﹣3,0<c <1,∴ac <0,故A 错误;∵﹣2<b <﹣1,0<c <1,∴1<|b |<2,0<|c |<1,故|c |<|b |,故B 错误; ∵﹣4<a <﹣3,2<d <3,∴﹣3<﹣d <﹣2,故a <﹣d ,故C 错误;∵﹣2<b <﹣1,2<d <3,∴b +d >0,故D 正确.故选:D .【点睛】本题主要考查实数与数轴以及实数的大小比较,熟练实数相关知识点是解答此题的关键.4.C解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:3π2是无理数,故一共有4个 故选C.【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.C解析:C【分析】原式各项利用题中的新定义计算得到结果,即可作出判断.【详解】解:根据题意得:①a*2=a+2-2a ,2*a=2+a-2a ,成立;②(-2)*a=-2+a+2a ,a*(-2)=a-2+2a ,成立;③(2*a )*3=(2-a )*3=2-a+3-3(2-a )=2-a+3-6+3a=2a-1,2*(a*3)=2*(a+3-3a )=2+a+3-3a-2(a+3-3a )=2a-1,成立;④0*a=0+a-0=a ,成立.故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.6.A解析:A【分析】先根据无理数的估算求出a 、b 的值,由此即可得.【详解】91516<<,<<34<<,3,3a b ∴==,)336a b ∴-=-=, 故选:A .【点睛】 本题考查了无理数的估算,熟练掌握估算方法是解题关键.7.B解析:B【分析】先弄清a,b,c 在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a 、b 、c 、d 在数轴上的位置可知:a <b <0,d >c >1;A 、|a|>|b|,故选项正确;B 、a 、c 异号,则|ac|=-ac ,故选项错误;C 、b <d ,故选项正确;D 、d >c >1,则c+d >0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.8.B解析:B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.14,237,π中无理数有:, π,共计2个. 故选B. 【点睛】考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.C解析:C【分析】直接利用有理数的定义进而判断得出答案.【详解】解:3.14,0.1010010001…,-17 ,2π 3.14,-17=-2共3个.故选C .【点睛】此题主要考查了有理数,正确把握有理数的定义是解题关键. 10.B解析:B【解析】分析:先移项,再两边立方,即可得出x=-y ,得出选项即可.详解:,=∴x=-y ,即x 、y 互为相反数,故选B .点睛:考查了立方根,相反数的应用,解此题的关键是能得出x=-y .二、填空题11.8【解析】解:当a >b 时,a ☆b= =a ,a 最大为8;当a <b 时,a ☆b==b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:8【解析】解:当a >b 时,a ☆b =2a b a b ++- =a ,a 最大为8; 当a <b 时,a ☆b =2a b a b ++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.6【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可.【详解】解:因为,所以,解得,故,故答案为:6.【点睛】本题考查非负数的性质,主要考查绝对值、平方解析:6【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可.【详解】解:因为()2120a b -+++=,所以10,20,30a b c -=+=-=,解得1,2,3a b c ==-=,故1(2)36a b c -+=--+=,故答案为:6.【点睛】本题考查非负数的性质,主要考查绝对值、平方和算术平方根的非负性.理解几个非负数(式)的和为0,那么这几个数或(式)都为0是解题关键.13.【详解】解:这个数是 解析:【详解】解:2(4)16,±=∴这个数是4±14.【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵,∴n 和q 互为相反数,O 在线段NQ 的中点处,∴绝对值最大的是点P 表示的数.故解析:p【分析】根据0n q +=可以得到n q 、的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵0n q +=,∴n 和q 互为相反数,O 在线段NQ 的中点处,∴绝对值最大的是点P 表示的数p .故答案为:p .【点睛】本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.15.-1【分析】根据新定义中的运算方法求解即可.【详解】∵f(1)=0,f(2)=1,f(3)=2,f(4)=3,…,∴f(2019)=2018.∵f()=2,f()=3,f()=4,f()解析:-1【分析】根据新定义中的运算方法求解即可.【详解】∵f(1)=0,f(2)=1,f(3)=2,f(4)=3,…,∴f(2019)=2018.∵f(12)=2,f(13)=3,f(14)=4,f(15)=5,…, ∴1()2019f 2019, ∴1(2019)()2019f f 2018-2019=-1. 故答案为:-1.【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键.16.【分析】利用算术平方根的定义计算得到的值,求出的算术平方根即可..【详解】∵,,∴的算术平方根为; 故答案为:.【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键. 解析:12【分析】14=的值,求出14的算术平方根即可.. 【详解】14=12=,的算术平方根为12; 故答案为:12. 【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键.17.-3【分析】先确定的范围,再确定的范围,然后根据题意解答即可.【详解】解:∵3<<4∴-3<<-2∴-3故答案为-3.【点睛】本题考查了无理数整数部分的有关计算,确定的范围是解答本解析:-3【分析】1⎡⎣的范围,然后根据题意解答即可.【详解】解:∵34∴-3<1--2∴1⎡=⎣-3故答案为-3.【点睛】18.-11或-12【分析】根据题意可知,,再根据新定义即可得出答案.【详解】解:由题意可得:∴∴的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小解析:-11或-12【分析】根据题意可知65a -≤<-,12210a -≤<-,再根据新定义即可得出答案.【详解】解:由题意可得:65a -≤<-∴12210a -≤<-∴[]2a 的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小,理解题目的新定义,根据新定义得出a 的取值范围是解此题的关键.19.【分析】估算出的取值范围,进而可得x ,y 的值,然后代入计算即可.【详解】解:∵,∴,∴的整数部分x =4,小数部分y =,∴2x-y =8-4+,故答案为:.【点睛】本题考查了估算无理解析:4+【分析】估算出8-x ,y 的值,然后代入计算即可.【详解】解:∵34<<,∴4<85,∴8x =4,小数部分y =448=∴2x -y =8-44=故答案为:4【点睛】本题考查了估算无理数的大小,解题的关键是求出x ,y 的值.20.255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵,,,∴只解析:255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵1=,3=,15=,∴只进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.【点睛】本题考查了估算无理数大小的应用,主要考查学生的阅读能力和逆推思维能力.三、解答题21.(1)两;(2)2,3;(3)24,-48.【分析】(1)根据题中所给的分析方法先求出这32768的立方根都是两位数;(2)继续分析求出个位数和十位数即可;(3)利用(1)(2)中材料中的过程进行分析可得结论.【详解】解:(1)由103=1000,1003=1000000,∵1000<32768<100000,∴10100,故答案为:两;(2)∵只有个位数是2的立方数是个位数是8,2划去32768后面的三位数768得到32,因为33=27,43=64,∵27<32<64,∴3040.3.故答案为:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10100,∵只有个位数是4的立方数是个位数是4,4划去13824后面的三位数824得到13,因为23=8,33=27,∵8<13<27,∴2030.;由103=1000,1003=1000000,1000<110592<1000000,∴10100,∵只有个位数是8的立方数是个位数是2,8,划去110592后面的三位数592得到110,因为43=64,53=125,∵64<110<125,∴4050.;故答案为:24,-48.【点睛】此题考查立方根,解题关键在于理解一个数的立方的个位数就是这个数的个位数的立方的个位数.22.(1)3(2)5 3(3)11 7 -【分析】(1)根据给定的新定义,代入数据即可得出结论;(2)分a-b-c≥0和a-b-c≤0两种情况考虑,分别代入定义式中找出最大值,比较后即可得出结论.【详解】解:①根据题中的新定义得:3⊕()7-⊕113=()()1111 37373332---++-+=②当a-b-c≥0时,原式()12a b c a b c a =--+++=, 则取a 的最大值,最小值即可, 此时最大值为89,最小值为67-; 当a-b-c≤0时, 原式()12a b c a b c b c =-+++++=+, 此时最大值为785993b c +=+=,最小值为6511777b c ⎛⎫⎛⎫+=-+-=- ⎪ ⎪⎝⎭⎝⎭, ∵586113977>>->- ∴综上所述最大值为53,最小值为117-. 【点睛】本题考查了有理数的混合运算,读懂题意弄清新定义式的运算是解题的关键.23.(1)12,-2;(2)(15)4,(﹣2)8;(3)n-21a ⎛⎫ ⎪⎝⎭;(4)7-28. 【分析】(1)分别按公式进行计算即可;(2)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(3)结果前两个数相除为1,第三个数及后面的数变为1a ,则a ⓝ=a ×(1a )n-1; (4)将第二问的规律代入计算,注意运算顺序.【详解】解:(1)2③=2÷2÷2=12,(﹣12)③=﹣12÷(﹣12)÷(﹣12)=﹣2; (2)5⑥=5×15×15×15×15×15=(15)4,同理得;(﹣12)⑩=(﹣2)8; (3)a ⓝ=a×1a ×1a ×…×n-211a a ⎛⎫= ⎪⎝⎭; (4)(-3)8×(-3)⑨-(﹣12)9×(﹣12)⑧ =(-3)8×(1-3 )7 -(﹣12)9×(-2)6 =-3-(-12)3=-3+18 =7-28. 【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.24.(1)5766⨯;9111010⨯(2)10092017(3)12n n + 【解析】试题分析:(1)根据题目中所给的规律直接写出答案;(2)根据所得的规律进行计算即可;(3)根据所得的规律进行计算即可德结论.试题解析:(1)5766⨯ , 9111010⨯; (2)原式=1324352016201822334420172017⎛⎫⎛⎫⎛⎫⨯⨯⨯⨯⨯⨯⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭() =1201822017⨯ =10092017 ; (3)12n n+. 点睛:本题是一个数字规律探究题,解决这类问题的基本方法为:通过观察,分析、归纳发现其中的规律,并应用规律解决问题.25.(1)125;14;(2)3;±4.(3)当a =9时,p =1;当a =3时,p =2;当a =﹣3时,p =2.【分析】(1)根据题意规定直接计算.(2)将已知条件代入等式中,倒推未知数.(3)根据定义,分别讨论当a 为不同值时,p 的取值即可解答.【详解】解:(1)5﹣2=125;(﹣2)﹣2=14; (2)如果2﹣p =18,那么p =3;如果a ﹣2=116,那么a =±4;(3)由于a、p为整数,所以当a=9时,p=1;当a=3时,p=2;当a=﹣3时,p=2.故答案为(1)125;14;(2)3;±4.(3)当a=9时,p=1;当a=3时,p=2;当a=﹣3时,p=2.【点睛】本题考查新定义,能够理解a的负P次幂等于a的p次幂的倒数这个规定定义是解题关键.26.;(2)数轴上的点和实数是一一对应关系;(3)A.【分析】(1)首先根据勾股定理求出线段OB的长度,然后结合数轴的知识即可求解;(2)根据数轴上的点与实数的对应关系即可求解;(3)本题利用实数与数轴的对应关系即可解答.【详解】解:(1)OB2=12+12=2,∴OB,∴OA=(2)数轴上的点和实数是一一对应关系(3) 这种研究和解决问题的方式,体现的数学思想方法是数形结合.故选A.【点睛】本题主要考查了实数与数轴之间的关系,此题综合性较强,不仅要结合图形,还需要熟悉平方根的定义.也要求学生了解数形结合的数学思想.。