【奥数】小学六年级数学知识点详细讲解(分数的四则运算)
- 格式:pptx
- 大小:861.84 KB
- 文档页数:16
分数是小学阶段的关键知识点,在小学的学习有分水岭一样的阶段性标志,许多难题也是从分数的学习开始遇到的。
分数基本运算的常考题型有(1)分数的四则混合运算 (2)分数与小数混合运算,分化小与小化分的选择 (3)复杂分数的化简 (4) 繁分数的计算分数与小数混合运算的技巧 在分数、小数的四则混合运算中,到底是把分数化成小数,还是把小数化成分数,这不仅影响到运算过程的繁琐与简便,也影响到运算结果的精确度,因此,要具体情况具体分析,而不能只机械地记住一种化法:小数化成分数,或分数化成小数。
技巧1:一般情况下,在加、减法中,分数化成小数比较方便。
技巧2:在加、减法中,有时遇到分数只能化成循环小数时,就不能把分数化成小数。
此时要将包括循环小数在内的所有小数都化为分数。
技巧3:在乘、除法中,一般情况下,小数化成分数计算,则比较简便。
技巧4:在运算中,使用假分数还是带分数,需视情况而定。
技巧5:在计算中经常用到除法、比、分数、小数、百分数相互之间的变,把这些常用的数互化数表化对学习非常重要。
分数混合运算 【例 1】 0.3÷0.8+0.2= 。
(结果写成分数形式)【考点】分数混合运算 【难度】1星 【题型】计算【关键词】希望杯,五年级,一试【解析】 310×54+15=38+15=2340。
【答案】2340【例 2】 计算:34567455667788945678⨯+⨯+⨯+⨯+⨯ 【考点】分数混合运算 【难度】2星 【题型】计算知识点拨教学目标例题精讲分数的四则混合运算综合【解析】原式34567 4(5)5(6)6(7)7(8)8(9) 45678 =⨯++⨯++⨯++⨯++⨯+ 453564675786897=⨯++⨯++⨯++⨯++⨯+245=【答案】245【例 3】412114 23167137713⨯+⨯+⨯【考点】分数混合运算【难度】2星【题型】计算【解析】原式4124412347137713=⨯+⨯+⨯412123471313⎛⎫=⨯++⎪⎝⎭=16【答案】16【例 4】计算1488674 3914848149149149⨯+⨯+【考点】分数混合运算【难度】1星【题型】计算【解析】398624398624 148148148148()148 149149149149149149⨯+⨯+=⨯++=【答案】148【巩固】计算:1371 1391371138138⨯+⨯【考点】分数混合运算【难度】2星【题型】计算【关键词】小数报,初赛【解析】原式1371 (1381)137(1)138138 =+⨯+⨯+137137 137137138138=+++113722(1)138=⨯+⨯-12762138=-⨯6827569=【答案】68 27569【例 5】253749517191334455÷+÷+÷=.【考点】分数混合运算【难度】2星【题型】计算【关键词】清华附中【解析】观察发现如果将2513分成50与213的和,那么50是除数53的分子的整数倍,213则恰好与除数相等.原式中其它两个被除数也可以进行同样的分拆.原式253749 501701901334455⎛⎫⎛⎫⎛⎫=+÷++÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭579501701901345=÷++÷++÷+3040503=+++123=【答案】123【巩固】131415314151223344÷+÷+÷=.【考点】分数混合运算【难度】2星【题型】计算【解析】观察发现如果将1312分成30与112的和,那么30是除数32的分子的整数倍,112则恰好与除数相等.原式中其它两个被除数也可以进行同样的分拆.原式131415 301401501223344⎛⎫⎛⎫⎛⎫=+÷++÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭345301401501234=÷++÷++÷+2030403=+++93=【答案】93【巩固】173829728191335577÷+÷+÷=.【考点】分数混合运算【难度】2星【题型】计算【解析】原式173829 702801901335577⎛⎫⎛⎫⎛⎫=+÷++÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭789701801901357=÷++÷++÷+3050703=+++153=【答案】153【巩固】计算:1130.42(4.3 1.8)26524⎡⎤⨯÷⨯-⨯=⎢⎥⎣⎦。
小学六年级数学必须掌握的知识点分数的乘法与除法运算在小学六年级数学学习中,分数的乘法与除法运算是必须掌握的重要知识点。
通过掌握这些知识,学生能够在解决实际问题时进行正确的运算和推理,为将来的学习打下坚实的基础。
本文将详细介绍小学六年级数学中分数的乘法与除法运算的相关知识点以及解题方法。
一、分数的乘法运算1. 分数的乘法原理分数的乘法是指两个分数相乘的运算。
分数的乘法原理可以表示为:分子与分子相乘,分母与分母相乘。
具体计算时,我们先将两个分数的分子相乘,再将两个分数的分母相乘,最后简化得到最简分数形式。
2. 分数的乘法实例例如,计算1/2乘以3/4:1/2 × 3/4 = (1 × 3) / (2 × 4) = 3/83. 分数的乘法性质(1)乘法的交换律:分数的乘法满足交换律,即a/b × c/d = c/d ×a/b。
例如,2/3 × 4/5 = 4/5 × 2/3(2)乘法的结合律:分数的乘法满足结合律,即(a/b × c/d) × e/f = a/b × (c/d × e/f)。
例如,(2/3 × 4/5) × 6/7 = 2/3 × (4/5 × 6/7)二、分数的除法运算1. 分数的除法原理分数的除法是指一个分数除以另一个分数的运算。
分数的除法原理可以表示为:分子相乘,分母相乘。
具体计算时,我们将除法转换为乘法,即将除法改写为乘法的倒数形式,然后按照乘法运算的规则进行计算。
2. 分数的除法实例例如,计算2/3除以4/5:2/3 ÷ 4/5 = 2/3 × 5/4 = (2 × 5) / (3 × 4) = 10/123. 分数的除法性质(1)除法的性质:两个非零分数相除时,可以倒数相乘,即a/b ÷c/d = a/b × d/c。
小学六年级数学重点知识归纳分数的四则运算技巧在小学六年级的数学学习中,分数的四则运算是一个重要的知识点。
掌握了分数的四则运算技巧,能够帮助我们更好地解决实际生活中的问题。
本文将对小学六年级数学中分数的四则运算技巧进行归纳总结,以帮助同学们更好地掌握这一知识。
一、分数的加法和减法1. 相同分母的分数相加减法当两个分数的分母相同时,我们只需要将分子相加(或相减),然后保持分母不变即可。
例如:1/3 + 2/3 = 3/3 = 1,1/4 - 1/4 = 0/4 = 0。
2. 不同分母的分数相加减法当两个分数的分母不同时,我们需要找到它们的最小公倍数,并将分数的分子和分母按照最小公倍数进行等比扩大或缩小,使得两个分数的分母相同,然后再进行相加(或相减)。
例如:1/2 + 1/3 = 3/6 + 2/6 = 5/6,1/3 - 1/4 = 4/12 - 3/12 = 1/12。
二、分数的乘法和除法1. 分数的乘法两个分数相乘时,我们将两个分数的分子相乘作为新分数的分子,分母相乘作为新分数的分母即可。
例如:1/2 * 2/3 = (1 * 2)/(2 * 3) = 2/6 = 1/3。
2. 分数的除法两个分数相除时,我们将第一个分数的分子乘以第二个分数的倒数,即将除法转化为乘法,然后按照乘法的规则进行计算。
例如:1/2 ÷ 3/4 = 1/2 * 4/3 = (1 * 4)/(2 * 3) = 4/6 = 2/3。
三、分数的混合运算在实际问题中,我们经常会遇到分数的混合运算。
处理混合运算时,我们需要先按照规定的优先级进行运算,可以使用括号来改变运算的次序。
例如:2/3 + 1/4 * 3 = 2/3 + 3/4 * 1 = 2/3 + 3/4 = (2 * 4 + 3 * 3)/(3 * 4)= 17/12。
四、练习与应用为了更好地掌握分数的四则运算技巧,同学们可以多进行练习和应用。
可以通过解题来巩固所学的知识,例如:例题1:计算 3/8 + 2/5。
六年级分数的四则运算+简便计算专题复习一、分数四则运算的运算法则和运算顺序运算法则是:1、加减:同分母分数相加减,分母不变,分子相加减:异分母分数相加减,先通分,再分母不变,分子相加减。
2、乘法:先约分,分子乘分子作为积的分子,分母乘分母作为积的分母3、除法:除以一个数就等于乘这个数的倒数运算顺序是:1、如果是同一级运算,一般按从左往右依次进行计算 2、如果既有加减、又有乘除法,先算乘除法、再算加减 3、如果有括号,先算括号里面的4、如果符合运算定律,可以利用运算定律进行简算。
练习:1、34 -(15 + 13 )× 982、 10713151321÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛+-3、⎪⎭⎫⎝⎛-+614121÷121 4、 9798411÷⎪⎭⎫ ⎝⎛⨯- 5、⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-÷109329712 6、52593145-⨯- 7、8949581÷+⨯ 8、(52-81)÷401二、分数四则运算的简便运算引言:分数乘法简便运算所涉及的公式定律和整数乘法的简便运算是一样的,基本上有以下三个:① 乘法交换律:________________________② 乘法结合律:________________________ ③ 乘法分配律:________________________做题时,我们要善于观察,仔细审题,发现数字与数字之间的关系,根据题意来选择适当的公式或方法,进行简便运算。
分数简便运算常见题型第一种:连乘——乘法交换律的应用 例题:1)1474135⨯⨯ 2)56153⨯⨯ 3)266831413⨯⨯涉及定律:乘法交换律 b c a c b a ⋅⋅=⋅⋅基本方法:将分数相乘的因数互相交换,先行运算。
第二种:乘法分配律的应用 例题:1)27)27498(⨯+ 2)4)41101(⨯+ 3)16)2143(⨯+涉及定律:乘法分配律 bc ac c b a ±=⨯±)(基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。
六年级奥数-分数四则混合运算在这篇文章中,有很多格式错误和明显的段落问题。
为了让文章更易读,我们需要对其进行修改和改写。
首先,我们可以将文章分为两个部分:课前准备和例题讲解。
在课前准备中,有一行数学表达式,但是没有任何解释或上下文。
因此,我们可以将其删除。
在例题讲解中,有四个例题和一些练题。
我们可以将每个例题和练题分成单独的段落,并添加一些解释来帮助读者更好地理解。
课前准备:此处删除)例题讲解:例1:计算:$\frac{(888+8)^2}{9^3}\times 1.125 -\frac{360}{23\%}$解:首先,我们可以计算分数 $\frac{360}{23\%}$,将百分数转换为小数得到 $\frac{360}{0.23}$。
然后,我们可以计算括号中的内容 $(888+8)^2$,得到 $$。
接下来,我们可以将所有数字代入公式中进行计算,最后得到答案为$-1079.3043$。
练:计算 $9\div 1+5.46\div 2\times(4.875-2)$解:我们可以先计算括号内的内容 $(4.875-2)$,得到$2.875$。
然后,我们可以将所有数字代入公式中进行计算,最后得到答案为 $12.355$。
例2:计算:$(598.1\times 37+5981\times 6.26)\div1+190\times 5$解:我们可以先计算括号内的内容 $(598.1\times37+5981\times 6.26)$,得到 $.566$。
然后,我们可以将所有数字代入公式中进行计算,最后得到答案为 $9812$。
例3:计算:$31\times 4+41\times 5+51\times 6+61\times 7+71\times 8$解:我们可以将所有数字代入公式中进行计算,最后得到答案为 $1105$。
例4:计算:$4.44\div 4+\frac{3}{4}$解:我们可以将所有数字代入公式中进行计算,最后得到答案为 $5.11$。
六年级上册分数四则混合运算简便计算六年级分数的四则运算和简便计算一、分数四则运算的运算法则和运算顺序分数四则运算的运算法则包括以下三种:1.加减法:同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,再分母不变,分子相加减。
2.乘法:先约分,分子乘分子作为积的分子,分母乘分母作为积的分母。
3.除法:除以一个数就等于乘这个数的倒数。
分数四则运算的运算顺序包括以下四种:1.如果是同一级运算,一般按从左往右依次进行计算。
2.如果既有加减、又有乘除法,先算乘除法,再算加减。
3.如果有括号,先算括号里面的。
4.如果符合运算定律,可以利用运算定律进行简算。
练:1.3119÷1-21×7+22.1-(35÷13+10×2)3.72/246-9×18/49+7/93÷5+12二、分数四则运算的简便运算分数乘法简便运算涉及的公式定律和整数乘法的简便运算是一样的,基本上有以下三个:1.乘法交换律:a×b×c=a×c×b。
2.乘法结合律:(a×b)×c=a×(b×c)。
3.乘法分配律:a×(b+c)=a×b+a×c。
做题时,我们要善于观察,仔细审题,发现数字与数字之间的关系,根据题意来选择适当的公式或方法,进行简便运算。
分数简便运算常见题型包括以下四种:1.连乘——乘法交换律的应用。
2.乘法分配律的应用。
3.乘法分配律的逆运算。
4.添加因数“1”。
分数混合运算六年级知识点分数混合运算是六年级数学中的重要知识点之一。
掌握好这个知识点,对于学生来说是非常关键的。
本文将对分数混合运算的相关概念、运算规则以及解题方法进行详细介绍,以帮助学生更好地理解和掌握这一知识点。
一、分数混合运算的概念分数混合运算指的是整数与分数之间的四则运算。
在分数混合运算中,我们需要掌握以下几个概念:1. 整数:数学中表示没有小数部分的数,可以是正数、负数或零。
2. 分数:数学中表示两个整数之间的比值关系的表示形式,由一个分子和一个分母组成。
3. 分数的加减乘除运算:分数之间可以进行加、减、乘、除四则运算。
二、分数混合运算的运算规则在进行分数混合运算时,需要遵循以下运算规则:1. 加法规则:对于两个有相同分母的分数,可以直接将分子相加,分母保持不变。
2. 减法规则:对于两个有相同分母的分数,可以直接将分子相减,分母保持不变。
3. 乘法规则:将两个分数的分子相乘,分母相乘,得到的结果即为乘积的分数形式。
4. 除法规则:将除数的分子与被除数的分母相乘,除数的分母与被除数的分子相乘,得到的结果即为商的分数形式。
三、解题方法与实例分析1. 加法和减法运算的解题方法:对于分数的加法和减法运算,首先需要将分数的分母化为相同的数,然后进行分子的加减运算。
最后将结果化简为最简分数形式。
例如,计算1/2 + 3/4的结果:将两个分数的分母化为相同的数,这里可以取4作为公共分母,得到:1/2 + 3/4 = 2/4 + 3/4 = 5/4将结果化简为最简分数形式,5/4可以化简为1整1/4的形式,即1 1/4。
对于减法运算,解题方法与加法类似。
2. 乘法和除法运算的解题方法:对于分数的乘法和除法运算,直接将分子相乘或相除,分母相乘或相除即可。
最后将结果化简为最简分数形式。
例如,计算2/3 × 4/5的结果:直接将分子相乘,分母相乘,得到:2/3 × 4/5 = 8/15将结果化简为最简分数形式,8/15即为最终结果。
六年级上册数学分数四则混合运算摘要:一、分数四则混合运算的概念与意义二、分数四则混合运算的运算顺序三、分数四则混合运算的计算方法四、分数四则混合运算的实用案例解析五、易错题解析与巩固练习正文:一、分数四则混合运算的概念与意义分数四则混合运算是指在数学计算中,涉及到分数、整数、小数等多种数的四则运算。
在小学六年级上册的数学课程中,学生们将学习如何进行分数四则混合运算。
这部分知识不仅能为学生们打下扎实的数学基础,还能培养他们的逻辑思维能力。
二、分数四则混合运算的运算顺序1.先乘除后加减:在一个算式中,如果既有乘除法,又有加减法,那么要先计算乘除法,再计算加减法。
2.同级运算从左到右:在同一级别的运算中,要按照从左到右的顺序进行计算。
3.分数与整数、小数的运算顺序:遇到分数与整数、小数相乘除时,可以先将整数、小数转化为分数,然后按照分数四则运算的顺序进行计算。
三、分数四则混合运算的计算方法1.分数的加减法:同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,再按照同分母分数加减法的方法计算。
2.分数的乘除法:分数乘法,将分子相乘,分母相乘;分数除法,将分子相除,分母相除。
3.整数与分数的运算:将整数视为分数的特殊情况,分母为1,然后按照分数四则运算的方法进行计算。
四、分数四则混合运算的实用案例解析1.案例一:计算3/4 + 2/3 - 1/22.案例二:计算(2/3) × 3/2 + 1/2 × (4/5)五、易错题解析与巩固练习1.易错题一:计算1/2 ÷ 1/4 × 3/22.易错题二:计算5/6 + 1/6 - 1/3通过以上内容的学习,学生们可以更好地掌握分数四则混合运算的方法和技巧,提高自己的数学运算能力。
六年级奥数专题分数的计算技巧专题简介分数四则运算中有许多十分有趣的现象与技巧,它主要通过一些运算定律、性质和一些技巧性的方法,达到计算正确而迅速的目的。
基础学习例 1. × ÷ 例 2. ÷ × 83721094328512213典型例题例1、计算:(1)×37 (2)2004×4544200367分析与解:观察这两道题的数字特点,第(1)题中的与1只相差1个分数单位,如果把4544写成(1-)的差与37相乘,再运用乘法分配律可以使计算简便。
同样,第(2)题中可以把整4544451数2004写成(2003+1)的和与相乘,再运用乘法分配律计算比较简便。
200367(1)×37 (2)2004×4544200367=(1-)×37 = (2003+1)×451200367例2、计算: (1)73× (2) 166÷4115181201分析与解:(1)73把改写成(72 + ),再运用乘法分配律计算比常规方法计算要简便得多,1511516所以(2)把题中的166分成41的倍数与另一个较小的数相加的形式,再利用除法的运算性质使计201算简便。
例3、计算:(1)×39 + ×25 + ×4143426133六年级奥数专题分数的计算技巧专题简介分数四则运算中有许多十分有趣的现象与技巧,它主要通过一些运算定律、性质和一些技巧性的方法,达到计算正确而迅速的目的。
基础学习例 1. × ÷ 例 2. ÷ × 83721094328512213 = × × = × × 83729104111382213 = = 34259781023⨯⨯⨯⨯22213413811⨯⨯⨯⨯ = = 1425典型例题例1、计算:(1)×37 (2)2004×4544200367分析与解:观察这两道题的数字特点,第(1)题中的与1只相差1个分数单位,4544如果把写成(1-)的差与37相乘,再运用乘法分配律可以使计算简便。
分数是小学阶段的关键知识点,在小学的学习有分水岭一样的阶段性标志,许多难题也是从分数的学习开始遇到的。
分数基本运算的常考题型有(1)分数的四则混合运算(2)分数与小数混合运算,分化小与小化分的选择(3)复杂分数的化简(4)繁分数的计算分数与小数混合运算的技巧在分数、小数的四则混合运算中,到底是把分数化成小数,还是把小数化成分数,这不仅影响到运算过程的繁琐与简便,也影响到运算结果的精确度,因此,要具体情况具体分析,而不能只机械地记住一种化法:小数化成分数,或分数化成小数。
技巧1:一般情况下,在加、减法中,分数化成小数比较方便。
技巧2:在加、减法中,有时遇到分数只能化成循环小数时,就不能把分数化成小数。
此时要将包括循环小数在内的所有小数都化为分数。
技巧3:在乘、除法中,一般情况下,小数化成分数计算,则比较简便。
技巧4:在运算中,使用假分数还是带分数,需视情况而定。
技巧5:在计算中经常用到除法、比、分数、小数、百分数相互之间的变,把这些常用的数互化数表化对学习非常重要。
分数混合运算【例 1】0.3÷0.8+0.2=。
(结果写成分数形式)【考点】分数混合运算【难度】1星【题型】计算【关键词】希望杯,五年级,一试【解析】310×54+15=38+15=2340。
【答案】23 40【例 2】计算:34567 4556677889 45678⨯+⨯+⨯+⨯+⨯【考点】分数混合运算【难度】2星【题型】计算【解析】原式345674(5)5(6)6(7)7(8)8(9)45678=⨯++⨯++⨯++⨯++⨯+ 453564675786897=⨯++⨯++⨯++⨯++⨯+分数的四则混合运算综合教学目标知识点拨例题精讲245=【答案】245【例 3】412114 23167137713⨯+⨯+⨯【考点】分数混合运算【难度】2星【题型】计算【解析】原式4124412347137713 =⨯+⨯+⨯412123471313⎛⎫=⨯++⎪⎝⎭=16【答案】16【例 4】计算1488674 3914848149149149⨯+⨯+【考点】分数混合运算【难度】1星【题型】计算【解析】398624398624 148148148148()148 149149149149149149⨯+⨯+=⨯++=【答案】148【巩固】计算:1371 1391371138138⨯+⨯【考点】分数混合运算【难度】2星【题型】计算【关键词】小数报,初赛【解析】原式1371 (1381)137(1)138138 =+⨯+⨯+137137 137137138138=+++113722(1)138=⨯+⨯-12762138=-⨯6827569=【答案】68 27569【例 5】253749517191334455÷+÷+÷=.【考点】分数混合运算【难度】2星【题型】计算【关键词】清华附中【解析】观察发现如果将2513分成50与213的和,那么50是除数53的分子的整数倍,213则恰好与除数相等.原式中其它两个被除数也可以进行同样的分拆.原式253749 501701901334455⎛⎫⎛⎫⎛⎫=+÷++÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭579501701901345=÷++÷++÷+3040503=+++123=【答案】123【巩固】131415314151223344÷+÷+÷=.【考点】分数混合运算【难度】2星【题型】计算【解析】观察发现如果将1312分成30与112的和,那么30是除数32的分子的整数倍,112则恰好与除数相等.原式中其它两个被除数也可以进行同样的分拆.原式131415301401501223344⎛⎫⎛⎫⎛⎫=+÷++÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 345301401501234=÷++÷++÷+ 2030403=+++93=【答案】93【巩固】 173829728191335577÷+÷+÷= . 【考点】分数混合运算 【难度】2星 【题型】计算【解析】 原式173829702801901335577⎛⎫⎛⎫⎛⎫=+÷++÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 789701801901357=÷++÷++÷+ 3050703=+++153=【答案】153【巩固】 计算:1130.42(4.3 1.8)26524⎡⎤⨯÷⨯-⨯=⎢⎥⎣⎦。
六年级数学上册综合算式分数四则运算分数的含义是“分割”。
我们用分数来表示整体的一部分。
在数学中,分数是一个重要的概念,而且在综合算式中经常会涉及到分数的四则运算。
今天,我们来学习一下六年级数学上册的综合算式中的分数四则运算。
一、整数与分数的加减法整数与分数的加减法要注意将整数转换为分数的形式,然后按照分数的加减法规则进行计算。
例子1:计算1 + 3/4。
解:将整数1转换为分数的形式,得到4/4。
然后进行分数的加法运算:1 + 3/4 = 4/4 + 3/4 = (4 + 3) / 4 = 7/4所以,1 + 3/4 = 7/4。
例子2:计算5/6 - 2。
解:将整数2转换为分数的形式,得到2/1。
然后进行分数的减法运算:5/6 - 2 = 5/6 - 12/6 = (5 - 12) / 6 = -7/6所以,5/6 - 2 = -7/6。
二、分数的乘法分数的乘法是指将两个分数相乘的运算。
分数的乘法运算规则如下:两个分数的乘积等于它们的分子相乘得到新的分子,分母相乘得到新的分母。
例子3:计算2/3 × 3/4。
解:按照分数的乘法运算规则进行计算:2/3 × 3/4 = (2 × 3) / (3 × 4) = 6/12由于6/12可以约分为1/2,所以2/3 × 3/4 = 1/2。
三、分数的除法分数的除法是指将一个分数除以另一个分数的运算。
分数的除法运算规则如下:将第一个分数的分子与第二个分数的分母相乘得到新的分子,将第一个分数的分母与第二个分数的分子相乘得到新的分母。
例子4:计算4/5 ÷ 1/2。
解:按照分数的除法运算规则进行计算:4/5 ÷ 1/2 = (4 × 2) / (5 × 1) = 8/5所以,4/5 ÷ 1/2 = 8/5。
综上所述,我们在六年级数学上册的综合算式中学习了分数的四则运算,包括整数与分数的加减法、分数的乘法和分数的除法。
分数四则混合运算知识精讲1.分数四则混合运算顺序分数四则混合运算顺序同整数、小数四则混合运算顺序相同:只有加减法或只有乘除法时,从左到右依次运算;既有加减法,又有乘除法时,先算乘除法,再算加减法;有括号的,先算括号里面的,再算括号外面的。
例:计算3172-+8410()×时,要先算括号里的3184+=58,再算57810×=716,最后算7252-=1616。
2.分数简便计算 (1)运算律。
运算律不仅适用于整数和小数计算,也适用于分数计算。
包括加法交换律、加法结合律、乘法交换律、乘法结合律和乘法分配律。
加法交换律:a +b =b +a ,如:27+12=12+27。
加法结合律:a +b +c =a +(b +c ),如:37+38+48=37+(3488+)。
乘法交换律:a ×b =b ×a ,如:3443=9779××。
乘法结合律:a ×b ×c =a ×(b ×c ),如:310×513×135=310×(513×135)。
乘法分配律:(a +b )×c =a ×b +a ×c ,如:(57+38)×73=57×73+38×73。
(2)运算性质。
减法:a -b -c =a -(b +c ),如:932932--=-+10881088()。
除法:a ÷b ÷c =a ÷(b ×c ),如:638638=783783()÷÷÷×。
名师点睛在分数计算过程中,分数除法与分数乘法之间很容易相互转换,有些分数计算不一定符合运算律的特征,但可以通过相互转换,变成符合运算律特征的算式。
如,计算6119779×+÷。
分數的四則混合運算綜合教學目標分數是小學階段的關鍵知識點,在小學的學習有分水嶺一樣的階段性標誌,許多難題也是從分數的學習開始遇到的。
分數基本運算的常考題型有(1)分數的四則混合運算(2)分數與小數混合運算,分化小與小化分的選擇(3)複雜分數的化簡(4)繁分數的計算知識點撥分數與小數混合運算的技巧在分數、小數的四則混合運算中,到底是把分數化成小數,還是把小數化成分數,這不僅影響到運算過程的繁瑣與簡便,也影響到運算結果的精確度,因此,要具體情況具體分析,而不能只機械地記住一種化法:小數化成分數,或分數化成小數。
技巧1:一般情況下,在加、減法中,分數化成小數比較方便。
技巧2:在加、減法中,有時遇到分數只能化成循環小數時,就不能把分數化成小數。
此時要將包括循環小數在內的所有小數都化為分數。
技巧3:在乘、除法中,一般情況下,小數化成分數計算,則比較簡便。
技巧4:在運算中,使用假分數還是帶分數,需視情況而定。
技巧5:在計算中經常用到除法、比、分數、小數、百分數相互之間的變,把這些常用的數互化數表化對學習非常重要。
分數混合運算【例 1】 0.3÷0.8+0.2= 。
(結果寫成分數形式)【考點】分數混合運算 【難度】1星 【題型】計算【關鍵字】希望杯,五年級,一試【解析】 310×54+15=38+15=2340。
【答案】2340【例 2】 計算:34567455667788945678⨯+⨯+⨯+⨯+⨯ 【考點】分數混合運算 【難度】2星 【題型】計算【解析】 原式345674(5)5(6)6(7)7(8)8(9)45678=⨯++⨯++⨯++⨯++⨯+ 453564675786897=⨯++⨯++⨯++⨯++⨯+245=【答案】245【例 3】 41211423167137713⨯+⨯+⨯ 【考點】分數混合運算 【難度】2星 【題型】計算【解析】 原式4124412347137713=⨯+⨯+⨯ 412123471313⎛⎫=⨯++ ⎪⎝⎭=16 【答案】16【例 4】 計算 14886743914848149149149⨯+⨯+ 【考點】分數混合運算 【難度】1星 【題型】計算【解析】 398624398624148148148148()148149149149149149149⨯+⨯+=⨯++= 【答案】148 【巩固】 計算:13711391371138138⨯+⨯ 【考點】分數混合運算 【難度】2星 【題型】計算【關鍵字】小數報,初賽例題精講【解析】 原式1371(1381)137(1)138138=+⨯+⨯+137137137137138138=+++ 113722(1)138=⨯+⨯- 12762138=-⨯ 6827569= 【答案】6827569【例 5】 253749517191334455÷+÷+÷= . 【考點】分數混合運算 【難度】2星 【題型】計算【關鍵字】清華附中【解析】 觀察發現如果將2513分成50與213的和,那麼50是除數53的分子的整數倍,213則恰好與除數相等.原式中其他兩個被除數也可以進行同樣的分拆. 原式253749501701901334455⎛⎫⎛⎫⎛⎫=+÷++÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 579501701901345=÷++÷++÷+3040503=+++123=【答案】123 【巩固】 131415314151223344÷+÷+÷= . 【考點】分數混合運算 【難度】2星 【題型】計算【解析】 觀察發現如果將1312分成30與112的和,那麼30是除數32的分子的整數倍,112則恰好與除數相等.原式中其他兩個被除數也可以進行同樣的分拆. 原式131415301401501223344⎛⎫⎛⎫⎛⎫=+÷++÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 345301401501234=÷++÷++÷+2030403=+++93=【答案】93 【巩固】 173829728191335577÷+÷+÷= . 【考點】分數混合運算 【難度】2星 【題型】計算【解析】 原式173829702801901335577⎛⎫⎛⎫⎛⎫=+÷++÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 789701801901357=÷++÷++÷+3050703=+++153=【答案】153 【巩固】 計算:1130.42(4.3 1.8)26524⎡⎤⨯÷⨯-⨯=⎢⎥⎣⎦。
For personal use only in study andresearch; not for commercial use第八讲 分数四则混合运算(稍复杂的分数应用题)【知识概述】有些稍复杂的分数应用题中有两个或两个以上单位“1”的量,这时一般先用转化法统一单位“1”,有时还要根据解题需要,把分率转化成比,然后才能进行解答。
例题精学例1 甲、乙、丙、丁四人向希望工程捐款,结果甲捐了另外三人总数的一半,乙捐了另外三人总数的31,丙捐了另外三人总数的41,丁捐了91元。
甲、乙、丙、丁四人共捐了多少元?【思路点拨】根据题意可知,甲、乙、丙、丁四人捐款的总数是一定的,把四人捐款的总数看作单位“1”。
“甲捐了另外三人总数的一半”,则甲的捐款是四人捐款总数的量211+,同理,乙的捐款是四人捐款总数的工311+,丙的捐款是四人捐款总数的411+。
那么我们就可以求出丁捐的91元所对应的分率,再求出四人的捐款总数。
同步精练1. 甲、乙、丙、丁四个数,甲数是其他三个数之和的21,乙数是其他三个数之和的31,丙数是其他三个数之和的41。
已知丁数是260,则四个数的和是多少?甲数是多少?2. 三个小朋友合买一枚价值24元的2012年奥运会纪念章,第一个孩子付的钱是其他孩子付的总钱数的一半,第二个孩子付的钱是其他孩子付的总钱数的31。
问:第三个孩子付了多少元?3. 学校有数学、气象、航模三个兴趣小组,其中数学小组的人数是其他两组人数的21,气象小组的人数是航模小组人数的34,航模小组比数学小组少3人。
三个小组共有多少人? 例2 乙队原有的人数是甲队的73。
现在甲队派30人到乙队,则乙队人数是甲队的32。
原来两队一共有多少人?【思路点拔】当“从甲队派30人到乙队”后,甲、乙两队的人数都发生了变化,但是两队的总人数没有变化,因此我们把甲、乙两队的总人数看作单位“1”。
“乙队原有的人数是甲队的73”,则乙队占总人数的733+,后来乙队占总人数的322+,求出30人所对应的分率,再求出原来的总人数。
分数的四则运算知识点在数学中,分数是表示一个数与另一个数的比值的一种表达形式。
分数的四则运算是指对分数进行加、减、乘、除的运算。
掌握分数的四则运算知识点,可以帮助我们解决各类数值问题,提升数学运算能力。
本文将介绍分数的四则运算的各个知识点,包括加法、减法、乘法和除法。
一、分数的加法分数的加法是指将两个分数相加得到一个新的分数。
在进行分数加法运算时,需要满足两个分数的分母相同,才能进行相加。
具体步骤如下:1. 确定两个分数的通分。
将两个分母相乘即可得到通分分母。
2. 将两个分数的分子乘以相应的倍数,使得两个分数的分母相同。
3. 将两个分数的分子相加得到新的分子,保持分母不变。
4. 对得到的新分数进行约分。
举例说明:例1:计算 1/2 + 3/4。
通分分母为 2 × 4 = 8,分别将 1/2 和 3/4 转化为相同分母的分数,得到 4/8 和 6/8。
4/8 + 6/8 = 10/8,再进行约分,得到 5/4。
因此,1/2 + 3/4 = 5/4。
二、分数的减法分数的减法是指将两个分数相减得到一个新的分数。
与分数的加法类似,进行分数减法运算时,需要满足两个分数的分母相同。
具体步骤如下:1. 确定两个分数的通分。
将两个分母相乘即可得到通分分母。
2. 将两个分数的分子乘以相应的倍数,使得两个分数的分母相同。
3. 将两个分数的分子相减得到新的分子,保持分母不变。
4. 对得到的新分数进行约分。
举例说明:例2:计算 7/8 - 1/4。
通分分母为 8 × 4 = 32,将 7/8 和 1/4 转化为相同分母的分数,得到28/32 和 8/32。
28/32 - 8/32 = 20/32,再进行约分,得到 5/8。
因此,7/8 - 1/4 = 5/8。
三、分数的乘法分数的乘法是指将两个分数相乘得到一个新的分数。
具体步骤如下:1. 将两个分数的分子相乘得到新的分子。
2. 将两个分数的分母相乘得到新的分母。
小学六年级计算知识点小学六年级的学生是数学学习中的重要阶段,他们需要掌握一系列计算知识点,扎实基础为后续学习打下坚实的基础。
下面将对小学六年级计算知识点进行详细讲解。
一、整数的加减法运算在小学六年级阶段,学生需要进一步巩固和扩展整数的加减法运算。
他们需要学会正数与正数相加、正数与负数相加、负数与负数相加等情况下的计算方法,掌握进位与借位的技巧,并能够灵活运用于实际问题中。
例如,计算:25 + (-15),首先我们将25和15的绝对值相加,然后根据两个数的正负关系确定答案的正负。
在这个例子中,25与15的绝对值相加等于40,由于25为正数,15为负数,所以答案应为正数40。
二、小数的运算小数是小学六年级学生需要掌握的重点之一。
他们需要学习小数的加减乘除法,并能够准确地进行计算。
除此之外,理解小数与分数的转化关系也是十分重要的。
例如,计算:0.25 + 0.1,我们可以将两个小数位数对齐,并进行相应位数上的运算,最后得到答案0.35。
三、倍数与公倍数、约数与最大公约数小学六年级学生需要掌握倍数与公倍数、约数与最大公约数的概念和计算方法。
他们需要了解倍数是指一个数可以被另一个数整除的关系,公倍数是指多个数共同的倍数,约数是指一个数可以整除另一个数的关系,最大公约数是指多个数中最大的约数。
例如,求解10和15的最大公约数,首先列出两个数的约数,10的约数为1、2、5、10,15的约数为1、3、5、15,而它们的最大公约数就是5。
四、分数的四则运算小学六年级学生需要学会分数的加减乘除法,并能够运用于实际问题中。
他们需要理解分数的概念,掌握通分、约分和分数的大小比较方法。
例如,计算:1/3 + 1/4,首先要求两个分数通分,最小公倍数为12,将两个分数的分子分母分别乘以适当的倍数使得分母相同,然后进行分子相加后的运算。
在这个例子中,最终结果为7/12。
五、知识点的应用小学六年级学生需要将所学的计算知识点应用到实际问题中,能够灵活运用解决日常生活中的计算问题。