大学物理考试题库讲解学习
- 格式:doc
- 大小:707.50 KB
- 文档页数:15
第一章 质点运动学基本要求:1、掌握位矢、位移、速度、加速度、角速度和角加速度等物理量。
2、能计算速度、加速度、角加速度、切向加速度和法向加速度等。
教学重点:位矢、运动方程,切向加速度和法向加速度。
教学难点:角加速度、切向加速度和法向加速度。
主要内容:本章首先从描述物体机械运动的方法问题入手,阐述描述运动的前提——质点理想模型、时间和空间的量度,参照系坐标系。
其次重点讨论描写质点和刚体运动所需要的几个基本物理量(如位移、速度、加速度、角速度、角加速度等)及其特性(如相对性、瞬时性、矢量性)。
(一)时间和空间研究机械运动,必然涉及时间、空间及其度量.我们用时间反映物体运动的先后顺序及间隔,即运动的持续性.现行的时间单位是1967年第13届国际计量大会规定的,用铯(133Cs )原子基态的两个超精细能级间跃迁相对应的辐射周期的9 192 631 770倍为1秒.空间反映物质的广延性.空间距离为长度,长度的现行单位是1983年10月第17届国际计量大会规定的,把光在真空中1/299 792 458秒内走过的路程定义为1米.(二)参照系和坐标系宇宙间任何物质都在运动,大到地球、太阳等天体,小到分子、原子及各种基本粒子,所以说,物质的运动是普遍的、绝对的,但对运动的描述却是相对的.比如,在匀速直线航行的舰船甲板上,有人放开手中的石子,他看到石子作自由落体运动,运动轨迹是一条直线,而站在岸边的人看石子作平抛运动,运动轨迹是一条抛物线.这是因为他们站在不同的物体上.因此,要描述一个物体的运动,必须先确定另一个物体作为标准,这个被选作标准的物体叫参照系或参考系.选择哪个物体作为参照系,主要取决于问题的性质和研究的方便.在研究地球运动时,多取太阳为参照系,当研究地球表面附近物体的运动时,一般以地球为参照系.我们大部分是研究地面上物体的运动,所以,如不特别指明,就以地球为参照系. (三)质点实际的物体都有一定的大小和形状,物体上各点在空中的运动一般是不一样的.在某些情况下,根据问题的性质,如果物体的形状和大小与所研究的问题关系甚微,以至可以忽略其大小和形状,这时就可以把整个物体看作一个没有大小和形状的几何点,但是它具有整个物体的质量,这种具有质量的几何点叫质点.必须指出质点是一种理想的物理模型.同样是地球,在研究它绕太阳公转时,把它看作质点,在研究它的自转时,又把它看作刚体. (四)速度0d limd t t t∆→∆==∆r r v速度v 是矢量,其方向沿t 时刻质点在轨迹上A 处的切线,它的单位是m ·s -1.(五)加速度220d d lim d d t t t t ∆→∆===∆v v ra加速度a 是速度v 对时间的一阶导数,或者是位矢r 对时间的二阶导数.它的单位是m ·s -2. (六)圆周运动圆周运动是最简单、最基本的曲线运动,2d ,d n vv a a tRτ==习题及解答: 一、填空题1. 一质点作半径为R 的匀速圆周运动,在此过程中质点的切向加速度的方向 改变 ,法向加速度的大小 不变 。
大学物理试题题库及答案一、选择题(每题2分,共20分)1. 光在真空中的传播速度是()。
A. 299792458 m/sB. 300000000 m/sC. 299792458 km/sD. 300000000 km/s2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
那么,当作用力增加一倍时,物体的加速度()。
A. 增加一倍B. 减少一半C. 保持不变D. 无法确定3. 一个物体从静止开始自由下落,其下落过程中,重力做功的功率与时间的关系是()。
A. 线性增加B. 指数增加C. 先增加后减少D. 保持不变4. 根据热力学第一定律,一个封闭系统的内能变化等于系统与外界交换的热量与系统对外做的功之和。
如果一个系统既没有热量交换也没有做功,那么它的内能()。
A. 增加B. 减少C. 保持不变5. 电磁波谱中,波长最短的是()。
A. 无线电波B. 微波C. 红外线D. 伽马射线6. 根据麦克斯韦方程组,变化的磁场会产生()。
A. 电场B. 磁场C. 重力场D. 温度场7. 一个理想的弹簧振子,其振动周期与振幅无关,与()有关。
A. 弹簧的劲度系数B. 振子的质量C. 弹簧的劲度系数和振子的质量D. 振子的质量与重力加速度8. 根据量子力学,一个粒子的波函数可以描述粒子的()。
A. 位置B. 动量C. 能量D. 位置和动量的概率分布9. 根据狭义相对论,当一个物体以接近光速的速度运动时,其质量会()。
A. 增加B. 减少C. 保持不变10. 在理想气体状态方程PV=nRT中,R代表的是()。
A. 气体常数B. 温度C. 压力D. 体积二、填空题(每题2分,共20分)1. 根据库仑定律,两个点电荷之间的力与它们的电荷量乘积成正比,与它们之间距离的平方成反比,其比例系数是______。
2. 欧姆定律表明,导体中的电流与两端电压成正比,与导体的电阻成反比,其数学表达式为______。
3. 一个物体在水平面上以恒定加速度运动,其位移与时间的关系可以表示为s = __________。
大学物理经典题型解析大学物理是一门重要的基础学科,涵盖了力学、热学、电磁学、光学和近代物理学等多个领域。
在学习过程中,掌握经典题型对于理解和应用物理知识至关重要。
下面,我们将对一些常见的大学物理经典题型进行解析。
一、力学部分1、牛顿运动定律的应用例题:一个质量为 m 的物体放在光滑水平面上,受到水平方向的恒力 F 作用,求物体的加速度和经过时间 t 后的速度。
解析:根据牛顿第二定律 F = ma,可得加速度 a = F / m 。
经过时间 t 后的速度 v = at =(F / m) × t 。
这道题主要考查对牛顿第二定律的理解和应用,需要明确力、质量和加速度之间的关系。
2、机械能守恒定律例题:一个质量为 m 的物体从高度为 h 的光滑斜面顶端由静止下滑,求物体到达斜面底端时的速度。
解析:在下滑过程中,只有重力做功,机械能守恒。
重力势能的减少量等于动能的增加量,即 mgh =(1/2)mv²,解得 v =√(2gh) 。
解决这类问题的关键是判断系统是否只有重力或弹力做功,从而确定能否应用机械能守恒定律。
二、热学部分1、理想气体状态方程例题:一定质量的理想气体,在压强为 P1 、体积为 V1 、温度为T1 时,经过绝热压缩,使其体积变为 V2 ,求此时的压强 P2 。
解析:对于绝热过程,有PV^γ =常数(γ 为比热容比)。
由理想气体状态方程 P1V1 / T1 = P2V2 / T2 ,且绝热过程中 T2 / T1 =(V1 / V2)^(γ 1) ,联立可得 P2 。
这道题需要综合运用理想气体状态方程和绝热过程的特点。
2、热力学第一定律例题:一个热机从高温热源吸收 Q1 的热量,向低温热源放出 Q2 的热量,对外做功 W ,求热机的效率。
解析:热机效率η = W / Q1 =(Q1 Q2) / Q1 。
理解热力学第一定律中内能的变化、热量和做功之间的关系是解决此类问题的基础。
大学物理试题讲解及答案一、选择题1. 光的波长为λ,频率为f,光速为c,下列关系式正确的是()。
A. λf = cB. λf = 2cC. λf = c/2D. λf = c^2答案:A2. 一个物体在水平面上做匀加速直线运动,已知加速度a=2m/s²,初速度v₀=3m/s,那么2秒后的速度v₂为()。
A. 7m/sB. 9m/sC. 11m/sD. 13m/s答案:B二、填空题3. 根据牛顿第二定律,物体的加速度a与作用力F和物体质量m的关系是a=______。
答案:F/m4. 一个物体从静止开始下落,忽略空气阻力,其下落过程中的加速度为______。
答案:g(重力加速度)三、计算题5. 一个质量为m的物体,从高度h处自由下落,求物体落地时的速度v。
解:由能量守恒定律可知,物体的势能转化为动能,即:mgh = 1/2 * mv²解得:v = √(2gh)答案:v = √(2gh)6. 一列火车以速度v₀进入一个隧道,隧道长度为L,火车长度为l,求火车完全通过隧道所需的时间t。
解:火车完全通过隧道时,其尾部刚好离开隧道口,此时火车行驶的距离为L+l。
由速度公式v = s/t,得:t = (L+l)/v₀答案:t = (L+l)/v₀四、简答题7. 简述牛顿第三定律的内容。
答案:牛顿第三定律指出,对于两个相互作用的物体,它们之间的作用力和反作用力大小相等、方向相反。
8. 什么是电磁感应现象?答案:电磁感应现象是指当导体在磁场中运动,或者磁场发生变化时,导体中会产生感应电动势的现象。
五、论述题9. 论述相对论中时间膨胀的概念。
答案:时间膨胀是相对论中的一个重要概念,指的是当一个物体以接近光速的速度运动时,相对于静止观察者的时间会变慢。
这种现象表明,时间并不是绝对的,而是相对的,取决于观察者的运动状态。
10. 试述量子力学与经典力学的主要区别。
答案:量子力学与经典力学的主要区别在于它们描述的物理现象的尺度不同。
大学物理试题讲解及答案一、选择题(每题2分,共20分)1. 光在真空中的传播速度是()。
A. 3×10^5 km/sB. 3×10^8 m/sC. 3×10^9 km/sD. 3×10^11 m/s答案:B2. 根据牛顿第二定律,力和加速度的方向()。
A. 总是相同B. 总是相反C. 有时相同,有时相反D. 无关答案:A3. 一个物体的质量为2kg,受到的力为10N,那么它的加速度是()。
A. 5 m/s^2B. 10 m/s^2C. 20 m/s^2D. 无法确定答案:A4. 一个点电荷在电场中从静止开始运动,其电势能将()。
A. 增加B. 减少C. 保持不变D. 先增加后减少答案:B5. 根据热力学第一定律,一个系统在绝热过程中()。
A. 内能增加B. 内能减少C. 内能不变D. 无法确定答案:D6. 光的折射定律表明,入射角和折射角的关系是()。
A. 入射角大,折射角小B. 入射角小,折射角大C. 入射角和折射角成正比D. 入射角和折射角成反比答案:C7. 一个物体在自由下落过程中,其动能和重力势能的关系是()。
A. 动能增加,重力势能减少B. 动能减少,重力势能增加C. 动能和重力势能之和保持不变D. 动能和重力势能之和增加答案:C8. 根据麦克斯韦方程组,电磁波的传播速度是()。
A. 光速的一半B. 光速C. 超过光速D. 低于光速答案:B9. 在理想气体定律中,气体的压强与体积成()。
A. 正比B. 反比C. 无关D. 先正比后反比答案:B10. 根据欧姆定律,电阻两端的电压与通过电阻的电流之间的关系是()。
A. 正比B. 反比C. 无关D. 先正比后反比答案:A二、填空题(每题2分,共20分)1. 牛顿第三定律指出,作用力和反作用力大小相等、方向相反、作用在_________上。
答案:不同物体2. 在国际单位制中,力的单位是_________。
大学物理复习题分解第一章质点运动学htz?(h?0,??0,R、1、设质点的运动方程x?Rcos?t,y?Rsin?t,2?h、ω=常数),求:①位置矢量的表达式;②任意时刻速度;③任意时刻加速度。
2、一质点在xoy平面上运动,运动函数为x=2t,y=4t2-8(采用国际单位制),求:①质点的轨道方程;②t=1s和t=2s 时,质点的位置、速度和加速度。
3、一质量为10kg的物体沿x轴无摩擦地运动,设t?0时物体位于原点,速度为零,求:①设物体在力F?(3?4t)N的作用下运动了3s,它的速度及加速度各为多少?②设物体在力F?(3?4x)N的作用下移动了3m,它的速度和加速度各为多少?4、有一学生在体育馆阳台上以投射角??300和速率v0?20m/s向台前操场投出一垒球。
球离开手时距离操场水平面的高度h?10m。
试问球投出后何时着地?在何处着地?5、一吊扇翼片长R?0.50m,以n?180r/min的转速转动。
关闭电源开关后,吊扇均匀减速,经tA?1.50min转动停止。
(1)求吊扇翼尖原来的转动角速度?0与线速度v0;(2)求关闭电源开关后时翼尖的角加速度、切向加速度、法向加速度和总加速度。
6、质量m?2kg质点在力F的作用下,在OX直线上运动,运动方程为:x?1t2?2t?4(F,x,t采用国际单位),求:⑴ t=2s 21末的速度v?? 和加速度a??⑵ 在t=1s到t=2s的过程中,力F的冲量I??⑶在t=1s到t=2s的过程中,力F做的功W??第二章牛顿运动定律1、质量为m的小球从高处落下,设它所受到的空气阻力与它的速度的大小成正比f当小球下落的速度vT?80m/s 时,?kv。
重力与阻力平衡,小球作匀速直线运动。
求小球下落到速度v1?1vT时,所经历的时间。
22、一个质量m为的珠子系在线的一端,线的另一端绑在墙上的钉子上,线长为l。
先拉动珠子使线保持水平静止,然后松手使珠子下落。
求线摆下?角时这个珠子的速率和线的张力。
j i r )()(t y t x +=大学物理期末复习题力学部分一、填空题:1. 已知质点的运动方程,则质点的速度为 ,加速度为 。
2.一质点作直线运动,其运动方程为221)s m 1()s m 2(m 2t t x --⋅-⋅+=,则从0=t 到s 4=t 时间间隔质点的位移大小 质点的路程 。
3. 设质点沿x 轴作直线运动,加速度t a )s m 2(3-⋅=,在0=t 时刻,质点的位置坐标0=x 且00=v ,则在时刻t ,质点的速度 ,和位置 。
4.一物体在外力作用下由静止沿直线开始运动。
第一阶段中速度从零增至v,第二阶段中速度从v 增至2v ,在这两个阶段中外力做功之比为 。
5.一质点作斜上抛运动(忽略空气阻力)。
质点在运动过程中,切向加速度是,法向加速度是 ,合加速度是 。
(填变化的或不变的) 6.质量m =40 kg 的箱子放在卡车的车厢底板上,已知箱子与底板之间的静摩擦系数为s =0.40,滑动摩擦系数为k =0.25,试分别写出在下列情况下,作用在箱子上的摩擦力的大小和方向.(1)卡车以a = 2 m/s 2的加速度行驶,f =_________,方向_________.(2)卡车以a = -5 m/s 2的加速度急刹车,f =________,方向________.7.有一单摆,在小球摆动过程中,小球的动量 ;小球与地球组成的系统机械能 ;小球对细绳悬点的角动量 (不计空气阻力).(填守恒或不守恒)二、单选题:1.下列说法中哪一个是正确的( )(A )加速度恒定不变时,质点运动方向也不变(B )平均速率等于平均速度的大小(C )当物体的速度为零时,其加速度必为零(D )质点作曲线运动时,质点速度大小的变化产生切向加速度,速度方向的变化产生法向加速度。
2. 质点沿Ox 轴运动方程是m 5)s m 4()s m 1(122+⋅-⋅=--t t x ,则前s 3它的( ) (A )位移和路程都是m 3 (B )位移和路程都是-m 3(C )位移为-m 3,路程为m 3 (D )位移为-m 3,路程为m 53. 下列哪一种说法是正确的( )(A )运动物体加速度越大,速度越快(B )作直线运动的物体,加速度越来越小,速度也越来越小(C )切向加速度为正值时,质点运动加快(D )法向加速度越大,质点运动的法向速度变化越快4.一质点在平面上运动,已知质点的位置矢量的表示式为j i r 22bt at +=(其中a 、b 为常量),则该质点作( )(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动5. 用细绳系一小球,使之在竖直平面作圆周运动,当小球运动到最高点时,它( )(A )将受到重力,绳的拉力和向心力的作用(B )将受到重力,绳的拉力和离心力的作用(C )绳子的拉力可能为零(D )小球可能处于受力平衡状态6.功的概念有以下几种说法(1)保守力作功时,系统相应的势能增加(2)质点运动经一闭合路径,保守力对质点作的功为零(3)作用力和反作用力大小相等,方向相反,所以两者作功的代数和必为零以上论述中,哪些是正确的( )(A )(1)(2) (B )(2)(3)(C )只有(2) (D )只有(3)7.质量为m 的宇宙飞船返回地球时,将发动机关闭,可以认为它仅在地球引力场中运动,当它从与地球中心距离为1R 下降到距离地球中心2R 时,它的动能的增量为( )(A )2E R mm G ⋅ (B )2121E R R R R m Gm - (C )2121E R R R mGm - (D )222121E R R R R m Gm -- 8.下列说法中哪个或哪些是正确的( )(1)作用在定轴转动刚体上的力越大,刚体转动的角加速度应越大。
姓名班级学号 ………密……….…………封…………………线…………………内……..………………不……………………. 准…………………答…. …………题…大学基础课《大学物理(一)》期末考试试题 附解析考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
3、请仔细阅读各种题目的回答要求,在密封线内答题,否则不予评分。
一、填空题(共10小题,每题2分,共20分)1、质量分别为m 和2m 的两物体(都可视为质点),用一长为l 的轻质刚性细杆相连,系统绕通过杆且与杆垂直的竖直固定轴O 转动,已知O 轴离质量为2m 的质点的距离为l ,质量为m 的质点的线速度为v 且与杆垂直,则该系统对转轴的角动量(动量矩)大小为________。
2、一根长为l ,质量为m 的均匀细棒在地上竖立着。
如果让竖立着的棒以下端与地面接触处为轴倒下,则上端到达地面时细棒的角加速度应为_____。
3、四根辐条的金属轮子在均匀磁场中转动,转轴与平行,轮子和辐条都是导体,辐条长为R ,轮子转速为n ,则轮子中心O 与轮边缘b 之间的感应电动势为______________,电势最高点是在______________处。
4、一束平行单色光垂直入射在一光栅上,若光栅的透明缝宽度与不透明部分宽度相等,则可能看到的衍射光谱的级次为____________。
5、一质点作半径为0.1m 的圆周运动,其运动方程为:(SI ),则其切向加速度为=_____________。
6、一质点的加速度和位移的关系为且,则速度的最大值为_______________ 。
7、若静电场的某个区域电势等于恒量,则该区域的电场强度为_______________,若电势随空间坐标作线性变化,则该区域的电场强度分布为 _______________。
8、一长为的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动。
第一章 质点运动学1-1 一质点沿x 轴运动的规律是m t t x 542+-=,求前3s 它的位移和路程。
解:由042=-==t dt dxv 0/22>==s m dtdv a得质点做匀加速运动,在s t p 2=时运动方向改变。
0=t 时,()m x 50=s t 2=时,()m x 15842=+-=〔如图习题1-1解答图〕, s t 3=时,()m x 251293=+-=。
那么时间s 2~0质点的位移为()()m x x x 451021-=-=-=∆时间s 3~2质点的位移为()()m x x x 112232=-=-=∆前3s 它的路程m x x S 51421=+=∆+∆=前3s 它的位移m x x x 31421-=+-=∆+∆=∆习题1-1解答图a11-3 一质点的运动方程为m j t i t r 32+=。
求s t 1=时的速度、s 3~1的平均速度和平均加速度。
解:质点的速度矢量为s m j t i dtr d v /62+==s t 1=时的速度为s m j i j t i v s t s t /66121 +=+===。
s 3~1的平均速度为()()s m j i j i j i j i r r v st s t /262522225431313+=+=+-+=--===s 3~1的平均加速度为()()213/24265413sm j j i j i vv a s t s t=+-+=--===1-7 一质点沿半径为m 1的圆周运动,运动方程为rad t 332+=θ。
求s t 2=时,质点的切向角速度和法向加速度。
解:质点的角速度为29t dtd ==θω 质点的速度为R t R v 29==ω那么质点的切向加速度为tR dtdva t 18==质点的法向加速度为R t R a n 4281==ω故,s t 2=时,质点的切向加速度为222/36121818s m tR a s t st t=⨯⨯====法向加速度为24242/1296128181s m R t a s t st n=⨯⨯====第二章 牛顿运动定律2-1 质量为kg m 25.0=的质点,受力N i t F =的作用,0=t 时该质点以s m j v /2=的速度通过坐标原点。
大学物理考试题库1-3 一质点在xOy 平面上运动,运动方程为x =3t +5, y =21t 2+3t -4.式中t 以 s 计,x ,y 以m 计.(1)以时间t 为变量,写出质点位置矢量的表示式;(2)求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算t =0 s 时刻到t =4s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式).解:(1)jt t i t r)4321()53(2 m (2)将1 t ,2 t 代入上式即有j i r5.081 mj j r4112 mj j r r r5.4312 m(3)∵ j i r j j r1617,4540∴ 104s m 534201204 j i j i r r t r v(4) 1s m )3(3d d j t i t r v则 j i v 734 1s m(5)∵ j i v j i v 73,3340204s m 1444 j v v t v a (6) 2s m 1d d j t v a这说明该点只有y 方向的加速度,且为恒量。
1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以0v (m ·1s )的速率收绳时,试求船运动的速度和加速度的大小.图1-4解: 设人到船之间绳的长度为l ,此时绳与水面成 角,由图可知222s h l将上式对时间t 求导,得t s stl ld d 2d d 2 题1-4图根据速度的定义,并注意到l ,s 是随t 减少的,∴t s v v t l v d d ,d d 0船绳 即cos d d d d 00v v s lt l s l t s v船 或 s v s h s lv v 02/1220)(船将船v 再对t 求导,即得船的加速度3202220202002)(d d d d d d s v h s v s l s v slv s v v s t sl t l st v a 船船1-5 质点沿x 轴运动,其加速度和位置的关系为 a =2+62x ,a 的单位为2s m ,x 的单位为 m. 质点在x =0处,速度为101s m ,试求质点在任何坐标处的速度值.解: ∵x v v t x x v t v a d d d d d d d d分离变量: x x adx d )62(d 2两边积分得 cx x v 322221由题知,0 x 时,100v ,∴50 c∴ 13s m 252 x x v1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m ,开始运动时,x =5 m ,v =0,求该质点在t =10s 时的速度和位置.解:∵ t t va 34d d分离变量,得 t t v d )34(d 积分,得 12234c t t v由题知,0 t ,00v ,∴01 c故2234t t v 又因为2234d d t t t x v 分离变量, tt t x d )234(d 2积分得 232212c t t x由题知 0 t ,50x ,∴52 c故 521232 t t x所以s 10 t 时m70551021102s m 190102310432101210x v1-8 质点沿半径为R 的圆周按s =2021bt t v 的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点的加速度;(2) t 为何值时,加速度在数值上等于b .解:(1) bt v t sv0d d R bt v R v a btv a n 202)(d d则 240222)(R bt v b a a a n加速度与半径的夹角为20)(arctanbt v Rb a a n(2)由题意应有2402)(R bt v b b a即 0)(,)(4024022 bt v R bt v b b∴当b v t 0时,b a 1-10 以初速度0v =201s m 抛出一小球,抛出方向与水平面成幔60°的夹角,求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R . (提示:利用曲率半径与法向加速度之间的关系)解:设小球所作抛物线轨道如题1-10图所示.题1-10图(1)在最高点,o 0160cos v v v x 21s m 10 g a n又∵1211 va n∴m1010)60cos 20(22111n a v(2)在落地点,2002 v v 1s m ,而o60cos 2 g a n∴m8060cos 10)20(22222n a v2-4 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mk e v )(0 ;(2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t m ke )( ];(3)停止运动前经过的距离为)(0k m v ;(4)证明当k m t 时速度减至0v 的e 1,式中m 为质点的质量.答: (1)∵ t vm kv a d d分离变量,得m t k v v d d 即 v v t m tk vv 00d dmkt e v v ln ln 0∴tm k e v v 0(2)tttm k m ke k mv t ev t v x 000)1(d d(3)质点停止运动时速度为零,即t →∞,故有0d k mv t ev x tm k(4)当t=k m时,其速度为e v e v ev v kmm k 0100即速度减至0v 的e 1.2-9 一质量为m 的质点在xOy 平面上运动,其位置矢量为j t b i t a rsin cos求质点的动量及t =0 到2t 时间内质点所受的合力的冲量和质点动量的改变量.解: 质点的动量为)cos sin (j t b i t a m v m p将0 t 和2t 分别代入上式,得j b m p1,i a m p 2,则动量的增量亦即质点所受外力的冲量为)(12j b i a m p p p I2-18 如题2-18图所示,一物体质量为2kg ,以初速度0v =3m ·s -1从斜面A 点处下滑,它与斜面的摩擦力为8N ,到达B 点后压缩弹簧20cm 后停止,然后又被弹回,求弹簧的劲度系数和物体最后能回到的高度.解: 取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原 长处为弹性势能零点。
则由功能原理,有37sin 212122mgs mv kx s f r 222137sin 21kx s f mgs mv k r式中m 52.08.4 s ,m 2.0 x ,再代入有关数据,解得-1m N 1390 k题2-18图再次运用功能原理,求木块弹回的高度h2o 2137sin kx s mg s f r代入有关数据,得 m 4.1 s ,则木块弹回高度m 84.037sin o s h题2-19图2-19 质量为M 的大木块具有半径为R 的四分之一弧形槽,如题2-19图所示.质量为m 的小立方体从曲面的顶端滑下,大木块放在光滑水平面上,二者都作无摩擦的运动,而且都从静止开始,求小木块脱离大木块时的速度.解: m 从M 上下滑的过程中,机械能守恒,以m ,M ,地球为系统,以最低点为重力势能零点,则有222121MV mv mgR又下滑过程,动量守恒,以m ,M 为系统则在m 脱离M 瞬间,水平方向有0 MV mv联立,以上两式,得M m MgR v22-20 一个小球与一质量相等的静止小球发生非对心弹性碰撞,试证碰后两小球的运动方向互相垂直.证: 两小球碰撞过程中,机械能守恒,有222120212121mv mv mv即 222120v v v ①题2-20图(a) 题2-20图(b) 又碰撞过程中,动量守恒,即有210v m v m v m 亦即 210v v v②由②可作出矢量三角形如图(b),又由①式可知三矢量之间满足勾股定理,且以0v 为斜边,故知1v 与2v 是互相垂直的.2-22 哈雷彗星绕太阳运动的轨道是一个椭圆.它离太阳最近距离为1r =8.75×1010m 时的速率是1v =5.46×104m ·s -1,它离太阳最远时的速率是2v =9.08×102m ·s -1这时它离太阳的距离2r 多少?(太阳位于椭圆的一个焦点。
)解: 哈雷彗星绕太阳运动时受到太阳的引力——即有心力的作用,所以角动量守恒;又由于哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有 2211mv r mv r∴ m 1026.51008.91046.51075.81224102112 v v r r 2-29图2-29 如题2-29图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上.现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度 30°处.(1)设这碰撞为弹性碰撞,试计算小球初速0v 的值; (2)相撞时小球受到多大的冲量?解: (1)设小球的初速度为0v ,棒经小球碰撞后得到的初角速度为 ,而小球的速度变为v ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:mvl I l mv 0 ①2220212121mv I mv ②上两式中231Ml I ,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度o30 ,按机械能守恒定律可列式:)30cos 1(2212 lMg I ③由③式得2121)231(3)30cos 1(l g I Mgl由①式ml I v v0 ④由②式m I v v 2202⑤所以22001)(2 m v ml I v求得glmM m m M l ml I l v31232(6)311(2)1(220 (2)相碰时小球受到的冲量为d mvmv mv t F由①式求得Ml l I mv mv t F 31d 0glM 6)32(6负号说明所受冲量的方向与初速度方向相反.6-5速率分布函数)(v f 的物理意义是什么?试说明下列各量的物理意义(n 为分子数密度,N 为系统总分子数).(1)v v f d )( (2)v v nf d )( (3)v v Nf d )( (4)vv v f 0d )( (5)d )(v v f (6) 21d )(v v v v Nf解:)(v f :表示一定质量的气体,在温度为T 的平衡态时,分布在速率v 附近单位速率区间内的分子数占总分子数的百分比.(1) v v f d )(:表示分布在速率v 附近,速率区间v d 内的分子数占总分子数的百分比. (2) v v nf d )(:表示分布在速率v 附近、速率区间dv 内的分子数密度. (3) v v Nf d )(:表示分布在速率v 附近、速率区间dv 内的分子数. (4)vv v f 0d )(:表示分布在21~v v 区间内的分子数占总分子数的百分比.(5)d )(v v f :表示分布在 ~0的速率区间内所有分子,其与总分子数的比值是1.(6)21d )(v v v v Nf :表示分布在21~v v 区间内的分子数.6-10 题6-10图(a)是氢和氧在同一温度下的两条麦克斯韦速率分布曲线,哪一条代表氢?题6-10图(b)是某种气体在不同温度下的两条麦克斯韦速率分布曲线,哪一条的温度较高? 答:图(a)中(1)表示氧,(2)表示氢;图(b)中(2)温度高.题6-10图6-13 试说明下列各量的物理意义.(1)kT 21 (2)kT 23 (3)kT i2(4)RT i M M mol 2 (5)RT i 2 (6)RT 23解:(1)在平衡态下,分子热运动能量平均地分配在分子每一个自由度上的能量均为k 21T . (2)在平衡态下,分子平均平动动能均为kT 23. (3)在平衡态下,自由度为i 的分子平均总能量均为kT i2. (4)由质量为M ,摩尔质量为mol M ,自由度为i 的分子组成的系统的内能为RT iM M 2mol .(5) 1摩尔自由度为i 的分子组成的系统内能为RT i2. (6) 1摩尔自由度为3的分子组成的系统的内能RT 23,或者说热力学体系内,1摩尔分子的平均平动动能之总和为RT 23.6-15 何谓理想气体的内能?为什么理想气体的内能是温度的单值函数?解:在不涉及化学反应,核反应,电磁变化的情况下,内能是指分子的热运动能量和分子间相互作用势能之总和.对于理想气体不考虑分子间相互作用能量,质量为M 的理想气体的所有分子的热运动能量称为理想气体的内能.由于理想气体不计分子间相互作用力,内能仅为热运动能量之总和.即RT iM M E 2mol是温度的单值函数.6-16 如果氢和氦的摩尔数和温度相同,则下列各量是否相等,为什么?(1)分子的平均平动动能;(2)分子的平动动能;(3)内能. 解:(1)相等,分子的平均平动动能都为kT 23. (2)不相等,因为氢分子的平均动能kT 25,氦分子的平均动能kT 23.(3)不相等,因为氢分子的内能RT 25,氦分子的内能RT 23 . 7-10 如题7-10图所示,一系统由状态a 沿acb 到达状态b 的过程中,有350 J 热量传入系统,而系统作功126 J .(1)若沿adb 时,系统作功42 J ,问有多少热量传入系统? (2)若系统由状态b 沿曲线ba 返回状态a 时,外界对系统作功为84 J ,试问系统是吸热还是放热?热量传递是多少?题7-10图解:由abc 过程可求出b 态和a 态的内能之差AE Q 224126350 A Q E Jabd 过程,系统作功42 A J26642224 A E Q J 系统吸收热量ba 过程,外界对系统作功84 A J30884224 A E Q J 系统放热7-11 1 mol 单原子理想气体从300 K 加热到350 K ,问在下列两过程中吸收了多少热量?增加了多少内能?对外作了多少功?(1)体积保持不变;(2)压力保持不变.解:(1)等体过程由热力学第一定律得E Q吸热)(2)(1212V T T R iT T C E Q25.623)300350(31.823E Q J对外作功 0 A(2)等压过程)(22)(1212P T T R i T T C Q吸热75.1038)300350(31.825Q J)(12V T T C E内能增加 25.623)300350(31.823 E J对外作功 5.4155.62375.1038 E Q A J8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2 ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题8-2图示220)sin 2(π41sin cos l q F T mg T e解得 tan 4sin 20mg l q8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量 和- ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d q S E s 取同轴圆柱形高斯面,侧面积rl S π2则 rl E S E S π2d对(1) 1R r 0,0 E q(2) 21R r Rl q ∴ rE 0π2 沿径向向外 (3) 2R r 0 q∴ 0 E8-13 半径为R 的均匀带电球体内的电荷体密度为 ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O 点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电 的均匀球与带电 的均匀小球的组合,见题8-13图(a).(1) 球在O 点产生电场010 E ,球在O 点产生电场'd π4π3430320OO r E ∴ O 点电场'd 33030OO r E ; (2) 在O 产生电场'dπ4d 3430301OO E 球在O 产生电场002 E∴ O 点电场 003 E 'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O 的位矢为r ,相对O 点位矢为r(如题8-13(b)图) 则 03 r E PO , 03 r E O P , ∴ 0003'3)(3 d OO r r E E E O P PO P ∴腔内场强是均匀的.8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题8-16图示0π4 O U 0)( R R 0π41 O U )3(R q R q Rq 0π6 ∴ Rq q U U q A o C O 00π6)( 9-7 如题9-7图所示,AB 、CD 为长直导线,C B 为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中 AB产生 01 B CD 产生R I B 1202 ,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003 R I R I B ,方向 向里 ∴)6231(203210 R I B B B B ,方向 向里. 题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度. 解: 如题9-9图所示,圆心O 点磁场由直电流 A 和 B 及两段圆弧上电流1I 与2I 所产生,但 A 和 B 在O 点产生的磁场为零。