变量间的相关关系及统计案例复习ppt课件(自制) 通用
- 格式:ppt
- 大小:1.23 MB
- 文档页数:66
第6讲 变量间的相关关系、统计案例[玩前必备]1.两个变量的线性相关 (1)正相关在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关. (2)负相关在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关. (3)线性相关关系、回归直线如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线. 2.回归方程 (1)最小二乘法求回归直线,使得样本数据的点到它的距离的平方和最小的方法叫做最小二乘法. (2)回归方程方程y ^=b ^x +a ^是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的回归方程,其中a ^,b ^是待定参数.⎩⎨⎧b ^=∑n i =1(x i-x )(y i-y )∑n i =1(x i-x )2=∑ni =1x i y i-n x y ∑n i =1x 2i-n x2,a ^=y -b ^x .3.回归分析(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法. (2)样本点的中心对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中(x ,y )称为样本点的中心. (3)相关系数当r >0时,表明两个变量正相关; 当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性.4.独立性检验(1)分类变量:变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量. (2)列联表:列出的两个分类变量的频数表,称为列联表.假设有两个分类变量X 和Y ,它们的可能取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(称为2×2列联表)为2×2列联表构造一个随机变量K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d 为样本容量.(3)独立性检验利用随机变量K 2来判断“两个分类变量有关系”的方法称为独立性检验. 当χ2≤2.706时,没有充分的证据判定变量A ,B 有关联; 当χ2>2.706时,有90%的把握判定变量A ,B 有关联; 当χ>3.841时,有95%的把握判定变量A ,B 有关联; 当χ>6.635时,有99%的把握判定变量A ,B 有关联.[玩转典例]题型一 相关关系判断例1 变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r 1表示变量Y 与X 之间的线性相关系数,r 2表示变量V 与U 之间的线性相关系数,则( ) A .r 2<r 1<0 B .0<r 2<r 1 C .r 2<0<r 1 D .r 2=r 1例2 四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:① y 与x 负相关且y ^=2.347x -6.423; ②y 与x 负相关且y ^=-3.476x +5.648; ③y 与x 正相关且y ^=5.437x +8.493; ④y 与x 正相关且y ^=-4.326x -4.578. 其中一定不正确的结论的序号是( )A .①②B .②③C .③④D .①④ [玩转跟踪]1.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x -85.71,则下列结论中不正确...的是( ) A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1cm ,则其体重约增加0.85kgD .若该大学某女生身高为170cm ,则可断定其体重必为58.79kg2.(2015湖北)已知变量x 和y 满足关系y =-0.1x +1,变量y 与z 正相关.下列结论中正确的是( )A .x 与y 正相关,x 与z 负相关B .x 与y 正相关,x 与z 正相关C .x 与y 负相关,x 与z 负相关D .x 与y 负相关,x 与z 正相关 题型二 线性回归分析 例3 已知x ,y 取值如下表:从所得的散点图分析可知:y 与x 线性相关,且y =0.95x +a ,则a =( ) A .1.30 B .1.45 C .1.65 D .1.80例4 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据.(1)(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y ^=b ^x +a ^; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5)[玩转跟踪]1.已知x 与y 之间的一组数据:已求得关于y 与x 的线性回归方程y =2.1x +0.85,则m 的值为( ) A .0.85 B .0.75 C .0.6 D .0.52.(15全国1)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.nnnn表中w i =x i ,w =18∑=ni 1w i.(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题: ①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v ^=α^+β^u 的斜率和截距的最小二乘估计分别为121()()=()niii nii u u v v u u β==---∑∑,α^=v -β^u .题型三 独立性检验分析例5 有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:已知在全部105人中随机抽取1人,成绩优秀的概率为27,则下列说法正确的是( )A .列联表中c 的值为30,b 的值为35B .列联表中c 的值为15,b 的值为50C .根据列联表中的数据,若按95%的可靠性要求,能认为“成绩与班级有关系”D .根据列联表中的数据,若按95%的可靠性要求,不能认为“成绩与班级有关系”[玩转跟踪]1. 在研究色盲与性别的关系调查中,调查了男性480人,其中有38人患色盲,调查的520名女性中,有6人患色盲.(1)根据以上数据建立一个2×2列联表;(2)若认为“性别与患色盲有关系”,求出错的概率.2.(2017·全国Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).[玩转练习]1.(2017山东)为了研究某班学生的脚长(单位:厘米)和身高(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出与之间有线性相关关系,设其回归直线方程为.已知,,.该班某学生的脚长为24,据此估计其身高为A .B .C .D .2.(2015福建)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归本线方程ˆˆˆybx a =+ ,其中ˆˆˆ0.76,b a y bx ==- ,据此估计,该社区一户收入为15万元家庭年支出为A .11.4万元B .11.8万元C .12.0万元D .12.2万元 3.(2014重庆)已知变量与正相关,且由观测数据算得样本的平均数3x =,,则由该观测数据算得的线性回归方程可能为A .0.4 2.3y x =+B .2 2.4y x =-C .29.5y x =-+D .0.3 4.4y x =-+ 4.(2014湖北)根据如下样本数据得到的回归方程为ˆybx a =+,则 A .0a >,0b < B .0a >,0b > C .0a <,0b < D .0a <,0b >x y y x ˆˆˆy bx a =+101225i i x ==∑1011600i i y ==∑ˆ4b =160163166170x y 3.5y =5.(2014江西)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是6.(2016年全国III)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:719.32ii y==∑,7140.17i i i t y ==∑0.55=≈2.646.参考公式:相关系数()()ni it t y y r --=∑ 回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为:121()()()niii ni i t t y y b t t ==--=-∑∑,=.a y bt -7.(2014新课标2)某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘估计公式分别为:()()()121nii i nii tty y b tt∧==--=-∑∑,ˆˆay bt =-8.(2019济南模拟)微信是现代生活进行信息交流的重要工具,某公司200名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余的员工每天使用微信的时间在一小时以上,若将员工分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,那么使用微信的人中75%是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,那么经常使用微信的员工中有23是青年人.(1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出2×2列联表:(2)根据2×2列表中的数据利用独立性检验的方法判断是否有99.9%的把握认为“经常使用微信与年龄有关”? 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).9.某省会城市地铁将于2019年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:11(1)若以区间的中点值为该区间内的人均月收入,求参与调查的人员中“赞成定价者”与“认为价格偏高者”的月平均收入的差异是多少(结果保留2位小数);(2)由以上统计数据填下面2×2列联表,分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).。