第8章 中子测量方法
- 格式:ppt
- 大小:473.00 KB
- 文档页数:24
中子物理讲义(研究生讲座教材)兰州大学物理学院王学智目录绪言第一章Q方程及其应用§1 核反应和反应道§2 Q方程的推导§3 反应阈能和临界能量§4 Q方程的应用§5 L系和C系的出射角转换第二章中子源物理§1 中子产生§2 同位素中子源§3 加速器中子源§4 常用加速器中子源§5 反应堆中子源第三章中子与物质的相互作用§1 基本物理量§2 核反应机制§3 中子与物质相互作用的物理过程第四章中子测量技术§1 长中子计数器§2 伴随粒子法§3 望远镜§4 裂变室§5 活化探测器第五章中子剂量测量方法§1 基本概念§2 中子雷姆仪§3 (n,γ)混合场的吸收剂量测量第六章中子能谱测量§1 反冲质子法§2 特种核乳胶法§3 阈能探测器法§4 中子TOF谱仪§5 聚变中子测温第七章辐射防护问题§1 γ的屏蔽§2 中子屏蔽第八章宏观中子物理§1 中子减速和热化§2 中子在物质中的空间分布§3 多组理论绪言1932年英国人Chachwick 发现中子,这是20世纪物理学发展中的重大事件,它与人工放射性、带电粒子加速技术并列为30年代的原子核研究的三个里程碑。
中子应用于研究物质结构的各门学科中,不仅引起核物理研究的质的飞跃,而且因建立原子核有质子与中子通过强相互作用构成的量子多体体系的认识以及对介子场理论研究和实验研究的深入,并促进粒子物理学发展。
中子应用促进了一系列交叉学科的发展。
核裂变现象不仅为核物理开辟了一个重要分支领域,而且进一步促进核物理-化学的紧密结合-核化学分支。
中子作为改造自然界的工具,在工业、技术、材料、资源等方面的应用,对社会发展、经济增长产生极为广泛的影响。
第八章 密度测井和岩性密度测井此两种测井方法是由伽马源向地层发射伽马射线,经与地层介质相互作用后,再由伽马探测器接收(即为伽马-伽马测井),地层不同,探测器记录的读数不同,从而被用来研究地层性质。
§1 密度测井、岩性密度测井的地质物理基础一、岩石的体积密度b ρ(即真密度): VG b =ρ (单位体积岩石的质量)对含水纯岩石: φρφρρρρφ⋅+-=⋅+⋅=+=f ma f ma ma fma b V V V VG G )1( 单位:(g/cm 3)其中:V V V ma =+φ(1)组成岩石的骨架矿物不同,ρma 不同,如石英为2.65,方解石为2.71,白云石为2.87,对于相同孔隙度得到的体积密度也就不同,由此可判断岩性;另一方面,利用体积密度计算孔隙度时,必须得先确定岩性。
(2)孔隙性地层的密度小于致密地层,且随着φ的增加ρb 减小,由此可求φ。
且(盐水泥浆)(淡水泥浆)1.10.1=f ρ二、康普顿散射吸收系数∑中等能量γ射线与介质发生康普顿散射康普顿散射而使其强度减小的参数(康普顿减弱系数---由康普顿效应引起的伽马射线通过单位距离物质减弱程度): A N z b A eρσ⋅⋅=∑ 沉积岩中大多数核素A z 均接近于0.5(见表8-1, P138),常见的砂岩、石灰岩、白云岩的A z 的平均值也近似为0.5(见表8-2),所以对于一定能量范围的伽马射线(e σ为常数),∑只与b ρ有关。
密度测井利用此关系,通过记录康普顿散射的γ射线的强度来测量岩石的密度。
三、岩石的光电吸收截面1、线性光电吸收系数:当γ的能量大于原子核外电子的结合能时,发生光电效应的概率。
n A Z λρτ1.40089.0=2、岩石的光电吸收截面指数Pe 它是描述发生光电效应时物质对伽马光子吸收能力的一个参数,即伽马光子与岩石中一个电子发生光电效应的平均光电吸收截面,单位b/电子。
而它与原子序数关系为:Pe=aZ 3.6a 为常数,地层岩性不同,Pe 有不同的值,也就是说Pe 对岩性敏感,可以以来确定岩性,Pe 是岩性密度测井测量的一个参数。
第一章习题1,简述核物理常用基本概念1,元素(element ):元素,也叫化学元素,指具有相同核电荷数(质子数)的同一类原子的总称。
2,原子(atom ):构成化学元素的基本单元和化学变化中的最小微粒,即不能用化学变化再分的微粒。
3,原子核(atomic nucleus ):简称“核”,位于原子的核心部分,由质子和中子两种微粒构成。
4,核素(nuclide ):指具有一定数目质子和一定数目中子的一种原子。
5,核子(nucleon):质子、反质子、中子和反中子的总称,是组成原子核的粒子。
6,原子序数( atomic number ):是指元素在周期表中的序号,用Z 表示。
7,质量数(mass number ):是原子内质子和中子数之和,用A 表示。
8,中子数(neutron number ):特指原子核内的中子个数,用N 表示。
9,核素表示:N AZX ,简写为 :X A10,同重元素(isobar ):质量数相同而中子数和质子数不同的元素。
11,同位素(isotope ):原子序数相同而中子数不同的核素。
12,同中异位素(isotone ):中子数相同而质子数不同的核素。
13,同质异能素(isomer ):处于较长寿命的激发态的核素。
14,原子量(atomic weight ):某种原子的质量与碳-12原子质量的1/12的比值称为该原子的原子量,又称相对原子质量。
15,分子量(molecular weight ):组成分子的所有原子的原子量的总和。
16,同位素丰度(isotope abundance ):自然界中存在的某一元素的各种同位素占所有同位素的相对含量(以原子物质的量百分计)。
17,用丰度计算元素:原子量设元素的原子量为A ,各同位素的原子量为,各元素的自然界丰度为,则有18,阿伏伽德罗常数:12g 12C 所包含的C 原子个数,用Na 表示。
Na 6.022 x 102319,核素图(Chart of the Nuclides ):用原子序数作横座标,原子核中的中子数作纵座标,制作的一张图表。
第八章 多体问题迄今为止,我们的讨论墓本土局限于单拉子体系。
本章将把讨论推广到多拉子休系。
自然界实际存在的体来一般都是多杜子体来。
因此童子力学多体问题的研究不仅有巨夭的理论意义,而且有极大的实际价值。
但是,应该指出,量子力学的多体问题远比单休问题复杂。
这不仅因为,当拉子之问具有相互作用时,多拉子体系的薛定译方程一般无法求解,通常只能借助各种近似方法,按体来的各种不同性质以及和实比较时要求的绮确度,求近似解。
而且还因为,多杜子体系,特All 是全同拉子休余,还具有新的单拉子休系所没有的特性。
而这些特性又要求发展一些断的处理方法,比方二次量子化方法,等等。
另外还要指出,本章的内容不同于量子统计物理学。
本章只限于讨论温度为零的情况,只讨论真空平均值或者纯量子态的平均值,不涉及系综平均值,不涉及温度。
本章将先讨论全同拉子的一般特性,然后讨论两个确单的多拉子休来一一氮分子和氮原子的问题,介绍海特(Heitler 卜伦敦(London)理论,托马斯(Thomas )-费米f Fermi)方法。
再进一步讨论研究全同拉子体系最重要的表象一一杠子数表象,介绍二次量子化方法。
以及自洽场理论,哈特利(Hart ree)一福克(Fock)近似,巴T (Bardeen)-库柏(Cooper)--许瑞弗(Schriffer )超导理论,玻戈留博夫(Bogoiiubov)-华拉ti (Valatin )u,v 正则变换方法,这是非微扰理论中最重要的方法之一。
另外,还将介绍超流理论和近似二次量子化方法。
本章的许多理论和方法、即使现在,仍然在许多领域中有重要的实月价值。
9.1全同粒子的性质我们称质量、电荷、自旋、同位旋以及其他所有内案固有属性完全相同的粒子为全同杜子。
例如所有的电子是全同粒子,所有质子是全同粒子,但质子和电子不是全同粒子。
全同粒子的最重要的特点是:在同样的物理条件下,它们的行为完全相同。
因而用一个全同粒子代换另一个粒子,不引起物理状态的变化。