幂函数 优秀教案
- 格式:doc
- 大小:138.03 KB
- 文档页数:3
幂函数教学设计幂函数是初等函数的一种,是指以自然数为指数的函数。
其函数式可以表示为y=x^n,其中x为自变量,n为常数指数,y为函数的值。
以下是五个优秀的幂函数教学设计:1.教学目标:通过本节课的学习,学生将掌握幂函数的概念、性质和图像。
教学过程:(1)导入环节:通过提问引入幂函数的概念,如何用自然数表示指数。
(2)基础知识讲解:介绍幂函数的定义、性质和图像特点。
(3)解答问题:让学生通过例题解答,巩固对幂函数的理解。
(4)实例操作:以实际问题为背景,让学生应用幂函数解决实际问题。
(5)总结归纳:总结幂函数的特点和应用,并提醒学生注意幂函数与其他函数的区别。
2.教学目标:通过本节课的学习,学生将理解幂函数的增减性质和相关应用。
教学过程:(1)导入环节:通过展示两个幂函数的图像,让学生观察并讨论它们的变化趋势。
(2)基础知识讲解:讲解幂函数的增减性质,即正指数的幂函数递增,负指数的幂函数递减。
(3)实例分析:通过实例分析,揭示幂函数增减性质的应用,如求不等式的解等。
(4)实践操作:让学生通过练习题巩固对幂函数增减性质的理解和应用。
(5)拓展讨论:引导学生思考其他函数的增减性质,并与幂函数进行比较。
3.教学目标:通过本节课的学习,学生将学会化简幂函数表达式。
教学过程:(1)导入环节:通过提问引入化简幂函数表达式的概念和意义。
(2)基础知识讲解:介绍幂函数的化简规则和步骤,如指数相加相乘规则等。
(3)解答问题:通过例题解答,让学生掌握幂函数化简的方法和技巧。
(4)实例操练:让学生通过练习题巩固幂函数化简的能力。
(5)拓展应用:引导学生将化简幂函数应用到求导、积分等数学问题中。
4.教学目标:通过本节课的学习,学生将了解幂函数的特殊性质和图像变化规律。
教学过程:(1)导入环节:通过提问引入幂函数的特殊性质,如y=x^0、y=x^1等。
(2)基础知识讲解:介绍幂函数特殊性质的证明和图像变化规律。
(3)实例演示:通过示例演示,展示幂函数图像在特殊情况下的形态和变化特点。
幂函数优秀教案幂函数教学目标】1.知识与技能:1) 理解幂函数的概念,能够画出幂函数y=x,y=x^2,y=x^3,y=x^-1,y=x^2的图像。
2) 根据常见的幂函数图像,理解幂函数图像的变化情况和性质,并能进行简单的应用。
2.过程与方法:1) 通过观察、总结幂函数的性质,培养学生的识图能力和概括能力。
2) 使学生进一步体会数形结合的思想方法。
3.情感态度与价值观:1) 通过生活实例引出幂函数的概念,使学生体会到数学在实际生活中的应用,激发学生的研究兴趣。
2) 利用计算机,了解幂函数图像的变化规律使学生认识到现代技术在数学认识过程中的作用,从而激发学生的研究欲望。
教学重点】从五个具体幂函数中认识幂函数的一些性质。
教学难点】画五个具体幂函数的图像并由图像概括其性质,体会图像的变化规律。
教法】启发、引导教学过程】一、创设情景,引入新课通过观察几个例子的函数模型,引入新课。
二、互动探究,讲解新课1.幂函数的定义:一般地,函数y=x^α叫做幂函数,其中x为自变量,α为常数。
练:判断下列函数是否为幂函数?1) y=x^4 (2) y=2x^2 (3) y=-x^3 (4) y=2.常见幂函数的图像与性质:自主探究]分别作出函数y=x,y=x^2,y=x^3,y=x^-1,y=x^2的图像并观察函数图像,将你发现的结论写在下表内:定义域。
|。
值域。
|。
奇偶性。
|。
单调性。
|。
定点。
|R。
|。
R+。
|。
奇函数。
|。
增函数。
|。
(1,1)。
|R。
|。
R+。
|。
偶函数。
|。
增函数。
|。
(0,0)。
|R。
|。
R。
|。
奇函数。
|。
增函数。
|。
(0,0)。
|R*。
|。
R*。
|。
奇函数。
|。
减函数。
|。
(1,1)。
|R+。
|。
R+。
|。
无奇偶性。
|。
增函数。
|。
(0,0)。
|合作探究]根据上表的内容并结合图像,试总结函数y=x,y=x^2,y=x^3,y=x^-1,y=x^2的共同性质。
归纳:1) 函数y=x,y=x^2,y=x^3,y=x^-1和y=x^2的图像都通过点(1,1)。
高一数学必修1《幂函数》教案教学目标:1. 理解幂函数的定义和性质,掌握画出幂函数的图象的方法。
2. 学会用不等式的方法解决幂函数方程的问题。
教学重点:1. 幂函数的定义和性质。
2. 画出幂函数的图象。
3. 不等式解法。
教学难点:1. 幂函数的图象,如何画出图象。
2. 不等式的解法,如何运用不等式解决幂函数方程的问题。
教学方法:1. 归纳法。
2. 演示法。
3. 分组讨论法。
教学内容:一. 幂函数1. 幂函数的定义:设a为正实数,x为任意实数,幂函数f(x)=$a^x$ 定义为f(x)=$a^x$。
2. 幂函数的性质:(1)当a>1时,幂函数f(x)严格单调递增;当0<a<1时,幂函数f(x)严格单调递减。
(2)当a>1时,幂函数f(x)在x轴的右侧无上界;当0<a<1时,幂函数f(x)在x轴的右侧无下界。
(3)当a=1时,幂函数f(x)为常函数y=1。
3. 幂函数的图象:(1)当a>1时,幂函数f(x)在右侧无上界,并超过x轴,图象接近x轴。
(2)当0<a<1时,幂函数f(x)在右侧无下界,趋近于x轴,图象在x轴上方。
(3)当a=1时,幂函数f(x)图象为直线y=1,在y轴上方。
4. 例题:(1)求幂函数y=$\frac{1}{4}$^x 的增减区间,并画出图象。
(2)求方程$\frac{1}{2x+1}$=8 的解。
二. 不等式的解法1. 不等式的性质:(1)等式两边加(减)同一个数、同一个式子,不等式的方向不变;(2)等式两边同乘(除)一个正数,不等式的方向不变;等式两边同乘(除)一个负数,不等式的方向反转。
2. 不等式的应用:利用不等式的性质,解决幂函数的方程。
3. 例题:求不等式$x^2$+2$\sqrt2x$+1<0 的解。
教学流程:1. 教师介绍幂函数的定义和性质,并简单讲解幂函数的图象。
2. 教师出示幂函数$f(x)=2^x$ 的图象,并让同学对幂函数的图象做出讨论,了解幂函数图象的特点,为下面的探究提供基础。
幂函数教案(第1课时)教学目标:㈠知识和技能1.了解幂函数的概念,会画幂函数,,的图象,并能结合这几个幂函数的图象,了解幂函数图象的变化情况和性质。
2.了解几个常见的幂函数的性质。
㈡过程与方法1.通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。
2.使学生进一步体会数形结合的思想。
㈢情感、态度与价值观1.通过生活实例引出幂函数的概念,使学生体会到生活中处处有数学,激发学生的学习兴趣。
2.利用计算机等工具,了解幂函数和指数函数的本质差别,使学生充分认识到现代技术在人们认识世界的过程中的作用,从而激发学生的学习欲望。
教学重点常见幂函数的概念和性质教学难点幂函数的单调性与幂指数的关系教学过程一、创设情景,引入新课问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?(总结:根据函数的定义可知,这里p是w的函数)问题2:如果正方形的边长为a,那么正方形的面积,这里S是a的函数。
问题3:如果正方体的边长为a,那么正方体的体积,这里V是a的函数。
问题4:如果正方形场地面积为S,那么正方形的边长,这里a是S的函数问题5:如果某人s内骑车行进了km,那么他骑车的速度,这里v是t的函数。
以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量)这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)二、新课讲解(一)幂函数的概念如果设变量为,函数值为,你能根据以上的生活实例得到怎样的一些具体的函数式?这里所得到的函数是幂函数的几个典型代表,你能根据此给出幂函数的一般式吗?这就是幂函数的一般式,你能根据指数函数、对数函数的定义,给出幂函数的定义吗?幂函数的定义:一般地,我们把形如的函数称为幂函数(power function),其中是自变量,是常数。
3.3 幂 函 数新知导学1.一般地,我们把形如y =x α的函数称____,其中x 是____,α是__.2.幂函数的性质一般地,当α>0时,幂函数y =x α有下列性质:(1)图象都通过点____,____;(2)在第一象限内,函数值随x 的增大而____;(3)在第一象限内,α>1时,图象是向____凸的;0<α<1时,图象是向____凸的;(4)在第一象限内过(1,1)点后,图象向右上方无限伸展.当α<0时,幂函数y =x α有下列性质:(1)图象都通过点____;(2)在第一象限内,函数值随x 的增大而____,图象是向____凸的;(3)在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近;(4)在第一象限内,过____点后,|α|越大,图象下落的速度越快.需要注意一点的是无论α>0或α<0,所有的幂函数在(0,+∞)都有定义,且图象都过点____. 预习自测1.在函数y =1x 2,y =2x 2,y =x 2+x ,y =1中幂函数的个数为( )A .0个B .1个C .2个D .3个2.已知幂函数y =f (x )的图象过点(4,2),则f ⎝⎛⎭⎫14的值为( )A .14B .12C .1D .23.图中C 1、C 2、C 3为三个幂函数(y =x a )在第一象限内的图象,则解析式中指数a 的值依次可以是()A .-1,12,3 B .-1,3,12 C .12,-1,3 D .12,3,-1 4.函数y =x -2在区间⎣⎡⎦⎤13,2上的最大值是____.5.若函数f (x )=(2m +3)x m 2-3是幂函数,则m 的值为____.命题方向1 ⇨对幂函数概念的理解典题1 函数f (x )=(m 2-m -1)x m2+m -3是幂函数,且当x ∈(0,+∞)时, f (x )是增函数,求f (x )的解析式.〔跟踪练习1〕在下列给出的函数:(1)y =x ;(2)y =2x ;(3)y =x -1中,幂函数的个数为( )A .0B .1C .2D .3命题方向2 ⇨幂的大小比较典题2 比较下列各组数值的大小:(1)3-52 和3.1-52 ;(2)-8-78 和-(19)78 ;(3)4.125 ,3.8-23 和(-1.9)35 .〔跟踪练习2〕比较下列各组函数值的大小:(1)⎝⎛⎭⎫-23-23 和⎝⎛⎭⎫-π6-23 ;(2)(-2.1)37 和(-2.2)37 ;(3)3.4-35 和(23)-35 .命题方向3 ⇨幂函数的图象、性质综合应用典题3 已知幂函数f (x )=x m2-2m -3(m ∈Z )的图象关于y 轴对称,且在区间(0,+∞)上是减函数,求满足(3+2a )-m 3 >(a -1)-m 3 的实数a 的取值范围.『规律方法』 对于与幂函数有关的综合性问题,一般涉及奇偶性与单调性问题,解决此类问题可分两步:一是利用单调性来弄清指数的正负,二是利用奇偶性来确定幂函数的图象.〔跟踪练习3〕已知函数f (x )=x -2m 2+m +3(m ∈Z )为偶函数,且f (3)<f (5),求函数f (x )的解析式.典题4 若(a +1)-13 <(3-2a )-13 ,试求a 的取值范围.学科核心素养 分类讨论思想、数形结合思想1.幂函数定义域的求法幂函数定义域的确定,可分以下三种情况来讨论:(1)当指数α是正整数时,x α的定义域是R .(2)当指数α是正分数时,设α=p q(p ,q 是互质的正整数,q >1),则x α=x p q =q x p .当q 为偶数时,x α的定义域是[0,+∞);当q 为奇数时,x α的定义域是R .(3)当指数α是负整数时,设α=-k ,x α=1x k ,显然x 不能为0,所以x α的定义域是{x |x ≠0}. 典题5 求下列函数的定义域:(1)y =x 35 ;(2)y =x 14 ;(3)y =x -23 ;(4)y =x -34 .2.数形结合思想典题6 已知实数a 、b 满足等式⎝⎛⎭⎫12a =⎝⎛⎭⎫13b ,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能...成立的关系式有( )A .1个B .2个C .3个D .4个 课堂达标验收1.下列函数是幂函数的是( )A .y =5xB .y =x 5C .y =5xD .y =(x +1)52.设α∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x α的定义域为R 且为奇函数的所有α值为() A .1,3 B .-1,1 C .-1,3 D .-1,1,33.如图所示为幂函数y =x m 与y =x n 在第一象限内的图象,则( )A .-1<n <0<m <1B .n <0<m <1C .-1<n <0,m <1D .n <-1,m >14.已知幂函数f (x )=x α的图象经过点(27,3),则f (1 000)=____.5.比较下列各组中两个数的大小:(1)(25)0.5与(13)0.5;(2)(-23)-1与(-35)-1;(3)(23)34 与(34)23 .。
高中数学幂函数的优秀教案教学目标:1. 了解幂函数的定义和性质;2. 掌握幂函数的图像特点和变化规律;3. 能够应用幂函数解决实际问题。
教学重点:1. 幂函数的定义和性质;2. 幂函数图像的特点;3. 幂函数的变化规律。
教学难点:1. 幂函数图像的绘制;2. 幂函数的应用解题。
教学准备:1. 教学PPT;2. 幂函数的相关教学素材;3. 面板书和彩色粉笔;4. 计算器。
教学过程:一、导入新知识(5分钟)教师通过举例引导学生回顾幂函数的定义和性质,激发学生对幂函数的兴趣。
二、讲解幂函数的定义和性质(15分钟)1. 介绍幂函数的定义,并解释指数、底数的含义;2. 讲解幂函数的性质,包括奇偶性、增减性和对称性等;3. 通过实例让学生理解幂函数的基本特点。
三、分组讨论与展示(15分钟)1. 将学生分成小组,让他们结合所学内容,讨论幂函数的图像特点和变化规律;2. 每组选派一名代表进行展示,分享小组讨论的结论。
四、幂函数图像的绘制(15分钟)1. 通过教学PPT,展示幂函数图像的绘制方法;2. 让学生自行绘制不同幂函数的图像,并与同学分享。
五、应用解题(15分钟)1. 以实际问题为例,让学生应用幂函数解题;2. 指导学生合理建立数学模型,解决问题。
六、课堂小结(5分钟)教师总结本节课的重点知识,强调幂函数的重要性和应用场景,激励学生继续深入学习。
七、作业布置让学生完成相关习题,巩固所学知识。
教学反思:1. 教学重点突出,学生参与度高;2. 演示环节设计合理,能够引导学生深入思考;3. 学生绘制图像能力需要进一步培养,需要增加训练。
这份教案是一份比较完整的高中数学幂函数的教学设计,建议教师在教学中根据学生的实陵情况做出适当的调整,以达到更好的教学效果。
高中教案数学幂函数
教学目标:
1. 了解幂函数的定义和特点。
2. 掌握幂函数的图像特征及其性质。
3. 能够应用幂函数解决相关问题。
教学重点和难点:
重点:幂函数的定义、图像特征和应用。
难点:幂函数的性质和相关变化。
教学准备:
1. 幂函数的教学课件、教材及作业。
2. 幂函数相关的练习题和解析。
3. 白板、彩色笔等教学用具。
教学步骤:
一、导入(5分钟)
1. 引入幂函数的概念,让学生回顾已学过的函数类型。
2. 导出幂函数的定义和表示形式。
二、讲解幂函数的性质和图像特征(15分钟)
1. 介绍幂函数的定义和一般形式。
2. 分析幂函数增减性,根据指数的正负进行分类讨论。
3. 绘制幂函数的图像,让学生观察和分析图像的特点。
三、练习和讨论(20分钟)
1. 学生尝试通过计算和图像观察解答幂函数相关的问题。
2. 针对不同难度的问题,组织学生进行小组讨论和分享解决思路。
四、作业布置和讲解(10分钟)
1. 布置幂函数相关练习题作业,要求学生按时完成并提交。
2. 督促学生积极思考和讨论作业问题,批改及讲解作业结果。
五、课堂总结(5分钟)
1. 总结今天学习的知识点和重点。
2. 提醒学生复习巩固幂函数相关内容,做好课后练习。
教学反思:
通过本节课的教学,学生应该能够掌握幂函数的定义、性质及应用,有利于学生对数学函数的理解和运用。
同时,要引导学生在学习过程中不断思考和探索,培养其解决问题的能力和思维方式。
幂函数教案1. 了解幂函数的定义与性质2. 掌握幂函数的图像特征和变化规律3. 能够应用幂函数解决实际问题教学重点:1. 幂函数的基本定义2. 幂函数的图像特征和变化规律3. 幂函数的应用教学难点:1. 幂函数的变化规律和推导过程2. 如何将幂函数应用于实际问题的解决教学方法:讲授、演示、模拟、探究、归纳、实践等多种教学方法相结合。
教学手段:多媒体教学手段、问答互动、小组合作等手段相结合。
教学过程:Step 1 引入新知1. 教师可以通过多媒体展示一些日常生活或工作中与幂函数相关的实例,如身高、电话费等,引发学生对幂函数的兴趣。
2. 教师可以让学生在小组内讨论幂函数的定义与性质,并让几位同学发表自己的理解和看法。
Step 2 探究幂函数的定义与性质1. 定义幂函数:f(x)=x^a (其中,a为常数,x为变量,且a≠0)2. 讲解幂函数的图像特征:a>1 时,是一条向上的单调增函数;a=1 时,是一条过原点的直线;0<a<1 时,是一条向下的单调增的函数;a<0 时,分为两种情况:a=-1时,是一条过原点的直线;a<-1时,是一条向下的单调减函数。
3. 幂函数的性质:偶函数、奇函数、单调性Step 3 探究幂函数的变化规律1. 讲解如何利用幂函数的图像,通过a的变化推导幂函数的特点和变化规律。
2. 让学生模拟实验,通过手工计算,验证幂函数的变化规律。
Step 4 应用幂函数解决实际问题1. 讲解如何将所学的幂函数应用于实际问题的解决。
2. 教师给出一些与幂函数相关的应用题,让学生在小组内讨论,并找到解题的有效方法。
Step 5 总结与拓展1. 用幂函数的概念总结一遍所学的知识点。
2. 教师可以适时地推出一些与幂函数相关的拓展问题,以拓展课堂思维。
3. 课堂评价:通过问答、小组讨论、实习演绎等方式,对学生的课堂表现进行评价。
教学反思:幂函数是高中数学中的一种基本函数,对于理解其他函数、解决实际问题等方面都具有很重要的作用。
幂函数教案幂函数教案一. 教学目标:1. 了解幂函数的定义和性质。
2. 掌握幂函数的图像及其平移、缩放和翻折等变换规律。
3. 学会通过观察和分析,对给定的幂函数进行图像绘制。
4. 理解幂函数的增减性、单调性和奇偶性。
5. 能够解决与幂函数相关的实际问题。
二. 教学内容:1. 幂函数的定义和性质。
2. 幂函数的图像及其平移、缩放和翻折等变换规律。
3. 幂函数的增减性、单调性和奇偶性。
4. 实际问题解决。
三. 教学步骤:步骤一:导入新知识通过一个问题引入幂函数的概念,例如:小明家附近有一块广告牌,它上面的字体每年放大或缩小4倍,求第几年后字体的大小会超过原来的10倍。
步骤二:讲解幂函数的定义和性质1. 引导学生回顾指数的概念,理解幂函数的定义。
2. 讲解幂函数的性质,例如幂函数的函数图像都经过点(0,1),幂函数的增长速度由底数决定等。
步骤三:绘制幂函数的图像及变换规律1. 通过绘制几个幂函数的图像来说明幂函数的变化规律。
2. 引导学生发现幂函数的平移、缩放和翻折等变换规律。
3. 练习绘制给定幂函数的图像。
步骤四:讲解幂函数的增减性、单调性和奇偶性1. 引导学生通过观察图像,探讨幂函数的增减性。
2. 引导学生通过观察图像,探讨幂函数的单调性。
3. 引导学生通过观察图像和计算函数值,探讨幂函数的奇偶性。
步骤五:解决实际问题给学生提供一些与幂函数相关的实际问题,让学生运用所学的知识解决问题,例如:一个小球从高处自由下落,第n次落地时的高度是多少?四. 教学方法1. 探究式教学法:通过引导学生观察、分析、绘制图像等方式,让学生主动探索幂函数的性质和规律。
2. 实践教学法:通过解决实际问题的方式,提高学生对所学知识的应用能力。
3. 演示教学法:通过绘制幂函数的图像等示范,让学生更好地理解幂函数的变换规律。
五. 教学资源1. 幂函数的图像和相关实例。
2. 计算器或电脑及相关数学软件。
3. 实际问题解决的练习题。
幂函数优秀教案教案:幂函数一、教学目标:1.理解幂函数的概念及其特点;2.能够画出幂函数图像;3.掌握幂函数的基本性质和运算法则。
二、教学重点:1.幂函数的概念及其特点;2.幂函数的图像;三、教学难点:1.幂函数的性质和运算法则;2.幂函数的应用问题。
四、教学方法:1.课堂讲授法;2.小组合作学习法;3.案例分析法。
五、教学过程:时间内容活动方式教学资源(分钟)1课堂导入1.教师简单介绍幂函数的定义和基本概念,并提出问题,引起学生思考。
幂函数的定义和基本概念2.学生积极回答问题,激发学习兴趣。
10幂函数的定义及其1.学生自愿回答问题,教师进行点拨和引导,帮助学生理解幂函数的定义;幂函数的定义及其特点特点2.教师介绍幂函数的特点:定义域、值域、单调性和奇偶性。
10幂函数图像的1.教师讲解幂函数图像的画法和注意事项;幂函数图像的画法和注意事项画法2.学生跟随教师步骤,画出幂函数的图像。
10幂函数图像的分1.学生分组合作,讨论幂函数图像的特点;幂函数图像的特点析及其特点2.教师引导学生分析幂函数图像的特点,如单调性、奇偶性等。
10幂函数的性质与1.教师讲解幂函数的性质和运算法则;幂函数的性质和运算法则运算法则2.学生积极参与讨论,提出问题,与教师共同探讨幂函数的性质和运算法则。
10幂函数的应用问题1.教师以实例为背景,引导学生解决幂函数的应用问题;幂函数的应用问题2.学生自主思考,带着问题探索解决方法。
10小结与评价1.教师对本节课的内容进行小结,重点强调幂函数图像的特点和性质;无六、教学反思:在本节课中,我采用了多种教学方法和手段,如课堂讲授、小组合作学习和案例分析,以提高学生的学习兴趣和参与度。
通过引入问题、让学生自由讨论等方式,激发了学生的思维,提高了他们对幂函数的理解和运用能力。
同时,通过幂函数的图像,我帮助学生更直观地理解了幂函数的特点和性质。
在下节课中,我将注重培养学生的实际应用能力,希望能够更好地引导学生解决实际问题,提高他们的数学思维水平。
幂函数
【教学目标】
1.知识技能
(1)理解幂函数的概念;
(2)通过具体实例了解幂函数的图象和性质,并能进行初步的应用。
2.过程与方法
类比研究一般函数,指数函数、对数函数的过程与方法,后研幂函数的图象和性质。
3.情感、态度、价值观
(1)进一步渗透数形结合与类比的思想方法; (2)体会幂函数的变化规律及蕴含其中的对称性。
【教学重难点】
重点:从五个具体的幂函数中认识的概念和性质 难点:从幂函数的图象中概括其性质
【教学过程】
一、引入新知
阅读教材的具体函数,思考下列问题。
(1)它们的对应法则分别是什么? (2)以上问题中的函数有什么共同特征? 让学生独立思考后交流,引导学生概括出结论
上述的问题涉及到的函数,都是形如:y x α=,其中x 是自变量,α是常数。
二、探究新知
1.幂函数的定义
一般地,形如y x α=(x ∈R )的函数称为幂孙函数,其中x 是自变量,α是常数。
如112
3
4
,,y x y x y x -===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等
函数。
2.研究函数的图像
(1)y x =(2)1
2y x = (3)2y x = (4)1y x -= (5)3y x = 提问:如何画出以上五个函数图像
引导学生用列表描点法,应用函数的性质,如奇偶性,定义域等,画出函数图像,最后,教师利用电脑软件画出以上五个数数的图像。
教师注意引导学
3.幂函数性质
(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1)(原因:11x =); (2)x >0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数(从左往右看,函数图象逐渐上升)。
特别地,当x >1,x >1时,x ∈(0,1),2y x =的图象都在y x =图象的下方,形状向下凸越大,下凸的程度越大(你能找出原因吗?)
当∠α<1时,x ∈(0,1),2y x =的图象都在y x =的图象上方,形状向上凸,α越小,
2
上凸的程度越大(你能说出原因吗?)
(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数。
在第一家限内,当x 向原点靠近时,图象在y 轴的右方无限逼近y 轴正半轴,当x 慢慢地变大时,图象在x 轴上方并无限逼近x 轴的正半轴。
三、例题:
1
.证明幂函数()[0,]f x =+∞上是增函数 证:任取121,[0,),x x x ∈+∞且<2x 则
12()()f x f x -=
因12x x -<0
所以12()()f x f x <
,即()[0,]f x =+∞上是增函数。
思考:
我们知道,若12()
()0,1()
f x y f x f x =><若
得12()()f x f x <
,你能否用这种作比的方法来证明()[0,]f x =+∞上是增函数,利用这种方法需要注意些什么?
2.利用函数的性质 ,判断下列两个值的大小 (1)1
1
662,3 (2)3
3
22
(1),(0)x x x +>(3)2
2
244(4),4a --
+
分析:利用幂函数的单调性来比较大小。
四、课堂练习
1.画出2
3
y x =的大致图象,并求出其定义域、奇偶性,并判断和证明其单调性。
五、归纳小结:
提问方式
(1)我们今天学习了哪一类基本函数,它们定义是怎样描述的? (2)你能根据函数图象说出有关幂函数的性质吗?。