高三数学专题复习总结-(幂函数)经典
- 格式:doc
- 大小:842.00 KB
- 文档页数:12
幂函数知识点笔记总结一、基本概念1. 幂函数的定义幂函数是指以底数为自变量,指数为常数的函数,一般形式为 f(x) = a*x^n,其中a为常数,n为整数。
特殊情况下,指数可以是分数或负数。
2. 幂函数的图像特征当底数为正数且指数为正整数时,幂函数为增函数,图像从左下到右上逐渐上升;当底数为正数且指数为负整数时,幂函数为减函数,图像从左上到右下逐渐下降;当底数为负数且指数为奇数时,幂函数为增减函数,图像在原点对称;当底数为负数且指数为偶数时,幂函数为非定义域。
3. 幂函数的定义域和值域幂函数的定义域为实数集合R,值域取决于底数a的正负和指数n的奇偶性,可以是整个实数集合、正实数集合或负实数集合。
4. 幂函数的奇偶性当指数n为奇数时,幂函数为奇函数,具有原点对称性;当指数n为偶数时,幂函数为偶函数,具有y轴对称性。
二、函数性质1. 增减性当指数n为正数时,幂函数为增函数,图像从左下到右上逐渐上升;当指数n为负数时,幂函数为减函数,图像从左上到右下逐渐下降。
2. 奇偶性当指数n为奇数时,幂函数为奇函数,具有原点对称性;当指数n为偶数时,幂函数为偶函数,具有y轴对称性。
3. 定义域和值域幂函数的定义域为实数集合R,值域取决于底数a的正负和指数n的奇偶性。
4. 图像特征底数为正数且指数为正整数时,幂函数为增函数;底数为正数且指数为负整数时,幂函数为减函数;底数为负数且指数为奇数时,幂函数为增减函数;底数为负数且指数为偶数时,幂函数为非定义域。
5. 渐近线当底数a为正数且指数n为正数时,幂函数的渐近线为y=0(x轴);当底数a为正数且指数n为负数时,幂函数的渐近线为x=0(y轴);其他情况下,幂函数没有渐近线。
三、常见变形1. 幂函数的平移对于幂函数f(x) = a*x^n,当a>0时,平移y轴时,可以通过加减常数来实现;当a<0时,平移x轴时,也可以通过加减常数来实现。
2. 幂函数的伸缩对于幂函数 f(x) = a*x^n,当a>0时,伸缩x轴时,可以通过系数a来实现;当a<0时,伸缩y轴时,也可以通过系数a来实现。
引言:高中幂函数是高中数学中的重要部分,它在数学研究和实际问题中有着广泛的应用。
本文将对高中幂函数的知识点进行总结和整理,帮助学生完善对幂函数的理解和掌握。
概述:幂函数是指形如y=x^n的函数,其中n是常数。
幂函数的特点是具有单调性和奇偶性,其图象通常为一条曲线。
在研究幂函数时,需要掌握其定义、性质和应用。
正文:一、幂函数的定义1.1 幂函数的基本形式幂函数的基本形式是y=x^n,其中n是常数。
幂函数的定义域为所有实数,且n可以是正整数、负整数、零和有理数。
1.2 幂函数的图象当n为正奇数时,幂函数的图象在第一象限和第三象限上单调递增;当n为正偶数时,幂函数的图象在第一象限上单调递增,且具有对称轴y=0;当n为负数时,幂函数的图象在第一、三象限上单调递减。
1.3 幂函数的特殊情况当n=1时,幂函数变为一次函数;当n=0时,幂函数变为常数函数;当n为正无穷大时,幂函数趋向于正无穷大;当n为负无穷大时,幂函数趋向于零。
二、幂函数的性质2.1 幂函数的单调性幂函数在定义域上的单调性与n的值有关。
当n为正奇数时,幂函数是增函数;当n为正偶数时,在非负区间上是增函数,在负区间上是减函数;当n为负数时,在非负区间上是减函数,在负区间上是增函数。
2.2 幂函数的奇偶性幂函数的奇偶性与n的奇偶性有关。
当n为奇数时,幂函数是奇函数;当n为偶数时,幂函数是偶函数。
2.3 幂函数的零点当n为正奇数时,幂函数的零点为x=0;当n为正偶数时,幂函数的零点为x=0;当n为负奇数时,幂函数没有零点;当n为负偶数时,幂函数的零点为x=0。
三、幂函数的图象变换3.1 幂函数的平移幂函数的平移是指将幂函数的图象沿横轴或纵轴方向移动。
平移的方向和距离与平移的规律有关,具体可利用平移的公式进行计算。
3.2 幂函数的伸缩幂函数的伸缩是指将幂函数的图象进行纵向或横向的拉伸或压缩。
伸缩的方式和伸缩的规律有关,可利用伸缩的公式进行计算。
3.3 幂函数的翻折幂函数的翻折是指将幂函数的图象进行关于横轴或纵轴的翻折。
高考数学知识点幂函数知识点_知识点总结幂函数是高中数学中重要的知识点之一,它在高考数学考试中经常出现。
掌握幂函数的知识点对于顺利解决各类与幂函数相关的数学题目至关重要。
本文将对幂函数的相关知识点进行总结和归纳,帮助同学们理清思路,加强对该知识点的掌握。
一、幂函数的定义幂函数是指函数y = x^n,其中x为自变量,n为常数。
在幂函数中,x的指数是常数,y与x之间存在特定的关系。
二、幂函数的图像特点1. 当n为正整数时,幂函数的图像是以原点为中心的相似变换。
当n为正奇数时,函数具有奇对称性,图像关于坐标原点对称;当n为正偶数时,函数具有偶对称性,图像关于y轴对称,并且右侧都是正数部分;当n为正数时,函数图像都通过第一象限。
2. 当n为负整数时,幂函数的图像将关于x轴对称,并且经过第一象限和第三象限的两点。
3. 当n为0时,幂函数的图像为直线y = 1,是一个常数函数。
三、幂函数的性质1. 定义域:所有实数。
2. 值域:当n为正奇数时,函数的值域为(-∞, +∞);当n为正偶数时,函数的值域为[0, +∞);当n为负奇数时,函数的值域为(-∞, 0);当n为负偶数时,函数的值域为[0, +∞)。
3. 单调性:当n为正数时,幂函数在定义域上是递增函数;当n为负数时,幂函数在定义域上是递减函数。
4. 对称性:当n为正奇数时,幂函数的图像关于原点对称;当n为正偶数时,幂函数的图像关于y轴对称;当n为负整数时,幂函数的图像关于x轴对称。
5. 渐近线:当n为正数时,幂函数的图像与x轴无交点;当n为负整数时,幂函数的图像与y轴无交点。
四、幂函数的应用幂函数广泛应用于数学中的各种实际问题中,比如面积、体积、变量关系等。
在解决这些问题时,我们可以通过列方程、求导等方法将其转化为幂函数的求解过程。
例如,求解一个正方形的面积与边长之间的关系。
我们可以将正方形的面积设为y,边长设为x,那么根据正方形的性质可得 y = x^2,这就是一个幂函数的表达式,通过对该函数进行数学分析,我们可以得出边长与面积之间的关系,并解决相关的数学问题。
高考数学知识点幂函数知识点总结幂函数是高考数学中的重要知识点之一。
它在求解各类问题中具有广泛的应用。
本文将对幂函数的定义、性质以及解题技巧进行总结,以帮助考生全面掌握相关知识。
一、幂函数的定义与性质1. 定义:幂函数是指形如f(x) = a^x的函数,其中a为实数且a>0且a≠1。
2. 幂函数的基本性质:(1) 当a>1时,幂函数是递增函数;(2) 当0<a<1时,幂函数是递减函数;(3) 幂函数的图象是关于y轴对称的;(4) 当x取整数时,幂函数的函数值为恒定值。
3. 幂函数的特殊情况:(1) 当a>1时,幂函数的图象在x轴正半轴上逼近y轴;(2) 当0<a<1时,幂函数的图象在x轴正半轴上逼近x轴;(3) 当a=1时,幂函数为常数函数。
二、幂函数的常见解题技巧1. 求解幂函数的零点:对于幂函数f(x) = a^x = 0,可以通过求解a^x = 0的条件来得到幂函数的零点。
由于指数函数a^x的定义域为实数集,而等式0^x没有意义,因此幂函数的零点不存在。
2. 求解幂函数的最值:当幂函数f(x) = a^x存在最值时,可以通过导数法求解。
具体步骤为:(1) 求得f'(x) = a^x * ln(a),其中ln(a)表示以e为底的对数;(2) 令f'(x) = 0,解得x = ln(a);(3) 将x = ln(a)带入幂函数,得到最值点或者端点的函数值;(4) 比较得到最值。
3. 幂函数与其他函数的复合:幂函数和其他常见函数的复合,如幂函数与线性函数、指数函数、对数函数的复合等,可以通过替换变量或者利用函数关系进行求解。
具体步骤需要根据题目的要求和已知条件进行灵活运用。
4. 幂函数在实际问题中的应用:幂函数在生活和工作中有广泛的应用,比如指数增长与衰减问题,利润与销售量关系的建模,物理中的涉及到指数增长和衰减的问题等,需要考生能够将幂函数与实际问题相结合,进行建模和求解。
高考数学知识点幂函数知识点知识点总结高考数学知识点:幂函数知识点总结在高中数学课程中,幂函数是一个重要的知识点。
幂函数的数学表达式为f(x) = ax^n,其中a和n分别代表常数,x代表自变量。
幂函数具有许多特殊性质和应用,下面将对幂函数的相关知识点进行总结。
一、定义和性质1. 幂函数的定义:幂函数是指具有形如f(x) = ax^n的函数,其中a和n为实数常数,且a≠0。
2. 幂函数的图像:根据a和n的取值不同,幂函数的图像可以表现为增函数、减函数或恒函数。
3. 幂函数的对称性:当幂函数的幂指数n为正偶数时,函数图像关于y轴对称;当n为正奇数时,函数图像关于原点对称;当n为负数时,函数图像关于x轴对称。
二、基本性质和运算法则1. 幂函数的基本性质:a) 当n>0时,幂函数是增函数;当n<0时,幂函数是减函数。
b) 当a>1时,幂函数递增速度大于直线函数y=x;当0<a<1时,幂函数递增速度小于直线函数y=x。
c) 当n=1时,幂函数是一次函数;当n=0时,幂函数是常值函数。
2. 幂函数的运算法则:a) 幂函数相乘:f(x) = ax^m * bx^n = abx^(m+n)。
b) 幂函数相除:f(x) = (ax^m) / (bx^n) = (a/b)x^(m-n),其中b≠0。
c) 幂函数相乘的分配律:(a * b)x^n = a * bx^n,其中a和b为常数,n为指数。
d) 幂函数的复合:f(g(x)) = (ax^m)^n = a^n*x^(m*n),其中a、g(x)和n为常数。
三、幂函数的应用1. 函数图像:通过掌握幂函数图像的特点,我们可以辨认各类函数的图像特征,帮助解题。
2. 变化率计算:由于幂函数在不同区间具有不同的递增、递减性质,可以用来计算变化率,例如速度、增长率等。
3. 经济学应用:幂函数可以描述经济学中的一些指数关系,如价格与需求量的关系等。
高中数学幂函数的性质总结最新8篇幂函数知识点总结篇一1、幂函数解析式的右端是个幂的形式。
幂的底数是自变量,指数是常数,可以为任何实数;与指数函数的`形式正好相反。
2、幂函数的图像和性质比较复杂,高考只要求掌握指数为1、2、3、-1、时幂函数的图像和性质。
3、了解其它幂函数的图像和性质,主要有:①当自变量为正数时,幂函数的图像都在第一象限。
指数为负数的幂函数都是过点(1,1)的减函数,以坐标轴为渐近线,指数越小越靠近x轴。
指数为正数的幂函数都是过原点和(1,1)的增函数;在 x=1的右侧指数越大越远离 x 轴。
②幂函数的定义域可以根据幂的意义去求出:要么是x≥0,要么是关于原点对称。
前者只在第一象限有图像;后者一定具有奇偶性,利用对称性可以画出二或三象限的图像。
注意第四象限绝对不会有图像。
③定义域关于原点对称的幂函数一定具有奇偶性。
当指数是偶数或分子是偶数的分数时是偶函数;否则是奇函数。
4、幂函数奇偶性的一般规律:⑴指数是偶数的幂函数是偶函数。
⑵指数是奇数的幂函数是奇函数。
⑶指数是分母为偶数的分数时,定义域 x>0或x≥0,没有奇偶性。
⑷指数是分子为偶数的分数时,幂函数是偶函数。
⑸指数是分子分母为奇数的分数时,幂函数是奇数函数。
幂函数知识点总结篇二掌握幂函数的内部规律及本质是学好幂函数的关键所在,下面是整理的幂函数公式大全,希望对广大朋友有所帮助。
定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
高考数学幂函数知识点总结一、幂函数的定义和性质幂函数是数学中一种常见的函数形式,它的定义形式为y = ax^n,其中a和n都为实数,x为自变量,y为因变量。
幂函数在数学中扮演着重要的角色,广泛应用于自然科学和工程技术领域。
下面我们来总结一些幂函数的重要性质和应用。
1. 幂函数的定义域和值域:幂函数y = ax^n的定义域为实数集R,值域则取决于a和n 的取值范围。
当a>0时,n为整数时,函数的值域为正实数集R+;当a<0时,n为奇数时,函数的值域为负实数集R-。
2. 幂函数的奇偶性:当n为偶数时,函数为偶函数;当n为奇数时,函数为奇函数。
具体而言,当n为偶数时,对于任意x,有f(-x)=f(x);当n为奇数时,对于任意x,有f(-x)=-f(x)。
3. 幂函数的图像变换:幂函数y = ax^n在平面直角坐标系中的图像变换与参数a和n的取值相关。
当a>1时,函数图像沿y轴方向压缩,当0<a<1时,函数图像沿y轴方向拉伸;当n>1时,函数图像在原点左侧上升,当0<n<1时,函数图像在原点右侧上升。
4. 幂函数的极限:当a>1时,幂函数在正无穷大时趋于正无穷大;当0<a<1时,幂函数在正无穷大时趋于0。
若n>0,幂函数在负无穷大时趋于正无穷大;若n<0,幂函数在负无穷大时趋于0。
二、幂函数的常见应用幂函数因为其特殊的形式和性质,在科学和工程中有广泛的应用。
以下是幂函数在一些具体问题中的运用。
1. 物质的增长和衰减:在生物学和经济学中,常常需要研究物质的增长和衰减过程。
幂函数可用来描述这种过程。
例如,生物种群的增长可以用幂函数进行建模,其中a表示种群的初始数量,n表示增长率。
同样,经济学中的人口增长、环境污染以及经济发展等问题也可以利用幂函数进行分析。
2. 各种规律的描述:幂函数可以应用于描述一些规律和现象。
例如,光的强度随距离的关系、金融领域中财富分布的不平等系数、能量消耗与功率之间的关系等都可以用幂函数来表达。
数学高考知识点幂函数数学高考知识点:幂函数幂函数是高考数学中非常重要的一个知识点,它是指形如y=x^a的函数,其中a是一个实数。
在高考中,幂函数常常会与其他函数进行比较或者求解方程等相关问题,因此熟练掌握幂函数的性质和应用是非常重要的。
一、幂函数的性质1. 幂函数的定义域:幂函数y=x^a的定义域是所有使得x^a有意义的实数x。
2. 幂函数的奇偶性:当指数a为偶数时,幂函数具有关于y轴的对称性,即f(-x) = f(x)。
当指数a为奇数时,幂函数关于原点对称,即f(-x) = -f(x)。
3. 幂函数的单调性:当指数a大于0时,幂函数在定义域上是递增的;当指数a小于0时,幂函数在定义域上是递减的。
4. 幂函数的图像:幂函数的图像呈现出如下特点:当a>1时,幂函数在∞处增加,0处取到最小值;当0<a<1时,幂函数在∞处减小,0处取到最大值;当a<0时,幂函数在定义域上是奇函数,图像关于原点对称。
二、幂函数的应用1. 幂函数与对数函数的关系:幂函数和对数函数是互为反函数的,即y=x^a和y=loga(x)是一对反函数。
这一性质在解决指数方程和对数方程时非常有用。
2. 幂函数的极限:对于幂函数y=x^a,当x趋近于正无穷时,幂函数趋近于正无穷;当x趋近于负无穷时,幂函数趋近于零。
这一性质在求解极限时常常会被用到。
3. 幂函数的应用:幂函数在物理学、生物学、经济学等领域具有广泛的应用。
例如,在物理学中,速度和加速度的计算常常涉及到幂函数的运算。
三、幂函数在高考中的常见题型解析1. 求解方程:高考经常出现要求解幂函数方程的题目,在解这类问题时,我们可以利用幂函数和对数函数互为反函数的特性,将幂函数方程转化为对数方程进行求解。
2. 判断性质:高考中会出现判断幂函数性质的题目,例如给出一个函数的图像,要求判断该函数的奇偶性、单调性等。
在解这类问题时,我们需要运用幂函数的性质和图像特点进行分析。
高考数学考点归纳之幂函数一、基础知识1.幂函数的概念一般地,形如y=xα(α∈R)的函数称为幂函数,其中底数x是自变量,α为常数.幂函数的特征(1)自变量x处在幂底数的位置,幂指数α为常数;(2)xα的系数为1;(3)只有一项.2.五种常见幂函数的图象与性质二、常用结论对于形如f(x)=x nm(其中m∈N*,n∈Z,m与n互质)的幂函数:(1)当n为偶数时,f(x)为偶函数,图象关于y轴对称;(2)当m,n都为奇数时,f(x)为奇函数,图象关于原点对称;(3)当m为偶数时,x>0(或x≥0),f(x)是非奇非偶函数,图象只在第一象限(或第一象限及原点处).考点一幂函数的图象与性质[典例] (1)(2019·赣州阶段测试)幂函数y =f (x )的图象经过点(3,33),则f (x )是( ) A .偶函数,且在(0,+∞)上是增函数 B .偶函数,且在(0,+∞)上是减函数 C .奇函数,且在(0,+∞)上是增函数 D .非奇非偶函数,且在(0,+∞)上是减函数 (2)已知幂函数f (x )=(n 2+2n -2)x 23-n n(n ∈Z)的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .-3B .1C .2D .1或2 [解析] (1)设f (x )=x α,将点(3,33)代入f (x )=x α,解得α=13,所以f (x )=x 13,可知函数f (x )是奇函数,且在(0,+∞)上是增函数,故选C.(2)∵幂函数f (x )=(n 2+2n -2)x23-n n在(0,+∞)上是减函数,∴⎩⎪⎨⎪⎧n 2+2n -2=1,n 2-3n <0,∴n =1, 又n =1时,f (x )=x-2的图象关于y 轴对称,故n =1.[答案] (1)C (2)B[解题技法] 幂函数y =x α的主要性质及解题策略(1)幂函数在(0,+∞)内都有定义,幂函数的图象都过定点(1,1).(2)当α>0时,幂函数的图象经过点(1,1)和(0,0),且在(0,+∞)内单调递增;当α<0时,幂函数的图象经过点(1,1),且在(0,+∞)内单调递减.(3)当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数.(4)幂函数的性质因幂指数大于零、等于零或小于零而不同,解题中要善于根据幂指数的符号和其他性质确定幂函数的解析式、参数取值等.[题组训练]1.[口诀第3、4、5句]下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的为( ) A .y =x -4 B .y =x -1 C .y =x 2D .y =x 13解析:选A 函数y =x -4为偶函数,且在区间(0,+∞)上单调递减;函数y =x -1为奇函数,且在区间(0,+∞)上单调递减;函数y =x 2为偶函数,且在区间(0,+∞)上单调递增;函数y =x 13为奇函数,且在区间(0,+∞)上单调递增.2.[口诀第2、3、4句]已知当x ∈(0,1)时,函数y =x p 的图象在直线y =x 的上方,则p 的取值范围是________.解析:当p >0时,根据题意知p <1,所以0<p <1;当p =0时,函数为y =1(x ≠0),符合题意;当p <0时,函数y =x p 的图象过点(1,1),在(0,+∞)上为减函数,符合题意.综上所述,p 的取值范围是(-∞,1).答案:(-∞,1)考点二 比较幂值大小[典例] 若a =⎝⎛⎭⎫1223,b =⎝⎛⎭⎫1523,c =⎝⎛⎭⎫1213,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <a <b C .b <c <aD .b <a <c[解析] 因为y =x 23在第一象限内是增函数,所以a =⎝⎛⎭⎫1223>b =⎝⎛⎭⎫1523,因为y =⎝⎛⎭⎫12x 是减函数,所以a =⎝⎛⎭⎫1223<c =⎝⎛⎭⎫1213,所以b <a <c . [答案] D[题组训练]1.若a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是( ) A .a >b >c B .a >c >b C .c >a >bD .b >c >a解析:选B 因为y =x 25在第一象限内为增函数,所以a =⎝⎛⎭⎫3525>c =⎝⎛⎭⎫2525,因为y =⎝⎛⎭⎫25x是减函数,所以c =⎝⎛⎭⎫2525>b =⎝⎛⎭⎫2535,所以a >c >b . 2.若(a +1)12<(3-2a )12,则实数a 的取值范围是________. 解析:易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数, 所以⎩⎪⎨⎪⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解得-1≤a <23.答案:⎣⎡⎭⎫-1,23 [课时跟踪检测]1.若幂函数y =f (x )的图象过点(4,2),则f (8)的值为( ) A .4 B.2 C .22D .1解析:选C 设f (x )=x n ,由条件知f (4)=2,所以2=4n ,n =12,所以f (x )=x 12,f (8)=812=2 2.2.若幂函数f (x )=x k 在(0,+∞)上是减函数,则k 可能是( ) A .1 B .2 C.12D .-1解析:选D 由幂函数的性质得k <0,故选D. 3.已知幂函数f (x )=(m 2-3m +3)x m +1为偶函数,则m =( )A .1B .2C .1或2D .3解析:选A ∵函数f (x )为幂函数,∴m 2-3m +3=1,即m 2-3m +2=0,解得m =1或m =2.当m =1时,幂函数f (x )=x 2为偶函数,满足条件;当m =2时,幂函数f (x )=x 3为奇函数,不满足条件.故选A.4.(2018·邢台期末)已知幂函数f (x )的图象过点⎝⎛⎭⎫2,14,则函数g (x )=f (x )+x 24的最小值为( )A .1B .2C .4D .6解析:选A 设幂函数f (x )=x α.∵f (x )的图象过点⎝⎛⎭⎫2,14,∴2α=14,解得α=-2. ∴函数f (x )=x -2,其中x ≠0. ∴函数g (x )=f (x )+x 24=x -2+x 24=1x 2+x 24≥21x 2·x 24=1, 当且仅当x =±2时,g (x )取得最小值1.5.(2019·安徽名校联考)幂函数y =x |m -1|与y =x 23-m m (m ∈Z)在(0,+∞)上都是增函数,则满足条件的整数m 的值为( )A .0B .1和2C .2D .0和3解析:选C 由题意可得⎩⎪⎨⎪⎧|m -1|>0,3m -m 2>0,m ∈Z ,解得m =2.6.已知a =345,b =425,c =1215,则a ,b ,c 的大小关系为( ) A .b <a <c B .a <b <c C .c <b <aD .c <a <b解析:选C 因为a =8115,b =1615,c =1215,由幂函数y =x 15在(0,+∞)上为增函数,知a >b >c ,故选C.7.设x =0.20.3,y =0.30.2,z =0.30.3,则x ,y ,z 的大小关系为( ) A .x <z <y B .y <x <z C .y <z <xD .z <y <x解析:选A 由函数y =0.3x 在R 上单调递减,可得y >z .由函数y =x 0.3在(0,+∞)上单调递增,可得x <z .所以x <z <y .8.已知幂函数f (x )=(m -1)2x242-+m m 在(0,+∞)上单调递增,函数g (x )=2x -k ,当x∈[1,2)时,记f (x ),g (x )的值域分别为集合A ,B ,若A ∪B =A ,则实数k 的取值范围是( )A .(0,1)B .[0,1)C .(0,1]D .[0,1]解析:选D ∵f (x )是幂函数,∴(m -1)2=1,解得m =2或m =0.若m =2,则f (x )=x-2在(0,+∞)上单调递减,不满足条件.若m =0,则f (x )=x 2在(0,+∞)上单调递增,满足条件,即f (x )=x 2.当x ∈[1,2)时,f (x )∈[1,4),即A =[1,4);当x ∈[1,2)时,g (x )∈[2-k,4-k ),即B =[2-k,4-k ).∵A ∪B =A ,∴B ⊆A ,∴2-k ≥1且4-k ≤4,解得0≤k ≤1.9.若f (x )是幂函数,且满足f (9)f (3)=2,则f ⎝⎛⎭⎫19=________. 解析:设f (x )=x α,∵f (9)f (3)=9α3α=3α=2,∴f ⎝⎛⎭⎫19=⎝⎛⎭⎫19α=⎝⎛⎭⎫132α=132α=122=14. 答案:1410.已知函数f (x )=(m 2-m -5)x m 是幂函数,且在(0,+∞)上为增函数,则实数m 的值是________.解析:由f (x )=(m 2-m -5)x m 是幂函数⇒m 2-m -5=1⇒m =-2或m =3.又f (x )在(0,+∞)上是增函数,所以m =3.答案:311.当0<x <1时,f (x )=x 2,g (x )=x 12,h (x )=x -2,则f (x ),g (x ),h (x )的大小关系是________________.解析:分别作出y =f (x ),y =g (x ),y =h (x )的图象如图所示,可知h (x )>g (x )>f (x ).答案:h (x )>g (x )>f (x )12.(2019·银川模拟)已知幂函数f (x )=x 12-,若f (a +1)<f (10-2a ),则a 的取值范围是________.解析:由题意得,幂函数f (x )=x -12的定义域为(0,+∞),且函数f (x )在(0,+∞)上单调递减,由f (a +1)<f (10-2a ),得⎩⎪⎨⎪⎧a +1>10-2a ,a +1>0,10-2a >0,解得3<a <5.答案:(3,5)13.已知幂函数f (x )=x ()21-+m m (m ∈N *)的图象经过点(2,2).(1)试确定m 的值;(2)求满足条件f (2-a )>f (a -1)的实数a 的取值范围. 解:(1)∵幂函数f (x )的图象经过点(2,2), ∴2=2()21-+m m ,即212=2()21-+m m .∴m 2+m =2,解得m =1或m =-2. 又∵m ∈N *,∴m =1.(2)由(1)知f (x )=x 12,则函数的定义域为[0,+∞),并且在定义域上为增函数. 由f (2-a )>f (a -1),得⎩⎪⎨⎪⎧2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32.∴a 的取值范围为⎣⎡⎭⎫1,32.。
幂函数知识点总结一、幂函数的基本概念1.1 定义幂函数是指以自变量 x 为底数的常数次幂,形式为 y = ax^n,其中 a 为非零实数,n 为实数。
其中,底数 a 称为幂函数的底数,指数 n 称为幂函数的指数。
1.2 定义域和值域幂函数的定义域为全体实数集 R,即 x 可以取任意实数值;而值域则受底数 a 和指数 n 的影响而不同。
当 n 为正数时,值域为全体正实数集 R^+;当 n 为负数时,值域为正实数集R^+,并且x ≠ 0;当 n 为零时,值域为全体实数集 R。
1.3 奇偶性当指数 n 为偶数时,幂函数关于 y 轴对称;当指数 n 为奇数时,幂函数关于原点对称。
1.4 增减性当指数 n 大于 1 时,幂函数在定义域上是增函数;当指数 n 大于 0 且小于 1 时,幂函数在定义域上是减函数。
二、幂函数图像的特点2.1 当底数 a 大于 1 时当底数 a 大于 1 时,幂函数的值域为正实数集 R^+。
图像呈现出从左下方无穷趋近于 x 轴,经过原点后逐渐上升并趋近于正无穷的趋势。
2.2 当底数 0 < a < 1 时当底数 0 < a < 1 时,幂函数的值域同样为正实数集 R^+。
图像呈现出从左下方无穷趋近于x 轴,经过原点后逐渐下降并趋近于 0 的趋势。
2.3 当底数 a 小于 0 时当底数 a 小于 0 时,则根据指数 n 的奇偶性和正负性来确定图像的性质。
当指数 n 为正偶数时,图像同样呈现出从左下方无穷趋近于 x 轴,经过原点后逐渐上升并趋近于正无穷的趋势;当指数 n 为正奇数时,图像同样呈现从左上方无穷趋近于 x 轴,经过原点后逐渐下降并趋近于负无穷的趋势。
2.4 特殊情况当底数 a 等于 1 时,幂函数的图像表现为一条平行于 x 轴的直线 y = 1;当底数 a 等于 -1 时,根据指数 n 的奇偶性不同,图像分别为一条平行于 x 轴的直线 y = -1 和关于 y 轴对称的抛物线。
幂函数高考知识点总结幂函数是高中数学中非常重要的一部分内容,也是高考中经常出现的知识点之一。
幂函数在数学中具有广泛的应用,不仅仅体现在纵坐标的数值关系上,更是涉及到图像特征、函数性质以及解题方法等方面。
下面我将对幂函数的相关知识进行总结和梳理,希望对大家复习和备考有所帮助。
1、幂函数的定义和性质幂函数的一般形式可以表示为:f(x) = ax^b,其中a和b是常数,而x是变量。
其中,a称为幂函数的系数,b称为幂函数的指数。
幂函数的定义域由指数b的正负决定,若b为正整数,则定义域是全体实数;若b为负整数,则定义域是x ≠ 0的一切实数;若b为0,则幂函数的定义域是x > 0的一切实数。
当只考虑幂函数f(x)在正数定义域上的取值时,幂函数的图像可以分为两种情况:当a > 1时,图像呈现递增趋势;当0 < a < 1时,图像则呈现递减趋势。
2、幂函数的图像特征通过观察幂函数的图像,我们可以得出一些重要的结论。
首先,当幂函数的系数a为正数时,图像都经过第一象限的点(1, a)。
其次,当幂函数的指数b为奇数时,幂函数的图像对称于y轴;当幂函数的指数b为偶数时,幂函数的图像具有原点对称性。
除此之外,我们还可以通过改变系数a和指数b的值,来改变幂函数图像的特征,如峰值的高低、函数图像的陡峭程度等。
3、幂函数的运算与应用幂函数的求导是高中数学中的重要内容之一。
对于幂函数f(x) =ax^b,其中a为常数,b为实数,我们可以通过求导的方法来确定幂函数的导函数形式。
具体来说,当指数为整数时,我们可以利用幂函数的定义进行求导;当指数为实数且不为整数时,我们则需要利用对数函数的性质来求导。
此外,由于幂函数具有多种性质和特点,在解决实际问题时也能够提供很多启示和方法。
4、幂函数的解题技巧和例题分析在高考中,幂函数常常出现在各种数学题目中,因此熟练掌握幂函数的解题方法是非常重要的。
对于幂函数的解题技巧,我们可以利用以下几点进行分析和总结:首先,要熟悉幂函数的性质和特点,了解其图像形态和函数性质;其次,要能够根据题目给出的条件和要求,建立幂函数方程或不等式;最后,要善于运用数学方法和思维工具,进行合理的推导和计算。
幂函数运算知识点总结一、幂函数的定义幂函数是指数函数的一种特殊形式,其定义为f(x) = ax^n,其中a和n分别为实数且n为正整数。
幂函数的定义域为实数集合,值域为非负实数集合。
当n为偶数时,幂函数的图像呈现“上凸”的形状;当n为奇数时,幂函数的图像呈现“上凹”的形状。
二、幂函数的图像特点1. 当n为奇数时,幂函数的图像在第一象限和第三象限上凹,在第二象限和第四象限上凸。
2. 当n为偶数时,幂函数的图像在第一象限和第三象限上凸,在第二象限和第四象限上凹。
3. 当n为1时,幂函数的图像为直线y=ax,且通过原点。
三、幂函数的性质1、对任意实数a,b,c(a≠0,1);n,m为正整数,有a^0=1,a^m*a^n=a^(m+n),(a^m)^n=a^(mn),(a*b)^m=a^m*b^m,(a/b)^m=a^m/b^ma^m/a^n=a^(m-n)2、a≠0,1时,当0<a<1时,a^m叫做小于1的幂,a^(−m)=1/a^m;大于1的幂。
a^m>1, 当m>1时 a^m>1, 当m<1时 a^m <1.0^0=1,0^m=0 (m>0).四、幂函数的运算规律1. 幂函数与常数的乘积:y=kx^n(k为常数),则y=kx^n是一条幂函数的图像,图像基本形状不变,只经过纵向压缩或纵向拉伸。
若k>1,则图像纵向压缩;若0<k<1,则图像纵向拉伸。
2. 幂函数的平移:若对f(x)=x^n加常数c,则其图像向上平移c个单位;若对f(x)=x^n减常数c,则其图像向下平移c个单位。
3. 幂函数的镜像:幂函数关于y轴对称时,原函数的图像将对称于y轴;幂函数关于x轴对称时,原函数图像将对称于x轴。
4. 幂函数的复合函数:将两个幂函数进行复合运算时,其结果仍为幂函数。
五、幂函数的求导幂函数的导数运算利用幂函数的性质和指数函数的导数运算法则,以及利用导数的乘法法则与链式法则。
高考数学知识点幂函数知识点知识点总结幂函数知识点总结幂函数是数学中重要的函数之一,也是高考数学中的考点内容。
本文将对幂函数的相关知识点进行总结,包括定义、性质、图像和应用等内容。
一、定义幂函数是指函数y = ax^n,其中a和n均为常数,且a ≠ 0,n为正整数。
其中,a称为幂函数的底数,n称为幂函数的指数。
幂函数的定义域为全体实数,值域根据指数的奇偶性而定。
当指数n为奇数时,值域为全体实数;当指数n为偶数时,值域为非负实数。
二、性质1. 当底数a大于1时,幂函数的图像随着自变量x的增大而增大;当底数a介于0和1之间时,幂函数的图像随着自变量x的增大而减小。
2. 当指数n为正整数时,幂函数的图像在第一象限上且经过点(1,a)。
3. 当指数n为奇数时,幂函数的图像关于y轴对称;当指数n为偶数时,幂函数的图像关于原点对称。
三、图像根据幂函数的性质,我们可以画出幂函数的大致图像。
以y = 2x^2为例,我们可以按照以下步骤绘制图像:1. 计算出若干个点的坐标,取x的值为-2,-1,0,1,2,3等,并计算出对应的y值。
2. 将这些点连接起来,形成平滑的曲线。
3. 注意幂函数的对称性,根据对称轴上的点可以在其他位置上找到对应的点。
四、应用幂函数在实际问题中有广泛的应用,其中一些典型的应用包括:1. 复利计算:由于幂函数的特性,它可以很好地描述复利增长的情况。
例如,存款的本金在每年按一定的比例增长,这就可以用幂函数来表示。
2. 科学实验:在某些科学实验中,现象的变化与自变量并非线性关系,而是呈现幂函数的规律。
通过研究幂函数的图像和性质,可以更好地理解实验结果。
3. 经济增长:幂函数也可以描述经济增长的规律。
例如,某地区的GDP每年按一定的比例增长,可以用幂函数来表示。
总结:幂函数是高考数学中的重要知识点,掌握了幂函数的定义、性质、图像和应用,能够解决与幂函数相关的各种问题。
在学习过程中,我们还可以通过练习题加深对幂函数的理解和应用能力。
幂函数归纳总结幂函数是高中数学中常见的一种函数形式,其表达式为y = ax^n,其中a和n为常数,x为自变量。
幂函数在数学和实际应用中具有重要的作用,通过对幂函数进行归纳总结,可以更好地理解和应用幂函数。
1. 幂函数的定义和性质幂函数是由一个常数底数a的幂次方函数。
其中,底数a决定了幂函数的基本形态,幂指数n则决定了幂函数曲线的变化。
幂函数的性质包括:- 当a>0时,幂函数在整个定义域上单调递增或递减;- 当a<0时,幂函数在定义域上单调递增或递减,但在奇次幂的情况下函数的值为负;- 当n为偶数时,幂函数图像关于y轴对称;- 当n为奇数时,幂函数图像关于原点对称。
2. 幂函数图像的特点幂函数的图像特点与其底数a和幂指数n密切相关。
下面分别对这两个因素进行总结:2.1 底数a的影响- 当|a|>1时,幂函数的图像趋向于无穷大。
当a>1时,幂函数为增长函数;当a<1时,幂函数为衰减函数。
- 当|a|<1时,幂函数的图像趋向于零。
当a>0时,幂函数为衰减函数;当a<0时,幂函数为增长函数。
2.2 幂指数n的影响- 当n>1时,幂函数的图像在零点的右侧逐渐上升或下降。
- 当n=1时,幂函数为一次函数。
- 当0<n<1时,幂函数在整个定义域上单调递减。
- 当n=0时,幂函数为常函数,图像为一条水平直线。
3. 幂函数的应用幂函数在实际生活和科学研究中有着广泛的应用,在以下领域中尤为重要:3.1 物理学中的应用- 物体自由落体的运动规律中,与时间相关的位移和速度函数可以表示为幂函数的形式;- 电路中的电阻与电流关系、电压与电流关系等多与幂函数相关。
3.2 经济学中的应用- 许多经济学模型中,需求曲线、供给曲线等都可以用幂函数来描述;- 成本函数、收益函数等经济学指标常常涉及幂函数。
3.3 生物学中的应用- 生物种群的增长模型经常使用幂函数来描述;- 营养物质浓度、酶催化反应速率等生物过程也可以通过幂函数来表示。
高三数学专题复习 (幂函数)经典1.设⎭⎬⎫⎩⎨⎧--∈3,2,1,21,1,2α,则使幂函数a y x =为奇函数且在(0,)+∞上单调递增的a 值的个数为( )A .0B .1C .2D .32.设11,0,,1,2,32a ⎧⎫∈-⎨⎬⎩⎭,则使函数ay x =的定义域为R 且为奇函数的所有a 的值有( )A .1个B .2个C .3个D .4个 3.对于幂函数f(x)=45x ,若0<x 1<x 2,则12()2x x f +,12()()2f x f x +的大小关系是( )A. 12()2x x f +>12()()2f x f x + B. 12()2x x f +<12()()2f x f x + C. 12()2x x f +=12()()2f x f x + D. 无法确定 4.设函数y =x 3与21()2x y -=的图像的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4) 5.下列说法正确的是( )A .幂函数的图像恒过(0,0)点B .指数函数的图像恒过(1,0)点C .对数函数的图像恒在y 轴右侧D .幂函数的图像恒在x 轴上方 6.若0>>n m ,则下列结论正确的是( )A. 22m n< B. 22m n <C. n m 22log log >D.11m n> 7.若函数32)32()(-+=m x m x f 是幂函数,则m 的值为( )A .1-B .0C .1D .2 8.幂函数y f x =()的图象经过点142(,),则(2)f ( )A.14 B. 12- C. 29.幂函数35m y x -=,其中m N ∈,且在(0,)+∞上是减函数,又()()f x f x -=,则m =( )A.0B.1C.2D.310.已知幂函数()mf x x =的图象经过点(4,2),则(16)f =( )A.11.已知命题p :函数2()21(0)f x ax x a =--≠在(0,1)内恰有一个零点;命题q :函数2ay x -=在(0,)+∞上是减函数,若p 且q ⌝为真命题,则实数a 的取值范围是( )A .1a >B .a≤2C . 1<a≤2D .a≤l 或a>212.[2014·北京西城模拟]已知函数f(x)=122,0,20x x c x x x ⎧⎪≤≤⎨⎪+-≤<⎩,其中c >0.那么f(x)的零点是________;若f(x)的值域是1,24⎡⎤-⎢⎥⎣⎦,则c 的取值范围是________. 13.幂函数()f x x α=经过点P(2,4),则f = .14.设f (x)=⎪⎩⎪⎨⎧+--21121xx 11>≤x x ,则f [ f (21)]=15.幂函数 f (x )=x α(α∈R)过点,则f (4)= . 16.幂函数 f (x )=x α(α∈R )过点,则 f (4)= . 17.若幂函数y =f(x)的图象经过点19,3⎛⎫ ⎪⎝⎭,则f(25)=________.18.若a +a -1=3,则32a -a -32=______. 19.若()121a -+<()1232a --,则a 的取值范围是 .20.设函数f (x )=0102x x x ≥⎨⎛⎫⎪ ⎪⎝⎭⎩,,<,则f (f (-4))=________.21.已知幂函数的图像经过点(2,32)则它的解析式是 . 22.已知幂函数()f x x α=在[1,2]上的最大值与最小值的和为5,则α= . 23.已知幂函数2()(1)mf x m m x =--在(0,)x ∈+∞上单调递减,则实数m = .24.已知幂函数()x f 存在反函数,且反函数()x f 1-过点(2,4),则()x f 的解析式是 . 25.知幂函数13()n y xn N *-=∈ 的定义域为(0,)+∞ ,且单调递减,则n =__________.26.若函数f(x)是幂函数,且满足(4)3(2)f f =,则1()2f 的值为 .27.已知幂函数21()(22)m f x m m x +=-++为偶函数.(1)求()f x 的解析式;(2)若函数()2(1)1y f x a x =--+在区间(2,3)上为单调函数,求实数a 的取值范围.28.已知幂函数y =f(x)经过点12,8⎛⎫ ⎪⎝⎭.(1)试求函数解析式;(2)判断函数的奇偶性并写出函数的单调区间.29.已知幂函数y =x 3m -9(m∈N *)的图象关于y 轴对称,且在(0,+∞)上是减函数. (1)求m 的值;(2)求满足不等式(a +1)-3m <(3-2a)-3m的实数a 的取值范围. 30.已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值为8,求二次函数f(x)的解析式.参考答案1.C【来源】2013-2014学年福建省三明一中高二下学期期中考试文科数学试卷(带解析) 【解析】试题分析:因为ay x =是奇函数,所以a 应该为奇数,又在(0,)+∞是单调递增的,所以0a >则只能1,3. 考点:幂函数的性质. 2.B【来源】2014届陕西西工大附中高三上学期第四次适应性训练理数学卷(带解析) 【解析】试题分析:由幂函数的基本性质可知,定义域为R 的a 的值为:{}1,2,3,函数为奇函数的a 的值为{}1,1,3-,故满足条件的所有a 的值为{}1,3两个.考点:幂函数的定义域、奇偶性. 3.A【来源】2013-2014学年江西鹰潭市高一上学期期末考试理科数学试卷(带解析) 【解析】试题分析:可以根据幂函数f(x)=45x 在(0,+∞)上是增函数,函数的图象是上凸的,则当0<x1<x2时,应有12()2x x f +>12()()2f x f x +,由此可得结论. 考点:函数的性质的应用.4.B【来源】2013-2014学年江西省赣州市六校高一上学期期末联考数学试卷(带解析) 【解析】试题分析:由函数知识知函数y =x 3与21()2x y -=的图像的交点为(x 0,y 0)的横坐标x 0即为方程321()2x x -=的解,也是函数函数()f x =321()2x x --的零点,由零点存在性定理及验证法知(1)(2)f f <0,故x 0在区间(1,2)内. 由题知x 0是函数()f x =321()2x x --的零点,∵(1)(2)f f =31232211[1()][2()]22----=-7<0,故选B.考点:函数零点与函数交点的关系,零点存在性定理 5.C【来源】2013-2014学年山东省滕州市高一(上)期末考试数学试家(带解析) 【解析】试题分析:对于A 、D ,幂函数y x α=的图像不一定过点(0,0),也不一定恒在x 轴的上方,如1y x=不过原点且它的图像也不恒在x 轴的上方,应该是幂函数y x α=的图像恒过定点(1,1);对于B ,指数函数x y a =恒过定点(0,1),因为01a =;对于C ,因为对数函数log a y x =(0a >且1a ≠)的定义域为{}|0x x >,所以对数函数的图像恒在y 轴的右侧,故选C.考点:基本初等函数的图像与性质. 6.C【来源】2013-2014学年浙江丽水高一上普通高中教学质量监控数学卷(带解析) 【解析】试题分析:指数函数、对数函数的底数大于 1 时,函数为增函数,反之,为减函数,对于幂函数y x α=而言,当0α>时,在(0,)+∞上递增,当0α<时,在(0,)+∞上递减,而0>>n m ,所以22log log m n >,故选C.考点:1.指数函数;2.对数函数;3.幂函数的性质. 7.A【来源】2013-2014学年甘肃高台第一中学高一秋学期期末考试数学试卷(带解析) 【解析】试题分析:由题意,得231m +=,解得1m =-. 考点:幂函数的解析式. 8.C【来源】2013-2014学年甘肃高台第一中学高一秋学期期末考试数学试卷(带解析) 【解析】试题分析:因为函数的图象y f x =()经过点142(,),则有142a =,解得2a =-,所以2(2)22f -==. 考点:幂函数的解析式与图象.9.B【来源】2013-2014学年甘肃高台第一中学高一秋学期期末考试数学试卷(带解析) 【解析】试题分析:由题意知350m -<,解得53m <,由()()f x f x -=知函数()f x 为偶函数,又因m N ∈,所以1m =,故选B .考点:1.幂函数的解析式样 2.幂函数的单调性与奇偶性. 10.B【来源】2013-2014学年甘肃高台第一中学高一秋学期期末考试数学试卷(带解析) 【解析】试题分析:因为幂函数()mf x x =的图象经过点(4,2),所以有24m=,解得12m =,所以(16)4f =. 考点:幂函数解析式与图象. 11.C【来源】2014届宁夏银川一中高三上学期第五次月考理科数学试卷(带解析) 【解析】试题分析:由题知,命题p :0(1)0a f >⎧⎨>⎩,得1a >,命题q :20a -<,则2a >,若p 且q ⌝为真命题,则有12a a >⎧⎨≤⎩,故实数a 的取值范围是12a <≤.考点:1、函数的零点;2、幂函数的图象和性质;3、复合命题的真假.12.-1和0 (0,4]【来源】2015数学一轮复习迎战高考:2-4二次函数与幂函数(带解析)【解析】当0≤x≤c 时,由12x =0得x =0.当-2≤x<0时,由x 2+x =0,得x =-1,所以函数零点为-1和0.当0≤x≤c 时,f(x)=12x ,所以当-2≤x<0时,f(x)=x 2+x =12x ⎛⎫+⎪⎝⎭2-14,所以此时-14≤f(x)≤2.若f(x)的值域是1,24⎡⎤-⎢⎥⎣⎦,即0<c≤4,即c 的取值范围是(0,4]. 13.2【来源】2013-2014学年广东省顺德市勒流中学高一上学期第2段考数学试卷(带解析) 【解析】试题分析:将P(2,4)点坐标代入幂函数()f x x α=,可得2α=,所以2()f x x =,则2f =.考点:函数的求值. 14.134 【来源】2013-2014学年江苏省扬州中学高二第二学期阶段测试文科数学试卷(带解析) 【解析】试题分析:先从内层算起,23212121-=--=⎪⎭⎫ ⎝⎛f ,13423-11232=⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛-f . 考点:分段函数求值 15.2【来源】2013-2014学年江苏省扬州中学高二第二学期阶段测试文科数学试卷(带解析) 【解析】试题分析:将点()2,2,代入幂函数,得22=α,解得21=α,所以()21x x f =,那么()24421==f考点:幂函数的性质 16.2【来源】2013-2014学年江苏省扬州中学高二第二学期阶段测试理科数学试卷(带解析) 【解析】试题分析:将点()2,2,代入幂函数,得22=α,解得21=α,所以()21x x f =,那么()24421==f考点:幂函数的性质 17.15【来源】2014届高考数学总复习考点引领 技巧点拨第二章第9课时练习卷(带解析) 【解析】设f(x)=x α,则13=9α,∴α=-12,即f(x)=x -12,f(25)=1518.±4【来源】2014届高考数学总复习考点引领 技巧点拨第二章第7课时练习卷(带解析)【解析】32a -a -32=(12a -a -12)(a +a -1+1).∵(12a -a -12)2=a +a -1-2=1,∴(12a -a -12)=±1,∴原式=(±1)×(3+1)=±4. 19.23,32⎛⎫⎪⎝⎭【来源】2014届人教版高考数学文科二轮专题复习提分训练5练习卷(带解析) 【解析】令f(x)=12x-,则f(x)的定义域是{x|x>0},且在(0,+∞)上单调递减,则原不等式等价于10,320,132,a a a a +>⎧⎪->⎨⎪+>-⎩解得23<a<32.20.4【来源】2014年高考数学(文)二轮专题复习与测试选择填空限时训练1练习卷(带解析) 【解析】f (-4)=12⎛⎫⎪⎝⎭-4=16, 所以f (f (-4))=f (16)4 21.5y x =【来源】2013-2014学年贵州遵义湄潭中学高一上学期期末考试数学试卷(带解析)【解析】试题分析:设幂函数方程为ny x =,将点()2,32代入可得322n=,解得5n =,所以此幂函数解析式为5y x =。
高三幂函数总结知识点幂函数是数学中的一种重要函数形式,它的形式为f(x) = ax^b,其中a和b都是常数,b表示幂指数。
在高三学习中,幂函数是一个重要的内容,本文将对高三幂函数的知识点进行总结。
一、函数的定义与基本性质1. 幂函数的定义:幂函数是指数为常数的函数,形式为f(x) =ax^b,其中a和b都是常数,a称为系数,b称为幂指数。
2. 幂函数的定义域:对于幂函数来说,定义域是实数集。
3. 幂函数的图像特点:当b为正数时,幂函数的图像在第一象限上增长,当b为负数时,则在第一象限上递减。
二、幂函数的分类根据幂指数b的取值,我们可以将幂函数进行分类。
1. 当b>0时,幂函数为正幂函数,图像随着x的增大而增大。
2. 当b=0时,幂函数为常数函数,图像为一条水平直线。
3. 当b<0时,幂函数为倒数函数,图像随着x的增大而减小。
三、幂函数的性质1. 对称性:当b为偶数时,幂函数的图像关于y轴对称;当b为奇数时,幂函数的图像关于原点对称。
2. 增减性:当b>0时,幂函数是递增函数;当b<0时,幂函数是递减函数。
3. 渐近线:当b>0时,幂函数的图像都有一条水平渐近线y=0;当b<0时,幂函数的图像都有一条垂直渐近线x=0。
四、幂函数与其他函数的关系在高三学习中,我们经常需要与其他函数进行比较与分析。
1. 幂函数与线性函数:当b=1时,幂函数退化为一次函数,即f(x) = ax。
2. 幂函数与指数函数:幂函数是指数函数的逆运算,即幂函数是指数函数的反函数。
3. 幂函数与对数函数:幂函数与对数函数是互逆函数关系,幂函数是对数函数的反函数,对数函数可以视为幂函数的解析式。
五、解题技巧与应用在高三数学中,幂函数是必考内容,掌握解题技巧和应用非常重要。
1. 求幂函数的零点:将幂函数设置为零,解方程得到x的值。
2. 求幂函数的最值:通过分析幂函数的增减性和图像特点,可以求得幂函数的最大值和最小值。
数学高中幂函数知识点总结一、幂函数的定义幂函数是形如y = ax^b (a ≠ 0)的函数,其中a、b为常数且b为实数。
当b为自然数时,叫做指数函数;当b为整数时,叫做整数幂函数。
二、幂函数的基本性质1、幂函数的定义域:要求x的b次幂在任何实数范围内都有定义,即x∈R。
2、幂函数的值域:当b为正数时,a为正值时,y的取值范围是(0,+∞);当b为正数时,a为负值时,y的取值范围是(-∞,0);当b为负数时,函数图象经过第二象限,y的取值范围是(0,+∞),a的正负对y的取值范围没有影响。
3、幂函数的奇偶性:b为偶数时,函数图象关于y轴对称;b为奇数时,函数图象关于原点对称。
4、幂函数的单调性:在定义域内,当b>0时,a>0时y随x增大而增大;当b>0时,a<0时y随x增大而减小。
5、幂函数的图象:a) b>0时,a>1时的函数图象是上凸的抛物线,a<1时的函数图象是下凸的抛物线;b) b<0时,a>0时的函数图象是一条破折线;c) b=1时,函数图像是一条直线。
6、幂函数的增长性:a) 当a>1,b>0时,y随x增大而增大;b) 当0<a<1,b>0时,y随x增大而减小;c) 当a>0,b<0时,y随x增大而减小。
三、幂函数的运算性质1、乘法运算:幂函数y=ax^m和y=bx^n的乘积是幂函数y=abx^(m+n)。
2、除法运算:幂函数y=ax^m和y=bx^n的商是幂函数y=(a/b)x^(m-n)。
(b≠0)3、幂函数的乘方:(ax^m)^n = a^nx^(m*n)。
四、幂函数的应用1、指数增长和指数衰减:指数增长是指幂函数的指数大于1且底数大于1时,函数值随自变量的增大而呈指数增长;指数衰减是指幂函数的指数大于1且底数小于1时,函数值随自变量的增大而呈指数衰减。
2、复利问题:利息的计算通过年限n^{'}m即可直接得到m*n倍经过以上的总结,我们对高中幂函数的相关知识有了更深入的了解。
高中幂函数知识点总结在高中数学中,学生们需要掌握幂函数的基本性质、图像特征、变化规律以及应用等知识点。
下面就幂函数的这些知识点进行总结。
一、幂函数的基本性质1.定义域和值域幂函数的定义域为全体实数集R,当a>0时,幂函数的值域为(0,+∞);当a<0时,幂函数的值域为(-∞,0)。
当b为实数时,定义域不变,值域也不变。
2.奇函数和偶函数当b为奇数时,幂函数为奇函数,其图像关于原点对称;当b为偶数时,幂函数为偶函数,其图像关于y轴对称。
3.增减性当b>0时,a^b是单调递增函数;当b<0时,a^b是单调递减函数;当a>1时,a^x是单调递增函数;当0<a<1时,a^x是单调递减函数。
4.奇偶性当b为偶数时,幂函数的值域为(0,+∞),其奇函数;当b为奇数时,幂函数的值域为(-∞,+∞),其为奇函数。
5.图像特征当a>1时,幂函数的图像开口向上,且与y轴有交点(0,1);当0<a<1时,幂函数的图像开口向下,且与y轴有交点(0,1)。
二、幂函数的变化规律1.当a>1时,随着x的增大,幂函数的值也增大;当0<a<1时,随着x的增大,幂函数的值逐渐减小。
2.当b>0时,随着x的增大,幂函数的值也增大;当b<0时,随着x的增大,幂函数的值逐渐减小。
3.在定义域内,当a大于1时,幂函数呈现增长趋势,a小于1时,幂函数呈现下降趋势。
幂函数的图像是在a的基础上上升或下降,实际上是在描绘x的指数函数。
4.幂函数的图像经常在一轴上浮躺,显示出一种不平滑的弧度,变化没有一元二次函数的平稳。
随着a的变大或者减小,幂函数的图像与x轴的夹角越来越小。
5.当b不为整数,是一个更加复杂的形式;而指数函数是幂函数的一种特殊情况,b为整数时。
三、幂函数的应用1.在现实生活中,幂函数的变化规律被应用在各个方面,比如物理学中的指数增长和衰减模型、生物学中的人口增长模型、经济学中的利润增长模型等。
高三数学《幂函数》知识梳理与题型战法第二章 函数2.6.1幂函数(题型战法)知识梳理一 幂函数的概念一般地,函数y x α=称为幂函数,其中α为常数.注意:幂函数中底数是自变量,而指数函数中指数为自变量.二 幂函数的图像与性质(1)五个常见幂函数的图像: 如右图所示(2)五个常见幂函数的性质: 函数 性质 y =x12y x =y =x 2 y =x 3 1y x −=定义域 R [)0+∞, R R ()(),00,−∞+∞U 值域 R [)0+∞, [)0+∞, R ()(),00,−∞+∞U奇偶性奇非奇非偶偶奇奇单调性 R 上增[)0+∞,上增 (-∞,0)上减 [0,+∞)上增R 上增(-∞,0)上减 (0,+∞)上减公共点(1)所有的幂函数在区间()0+∞,上都有定义,因此在第一象限内都有图像,并且图像都过点()1,1.(2)如果0α>,幂函数图像过原点,并且在[)0+∞,上是增函数 (3)如果0α<,幂函数图像过原点,并且在[)0+∞,上是减函数 题型战法题型战法一 幂函数的概念典例1.下列函数是幂函数的是( ) A .2y x = B .21y x =− C .3y x = D .2x y =【答案】C 【解析】 【分析】由幂函数定义可直接得到结果. 【详解】形如y x α=的函数为幂函数,则3y x =为幂函数. 故选:C.变式1-1.下列函数是幂函数的是( ) A .22y x = B .1y x −=− C .31y x =D .2x y =【答案】C 【解析】 【分析】根据幂函数的定义判断. 【详解】形如y x α=(α为常数且R α∈)为幂函数, 所以,函数331=xy x −=为幂函数,函数22y x =、1y x −=−、2x y =均不是幂函数. 故选:C.变式1-2.已知幂函数()y f x =的图象过点()2,8,则()2f −的值为( ) A .8 B .8− C .4 D .4−【答案】B 【解析】 【分析】设()af x x =,由已知条件求出a 的值,可得出函数()f x 的解析式,由此可求得()2f −的值. 【详解】设()a f x x =,由()228a f ==,可得3a =,则()3f x x =,因此,()()3228f −=−=−.故选:B.变式1-3.已知幂函数()22233m m y m m x −−=−+的图象不过原点,则实数m 的取值为( )A .1B .2C .-2D .1或2【答案】A 【解析】 【分析】根据题意,可知系数为1,指数应小于0,由此列出不等式组,解得答案. 【详解】由题意可知:2233120m m m m ⎧−+=⎨−−<⎩, 解得1m = ,经经验,符合题意, 故选:A.变式1-4.已知幂函数()(,)f x kx k R R αα=∈∈的图象过点1(2,则k α+等于( ) A .12 B .1 C .32D .2【答案】A 【解析】 【分析】根据幂函数的定义,结合代入法进行求解即可. 【详解】因为()f x 是幂函数,所以1k =,又因为函数()f x 的图象过点1(2,所以1211()2222ααα−==⇒=−,因此12k α+=,故选:A题型战法二 幂函数的图像典例2.函数y = )A .B .C .D .【答案】A 【解析】 【分析】根据幂函数的性质判断函数值、增长特点,即可确定大致图象. 【详解】由0y =≥,排除B 、D ,根据对应幂函数的性质,第一象限增速逐渐变慢,排除C. 故选:A.变式2-1.已知幂函数()f x ()9,3,则函数()f x 的图象是( )A .B .C .D .【答案】C 【解析】 【分析】设出函数的解析式,根据幂函数()y f x =的图象过点(9,3),构造方程求出指数的值,再结合函数的解析式研究其性质即可得到图象. 【详解】设幂函数的解析式为()f x x α=, ∵幂函数()y f x =的图象过点(9,3), ∴39α=, 解得12α=∴()y f x ==[0,)+∞,且是增函数,当01x <<时,其图象在直线y x =的上方.对照选项可知C 满足题意. 故选:C .变式2-2.如图,①②③④对应四个幂函数的图像,其中①对应的幂函数是( )A .3y x =B .2y x =C .y x =D .58y x =【答案】D 【解析】 【分析】根据函数图象求出幂函数的指数取值范围,得到正确答案. 【详解】根据函数图象可得:①对应的幂函数y x α=在[)0,∞+上单调递增,且增长速度越来越慢,故()0,1α∈,故D 选项符合要求. 故选:D变式2-3.图中C 1、C 2、C 3为三个幂函数y x α=在第一象限内的图象,则解析式中指数α的值依次可以是( )A .12、3、1− B .1−、3、12C .12、1−、3D .1−、12、3【答案】D 【解析】 【分析】根据幂函数y x α=在第一象限内的图象性质,结合选项即可得出指数α的可能取值. 【详解】由幂函数y x α=在第一象限内的图象,结合幂函数的性质, 可得:图中C 1对应的0α<,C 2对应的01α<<,C 3对应的1α>, 结合选项知,指数α的值依次可以是11,,32−. 故选:D.变式2-4.已知幂函数()f x x α=和()g x x β=,其中0αβ>>,则有下列说法: ①()f x 和()g x 图象都过点()1,1; ②()f x 和()g x 图象都过点(1,1)−;③在区间[1,)+∞上,增长速度更快的是()f x ; ④在区间[1,)+∞上,增长速度更快的是()g x . 则其中正确命题的序号是( ) A .①③ B .②③C .①④D .②④【答案】A 【解析】 【分析】由幂函数的性质进行分析判断即可 【详解】幂函数的图象过定点(1,1),①正确,在区间[1,)+∞上,α越大y x α=增长速度更快,③正确, 故选:A.题型战法三 幂函数的定义域典例3.下列幂函数中,定义域为R 的是( ) A .1y x −= B .12y x −=C .13y x =D .12y x =【答案】C 【解析】 【分析】直接根据幂函数的定义域可直接判断,偶次根式被开方式必须大于等于0才有意义,分式则必须分母不为0 【详解】对选项A ,则有:0x ≠ 对选项B ,则有:0x > 对选项C ,定义域为:R 对选项D ,则有:0x ≥故答案选:C变式3-1.若()342x −−有意义,则实数x 的取值范围是( )A .[)2,+∞B .(],2−∞C .()2,+∞D .(),2−∞【答案】C 【解析】 【分析】将分式指数幂化为根式,结合根式的性质可得出关于实数x 的不等式,即可解得实数x 的取值范围. 【详解】由负分数指数幂的意义可知,()342x −−所以20x −>,即2x >,因此x 的取值范围是()2,+∞. 故选:C.变式3-2.函数()()()102121f x x x −=−+−的定义域是( )A .(],1−∞B .11,,122⎛⎫⎛⎫−∞⋃ ⎪ ⎪⎝⎭⎝⎭C .(),1−∞−D .1,12⎛⎫⎪⎝⎭【答案】B 【解析】 【分析】根据函数解析式有意义可得出关于实数x 的不等式组,由此可解得函数()f x 的定义域. 【详解】因为()()()()1212121f x x x x −=−+−−, 则有10210x x −>⎧⎨−≠⎩,解得1x <且12x ≠,因此()f x 的定义域是11,,122⎛⎫⎛⎫−∞⋃ ⎪ ⎪⎝⎭⎝⎭.故选:B.变式3-3.5个幂函数:①2y x -=;②45y x =;③54y x =;④23y x =;⑤45y x −=.其中定义域为R 的是( ) A .只有①② B .只有②③ C .只有②④ D .只有④⑤【答案】C 【解析】 【分析】分别写出所给函数的定义域,然后作出判断即可. 【详解】①2y x -=的定义域为(,0)(0,)−∞+∞, ②45y x =的定义域为R , ③54y x =的定义域为(0,)+∞, ④23y x =的定义域为R ,⑤45y x −=的定义域为(,0)(0,)−∞+∞,故选:C . 【点睛】本题考查幂函数的定义,侧重考查对基础知识的理解和掌握,属于基础题. 变式3-4.若函数()12f x x −=则函数y =f (4 x -3)的定义域是( )A .(-∞,+∞)B .3,4⎛⎫−∞ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .3,4⎛⎫+∞ ⎪⎝⎭【答案】D 【解析】 【分析】 先求出()43f x −=,根据幂函数的定义域求解即可. 【详解】 幂函数()12f x x−==()43y f x =−=, 所以430x −>,所以34x >,所以函数()43y f x =−的定义域是3,4⎛⎫+∞ ⎪⎝⎭,故选D.【点睛】本题主要考函数的定义域、不等式的解法,属于简单题.定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数()f x 的定义域为[],a b ,则函数()()f g x 的定义域由不等式()a g x b ≤≤求出.题型战法四 幂函数的值域典例4.函数2y x -=在区间1,22⎡⎤⎢⎥⎣⎦上的最小值是( )A .14B .14−C .4D .4−【答案】A 【解析】 【分析】由于函数2y x -=在区间1,22⎡⎤⎢⎥⎣⎦上是减函数,从而可求出其最小值【详解】∵函数2y x -=在区间1,22⎡⎤⎢⎥⎣⎦上是减函数,∴2min 124y −==,故选:A. 【点睛】此题考查由函数的单调性求最值,属于基础题变式4-1.在下列函数中,定义域和值域不同的是( ) A .13y x = B .12y x =C .53y x =D .23y x =【答案】D 【解析】 【分析】把幂函数写成根式的形式即可求出定义域及值域,逐项分析即可得解. 【详解】由13y x ==x ∈R ,y R ∈,定义域、值域相同; 由12y x ==[0,)x ∈+∞,[0,)y ∈+∞,定义域、值域相同; 由53y x ==x ∈R ,,定义域、值域相同y R ∈; 由23y x ==x ∈R ,[0,)y ∈+∞,定义域、值域不相同. 故选:D变式4-2.幂函数()y f x =的图象过点(,则函数()y x f x =−的值域是( ) A .(),−∞+∞ B .1,4⎛⎫−∞ ⎪⎝⎭C .1,4⎡⎫−+∞⎪⎢⎣⎭D .1,4⎛⎫−+∞ ⎪⎝⎭【答案】C 【解析】 【分析】设()af x x =,带点计算可得()12f x x =,得到12y x x =−,令12t x =转化为二次函数的值域求解即可. 【详解】设()af x x =,代入点(得2a =12a ∴=, ()12f x x ∴=则12y x x =−,令12t x =,0t ≥22111244t t t y ⎛⎫=−−≥− ⎪⎝⎭∴=−函数()y x f x =−的值域是1,4⎡⎫−+∞⎪⎢⎣⎭. 故选:C.变式4-3.已知函数f (x )={3x −2,x ⩽1,x 12,1<x ⩽4,则函数()f x 值域是( )A .(],2−∞B .(]2,2−C .(]1,4D .(],4∞−【答案】B 【解析】 【分析】结合分段函数的单调性来求得()f x 的值域. 【详解】当1x …吋,32x y =−单调递增,值域为(]2,1−;当14x <…时,12y x =单调递增,值域为(]1,2,故函数值域为(]2,2−. 故选:B变式4-4.已知幂函数()f x x α=的图象过点1(2,)2,则函数()f x 的值域为 A .(,0)−∞ B .(0,)+∞ C .(,0)(0,)−∞⋃+∞ D .(,)−∞+∞【答案】C 【解析】 【详解】试题分析:()f x x α=的图象过点1(2,)2()11212a a f x x −∴=∴=−∴=,值域为(,0)(0,)−∞⋃+∞考点:幂函数值域题型战法五 幂函数的单调性典例5.下列函数在(0,)+∞上为减函数的是( )A .yB .1y x=C .2y x =D .y x =【答案】B 【解析】 【分析】依据幂函数的性质去判断各选项的单调性即可解决. 【详解】选项A :由12>可得12y x =(0,)+∞上单调递增.不符合要求,排除;选项B :由10−<可得11y x x−==在(0,)+∞上单调递减.符合要求,可选;选项C :由20>可得2y x =在(0,)+∞上单调递增.不符合要求,排除; 选项D :由10>可得y x =在(0,)+∞上单调递增.不符合要求,排除. 故选:B变式5-1.已知函数()122()43f x x x =−+的增区间为( ) A .(3,)+∞ B .(2,)+∞ C .(,2)−∞ D .(,1)−∞【答案】A 【解析】先求得函数的定义域,再令243t x x =−+,结合12y t =的单调性,利用复合函数的单调性求解. 【详解】 由2430x x −+≥, 解得3x ≥或1x ≤,因为243t x x =−+在(,1]−∞递减,在[3,)+∞递增, 又因为12y t =在[0,)+∞递增, 所以()f x 增区间为(3,)+∞ 故选:A变式5-2.已知函数()()()2,16,(1aa x x f x x x ⎧+≤=⎨−>⎩)是减函数,则实数a 的取值范围是( ) A .[)7,2−− B .(),2−∞−C .(),7−∞−D .()7,2−−【答案】A 【解析】 【分析】由分段函数()f x 是减函数及幂函数的单调性,可得()2001621a a a a ⎧+<⎪<⎨⎪−≤+⨯⎩,解不等式组即可得答案. 【详解】解:因为函数()()()2,16,(1aa x x f x x x ⎧+≤=⎨−>⎩)是减函数,所以()2001621a a a a ⎧+<⎪<⎨⎪−≤+⨯⎩,解得72a −≤<−,所以实数a 的取值范围是[)7,2−−, 故选:A.变式5-3.已知幂函数()()22244m mf x m m x −=−+在()0,∞+上是增函数,则实数m 的值为( ) A .1或3− B .3 C .1− D .1−或3【答案】B 【解析】 【分析】由函数是幂函数,解得3m =或1m =,再代入原函数,由函数在()0,∞+上是增函数确定最后的m 值. 【详解】∵函数是幂函数,则2441m m −+=,∴3m =或1m =.当3m =时()3f x x =在()0,∞+上是增函数,符合题意;当1m =时()1f x x −=在()0,∞+上是减函数,不合题意.故选:B.变式5-4.已知幂函数()()282mf x m m x =−在()0,∞+上为增函数,则()4f =( )A .2B .4C .6D .8【答案】A 【解析】 【分析】由于幂函数在在()0,∞+上为增函数,所以可得282100m m m ⎧−−=⎨>⎩,求出m 的值,从而可求出幂函数的解析式,进而可求得答案 【详解】由题意得282100m m m ⎧−−=⎨>⎩,得12m =,则()12f x x ==()42f =. 故选:A题型战法六 幂函数的奇偶性典例6.下列函数是奇函数的为( ) A .2x y = B .1y x −= C .12log y x =D .2y x =【答案】B 【解析】 【分析】奇函数应该满足()()f x f x =−−,且定义域关于原点对称,对选项一一判断即可. 【详解】奇函数应该满足()()f x f x =−−,22x x −≠−,12log y x=的定义域为()0,∞+显然A,C,不成立,当0x ≠时,有()11x x −−=−−,所以1y x −=为奇函数, 由()22x x −=可知,2y x =为偶函数. 故选:B .变式6-1.下列函数中,值域是[)0,∞+且为偶函数的是( )A .2y x -=B .e e x x y −=+C .lg y x =D .23y x =【答案】D 【解析】 【分析】根据函数的奇偶性和值域确定正确选项. 【详解】2y x -=的值域为()0,∞+,不符合题意,A 选项错误.e e 2x x y −=≥=+,当0x =时等号成立,不符合题意,B 选项错误.lg y x =的定义域为()0,∞+,是非奇非偶函数,不符合题意,C 选项错误.令()23f x x =,其定义域为R ,()()()2233f x x x f x =−=−=,所以()f x 是偶函数, 且230x ≥,即()f x 的值域为[)0,∞+,符合题意,D 选项正确. 故选:D变式6-2.下列函数中,既是奇函数又是定义域内的增函数为( ) A .tan y x = B .2log y x = C .2y x= D .3y x =【答案】D 【解析】 【分析】根据初等函数的性质及奇函数的定义结合反例逐项判断后可得正确的选项. 【详解】对于A ,tan y x =的定义域为|,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,而233ππ>,但2tan tan 33ππ=,故tan y x =在定义域上不是增函数,故A 错误.对于B ,2log y x =的定义域为()0,+∞,它不关于原点对称,故该函数不是奇函数, 故B 错误.对于C ,因为21>时,2221<,故2y x=在定义域上不是增函数,故C 错误. 对于D ,因为3y x =为幂函数且幂指数为3,故其定义域为R ,且为增函数,而()33−=−x x ,故3y x =为奇函数,符合. 故选:D.变式6-3.设1,1,22α⎧⎫∈⎨⎬⎩⎭,使函数y x α=的定义域是R ,且为偶函数的所有α的值是( ) A .2 B .1,2 C .12,2 D .12,1,2【答案】A 【解析】 【分析】把1,1,22α=分别代入验证即可. 【详解】当12α=时,y x α==[)0,∞+,故12α≠; 当1α=时,y x x α==,定义域为R ,但是为奇函数,故1α≠; 当2α=时,2y x x α==,定义域为R ,为偶函数,故2α=. 故选:A变式6-4.已知幂函数()()2133a f x a a x +=−+为偶函数,则实数a 的值为( )A .3B .2C .1D .1或2【答案】C 【解析】 【分析】由题意利用幂函数的定义和性质,得出结论. 【详解】幂函数()()2133a f x a a x +=−+为偶函数,2331a a ∴−+=,且1a +为偶数,则实数1a =, 故选:C题型战法七 比较大小与解不等式典例7.设0.2 1.20.21.2,0.9,0.3a b c −===,则a ,b ,c 大小关系为( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>【答案】C 【解析】 【分析】利用有理指数幂和幂函数的单调性分别求得a ,b ,c 的范围即可得答案. 【详解】200. 1.211.2a >==, 1.200.90.91b =<=,b a ∴<,又0.2y x =在(0,)+∞上单调递增,0.20.20.2101 1.20.3()3a −∴<=<=,b ac ∴<<,故选:C .变式7-1.0.20.21210.5,log ,0.43a b c ===,则( ) A .a c b >> B .b c a >> C .b a c >> D .c a b >>【答案】C 【解析】 【分析】利用幂函数的单调性判断a b >,再利用对数函数的单调性、对数的换底公式即可求解. 【详解】幂函数0.2y x =在(0,)+∞上单调递增,00.20.20.50.50.4∴>>,1a c ∴>>,1221log log 313b ==>, b ac ∴>>,故选:C .变式7-2.设120.7a =,120.8b =,31log 2c =,则( ) A .c b a << B .c a b <<C .a b c <<D .b a c <<【答案】B【分析】根据函数单调性和中间值比较函数值大小. 【详解】因为12y x =在[)0,∞+上单调递增,0.70.8<,所以121200780..b a <=<=,而331log log 102c =<=,故c a b <<. 故选:B变式7-3.已知1122(52)(1)m m −<−,则m 的取值范围是( ) A .(2,+∞) B .52,2⎛⎤⎥⎝⎦C .(),2−∞D .[)1,2【答案】B 【解析】由幂函数的性质,可得0521m m ≤−<−,解不等式组可得答案 【详解】解:因为1122(52)(1)m m −<−, 所以0521m m ≤−<−, 解得522m <≤, 故选:B变式7-4.若1122(1)(32)a a +<−,则实数a 的取值范围是( ) A .31,2⎡⎤−⎢⎥⎣⎦B .21,3⎡⎫−⎪⎢⎣⎭C .2,3⎛⎫−∞ ⎪⎝⎭D .3,2⎛⎤−∞ ⎥⎝⎦【答案】B 【解析】首先利用幂函数的单调性得到10320132a a a a +≥⎧⎪−≥⎨⎪+<−⎩,再解不等式组即可.【详解】因为1122(1)(32)a a +<−,所以10320132a a a a+≥⎧⎪−≥⎨⎪+<−⎩,解得213a −≤<.。
总结幂函数知识点在此文中,我们将对幂函数的基本概念、性质及应用进行详细的介绍和总结。
一、幂函数的基本概念1. 幂函数的定义幂函数是指形如y=ax^n (a≠0, n为实数)的函数,其中x为自变量,y为因变量,a为常数,n为幂次。
当n为正整数时,称为整数幂函数;当n为负整数时,称为分式幂函数;当n为零时,称为常函数。
2. 幂函数的图像(1)当n为正整数时,幂函数y=x^n(n>1)的图像为开口朝上的抛物线,n为偶数时,图像在第一象限为开口向上的抛物线,n为奇数时,图像在第三象限为开口向上的抛物线。
(2)当n为负整数时,幂函数y=x^n(n<0)的图像为经过点(1,1)的单调递减且对称于y轴的曲线。
(3)当n为零时,幂函数y=x^0的图像为一条水平直线y=1。
3. 幂函数的定义域幂函数y=ax^n(n为实数)的定义域为全体实数集合R。
4. 幂函数的值域(1)当n为正偶数时,幂函数y=ax^n的值域为[0,+∞);(2)当n为正奇数时,幂函数y=ax^n的值域为(-∞,+∞);(3)当-n为偶数时,幂函数y=ax^n的值域为(0,+∞);(4)当-n为奇数时,幂函数y=ax^n的值域为(-∞,0)。
二、幂函数的性质1. 增减性质对于幂函数y=ax^n,当a>0且n为正偶数时,函数在定义域上为增函数;当a<0且n为正偶数时,函数在定义域上为减函数;当a>0且n为正奇数时,函数在定义域上为减函数;当a<0且n为正奇数时,函数在定义域上为增函数。
2. 奇偶性质当n为偶数时,幂函数y=x^n为偶函数;当n为奇数时,幂函数y=x^n为奇函数。
3. 单调性质当n为正整数时,幂函数y=x^n在定义域上为单调递增函数或单调递减函数。
4. 对称性质当n为偶数时,幂函数y=x^n关于y轴对称;当n为奇数时,幂函数y=x^n关于原点对称。
5. 渐近性质幂函数y=ax^n的图像与x轴无渐近线,当a>0时,图像与y轴无渐近线。