油藏数值模拟方法的研究与应用
- 格式:docx
- 大小:37.38 KB
- 文档页数:3
具体就是关于陆相低渗透油藏和海相碳酸盐岩油藏,网格粗化、计算算法、拟合精度、水驱、三采、两相、三相等方面。
主要的研究机构、领军人物、具体研究或公关方向,使用软件的优缺点等等。
近年来,随着计算机、应用数学和油藏工程学科的不断发展,油藏数值模拟方法得到不断的改进和广泛应用。
通过数值模拟可以搞清油藏中流体的流动规律、驱油机理及剩余油的空间分布;研究合理的开发方案,选择最佳的开采参数,以最少的投资,最科学的开采方式而获得最高采收率及最大经济效益。
经过几十年的发展,该技术不断成熟和完善并呈现出一些新的特点。
1 油藏数值模拟发展历史油藏数值模拟从30年代开始,展开理论研究。
40年代主要以解析解为主,研究“液体驱替机理”、“理论物理学中的松弛方法”、“孔隙介质中均质液体流动”、“油层流动问题中拉普拉斯转换”等零维物质平衡法。
50年代期间开展数值模拟。
60年代致力于对气、水两相和三相黑油油藏问题的求解。
70年代发展了由模拟常规递减和保持压力以外的新方法。
到80年代,由于高速大容量电子计算机的问世,硬件系统突飞猛进发展,油藏模拟已发展为一门成熟的技术,油藏模拟进入商品阶段,用于衡量油田开发好坏、预测投资效应、提高采收率、对比开发方案,大到一个油公司,小到一个企业普遍使用。
在模型上,形成一系列可以处理各种各样复杂问题的模型,如常规油气田——黑油模型、天然裂缝模型,凝析气田——组分模型,稠油油藏——热采注蒸汽模型,还有各种三次采油用的化学驱模型、注C02模型等,在此阶段,突出的是注蒸汽和化学驱模型得到实际应用;组分模型得到广泛应用,并在方法上有重大改进。
模型朝着多功能,多用途,大型一体化方向发展。
数值模拟发展重要历史事件如下图所示:2 国内外数值模拟研究现状进入90年代以后,数值模拟技术有了较大发展。
由于计算机的计算速度突飞猛进地增长,使油藏数值模拟技术进行了一次根本性的改造。
主要表现在以下几个方面:2.1模型技术近年来,油藏模型得到不断发展和完善,提出了多孔介质中全隐式热采、多相流线、黑油与组分混合以及非达西渗流等模型,为稠油蒸汽驱精确模拟、同一油藏不同开采方式的模拟提供了技术支持,是对传统模型适应矿场应用方面的重大技术改进。
Passion for GeosciencetNavigator高效精准的油藏数值模拟器趋于完美的最大并行处理设计tNavigator 有效地利用单机多核多CPU 进行计算(不收取附加并行费用),成为业界领先的并行油藏数值模拟器。
集群MPI 并行算法对多核工作站实行多CPU 并行运算 多核多CPU 集群的混合动力技术 高效的内存利用率多核之间统一的负荷分配 非均匀存储器存取tNavigator 所有模块均可并行运算多核CPU 集群的混合动力技术混合动力技术:即二级并行算法。
MPI 算法处理并行集群节点之间的同步,而线程技术是应用在每个节点CPU 和内核,以协调并行计算。
对巨型油藏模型,负载分配得到妥善处理,多核CPU 的集群运算速度最大可提高200倍。
=200!成功案例**油田: 世界最大油田之一,建立三相黑油模型,约500万活网格,近13000口井,40年生产历史。
集群配置:20个节点,40个CPU 的Xeon5650,240cores ,480 GB DDR31333MHz 的内存,4X 的Infiniband QDR (40 GB/ S )。
基于上述便携式集群进行了RFD 并行算法的性能研究。
油藏模型中庞大的油水井射孔数据信息,对并行模拟是一个非常大的挑战。
但即使在这种极端条件下,混合算法仍然显示极佳的计算性能。
由上图可知,计算集群可以添加很多的内核,目前是没有限制的。
这种模式总的模拟时间是1小时22分钟,相比一个CPU 核心计算需57小时的时间,并行加速因子提速42倍!对于简单的油藏模型,其速度提高50-55倍。
目前行业的可扩展性主要受限于软件,而非硬件。
SMP+ MPI 混合算法提高HPC 集群性能高达10倍。
当集群节点有多个多核CPU 时,能实现最佳的性能。
功能齐全的动态油藏模拟器主要功能:1.黑油模型1-, 2-, 3-phase 模型 IMPES & 全隐式算法 双孔/双渗模型MPF -离散(张量渗透率控制) 岩石压实 垂相平衡先进的井管理和控制相渗和毛管压力,以及滞后效应 ……2.组分模型 挥发油 凝析气循环注气研究 ……3.热采模型活油 (使用 K 平衡值) 粘温性和相对渗透率的影响 热动力学性质,井控制,水体 无流体流动存在的网格热力学性质 上下盖层的热吸收和热损失 双孔/双渗模型 ……其他:模拟运行时的交互性显示、实时结果监测及强大后处理功能tNavigator 丰富的图形用户界面、配置文件和各种报告提供了详细同步数据监测情况,其实时监测功能帮助油藏工程师及时行模型的调整及历史拟合的运行监测。
计算流体力学技术在石油工程中的应用研究计算流体力学(Computational Fluid Dynamics, CFD)是一种通过数值方法对流体力学问题进行数值模拟和计算的技术。
它可以帮助我们深入了解流体力学中的各种现象,从而对石油工程领域的相关问题进行分析和优化。
本文将探讨计算流体力学技术在石油工程中的应用研究。
一、油井动态流体力学模拟在石油工程中,油井的动态流体力学模拟是一个重要的研究方向。
计算流体力学技术可以用于模拟油井中的多相流、压力传输和温度变化等现象,从而为油井的设计和运营提供可靠的依据。
1. 多相流模拟:多相流是指在油井中同时存在多种物质的流动现象,比如油、水和天然气等。
借助计算流体力学技术,可以对多相流进行模拟,并研究其中不同相之间的相互作用。
这有助于预测油井中油水混合物的流动行为和油水分离的效果,改善采油效率。
2. 压力传输模拟:在油井中,压力传输是油藏、井筒和地表之间能量传递的过程,对于油井生产和注水等操作非常关键。
通过计算流体力学技术,可以模拟油井中的压力传输过程,甚至可以优化井筒的压力分布,进而提高油气开采的效率和经济性。
3. 温度变化模拟:温度变化是油井中常见的现象,特别是在注水等操作中。
计算流体力学技术可以模拟油井中的温度分布和变化趋势,帮助工程师预测井内温度的变化,有效控制注水温度,减少能源浪费和设备损坏。
二、油藏数值模拟油藏是储存和产出石油的地下储层,而计算流体力学技术可以帮助工程师研究和优化油藏的开发和生产过程,提高石油开采的效率和经济性。
1. 油藏开发优化:通过计算流体力学技术,可以模拟油藏中的渗流,预测油井间的渗流效应,以及井筒、岩石和流体之间的相互作用。
这有助于优化油藏的开发方案,提高油藏的产能和油气采收率。
2. 油藏压裂模拟:油藏压裂是一种常用的增强油气产量的方法。
利用计算流体力学技术,可以模拟油藏压裂过程中的流体流动和岩石变形情况,为工程师提供有效的设计和优化方案,从而提高压裂的效果和产量。
第12卷第32期2012年11月1671—1815(2012)32-8658-03科学技术与工程Science Technology and EngineeringVol.12No.32Nov.2012 2012Sci.Tech.Engrg.利用油藏数值模拟方法研究高台子油藏流体分布谢昕1贾东梅2(中国地质大学(北京)能源学院1,北京100083;大庆油田第八采油厂第三油矿技术队2,大庆163514)摘要认识地下流体的分布、运移及认清剩余油分布,对改善油田开发效果和提高采收率有重要意义。
以大庆高台子油藏为例,利用流线数值模拟方法对其流体分布进行预测,优选其模拟参数。
最终模拟了原油储量、地层压力、产油量和产水量。
拟合结果主要指标误差均在5%以内,可为后序的井网、井距、燃烧方式、注气参数、掺水时机等开发方案的设计及实施提供了可靠的借鉴。
关键词数值模拟油藏高台子研究中图法分类号TE132.14;文献标志码A2012年7月11日收到,7月26日修改国家重点基础研究发展计划973(2009CB219307)资助第一作者简介:谢昕(1968—),博士研究生,研究方向:低渗透油气田水平井开发技术。
随着油田的不断开发,油藏储层的非均质性加剧,流体性质变差、流体分布不断发生变化,特别是对于大庆油田等高渗油田高含水油藏,油藏流场发生较大变化,如何追踪油、气、水在油藏中的移动成为首要任务。
油藏数值模拟是随着电子计算机的出现和发展而成长的一门新学科,在国内外都取得了迅速的发展和广泛的应用,是迄今为止定量地描述在非均质地层中多相流体流动规律的重要方法,油藏数值模拟方法能更好地认识地下流体的分布、运移和认清剩余油分布,对改善油田开发效果和提高采收率提供科学依据[1,2]。
本次以大庆高台子油藏为例,利用油藏数值模拟方法对其开发状态进行历史拟合,优选其模拟参数,力争为其油田开发方案的制订提供良好的借见。
1模拟方法的选择及网格设置1.1模拟方法数值模拟方法一般分为两类,一是传统的基于有限差分原理的模拟方法,另一种是流线模拟方法。
历史拟合方法一、历史拟合方法的基本概念应用数值模拟方法计算油藏动态时,由于人们对油藏地质情况的认识还存在着一定的局限性。
在模拟计算中所使用的油层物性参数,不一定能准确地反映油藏的实际情况。
因此,模拟计算结果与实际观测到的油藏动态情况仍然会存在一定的差异,有时甚至相差悬殊。
在这个基础上所进行的动态预测,也必定不完全准确,甚至会导致错误的结论。
为了减少这种差异,使动态预测尽可能接近于实际情况,现在在对油藏进行实际模拟的全过程中广泛使用历史拟合方法。
所谓历史拟合方法就是先用所录取的地层静态参数来计算油藏开发过程中主要动态指标变化的历史,把计算的结果与所观测到的油藏或油井的主要动态指标例如压力、产量、气油比、含水等进行对比,如果发现两者之间有较大差异,而使用的数学模型又正确无误,则说明模拟时所用的静态参数不符合油藏的实际情况。
这时,就必须根据地层静态参数与压力、产量、气油比、含水等动态参数的相关关系,来对所使用的油层静态参数作相应的修改,然后用修改后的油层参数再次进行计算并进行对比。
如果仍有差异,则再次进行修改。
这样进行下去,直到计算结果与实测动态参数相当接近,达到允许的误差范围为止。
这时从工程应用的角度来说,可以认为经过若干次修改后的油层参数,与油层实际情况已比较接近,使用这些油层参数来进行抽藏开发的动态预测可以达到较高的精度。
这种对油藏的动态变化历史进行反复拟合计算的方法就称为历史拟合方法。
由于目前历史拟合还没有一种通用的成熟方法,经常的做法仍是靠人的经验反复修改参数进行试算,因此油藏模拟过程中历史拟合所花的时间常占相当大部分。
为了减少历史拟合所花费的机器时间,要很好地掌握油层静态参数的变化和动态参数变化的相关关系,应积累一定的经验和处理技巧,以尽量减少反复运算的次数。
近年来还提出了各种自动拟合的方法,力求用最优化技术以及人工智能方法来得到最好的参数组合,加快历史拟合的速度井达到更高的精度。
但目前这种自动拟台的方法还处在探索和研究阶段,还没有得到广泛的实际应用。
油藏数值模拟方法的研究与应用
石油资源是当今社会最为珍贵且不可替代的能源之一,而油藏数值模拟技术则是石油勘探、开发和管理的重要手段之一。
油藏数值模拟方法的研究与应用,对于油田开发的智能化、精细化和高效化都具有重要的推动作用。
一、数值模拟方法的研究现状
油藏数值模拟方法指的是基于数学模型及计算机模拟技术,对油藏内部流动、热输运、多相流、相变和化学反应等物理过程进行模拟,以提高油藏开发效率的一种方法。
目前,油藏数值模拟方法主要涉及的领域包括油藏地质建模、储层渗流模拟、油藏数值模型及优化策略等。
油藏地质建模是油藏数值模拟的前提和基础,主要包括储层建模和岩石物理实验等。
储层建模是基于建模软件和地震资料所进行的三维建模,目的是建立一个可自动进行各种模拟的储层,为储层渗流模拟等后续工作提供可靠依据。
而岩石物理实验则是通过物理试验手段获得相关岩石参数,有效地改进数值模拟精度。
储层渗流模拟方法又是油藏数值模拟的核心和关键,主要涉及到流体运动、物性变化、交界面的模拟等方面,是建立油藏模型的核心部分。
随着计算机技术的不断提高,储层渗流模拟算法也
日益成熟,包括有限元法、有限差分法、有限体积法、边界元法
等方法,各有特点和适用范围。
油藏数值模型及优化策略则是对储层渗流模拟模型进一步进行
计算优化,包括流体组成、地层物性等参数的改变,以及生产方
案和注采方案优化等内容。
这里的优化算法主要包括灰色预测模型、神经网络模型、智能优化模型等。
二、油藏数值模拟的应用与发展趋势
油藏数值模拟技术在油田开发中的应用,包括识别储层、评估
资源量、确定开发方案、指导油田管理和维护等方面。
具体地说,通过数值模拟可以有效地预测储层内油、气、水等多相流的运动
情况,优化生产方案,降低开采成本,提高采收率,最大限度地
提高油田开发效益。
当前,随着油藏数值模拟方法和技术的发展,越来越多的数据
和算法被应用到油田开发中。
其中,人工智能技术得到了广泛的
应用,包括机器学习、深度学习、自然语言处理等。
此外,虚拟
现实技术的应用也越来越受到重视,这种技术可以在油藏模拟中
模拟地层结构、变化规律以及各种仿真操作等。
未来,随着油藏数值模拟技术不断发展,可以预见的是,这种
技术将在油田生产管理和工程技术研究中发挥越来越重要的作用,
同时,将会引发更多技术创新和应用场景的不断涌现,为油田开发的不断创新提供强大的技术支撑和保障。