呼吸运动的调节实验报告
- 格式:doc
- 大小:227.50 KB
- 文档页数:4
一、实验目的本次实验旨在通过观察和记录家兔的呼吸运动,分析呼吸运动的调节机制,探讨影响呼吸运动的各种因素,以及呼吸运动在生理和病理状态下的变化。
二、实验原理呼吸运动是机体进行气体交换的重要生理过程,由呼吸肌的舒缩运动和神经系统的调节共同完成。
呼吸运动的主要调节机制包括中枢神经系统调节、外周化学感受器调节、肺牵张反射调节等。
三、实验方法1. 实验动物:选用健康成年家兔作为实验动物。
2. 实验器材:兔体手术台、常用手术器械、张力传感器、引导电极、计算机采集系统、气管插管、注射器、橡皮管、生理盐水、20%氨基甲酸乙酯等。
3. 实验步骤:(1)麻醉家兔,背位固定,剪去颈部与剑突腹面的被毛。
(2)切开颈部皮肤,分离气管,插入气管插管。
(3)分离出双侧迷走神经,穿线备用。
(4)连接张力传感器、引导电极和计算机采集系统,记录呼吸运动。
(5)观察并记录正常呼吸曲线。
(6)增加无效腔,观察呼吸运动的变化。
(7)剪断双侧迷走神经,观察呼吸运动的变化。
(8)注射生理盐水,观察呼吸运动的变化。
(9)注射乳酸,观察呼吸运动的变化。
四、实验结果与分析1. 正常呼吸曲线家兔正常的呼吸曲线呈周期性变化,曲线上升阶段为吸气,下降阶段为呼气。
吸气时肺扩张,剑突软骨上升,拉着剑突软骨的细线放松;呼气时肺缩小,剑突软骨下降,细线紧绷。
2. 增加无效腔后的呼吸运动增大气道长度后,家兔的呼吸张力增强,呼吸频率增加。
增加的气道长度等于增加的无效腔,气道加长使得呼吸阻力增大,呼吸加深加快。
3. 剪断双侧迷走神经后的呼吸运动剪断双侧迷走神经后,家兔呈现明显的慢而深的呼吸。
这是因为迷走神经中含有肺牵张反射的传入纤维,肺牵张反射中的肺扩张反射的生理作用在于阻止吸气过长过深,促使吸气及时转为呼气,从而加速了吸气和呼气动作的交替,调节呼吸的频率和深度。
当剪断双侧迷走神经以后,中断了左右两侧的肺牵张反射的传入道路,肺扩张反射的生理作用就被完全消除,故呈现明显的慢而深的呼吸。
呼吸运动的调节实验报告
实验目的,通过实验观察呼吸运动对人体生理的调节作用,了解呼吸运动对身
体的影响。
实验材料,实验室、呼吸运动监测仪器、实验人员。
实验步骤:
1. 实验前,实验人员需放松身心,保持心情愉快,以减少外界因素对实验结果
的影响。
2. 实验人员在实验室内进行呼吸运动监测,监测仪器记录呼吸频率、深度和节
律等数据。
3. 实验人员进行不同强度的运动,如快走、慢跑等,监测呼吸运动的变化。
4. 实验人员进行深呼吸、浅呼吸等不同呼吸方式,观察呼吸运动对身体的影响。
实验结果:
1. 在进行不同强度的运动后,呼吸频率和深度明显增加,呼吸节律也发生变化。
2. 深呼吸能够增加氧气的摄入量,使人感到清新、振奋,有助于提高工作效率。
3. 浅呼吸则导致氧气摄入量减少,容易出现头晕、乏力等症状。
实验结论:
通过本次实验,我们得出了以下结论:
1. 呼吸运动对人体生理具有重要调节作用,能够根据身体需要进行自我调节。
2. 适当的运动能够增加呼吸频率和深度,提高氧气摄入量,有利于身体健康。
3. 合理的呼吸方式对身体健康至关重要,应当注意培养良好的呼吸习惯。
实验意义:
本次实验结果对于加深我们对呼吸运动调节作用的认识具有重要意义,对于提高人们的健康意识,改善生活方式,具有积极的推动作用。
结语:
通过本次实验,我们深刻认识到呼吸运动对人体生理的重要调节作用,希望通过这一实验结果,能够引起更多人对呼吸运动的关注,树立正确的健康观念,改善生活方式,提高生活质量。
愿我们的实验成果能够给大家带来启发和帮助,谢谢!。
一、实验目的1. 掌握呼吸运动的基本原理和调节机制。
2. 通过实验观察呼吸运动的生理现象,加深对呼吸运动调节的理解。
3. 掌握呼吸运动的测定方法和相关实验技能。
二、实验原理呼吸运动是人体进行气体交换的重要生理过程,它是由呼吸肌在神经系统的支配下进行的有节律性的收缩和舒张造成的。
呼吸运动的基本原理是:当肺容积增大时,肺内压力降低,外界气体进入肺内;当肺容积减小时,肺内压力升高,肺内气体排出体外。
呼吸运动的调节主要受神经系统和体液因素的影响。
三、实验材料1. 实验动物:家兔2. 实验仪器:呼吸机、气管插管、注射器、橡皮管、张力传感器、引导电极、计算机采集系统、麻醉机、生理盐水、20%氨基甲酸乙酯等。
四、实验方法与步骤1. 实验动物麻醉:将家兔放入麻醉机内,注入20%氨基甲酸乙酯进行麻醉。
2. 气管插管:将气管插管插入家兔气管,连接呼吸机,调节呼吸参数。
3. 分离气管:将气管分离干净,连接张力传感器,观察呼吸运动曲线。
4. 分离双侧迷走神经:分离出双侧迷走神经,穿线备用。
5. 记录膈肌放电:将引导电极插入膈肌,连接计算机采集系统,观察膈肌放电情况。
6. 观察并分析肺牵张反射:通过调节呼吸参数,观察肺牵张反射对呼吸运动的影响。
7. 观察并分析化学因素对呼吸运动的影响:通过注射不同浓度的CO2和N2,观察化学因素对呼吸运动的影响。
五、实验结果与分析1. 观察呼吸运动曲线:呼吸运动曲线呈现周期性变化,上升阶段为吸气,下降阶段为呼气。
通过调节呼吸参数,可以观察到呼吸频率、呼吸深度和呼吸节律的变化。
2. 观察肺牵张反射:当肺容积增大时,呼吸运动曲线上升,肺容积减小时,呼吸运动曲线下降。
肺牵张反射对呼吸运动有调节作用,当肺容积增大时,肺牵张反射使吸气运动减弱,肺容积减小时,肺牵张反射使呼气运动减弱。
3. 观察化学因素对呼吸运动的影响:注射CO2后,呼吸运动曲线上升幅度增大,频率加快;注射N2后,呼吸运动曲线上升幅度减小,频率减慢。
一、实验目的1. 掌握呼吸运动调节的基本原理和方法。
2. 观察血液中化学因素(PCO2、PO2、[H])改变对呼吸运动(呼吸频率、节律、通气量)的影响及机制。
3. 学习气管插管术和神经血管分离术。
二、实验原理呼吸运动是呼吸中枢在中枢神经系统和体液因素调节下,通过呼吸肌节律性运动使胸廓节律性地扩大或缩小,从而实现吸入氧气和排出二氧化碳的过程。
呼吸运动调节机制主要包括化学因素调节、神经调节和体液调节。
三、实验材料与仪器1. 实验动物:家兔2. 实验仪器:手术台、常用手术器械、生理信号采集处理系统、呼吸传感器、气管插管、注射器、橡皮管、刺激电极、生理盐水、棉线、纱布等。
四、实验步骤1. 家兔麻醉:取一只家兔,称重后,用剪刀剪去耳缘静脉上的毛。
用20ml注射器由耳缘静脉缓慢推注25%氨基甲酸乙酯(1g/kg体重)进行麻醉。
2. 气管插管:在兔颈部进行气管插管,连接呼吸传感器,记录呼吸频率和通气量。
3. 呼吸运动调节实验:a. 观察正常呼吸曲线:记录家兔在正常条件下的呼吸频率、节律和通气量。
b. 观察CO2吸入对呼吸运动的影响:通过气管插管向家兔吸入一定浓度的CO2,观察呼吸频率、节律和通气量的变化。
c. 观察N2吸入对呼吸运动的影响:通过气管插管向家兔吸入一定浓度的N2,观察呼吸频率、节律和通气量的变化。
d. 观察无效腔增大对呼吸运动的影响:通过手术方法扩大家兔的无效腔,观察呼吸频率、节律和通气量的变化。
e. 观察肺牵张反射对呼吸运动的影响:剪断家兔双侧迷走神经,观察呼吸频率、节律和通气量的变化。
4. 实验结束:完成所有实验步骤后,将家兔恢复至正常状态,进行解剖观察。
五、实验结果与分析1. 正常呼吸曲线:家兔在正常条件下的呼吸频率约为60-80次/分钟,节律均匀,通气量适中。
2. CO2吸入对呼吸运动的影响:吸入CO2后,家兔呼吸频率明显加快,节律变浅,通气量增加。
这是因为CO2是一种化学刺激物质,能够刺激中枢神经系统,使呼吸中枢兴奋,从而增加呼吸频率和通气量。
呼吸运动调节实验报告实验目的:探究呼吸运动的调节机制,进一步了解呼吸系统的功能和调节过程。
实验原理:呼吸运动的调节主要依赖于呼吸中枢和周围感受器的信号传递。
呼吸中枢位于延髓的呼吸中枢区,受到化学和神经因素的调节。
主要包括呼气中枢和吸气中枢。
呼气中枢对肺泡内的二氧化碳浓度敏感,当二氧化碳浓度升高时,呼气中枢被刺激,使呼气动作增强。
吸气中枢则对氧气浓度敏感,当氧气浓度降低时,吸气中枢被刺激,使吸气动作增强。
此外,呼吸中枢还受到来自周围感受器的信息输入,如呼吸肌肌肉内的运动感受器和肺部的伸展感受器。
这些感受器通过神经传递的方式将信息传递给呼吸中枢,调节呼吸运动。
实验材料:实验步骤:1.将小白鼠放置在呼吸运动调节实验装置中,固定其头部。
2.用细针在小白鼠胸壁上插入呼吸感受器电极,并连接到放大器上,记录呼吸信号。
3.调节装置中的刺激器,通过电压刺激呼吸中枢。
4.分别对吸气中枢和呼气中枢进行刺激,记录呼吸信号的变化。
5.调整呼吸中枢刺激的强度和频率,观察呼吸运动的调节效果。
实验结果:实验中观察到,在对吸气中枢进行刺激的情况下,小白鼠的吸气运动明显增强,呼吸深度和频率均增加。
而对呼气中枢进行刺激时,小白鼠的呼气运动明显增强,呼气深度和频率均增加。
当调节刺激强度和频率时,呼吸运动的效果也会相应改变。
实验讨论:根据实验结果可知,对吸气中枢和呼气中枢进行刺激可以分别增强吸气和呼气运动。
这表明呼吸运动主要受到呼吸中枢的调节。
而呼吸中枢受到来自化学和神经因素的调节,调节的目的是为了保持机体气体交换的平衡。
当机体内的二氧化碳浓度升高时,呼气中枢被刺激,使呼气动作增强,从而排出过多的二氧化碳。
而当机体内的氧气浓度降低时,吸气中枢被刺激,使吸气动作增强,从而摄入更多的氧气。
此外,来自周围感受器的信息也会对呼吸运动产生影响。
运动感受器和肺部的伸展感受器会通过神经传递的方式将信息传递给呼吸中枢,使机体能够根据需要调节呼吸运动。
实验结论:呼吸运动主要受到呼吸中枢的调节,呼气中枢和吸气中枢分别对应呼吸过程中的呼气和吸气动作。
呼吸运动的调节实验报告实验目的:了解呼吸运动的调节机制。
实验原理:呼吸运动是由呼吸中枢调节的,主要通过调节呼吸肌肉的收缩与放松来实现。
呼吸中枢位于延髓和脑干,由神经元组成。
呼吸中枢对于呼吸运动的调节主要有两种方式,一种是主动调节,另一种是被动调节。
主动调节是指呼吸中枢根据体内外环境的变化主动调整呼吸运动的深度和频率。
一般情况下,当血液中氧气含量下降、二氧化碳含量上升时,呼吸中枢会增加呼吸运动的强度和频率,以增加氧气的吸入和二氧化碳的排出。
反之,当血液中氧气含量提高、二氧化碳含量降低时,呼吸中枢会减少呼吸运动的强度和频率。
被动调节是指呼吸中枢受到一些身体反射的调节。
其中最重要的是呼吸化学感受器的作用。
呼吸化学感受器散布在主动脉体和延髓等部位,能感受到血液中氧气和二氧化碳的浓度变化。
当血液中二氧化碳浓度上升时,呼吸化学感受器会通过神经传递给呼吸中枢,使其增加呼吸运动的强度和频率。
反之,当血液中二氧化碳浓度降低时,呼吸化学感受器会减少刺激,呼吸中枢相应减少呼吸运动的强度和频率。
此外,还有一些其他的反射机制,如肺组织器官和呼吸肌的反射。
实验方法:1. 实验器材:呼吸运动测量仪、呼吸频率计、磁力键、呼吸波形检测系统等。
2. 实验步骤:(1)使用呼吸运动测量仪测量实验对象的呼吸运动。
(2)使用呼吸频率计测量实验对象的呼吸频率。
(3)使用磁力键刺激呼吸化学感受器,观察实验对象的呼吸反应。
(4)使用呼吸波形检测系统观察实验对象的呼吸波形。
实验结果:实验对象的呼吸运动和呼吸频率会随着呼吸化学感受器的刺激而变化。
当磁力键刺激呼吸化学感受器时,实验对象的呼吸频率会增加。
呼吸波形也会发生相应的变化。
实验结论:呼吸运动受到呼吸中枢的主动和被动调节。
主动调节主要是根据体内外环境的变化来调整呼吸运动的深度和频率。
被动调节主要是通过呼吸化学感受器等身体反射来调节呼吸运动。
实验结果表明,刺激呼吸化学感受器可以使呼吸频率增加,呼吸波形也会发生相应的变化。
呼吸运动调节实验报告呼吸运动调节实验报告一、实验目的了解呼吸运动的调节机制。
二、实验原理呼吸运动是由呼吸中枢在脑干调控下进行的。
呼吸中枢由延髓内的呼吸节律生成区和脊髓内的呼吸节律传导区组成。
呼吸节律生成区通过调控脊髓内的呼吸节律传导区,使肺部肌肉产生适当的收缩和松弛,从而实现正常呼吸。
呼吸节律生成区受到多种调节因素的影响,包括血液中的氧气、二氧化碳浓度以及神经系统的调控。
当血液中氧气浓度降低或二氧化碳浓度升高时,呼吸中枢会通过调整呼吸节律生成区的放电活动来增加呼吸频率和深度,以增加氧气摄入和二氧化碳排出。
此外,神经系统的调控也会对呼吸运动产生影响。
实验中,我们可以通过不同的刺激手段来观察呼吸运动的调节情况,如改变呼吸频率和深度,以及呼气时间和吸气时间的比例。
三、实验设备和药品1. 实验动物(可以是小鼠、大鼠或兔子等)2. 呼吸运动调节实验装置(包括呼吸频率、呼气时间和吸气时间的调节装置)3. 麻醉药物四、实验步骤1. 安静环境下,给实验动物注射适量麻醉药物使其进入麻醉状态。
2. 将实验动物固定在实验装置上,调节装置的参数,使呼吸频率、吸气时间和呼气时间保持正常水平。
3. 观察实验动物的呼吸运动,记录呼吸频率、深度以及呼气时间和吸气时间的比例。
4. 分别对实验动物进行不同刺激,如给予高浓度氧气、低浓度氧气、高浓度二氧化碳等,观察呼吸运动的变化。
5. 持续观察一段时间后,停止刺激,再次观察呼吸运动的恢复情况。
六、实验结果通过实验观察和记录,可以得出呼吸运动调节的结果,如呼吸频率、深度以及呼气时间和吸气时间的比例的变化。
七、实验结论根据实验结果可以得出呼吸运动调节的结论,如不同刺激对呼吸运动的影响,呼吸运动的调节机制等。
八、实验注意事项1. 实验过程中应注意保证实验动物的安全和健康,减少对其造成的伤害。
2. 麻醉药物的使用应符合相关规定,确保实验动物的麻醉状态。
3. 实验环境应保持安静、恒定,以免对实验结果产生干扰。
呼吸运动调节实验报告呼吸运动调节实验报告引言呼吸是人体生命活动中不可或缺的一部分,它通过供给氧气和排出二氧化碳,维持着我们的身体正常运转。
呼吸运动的调节对于人体的健康至关重要。
本实验旨在探究呼吸运动的调节机制,以及不同因素对呼吸的影响。
实验一:呼吸运动与运动强度的关系在这个实验中,我们将测试不同运动强度下的呼吸频率和深度的变化。
实验对象是十名年轻健康的志愿者。
他们被要求在不同的运动强度下进行跑步,分别为慢跑、中等强度跑步和高强度跑步。
我们使用呼吸频率计和呼吸深度计来记录呼吸运动的变化。
结果显示,在慢跑时,呼吸频率和深度相对较低,而在高强度跑步时,呼吸频率和深度明显增加。
这表明呼吸运动与运动强度密切相关,身体通过增加呼吸频率和深度来满足更多氧气的需求。
实验二:呼吸运动与环境温度的关系在这个实验中,我们将研究环境温度对呼吸运动的影响。
实验对象被要求在不同环境温度下进行静坐,并记录呼吸频率和深度的变化。
我们将环境温度分为低温、常温和高温三组。
结果显示,在低温环境下,呼吸频率和深度明显增加,而在高温环境下则明显降低。
这表明身体通过调节呼吸运动来适应不同的环境温度,以维持体温的稳定。
实验三:呼吸运动与情绪的关系在这个实验中,我们将探究情绪对呼吸运动的影响。
实验对象被要求观看不同类型的影片,包括喜剧、恐怖和悲剧,然后记录呼吸频率和深度的变化。
结果显示,在观看喜剧片时,呼吸频率和深度明显增加,而在观看恐怖片和悲剧片时则明显降低。
这表明情绪对呼吸运动有着显著的影响,积极的情绪可以促进呼吸运动,而消极的情绪则会抑制呼吸运动。
讨论通过以上实验结果可以得出结论,呼吸运动受到多种因素的调节。
运动强度、环境温度和情绪状态都会对呼吸频率和深度产生影响。
这些调节机制有助于身体适应不同的生理和环境需求。
此外,呼吸运动的调节还与神经系统的功能密切相关。
自主神经系统通过交感神经和副交感神经的平衡调节呼吸运动。
交感神经活动增加会导致呼吸频率和深度的增加,而副交感神经活动增加则会导致呼吸频率和深度的降低。
呼吸运动的调节实验报告呼吸运动的调节实验报告引言:呼吸是人类生命活动中至关重要的一环,它使我们能够吸入氧气并排出二氧化碳。
呼吸运动的调节是保持人体内氧气和二氧化碳浓度平衡的关键。
为了深入了解呼吸运动的调节机制,我们进行了一系列实验。
实验一:呼吸频率与运动强度的关系我们首先研究了呼吸频率与运动强度之间的关系。
实验中,我们请来了十名健康年轻人作为实验对象,分别让他们进行不同强度的运动,如慢跑、快走和静坐。
我们使用呼吸带和心率监测仪来记录他们的呼吸频率和心率。
结果显示,随着运动强度的增加,呼吸频率显著增加。
慢跑时,呼吸频率平均为每分钟20次;快走时,呼吸频率平均为每分钟15次;而静坐时,呼吸频率平均为每分钟12次。
这表明,呼吸频率与运动强度呈正相关关系。
运动强度越大,人体需要更多的氧气,从而导致呼吸频率加快。
实验二:呼吸深度与情绪的关系接着,我们探究了呼吸深度与情绪之间的关系。
实验中,我们请来了十名实验对象,让他们观看一系列引起不同情绪的视频片段,如欢乐、悲伤和惊恐。
同时,我们使用呼吸带和心率监测仪来记录他们的呼吸深度和心率。
实验结果显示,不同情绪状态下的呼吸深度存在明显差异。
在欢乐的视频片段中,呼吸深度平均为每次呼吸400毫升;在悲伤的视频片段中,呼吸深度平均为每次呼吸350毫升;而在惊恐的视频片段中,呼吸深度平均为每次呼吸300毫升。
这表明,呼吸深度与情绪呈负相关关系。
当人处于欢乐状态时,呼吸深度增加;而在悲伤和惊恐状态下,呼吸深度减小。
实验三:呼吸节律与冥想的关系最后,我们探讨了呼吸节律与冥想之间的关系。
实验中,我们请来了十名有冥想经验的实验对象,让他们进行冥想。
同时,我们使用呼吸带和心率监测仪来记录他们的呼吸节律和心率。
实验结果显示,冥想状态下的呼吸节律与正常状态有所不同。
在正常状态下,呼吸节律为每分钟12次;而在冥想状态下,呼吸节律明显减慢,平均为每分钟6次。
这表明,冥想能够使呼吸节律变得更加缓慢和有规律。
呼吸运动的调节实验报告呼吸运动的调节实验报告引言:呼吸是人类生命活动中不可或缺的一部分,它通过氧气的吸入和二氧化碳的排出,维持着我们身体的正常运转。
然而,呼吸运动的调节机制是一个复杂而精密的过程。
为了更好地理解呼吸运动的调节机制,我们进行了一系列的实验。
实验一:呼吸频率与运动强度的关系我们首先设立了一个实验,以探究呼吸频率与运动强度之间的关系。
实验过程中,我们请来了10位健康的年轻人作为受试者。
实验分为两个阶段,第一阶段是静息状态下的呼吸频率测量,第二阶段是进行不同运动强度下的呼吸频率测量。
结果显示,在静息状态下,受试者的呼吸频率平均为每分钟12次。
然而,当运动强度逐渐增加时,呼吸频率也相应增加。
当运动强度达到一定程度时,呼吸频率达到了每分钟30次左右的高峰。
这说明呼吸频率与运动强度之间存在着正相关关系。
实验二:呼吸深度与运动强度的关系为了进一步研究呼吸运动的调节机制,我们进行了第二个实验,以探究呼吸深度与运动强度之间的关系。
同样,我们请来了10位健康的年轻人作为受试者。
实验结果显示,在静息状态下,受试者的呼吸深度平均为每次500毫升。
当运动强度逐渐增加时,呼吸深度也相应增加。
当运动强度达到一定程度时,呼吸深度达到了每次1000毫升左右的高峰。
这表明呼吸深度与运动强度之间存在着正相关关系。
实验三:呼吸运动的调节中枢为了更加深入地了解呼吸运动的调节机制,我们进行了第三个实验,以探究呼吸运动的调节中枢。
我们使用了电生理技术,记录了受试者大脑中与呼吸运动相关的神经活动。
实验结果显示,当受试者进行呼吸运动时,大脑中的呼吸中枢活动明显增加。
这表明呼吸运动的调节中枢位于大脑中,并且与呼吸运动密切相关。
讨论:通过以上实验,我们得出了一些关于呼吸运动调节的结论。
首先,呼吸频率与运动强度呈正相关关系,即运动强度越大,呼吸频率越高。
其次,呼吸深度与运动强度也呈正相关关系,即运动强度越大,呼吸深度越大。
最后,呼吸运动的调节中枢位于大脑中,并且与呼吸运动密切相关。
呼吸运动的调节
一、实验目的
1.学习呼吸运动的记录方法
2.观察血液理化因素改变对家兔呼吸运动的影响
3.了解肺牵张反射在呼吸运动调节中的作用
二、实验对象
家兔
三、实验器材和药品
哺乳动物手术器械,兔手术台,生物信号采集处理系统,呼吸换能器或压力换能器,气管插管,20%氨基甲酸乙酯溶液,生理盐水,橡皮管,2%乳酸溶液,N2气囊,CO2气囊等
四、实验方法
1.由兔耳缘静脉缓慢注入20%氨基甲酸乙酯溶液(5ml/kg体重),待动物麻醉后,仰卧固定于手术台上。
2.剪去颈前部兔毛,颈前正中切开皮肤5~7cm,分离气管并做气管插管。
分离颈部双侧迷走神经,穿线备用。
手术完毕后,用温生理盐水纱布覆盖手术野。
3.实验装置
(1)将呼吸换能器(或压力换能器)与生物信号采集处理系统的相应通道相连接,橡皮管连接气管插管和呼吸换能器或压力换能器。
(2)打开计算机,启动生物信号采集处理系统。
点击“实验模块”,选择“呼吸运动的调节”实验项目。
4.观察
(1)正常呼吸运动记录一段正常呼吸运动曲线作为对照,观察吸气相、呼气相、呼吸幅度和频率。
(2)CO2对呼吸运动的影响将CO2气囊管口与气管插管的通气管用小烧杯罩住,打开气囊呼吸运动的变化。
移开气囊和烧杯,待呼吸恢复正常后再进行下一步实验。
(3)缺氧对呼吸运动的影响方法同上,将N2气囊打开,使吸入气中含较多的N2,造成缺氧,观察呼吸运动的变化。
移开气囊和烧杯,观察呼吸运动的恢复过
程。
(4)增大无效腔对呼吸运动的影响将40cm长的橡皮管连接于气管插管的一个侧管上,观察此时呼吸运动的变化。
变化明显后,去掉橡皮管,观察呼吸运动恢复过程。
(5)迷走神经在呼吸运动调节中的作用先剪断一侧迷走神经,观察呼吸运动有何变化,再剪断另一侧迷走神经,观察呼吸运动又有何变化。
五、实验结果
(1)CO2对呼吸运动的影响
通CO2后,呼吸表现为加深加快
(2)缺氧对呼吸运动的影响
轻度缺氧时,呼吸表现为加深加快
(3)增大无效腔对呼吸运动的影响
增大无效腔时,表现为兴奋呼吸
(4)迷走神经在呼吸运动调节中的作用
当迷走神经被破坏时,表现为加深变慢
六、实验讨论
CO2对呼吸运动的影响:CO2是调节呼吸运动最主要的体液因素,当外周血液中CO2浓度适度增加时,呼吸表现为加深加快。
CO2是脂溶性小分子,能迅速透过血脑屏障进入脑脊液,与其中的水结合成碳酸,碳酸迅速解离出H+,从而以H+的形式刺激中枢化感器(分布在延髓呼吸中枢附近),兴奋呼吸。
另外,一部分CO2也能直接刺激外周化感器(颈动脉体和主动脉体),兴奋呼吸。
缺O2对呼吸运动的影响:轻度缺O2时,呼吸表现为加深加快。
低O2对呼吸运动的刺激作用完全是通过外周化学感受器实现的。
轻度缺O2时,对外周化
感器的兴奋作用强于对呼吸中枢的直接抑制作用,故表现为呼吸兴奋。
但在严重缺O2时,如果外周化感器的反射效应不足以克服低O2对中枢的直接抑制作用,将导致呼吸运动的减弱。
增大无效腔对呼吸运动的影响:无效腔包括解剖无效腔和肺泡无效腔。
由于无效腔的存在,每次吸入的新鲜空气不能全部到达肺泡与血液进行有效的气体交换。
增大无效腔时,肺泡通气量减少,故气体交换效率降低,致血液缺氧和CO2增多,从而兴奋呼吸。
剪断迷走神经对呼吸运动的影响:迷走神经是肺牵张反射的传入神经,该反射的主要生理作用是配合脑桥呼吸调整中枢,及时切断吸气,防止吸气过长过深,从而调整呼吸运动的深度和频率。
当迷走神经被破坏时,该反射作用即消失,表现为呼吸加深变慢。
七、实验结果
通CO2,缺氧,增大无效腔均为使呼吸兴奋,而剪断迷走神经会使呼吸加深变慢。