2003考研数学四
- 格式:pdf
- 大小:78.34 KB
- 文档页数:13
武汉理工大学 2003 年研究生入学考试试题课程 数学分析 (共 页,共 题,答题时不必抄题,标明题目序号)一、计算下列各题(12′×6=72分)1.求极限x t x x t x t sin sin sin sin lim -→⎪⎭⎫ ⎝⎛,记此极限为)(x f ,求函数)(x f 的间断点,并指出其类型。
2.求dx e e x x2arctan ⎰3.计算二重积分dxdy e y x D },max{22⎰⎰,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤≤≤≤=1010),(y x y x D 4.计算曲线积分224y x ydx xdy I L +-=⎰,其中L 是以点(1,0)为中心,R 为半径的圆周(R >1),取逆时针方向。
5.设xdx x I n n cos sin 40⎰=π,n =0,1,2,…,求n n I ∑∞=06.计算dxdy z z ydzdx xdydz )2(2-++⎰⎰∑,∑为曲面22y x z +=介于z =0与z =1之间的部分,取下侧。
二(15分)、设)(x f 在0=x 的某邻域内的二阶导数存在且连续,0))(3sin (lim 230=+→xx f x x x ,求)0(f ,)0(f ',)0(f ''。
三(15分)、假设f 是一可微函数,求曲面)(x y xf z =上任一点)0(),,(0000≠x z y x M 处的切平面方程,并指出该切平面是否过坐标原点。
四(15分)、设),,(z y x F 的一阶偏导数处处存在且连续,且0>≥∂∂+∂∂-∂∂αzF y F x x F y (α为常数),令)0(),sin ,cos ()(≥-=t t t t F t f ,求证+∞=+∞→)(lim t f t 。
2003年全国硕士研究生入学统一考试数学四试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 极限xx x 20)]1ln(1[lim ++→=. (2)dx ex x x⎰--+11)(=.(3) 设0a >,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧== 而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(=.(4) 设,A B 均为三阶矩阵,E 是三阶单位矩阵. 已知2AB A B =+, 202040202B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则 1)(--E A =.(5) 设n 维向量0,),0,,0,(<=a a a Tα;E 为n 阶单位矩阵,矩阵T E A αα-=, T aE B αα1+=,其中A 的逆矩阵为B ,则a = .(6) 设随机变量X 和Y 的相关系数为0.5,0EX EY ==,222==EY EX , 则2)(Y X E += .二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1) 曲线21x xe y = ( )(A) 仅有水平渐近线. (B) 仅有铅直渐近线.(C) 既有铅直又有水平渐近线. (D) 既有铅直又有斜渐近线.(2) 设函数)(1)(3x x x f ϕ-=,其中)(x ϕ在1x =处连续,则0)1(=ϕ是()f x 在1x =处可导的 ( )(A) 充分必要条件. (B)必要但非充分条件.(C) 充分但非必要条件 . (D) 既非充分也非必要条件. (3) 设可微函数(,)f x y 在点),(00y x 取得极小值,则下列结论正确的是 ( )(A) ),(0y x f 在0y y =处的导数等于零. (B)),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在.(4) 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100B .已知矩阵A 相似于B ,则秩(2)A E -与秩()A E -之和等于( )(A) 2. (B) 3. (C) 4. (D) 5. (5) 对于任意二事件A 和B ( )(A) 若φ≠AB ,则,A B 一定独立. (B) 若φ≠AB ,则,A B 有可能独立. (C) 若φ=AB ,则,A B 一定独立. (D) 若φ=AB ,则,A B 一定不独立. (6) 设随机变量X 和Y 都服从正态分布,且它们不相关,则 ( )(A) X 与Y 一定独立. (B) (X ,Y )服从二维正态分布. (C) X 与Y 未必独立. (D) X +Y 服从一维正态分布.三 、(本题满分8分)设 ).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ试补充定义(1)f 使得()f x 在]1,21[上连续.四 、(本题满分8分)设(,)f u v 具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=,求.2222ygx g ∂∂+∂∂ 五 、(本题满分8分) 计算二重积分.)sin(22)(22dxdy y x e I Dy x+=⎰⎰-+-π其中积分区域22{(,)}.D x y x y π=+≤ 六、(本题满分9分)设1a >,at a t f t-=)(在),(+∞-∞内的驻点为).(a t 问a 为何值时,()t a 最小?并求出最小值.七、(本题满分9分)设()y f x =是第一象限内连接点(0,1),(1,0)A B 的一段连续曲线,(,)M x y 为该曲线上任意一点,点C 为M 在x 轴上的投影,O 为坐标原点. 若梯形OCMA 的面积与曲边三角形CBM 的面积之和为3163+x ,求()f x 的表达式.八、(本题满分8分)设某商品从时刻0到时刻t 的销售量为kt t x =)(,).0(],,0[>∈k T t 欲在T 时将数量为A 的该商品销售完,试求(1) t 时的商品剩余量,并确定k 的值;(2) 在时间段[0,]T 上的平均剩余量. 九、(本题满分13分)设有向量组(I):T )2,0,1(1=α,T)3,1,1(2=α,T a )2,1,1(3+-=α和向量组(II):T a )3,2,1(1+=β,T a )6,1,2(2+=β,.)4,1,2(3T a +=β 试问:当a 为何值时,向量组(I)与(II)等价?当a 为何值时,向量组(I)与(II)不等价? 十、(本题满分13分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a A 11121112可逆,向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11b α是矩阵*A 的一个特征向量,λ是α对应的特征值,其中*A 是矩阵A 的伴随矩阵. 试求,a b 和λ的值. 十一、(本题满分13分)设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f()F X 是X 的分布函数. 求随机变量()Y F X =的分布函数.十二、(本题满分13分)对于任意二事件A 和B ,1)(0,1)(0<<<<B P A P ,)()()()()()()(B P A P B P A P B P A P AB P -=ρ称作事件A 和B 的相关系数.(1) 证明事件A 和B 独立的充分必要条件是其相关系数等于零;(2) 利用随机变量相关系数的基本性质,证明.1≤ρ2003年全国硕士研究生入学统一考试数学四试题解析一、填空题 (1)【答案】2e【详解】方法1:xx x 2)]1ln(1[lim ++→,属于∞1型未定式极限,可以考虑利用重要极限求解.首先凑成重要极限形式:()200002ln(1)1ln(1)2ln(1)2lim lim 2lim[1ln(1)]lim 1ln(1)xx x x x x x x x xx xx x e e e →→→→+⋅++=++=++==方法2:xx x 20)]1ln(1[lim ++→=2ln[1ln(1)]0lim x x x e++→=002ln[1ln(1)]2ln(1)limlim2x x x x x xe e e →→+++==(注意:l n[1ln(1)]ln(1)x x +++)(2)【答案】)21(21--e【分析】对称区间上的定积分,有0()2()()()0()a a aaaf x dx f x dxf x f x dx f x --⎧=⎪⎨⎪=⎩⎰⎰⎰当为偶函数当为奇函数【详解】dx ex x x⎰--+11)(=dx xedx ex xx⎰⎰----+1111 =dx ex x--⎰11+012x xe dx -=⎰102xxde-=-⎰1102[]xx xee dx --=--⎰=)21(21--e .(3)【答案】2a【详解】本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,则二重积分只需在积分区域与被积函数不为零的区域的公共部分商积分即可,因此实际上只需在满足此不等式的区域内积分即可.⎰⎰-=Ddxdy x y g x f I )()(=20101x y x a dxdy ≤≤≤-≤⎰⎰=1120x x a dx dy +⎰⎰1220[(1)]a x x dx a =+-=⎰(4)【答案】⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100 【详解】 应先化简,从2AB A B =+中确定1)(--E A .2AB A B =+⇒222AB B A E E -=-+⇒E E A B E A 2)(2)(=---⇒E E B E A 2)2)((=--⇒E E B E A =-⋅-)2(21)(,所以 1)(--E A =)2(21E B -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100.(5) 【答案】-1【详解】这里Tαα为n 阶矩阵,而22a T=αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.由题设,有)1)((T T a E E AB αααα+-==T T T T a a E αααααααα⋅-+-1111()T T T T E a a αααααααα=-+-=T T T a a E αααααα21-+-1(12)T E a E aαα=+--+=,于是有0121=+--a a ,即0122=-+a a ,解得.1,21-==a a 已知0a <,故1a =-.(6)【答案】6【分析】本题的核心是逆向思维,利用协方差公式()cov(,)()()E XY X Y E X E Y =+. 涉及公式:(1)22()()[()]D X E X E X =-,(2)()()()2cov(,)D X Y D X D Y X Y +=++(3)XY ρ=【详解】方法1:由方差定义的公式和相关系数的定义22()()[()]D X E X E X =-202,=-= 同理()2D Y =,1cov(,)212XY X Y ρ==⨯=.所以 222()()[()]()()E X Y D X Y E X Y D X Y EX EY +=+++=+++()()()2cov(,) 6.D X Y D X D Y X Y =+=++=方法2:由数学期望的线性可加性()()()E aX bY aE X bE Y +=+得:222()(2)E X Y E X XY Y +=++222()EX E XY EY =++42()E XY =+再利用()()()(,)E XY Cov X Y E X E Y =+⋅,得2)(Y X E +()()42[(,)]Cov X Y E X E Y =++⋅由方差定义的公式,有22()()[()]D X E X E X =-202,=-= 同理()2D Y =,再由相关系数的定义XY ρ=得,cov(,)XY X Y ρ=2)(Y X E+42420.52 6.XY ρ=+=+⨯⨯=二、选择题 (1)【答案】()D【分析】按照铅直、水平、斜渐近线三种情况分别考虑:先考虑是否有水平渐近线:lim (),()x f x c c →±∞=为常数,y c =为曲线的一条水平渐近线;若无水平渐近线应进一步考虑是否存在斜渐近线:()()lim,lim [()]x x x x x x yk b f x kx x →∞→∞→+∞→+∞→-∞→-∞==-,y kx b =+为曲线的一条斜渐近线;而是否存在铅直渐近线,应看函数是否存在无定义点,且0lim ,lim x x x x y y +-→→=∞=∞,则0x x =为曲线的一条垂直渐近线.【详解】1.y x ±∞→lim 极限均不存在,故曲线不存在水平渐近线;2.1lim lim 21==∞→∞→x x x e x y ,2221212001lim()lim1lim 0u u x x u u e u xe x u x e u uu -→∞→→--=-=, 所以曲线有斜渐近线y x =.3.在0x =处21xxey =无定义,且1222111ln 0lim lim lim lim xxx e xx xx x x x xe e e e ++++→→→→====∞,故 0x =为铅直渐近线.故曲线21x xe y =既有铅直又有斜渐近线,应选()D .(2)【答案】()A【详解】被积函数中含有绝对值,应当作分段函数看待,利用()f x 在1x =处左右导数定义讨论即可.32111()(1)1lim lim ()lim(1)()3(1)11x x x f x f x x x x x x x ϕϕϕ+++→→→--=⋅=++⋅=--, 32111()(1)1lim lim ()lim(1)()3(1)11x x x f x f x x x x x x x ϕϕϕ---→→→--=-⋅=-++⋅=---, 由于()f x 在1x =处可导的充分必要条件是左、右导数相等,所以.0)1()1(3)1(3=⇔-=ϕϕϕ故应选()A .(3)【答案】()A【详解】由函数(,)f x y 在点),(00y x 处可微,知函数(,)f x y 在点),(00y x 处的两个偏导数都存在,又由二元函数极值的必要条件即得(,)f x y 在点),(00y x 处的两个偏导数都等于零. 从而有000(,)(,)(,)0y y x y x y df x y f dyy==∂==∂选项()A 正确.(4)【答案】(C)【分析】 利用相似矩阵有相同的秩计算,秩(2)A E -与秩()A E -之和等于秩(2)B E -与秩()B E -之和.【详解】因为矩阵A 相似于B , 又1B P AP -=,所以()111222P A E P P AP P EP B E ----=-=-,于是,矩阵(2)A E -与矩阵(2)B E -相似. 同理有()111P A E P P AP P EP B E ----=-=-所以,矩阵A E -与矩阵B E -相似. 又因为相似矩阵有相同的秩,而秩(2)B E -=秩3201010102=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---,秩()B E -=秩1101000101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--,所以有秩(2)A E -+秩()A E -= 秩(2)B E -+秩()B E -=4,故应选(C).(5)【答案】B【详解】本题考查独立与互斥事件之间的关系,事实上,独立与互斥事件之间没有必然的互推关系.当{}{}0,0P A P B ≠≠时,若,A B 相互独立,则一定有{}{}{}0P AB P A P B =≠,从而有AB ≠∅. 可见,当,A B 相互独立时,往往,A B 并不是互斥的.AB ≠∅推不出{}{}{}P AB P A P B =⋅, 因此推不出,A B 一定独立,排除(A);若AB =∅,则{}0P A B=,但{}{}P A P B 是否为零不确定,{}{}{}P AB P A P B ≠.因此(C),(D) 也不成立,故正确选项为(B).(6)【答案】C .【分析】本题考查正态分布的性质以及二维正态分布与一维正态分布之间的关系.只有(,)X Y 服从二维正态分布时,不相关与独立才是等价的.有结论如下:① 若X Y 与均服从正态分布且相互独立,则(,)X Y 服从二维正态分布.如果X Y 与都服从正态分布,甚至X Y 与是不相关,也并不能推出(,)X Y 服从二维正态分布.② 若X Y 与均服从正态分布且相互独立,则bY aX +服从一维正态分布. ③ 若(,)X Y 服从二维正态分布,则X Y 与相互独立⇔X Y 与不相关.【详解】只有当(,)X Y 服从二维正态分布时,X Y 与不相关⇔X Y 与独立,本题仅仅已知X Y 与服从正态分布,因此,由它们不相关推不出X Y 与一定独立,排除(A);若X Y 与都服从正态分布且相互独立,则(,)X Y 服从二维正态分布,但题设并不知道,X Y 是否独立,可排除(B);同样要求X Y 与相互独立时,才能推出X Y +服从一维正态分布,可排除(D).故正确选项为(C).三【详解】为使函数()f x 在1[,1]2上连续,只需求出函数()f x 在1x =的左极限)(lim 1x f x -→,然后定义(1)f 为此极限值即可.11111lim ()lim[]sin (1)x x f x x x x πππ--→→=+-- 1111lim[]sin (1)x x x πππ-→=+--11(1)sin lim (1)sin x x xx xπππππ-→--=+-令1u x =-,则当1x -→时,0u +→,所以1lim ()x f x -→01sin (1)lim sin (1)u u u u u πππππ+→--=+-1sin (1)lim (sin cos cos sin )u u u u u u ππππππππ+→--=+⋅⋅-⋅01sin (1)limsin u u u u uπππππ+→--=+⋅ 2201sin (1)lim u u u u ππππ+→--+等201cos (1)lim 2u u uπππππ+→+-+洛 2201sin (1)lim 2u u ππππ+→-+洛110ππ+== 定义π1)1(=f ,从而有11lim ()(1)x f x f π-→==,()f x 在1x =处连续. 又()f x 在)1,21[上连续,所以()f x 在]1,21[上连续.四【详解】由复合函数[(,),(,)]z f x y x y ϕψ=的求导法则,得221()()2x y g f xy f x u x v x ⎛⎫∂- ⎪∂∂∂∂⎝⎭=+∂∂∂∂∂f f y x u v ∂∂=+∂∂ 221()()2x y g f xy f y u y v x ⎛⎫∂- ⎪∂∂∂∂⎝⎭=+∂∂∂∂∂.f f x y u v∂∂=-∂∂ 从而2222222222222222g f f f f f y y x x y x x u u v v u v v f f f f y xy x u u v v v⎡⎤⎡⎤∂∂∂∂∂∂=⋅+⋅++⋅+⋅⎢⎥⎢⎥∂∂∂∂∂∂∂∂⎣⎦⎣⎦∂∂∂∂=+++∂∂∂∂∂2222222222222222g f f f f f x x y y x y y u u v v u v v f f f f x xy y u u v v v⎡⎤⎡⎤∂∂∂∂∂∂=⋅-⋅--⋅-⋅⎢⎥⎢⎥∂∂∂∂∂∂∂∂⎣⎦⎣⎦∂∂∂∂=-+-∂∂∂∂∂所以 222222222222222222()()()()g g f f f f x y x y x y x y u v u v∂∂∂∂∂∂+=+++=++∂∂∂∂∂∂=.22y x +五【详解】从被积函数与积分区域可以看出,应利用极坐标进行计算.作极坐标变换:设θθsin ,cos r y r x ==,有2222222()22()22222220sin()sin()sin sin sin .2xy xy DDt r rr t I e x y dxdy e e x y dxdyee d r rdr d r dr e e tdt ππππππππθθπ-+--+=---=+=+=⋅==⎰⎰⎰⎰⎰⎰⎰记tdt e A t sin 0⎰-=π,则0000sin cos cos cos t t t t A e tdt e d t e t e tdt ππππ----⎡⎤==-=-+⎢⎥⎣⎦⎰⎰⎰0001sin 1sin sin t t t e e d t e e t e tdt πππππ-----⎡⎤=---+=+--⎢⎥⎣⎦⎰⎰=.1A e -+-π因此 )1(21π-+=e A ,).1(2)1(2πππππe e e I +=+=-六【详解】()f t 的驻点即满足()f t 的一阶导数为零的点,它是关于a 的函数.由0ln )(=-='a a a t f t ,得唯一驻点.ln ln ln 1)(aa a t -= 求()t a 的最小值,即求函数aaa t ln ln ln 1)(-=在1a >时的最小值, 22211111ln ln ln ln ln 1ln ln ln ()0(ln )(ln )(ln )a a aa a a a a a t a a a a a ⋅---'=-=-=-=得唯一驻点.ee a =当ee a >时,lnln 0,1lnln 0a a >-<,从而0)(>'a t ,这时()t a 单调递增;当ee a <时,lnln 0,1lnln 0a a <->,从而0)(<'a t ,这时()t a 单调递减. 因此当e a e =时()t a 为最小值,此时ee t e11)(-=为极小值,也是最小值.七【分析】梯形OCMA 的面积可直接用梯形面积公式计算得到,曲边三角形CBM 的面积可用定积分计算,再由题设,梯形OCMA 的面积与曲边三角形CBM 的面积之和为3163+x ,可得一含有变限积分的等式,两边求导数,可转化为一阶线性微分方程,然后用通解公式计算即可.【详解】由题意得1[1()]2OCMA S x f x =+,1()CBM x S f t dt =⎰ 所以 316)()](1[213+=++⎰x x dt t f x f x . 两边关于x 求导2111[1()]()()222f x xf x f x x '++-=,即21()()2().f x xf x f x x '++-= 化简,当0≠x 时,得211()()x f x f x x x -'-=,即211.dy x y dx x x--⋅= 利用一阶线性非齐次微分方程()()dyP x y Q x dx+=的通解公式 ()()()P x dx P x dx y e Q x e dx C -⎛⎫⎰⎰=⋅+ ⎪⎝⎭⎰ 所以此方程为标准的一阶线性非齐次微分方程,其通解为 y]1[)(121C dx e xx ex f dx x dxx+⎰-⎰=---⎰ =]1[ln 2ln C dx e xx ex x+--⎰ =)1(22C dx x x x +-⎰ O C B x =.12Cx x ++曲线过点(1,0)B ,故0f =(1),代入,故有20C +=,从而2C =-. 所以 .)1(21)(22-=-+=x x x x f八【详解】(1) 在时刻t 的剩余量()y t 可用总量A 减去销量()x t 得到,即)()(t x A t y -==kt A -, ].,0[T t ∈再T 时刻将数量为A 的该商品销售完,得0A kT -=,即Ak T=.因此, ,)(t TAA t y -= ].,0[T t ∈ (2) 由于()y t 随时间连续变化,因此在时间段[0,]T 上的平均剩余量,即函数平均值可用积分⎰T dt t y T 0)(1表示(函数()f x 在[,]a b 上的平均值记为⎰-badx x f a b .)(1).所以,)(t y 在[0,]T 上的平均值为⎰=T dt t y T y 0)(1=2-20011()()()22TT A A A T A t dt At t T T T T T T T -=-=-⎰牛莱公式=.2A 因此在时间段[0,]T 上的平均剩余量为.2A九【分析】两个向量组等价也即两个向量组可以相互线性表示;而两个向量组不等价,只需其中一组有一个向量不能由另一组线性表示即可.而线性表示问题又可转化为对应非齐次线性方程组是否有解的问题,这可通过化增广矩阵为阶梯形来判断.一个向量1β是否可由321,,ααα线性表示,只需用初等行变换化增广矩阵(1321,,βααα)为阶梯形讨论,而一组向量321,,βββ是否可由321,,ααα线性表示,则可结合起来对矩阵(321321,,,,βββααα)同时作初等行变换化阶梯形,然后类似地进行讨论即可. 【详解】矩阵(321321,,,,βββααα)作初等行变换,有),,,,(321321βββααα =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++-463232112110221111a a a a(第一行乘以-1加到第三行,第二行乘以-1 加到第三行)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+--→111100112110111201a a a a .(1) 当1-≠a 时,有行列式12310a ααα=+≠,秩(3),,321=ααα,故线性方程组)3,2,1(332211==++i x x x i βααα均有唯一解. 所以321,,βββ可由向量组(I)线性表示.同样,行列式12360βββ=≠,秩(3),,321=βββ,故321,,ααα可由向量组(II)线性表示.因此向量组(I)与(II)等价.(2) 当1a =-时,有),,,,(321321βββααα ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→202000112110111201 .由于秩(321,,ααα)≠秩(),,1321βααα,线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示. 因此,向量组(I)与(II)不等价.【评注1】涉及到参数讨论时,一般联想到利用行列式判断,因此,本题也可这样分析: 因为行列式1,,321+=a ααα,06,,321≠=βββ,可见(1) 当1-≠a 时,秩3),,(),,(321321==βββαααr r ,因此三维列向量组321,,ααα与321,,βββ等价,即向量组(I)与(II)等价.(2) 当1a =-时,秩2),,(321=αααr ,而行列式04,,132≠=βαα,可见2),,(321=αααr ≠1231(,,,)r αααβ=3, 因此线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示. 即向量组(I)与(II)不等价.【评注2】 向量组(I)与(II)等价,相当于321,,ααα与321,,βββ均为整个向量组321321,,,,,βββααα的一个极大线性无关组,问题转化为求向量组321321,,,,,βββααα的极大线性无关组,这可通过初等行变换化阶梯形进行讨论.十【分析】 题设已知特征向量,应想到利用定义:λαα=*A . 又与伴随矩阵*A 相关的问题,应利用E A AA =*进行化简.【详解】 矩阵*A 属于特征值λ的特征向量为α,由于矩阵A 可逆,故*A 可逆.于是0≠λ,0≠A ,且λαα=*A .两边同时左乘矩阵A ,得αλαA AA =*⇒αλαAA =,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111111121112b A b a λ, 由此,得方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=+.1,22,3λλλA b a b A b A b )3()2()1( 由式(1),(2)解得1=b 或2-=b ;由式(1),(3)解得 2.a =因此42311121112=-==a aA ,根据(1)式知,特征向量α所对应的特征值.343bbA +=+=λ 所以,当1=b 时,1=λ;当2-=b 时,.4=λ【评注】本题若先求出*A ,再按特征值、特征向量的定义进行分析,则计算过程将非常复杂.一般来说,见到*A ,首先应想到利用公式E A AA =*进行化简.十一【分析】先求出分布函数()F x 的具体形式,从而可确定()Y F X = ,然后按定义求Y 的分布函数即可.注意应先确定()Y F x =的值域范围)1)(0(≤≤X F ,再对y 分段讨论. 【详解】易见,当1x <时,()0F x =; 当8x >时,()1F x =.对于]8,1[∈x ,有.131)(3132-==⎰x dt t x F x设()G y 是随机变量()Y F x =的分布函数. 显然,当0<y 时,()G y =0;当1≥y 时,()G y =1. 对于)1,0[∈y ,有})({}{)(y X F P y Y P y G ≤=≤=31}{(1)}P y P X y =≤=≤+3[(1)].F y y =+=于是,()Y F x =的分布函数为0,0,(),01,1, 1.y G y y y y <⎧⎪=≤<⎨⎪≥⎩若若若十二【分析】A 和B 独立的充要条件是{}{}{}P AB P A P B =⋅,由此可以直接证明问题(1);对于问题(2),应先构造随机变量,不难看出与事件A 和A 联系的应是随机变量1, ,0, .A X A ⎧=⎨⎩若出现若不出现 随机变量X 和Y 的相关系数为XY E XY E X E Y ρ-==,需将P AB P A P B ρ-=转化为用随机变量表示. 显然,若有(){}E XY P AB =,(){}(){},E X P AE Y P B ====即可,这只需定义1,,0, .A X A ⎧=⎨⎩ 若出现若不出现 1,0, .B Y B ⎧=⎨⎩若出现,若不出现 【详解】 (1) 由题给ρ的定义,可见0=ρ当且仅当{}{}{}0P AB P A P B ==,而这恰好是二事件A 和B 独立的定义,即0=ρ是A 和B 独立的充分必要条件.(2) 考虑随机变量X 和Y :1,0,A X A ⎧=⎨⎩若出现若不出现 1,0,B Y B ⎧=⎨⎩若出现若不出现 由条件知,X 和Y 都服从01-分布:{}{}01~X P A P A ⎛⎫ ⎪ ⎪⎝⎭,{}{}01~.Y P B P B ⎛⎫ ⎪⎝⎭ 由离散型随机变量的数字特征,(){}1ni i i i E X x P X x ==⋅=∑,()()()22D X E X EX =-易见 (){}E X P A =,(){}E Y P B =;(){}{}D X P A P A =, (){}{}D Y P B P B =;由协方差的定义()()(){}{}{}(,).Cov X Y E XY E X E Y P AB P A P B =-=-因此,事件A 和B 的相关系数就是随机变量X 和Y 的相关系数.于是由二随机变量相关系数的基本性质1ρ≤,所以题目中定义的 .1≤ρ。
2003年考研数学(四)试题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限xx x 20)]1ln(1[lim ++→= - . (2)dx e x x x ⎰--+11)(= - .(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(= - .(4)设A,B 均为三阶矩阵,E 是三阶单位矩阵. 已知AB=2A+B,B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡202040202,则 1)(--E A = - .(5)设n 维向量0,),0,,0,(<=a a a T α;E 为n 阶单位矩阵,矩阵T E A αα-=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a= - .(6)设随机变量X 和Y 的相关系数为0.5, EX=EY=0,222==EY EX , 则2)(Y X E += .二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)曲线21x xe y =(A) 仅有水平渐近线. (B) 仅有铅直渐近线.(C) 既有铅直又有水平渐近线. (D) 既有铅直又有斜渐近线. [ ](2)设函数)(1)(3x x x f ϕ-=,其中)(x ϕ在x=1处连续,则0)1(=ϕ是f(x)在x=1处可导的(A) 充分必要条件. (B )必要但非充分条件.(C) 充分但非必要条件 . (D) 既非充分也非必要条件. [ ](3)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零.(C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在.[ ](4)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100B . 已知矩阵A 相似于B ,则秩(A-2E)与秩(A-E)之和等于(A) 2. (B) 3. (C) 4. (D) 5. [ ](5)对于任意二事件A 和B(A) 若φ≠AB ,则A,B 一定独立. (B) 若φ≠AB ,则A,B 有可能独立.(C) 若φ=AB ,则A,B 一定独立. (D) 若φ=AB ,则A,B 一定不独立.[ ](6)设随机变量X 和Y 都服从正态分布,且它们不相关,则(A) X 与Y 一定独立. (B) (X,Y)服从二维正态分布.(C) X 与Y 未必独立. (D) X+Y 服从一维正态分布. [ ]三 、(本题满分8分)设],21,0(,)1(11sin 1)(∈---=x x x x x f πππ 试补充定义f(0),使得f(x)在]21,0[上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂vf u f ,又)](21,[),(22y x xy f y xg -=,求.2222yg x g ∂∂+∂∂ 五 、(本题满分8分)计算二重积分.)sin(22)(22dxdy y x e I D y x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x六、(本题满分9分)设a>1,at a t f t -=)(在),(+∞-∞内的驻点为).(a t 问a 为何值时,t(a)最小?并求出最小值.七、(本题满分9分)设y=f(x) 是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C 为M 在x 轴上的投影,O 为坐标原点. 若梯形OCMA 的面积与曲边三角形CBM的面积之和为3163+x ,求f(x)的表达式. 八、(本题满分8分)设某商品从时刻0到时刻t 的销售量为kt t x =)(,).0(],,0[>∈k T t 欲在T 时将数量为A 的该商品销售完,试求(1) t 时的商品剩余量,并确定k 的值;(2) 在时间段[0,T]上的平均剩余量.九、(本题满分13分)设有向量组(I ):T )2,0,1(1=α,T )3,1,1(2=α,Ta )2,1,1(3+-=α和向量组(II ):T a )3,2,1(1+=β,T a )6,1,2(2+=β,.)4,1,2(3T a +=β 试问:当a 为何值时,向量组(I )与(II )等价?当a 为何值时,向量组(I )与(II )不等价?十、(本题满分13分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a A 11121112可逆,向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11b α是矩阵*A 的一个特征向量,λ是α对应的特征值,其中*A 是矩阵A 的伴随矩阵. 试求a,b 和λ的值.十一、(本题满分13分)设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f F(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.十二、(本题满分13分)对于任意二事件A 和B ,1)(0,1)(0<<<<B P A P ,)()()()()()()(B P A P B P A P B P A P AB P -=ρ称做事件A 和B 的相关系数.(1) 证明事件A 和B 独立的充分必要条件是其相关系数等于零;(2) 利用随机变量相关系数的基本性质,证明.1≤ρ。
2003年全国硕士研究生入学统一考试数学四试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1)极限xx x 20)]1ln(1[lim ++→=. (2)dx e x x x ⎰--+11)(=.(3)设0a >,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(=.(4)设,A B均为三阶矩阵,E 是三阶单位矩阵.已知2AB A B =+,202040202B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则 1)(--E A =.(5)设n 维向量0,),0,,0,(<=a a a T Λα;E 为n 阶单位矩阵,矩阵T E A αα-=,T aE B αα1+=,其中A 的逆矩阵为B ,则a =.(6)设随机变量X 和Y 的相关系数为0.5,0EX EY ==,222==EY EX ,则2)(Y X E +=.二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)曲线21x xe y =()(A)仅有水平渐近线.(B)仅有铅直渐近线.(C)既有铅直又有水平渐近线.(D)既有铅直又有斜渐近线. (2)设函数)(1)(3x x x f ϕ-=,其中)(x ϕ在1x =处连续,则0)1(=ϕ是()f x 在1x =处可导的()(A)充分必要条件.(B)必要但非充分条件.(C)充分但非必要条件.(D)既非充分也非必要条件. (3)设可微函数(,)f x y 在点),(00y x 取得极小值,则下列结论正确的是()(A)),(0y x f 在0y y =处的导数等于零.(B)),(0y x f 在0y y =处的导数大于零.(C)),(0y x f 在0y y =处的导数小于零.(D)),(0y x f 在0y y =处的导数不存在.(4)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100B .已知矩阵A 相似于B ,则秩(2)A E -与秩()A E -之和等于()(A)2.(B)3.(C)4.(D)5. (5)对于任意二事件A 和B ()(A)若φ≠AB ,则,A B 一定独立.(B)若φ≠AB ,则,A B 有可能独立.(C)若φ=AB ,则,A B 一定独立.(D)若φ=AB ,则,A B 一定不独立.(6)设随机变量X 和Y 都服从正态分布,且它们不相关,则()(A)X 与Y 一定独立.(B)(X ,Y )服从二维正态分布. (C)X 与Y 未必独立.(D)X +Y 服从一维正态分布. 三、(本题满分8分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ试补充定义(1)f 使得()f x 在]1,21[上连续. 四、(本题满分8分)设(,)f u v 具有二阶连续偏导数,且满足12222=∂∂+∂∂vfu f ,又)](21,[),(22y x xy f y x g -=,求.2222yg x g ∂∂+∂∂ 五、(本题满分8分)计算二重积分其中积分区域22{(,)}.D x y x y π=+≤ 六、(本题满分9分)设1a >,at a t f t -=)(在),(+∞-∞内的驻点为).(a t 问a 为何值时,()t a 最小?并求出最小值.七、(本题满分9分)设()y f x =是第一象限内连接点(0,1),(1,0)A B 的一段连续曲线,(,)M x y 为该曲线上任意一点,点C 为M 在x 轴上的投影,O 为坐标原点.若梯形OCMA 的面积与曲边三角形CBM 的面积之和为3163+x ,求()f x 的表达式.八、(本题满分8分)设某商品从时刻0到时刻t 的销售量为kt t x =)(,).0(],,0[>∈k T t 欲在T 时将数量为A 的该商品销售完,试求 (1) t 时的商品剩余量,并确定k 的值; (2) 在时间段[0,]T 上的平均剩余量. 九、(本题满分13分)设有向量组(I):T )2,0,1(1=α,T)3,1,1(2=α,T a )2,1,1(3+-=α和向量组(II):T a )3,2,1(1+=β,T a )6,1,2(2+=β,.)4,1,2(3T a +=β试问:当a 为何值时,向量组(I)与(II)等价?当a 为何值时,向量组(I)与(II)不等价? 十、(本题满分13分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a A 11121112可逆,向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11b α是矩阵*A 的一个特征向量,λ是α对应的特征值,其中*A 是矩阵A 的伴随矩阵.试求,a b 和λ的值.十一、(本题满分13分)设随机变量X 的概率密度为()F X 是X 的分布函数.求随机变量()Y F X =的分布函数.十二、(本题满分13分)对于任意二事件A 和B ,1)(0,1)(0<<<<B P A P , 称作事件A 和B 的相关系数.(1) 证明事件A 和B 独立的充分必要条件是其相关系数等于零;(2) 利用随机变量相关系数的基本性质,证明.1≤ρ2003年全国硕士研究生入学统一考试数学四试题解析一、填空题 (1)【答案】2e【详解】方法1:xx x 20)]1ln(1[lim ++→,属于∞1型未定式极限,可以考虑利用重要极限求解.首先凑成重要极限形式:方法2:xx x 20)]1ln(1[lim ++→=2ln[1ln(1)]0lim x xx e ++→=002ln[1ln(1)]2ln(1)lim lim2x x x x x xe e e →→+++==(注意:l n[1ln(1)]ln(1)x x +++:)(2)【答案】)21(21--e【分析】对称区间上的定积分,有【详解】dx e x x x ⎰--+11)(=dx xe dx e x x x ⎰⎰----+1111=dx e x x --⎰11+0102x xe dx -=⎰102x xde -=-⎰1102[]xx xe e dx --=--⎰=)21(21--e . (3)【答案】2a【详解】本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,则二重积分只需在积分区域与被积函数不为零的区域的公共部分商积分即可,因此实际上只需在满足此不等式的区域内积分即可.⎰⎰-=Ddxdyx y g x f I )()(=20101x y x a dxdy≤≤≤-≤⎰⎰=1120x xa dx dy+⎰⎰1220[(1)]a x x dx a =+-=⎰(4)【答案】⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100 【详解】应先化简,从2AB A B =+中确定1)(--E A .⇒EE B E A 2)2)((=--⇒E E B E A =-⋅-)2(21)(,所以1)(--E A =)2(21E B -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100. (5)【答案】-1【详解】这里T αα为n 阶矩阵,而22a T =αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.由题设,有)1)((T T a E E AB αααα+-==T T T T a a E αααααααα⋅-+-1111()T T T T E a a αααααααα=-+-=T T T a a E αααααα21-+-1(12)T E a E aαα=+--+=,于是有0121=+--a a ,即0122=-+a a ,解得.1,21-==a a 已知0a <,故1a =-. (6)【答案】6【分析】本题的核心是逆向思维,利用协方差公式()cov(,)()()E XY X Y E X E Y =+.涉及公式:(1)22()()[()]D X E X E X =-,(2)()()()2cov(,)D X Y D X D Y X Y +=++(3)XYρ=【详解】方法1:由方差定义的公式和相关系数的定义22()()[()]D XE X E X=-202,=-=同理()2D Y=,1cov(,)212XYX Yρ==⨯=.所以222()()[()]()()E X Y D X Y E X Y D X Y EX EY+=+++=+++方法2:由数学期望的线性可加性()()()E aX bY aE X bE Y+=+得:再利用()()()(,)E XY Cov X Y E X E Y=+⋅,得由方差定义的公式,有22()()[()]D XE X E X=-202,=-=同理()2D Y=,再由相关系数的定义XYρ=得,cov(,)XYX Yρ=二、选择题(1)【答案】()D【分析】按照铅直、水平、斜渐近线三种情况分别考虑:先考虑是否有水平渐近线:lim(),()xf x c c→±∞=为常数,y c=为曲线的一条水平渐近线;若无水平渐近线应进一步考虑是否存在斜渐近线:()()lim,lim[()]x xx xx xyk b f x kxx→∞→∞→+∞→+∞→-∞→-∞==-,y kx b=+为曲线的一条斜渐近线;而是否存在铅直渐近线,应看函数是否存在无定义点,且00lim,limx x x xy y+-→→=∞=∞,则0x x=为曲线的一条垂直渐近线.【详解】1.yx±∞→lim极限均不存在,故曲线不存在水平渐近线;2.1lim lim 21==∞→∞→x x x e x y ,2221212001lim()lim 1lim 0u u x x u u e u xe x u x e u u u-→∞→→--=-=:, 所以曲线有斜渐近线y x =.3.在x =处21xxe y =无定义,且1222111ln 00lim lim lim lim xx x e xx xx x x x xee e e ++++→→→→====∞,故0x =为铅直渐近线.故曲线21xxe y =既有铅直又有斜渐近线,应选()D .(2)【答案】()A【详解】被积函数中含有绝对值,应当作分段函数看待,利用()f x 在1x =处左右导数定义讨论即可.32111()(1)1lim lim ()lim(1)()3(1)11x x x f x f x x x x x x x ϕϕϕ+++→→→--=⋅=++⋅=--, 32111()(1)1lim lim ()lim(1)()3(1)11x x x f x f x x x x x x x ϕϕϕ---→→→--=-⋅=-++⋅=---, 由于()f x 在1x =处可导的充分必要条件是左、右导数相等,所以 故应选()A . (3)【答案】()A【详解】由函数(,)f x y 在点),(00y x 处可微,知函数(,)f x y 在点),(00y x 处的两个偏导数都存在,又由二元函数极值的必要条件即得(,)f x y 在点),(00y x 处的两个偏导数都等于零.从而有选项()A 正确. (4)【答案】(C)【分析】利用相似矩阵有相同的秩计算,秩(2)A E -与秩()A E -之和等于秩(2)B E -与秩()B E -之和.【详解】因为矩阵A 相似于B ,又1B P AP -=,所以()111222P A E P P AP P EP B E ----=-=-,于是,矩阵(2)A E -与矩阵(2)B E -相似.同理有所以,矩阵A E -与矩阵B E -相似.又因为相似矩阵有相同的秩,而秩(2)B E -=秩3201010102=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---,秩()B E -=秩1101000101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--, 所以有秩(2)A E -+秩()A E -=秩(2)B E -+秩()B E -=4,故应选(C).(5)【答案】B【详解】本题考查独立与互斥事件之间的关系,事实上,独立与互斥事件之间没有必然的互推关系.当{}{}0,0P A P B ≠≠时,若,A B相互独立,则一定有{}{}{}0P AB P A P B =≠,从而有AB ≠∅.可见,当,A B 相互独立时,往往,A B 并不是互斥的.AB ≠∅推不出{}{}{}P AB P A P B =⋅,因此推不出,A B 一定独立,排除(A);若AB =∅,则{}0P AB =,但{}{}P A P B 是否为零不确定,{}{}{}P AB P A P B ≠.因此(C),(D)也不成立,故正确选项为(B).(6)【答案】C .【分析】本题考查正态分布的性质以及二维正态分布与一维正态分布之间的关系.只有(,)X Y 服从二维正态分布时,不相关与独立才是等价的.有结论如下:①若X Y 与均服从正态分布且相互独立,则(,)X Y 服从二维正态分布.如果X Y 与都服从正态分布,甚至X Y 与是不相关,也并不能推出(,)X Y 服从二维正态分布.②若X Y 与均服从正态分布且相互独立,则bY aX +服从一维正态分布.③若(,)X Y 服从二维正态分布,则X Y 与相互独立⇔X Y 与不相关.【详解】只有当(,)X Y 服从二维正态分布时,X Y 与不相关⇔X Y 与独立,本题仅仅已知X Y 与服从正态分布,因此,由它们不相关推不出X Y 与一定独立,排除(A);若X Y 与都服从正态分布且相互独立,则(,)X Y 服从二维正态分布,但题设并不知道,X Y 是否独立,可排除(B);同样要求X Y 与相互独立时,才能推出X Y +服从一维正态分布,可排除(D).故正确选项为(C).三【详解】为使函数()f x 在1[,1]2上连续,只需求出函数()f x 在1x =的左极限)(lim 1x f x -→,然后定义(1)f 为此极限值即可.令1u x =-,则当1x -→时,0u +→,所以定义π1)1(=f ,从而有11lim ()(1)x f x f π-→==,()f x 在1x =处连续.又()f x 在)1,21[上连续,所以()f x 在]1,21[上连续.四【详解】由复合函数[(,),(,)]z f x y x y ϕψ=的求导法则,得 从而所以222222222222222222()()()()g g f f f f x y x y x y x y u v u v∂∂∂∂∂∂+=+++=++∂∂∂∂∂∂=.22y x +五【详解】从被积函数与积分区域可以看出,应利用极坐标进行计算.作极坐标变换:设θθsin ,cos r y r x ==,有 记tdt e A t sin 0⎰-=π,则0001sin 1sin sin t t t e e d t e e t e tdtπππππ-----⎡⎤=---+=+--⎢⎥⎣⎦⎰⎰=.1A e -+-π因此)1(21π-+=e A ,).1(2)1(2πππππe e e I +=+=- 六【详解】()f t 的驻点即满足()f t 的一阶导数为零的点,它是关于a 的函数.由0ln )(=-='a a a t f t ,得唯一驻点求()t a 的最小值,即求函数aa a t ln ln ln 1)(-=在1a >时的最小值,得唯一驻点.e e a =当e e a >时,lnln 0,1lnln 0a a >-<,从而0)(>'a t ,这时()t a 单调递增;当e e a <时,lnln 0,1lnln 0a a <->,从而0)(<'a t ,这时()t a 单调递减.因此当e a e =时()t a 为最小值,此时ee t e 11)(-=为极小值,也是最小值.七【分析】梯形OCMA 的面积可直接用梯形面积公式计算得到,曲边三角形CBM 的面积可用定积分计算,再由题设,梯形OCMA 的面积与曲边三角形CBM 的面积之和为3163+x ,可得一含有变限积分的等式,两边求导数,可转化为一阶线性微分方程,然后用通解公式计算即可. 【详解】由题意得1[1()]2OCMA S x f x =+,1()CBM x S f t dt =⎰ 所以316)()](1[213+=++⎰x x dt t f x f x .两边关于x 求导2111[1()]()()222f x xf x f x x '++-=,即21()()2().f x xf x f x x '++-= 化简,当0≠x 时,得211()()x f x f x x x -'-=,即211.dy x y dx x x--⋅=利用一阶线性非齐次微分方程()()dy P x y Q x dx+=的通解公式所以此方程为标准的一阶线性非齐次微分方程,其通解为y]1[)(121C dx e xx ex f dx x dxx+⎰-⎰=---⎰ A=]1[ln 2ln C dx e xx ex x+--⎰M=)1(22C dx xx x +-⎰OCBx=.12Cx x ++曲线过点(1,0)B ,故0f =(1),代入,故有20C +=,从而2C =-.所以八【详解】(1)在时刻t 的剩余量()y t 可用总量A 减去销量()x t 得到,即)()(t x A t y -==kt A -,].,0[T t ∈再T 时刻将数量为A 的该商品销售完,得0A kT -=,即A k T=.因此,(2)由于()y t 随时间连续变化,因此在时间段[0,]T 上的平均剩余量,即函数平均值可用积分⎰Tdt t y T0)(1表示(函数()f x 在[,]a b 上的平均值记为⎰-ba dx x f ab .)(1). 所以,)(t y 在[0,]T 上的平均值为⎰=T dt t y T y 0)(1=2-20011()()()22TT A A A T A t dt At t T T T T T T T -=-=-⎰牛莱公式=.2A 因此在时间段[0,]T 上的平均剩余量为.2A九【分析】两个向量组等价也即两个向量组可以相互线性表示;而两个向量组不等价,只需其中一组有一个向量不能由另一组线性表示即可.而线性表示问题又可转化为对应非齐次线性方程组是否有解的问题,这可通过化增广矩阵为阶梯形来判断.一个向量1β是否可由321,,ααα线性表示,只需用初等行变换化增广矩阵(1321,,βααα)为阶梯形讨论,而一组向量321,,βββ是否可由321,,ααα线性表示,则可结合起来对矩阵(321321,,,,βββααα)同时作初等行变换化阶梯形,然后类似地进行讨论即可. 【详解】矩阵(321321,,,,βββααα)作初等行变换,有),,,,(321321βββαααM =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++-463232112110221111a a a a M M M (第一行乘以-1加到第三行,第二行乘以-1加到第三行)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+--→111100112110111201a a a a M M M .(1)当1-≠a 时,有行列式12310a ααα=+≠,秩(3),,321=ααα,故线性方程组)3,2,1(332211==++i x x x i βααα均有唯一解.所以321,,βββ可由向量组(I)线性表示.同样,行列式12360βββ=≠,秩(3),,321=βββ,故321,,ααα可由向量组(II)线性表示.因此向量组(I)与(II)等价.(2)当1a =-时,有),,,,(321321βββαααM ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→202000112110111201M M M . 由于秩(321,,ααα)≠秩(),,1321βαααM ,线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示.因此,向量组(I)与(II)不等价.【评注1】涉及到参数讨论时,一般联想到利用行列式判断,因此,本题也可这样分析:因为行列式1,,321+=a ααα,06,,321≠=βββ,可见(1)当1-≠a 时,秩3),,(),,(321321==βββαααr r ,因此三维列向量组321,,ααα与321,,βββ等价,即向量组(I)与(II)等价.(2)当1a =-时,秩2),,(321=αααr ,而行列式04,,132≠=βαα,可见2),,(321=αααr ≠1231(,,,)r αααβ=3,因此线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示.即向量组(I)与(II)不等价.【评注2】向量组(I)与(II)等价,相当于321,,ααα与321,,βββ均为整个向量组321321,,,,,βββααα的一个极大线性无关组,问题转化为求向量组321321,,,,,βββααα的极大线性无关组,这可通过初等行变换化阶梯形进行讨论.十【分析】题设已知特征向量,应想到利用定义:λαα=*A .又与伴随矩阵*A 相关的问题,应利用E A AA =*进行化简.【详解】矩阵*A 属于特征值λ的特征向量为α,由于矩阵A 可逆,故*A 可逆.于是0≠λ,0≠A ,且λαα=*A .两边同时左乘矩阵A ,得αλαA AA =*⇒αλαAA =,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111111121112b A b a λ, 由此,得方程组由式(1),(2)解得1=b 或2-=b ;由式(1),(3)解得 2.a = 因此42311121112=-==a aA ,根据(1)式知,特征向量α所对应的特征值 所以,当1=b 时,1=λ;当2-=b 时,.4=λ【评注】本题若先求出*A ,再按特征值、特征向量的定义进行分析,则计算过程将非常复杂.一般来说,见到*A ,首先应想到利用公式E A AA =*进行化简.十一【分析】先求出分布函数()F x 的具体形式,从而可确定()Y F X =,然后按定义求Y 的分布函数即可.注意应先确定()Y F x =的值域范围)1)(0(≤≤X F ,再对y 分段讨论.【详解】易见,当1x <时,()0F x =;当8x >时,()1F x =.对于]8,1[∈x ,有设()G y 是随机变量()Y F x =的分布函数.显然,当0<y 时,()G y =0;当1≥y 时,()G y =1.对于)1,0[∈y ,有于是,()Y F x =的分布函数为十二【分析】A 和B 独立的充要条件是{}{}{}P AB P A P B =⋅,由此可以直接证明问题(1);对于问题(2),应先构造随机变量,不难看出与事件A 和A 联系的应是随机变量随机变量X和Y的相关系数为XY E XY E X E Y ρ-==,需将P AB P A P B ρ-=转化为用随机变量表示.显然,若有(){}E XY P AB =,(){}(){},E X P A E Y P B ==以及=,=即可,这只需定义【详解】(1)由题给ρ的定义,可见0=ρ当且仅当{}{}{}0P AB P A P B ==,而这恰好是二事件A 和B 独立的定义,即0=ρ是A 和B 独立的充分必要条件.(2)考虑随机变量X 和Y : 由条件知,X 和Y 都服从01-分布:{}{}01~X P A P A ⎛⎫ ⎪ ⎪⎝⎭,{}{}01~.Y P B P B ⎛⎫ ⎪⎝⎭ 由离散型随机变量的数字特征,(){}1ni i i i E X x P X x ==⋅=∑,()()()22D X E X EX =-易见(){}E X P A =,(){}E Y P B =;(){}{}D X P A P A =,(){}{}D Y P B P B =;由协方差的定义因此,事件A 和B 的相关系数就是随机变量X 和Y 的相关系数.于是由二随机变量相关系数的基本性质1ρ≤,所以题目中定义的.1≤ρ。
2003年硕士研究生入学考试(数学四)试题及答案解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限xx x 20)]1ln(1[lim ++→= 2e .【分析】 本题属∞1型未定式,化为指数函数求极限即可.【详解】 xx x 20)]1ln(1[lim ++→=)]1ln(1ln[2lim x xx e++→=.2)1ln(2lim)]1ln(1ln[2lime eexx xx x x ==+++→→【评注】 对于∞1型未定式)()(lim x g x f 的极限,也可直接用公式)()(lim x g x f )1(∞=)()1)(lim(x g x f e -进行计算,因此本题也可这样求解:xx x 20)]1ln(1[lim ++→=.2)1ln(2lim 0e ex xx =+⋅→(2)dx ex x x⎰--+11)(= )21(21--e .【分析】 对称区间上的积分应注意利用被积函数的对称性,这里有.011=⎰--dx xex【详解】dx ex x x⎰--+11)(=dx xedx ex xx⎰⎰----+1111=dx ex x--⎰11=⎰⎰---=11022xxxdedx xe=][2110dx e xex x⎰----=)21(21--e .【评注】 本题属基本题型,主要考查对称区间上的积分性质和分布积分法. (3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(= 2a .【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】 ⎰⎰-=D dxdy x y g x f I )()(=dxdy ax y x ⎰⎰≤-≤≤≤10,102=.])1[(212112a dx x x a dy dx ax x=-+=⎰⎰⎰+【评注】 若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可.(4)设A,B 均为三阶矩阵,E 是三阶单位矩阵. 已知AB=2A+B,B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡202040202,则 1)(--E A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100 .【分析】 应先化简,从AB=2A+B 中确定1)(--E A . 【详解】 由AB=2A+B, 知AB-B=2A-2E+2E,即有 E E A B E A 2)(2)(=---, E E B E A 2)2)((=--, E E B E A =-⋅-)2(21)(, 可见 1)(--E A =)2(21E B -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100. 【评注】 本题实质上是已知矩阵等式求逆的问题,应先分解出因式A-E ,写成逆矩阵的定义形式,从而确定(A-E) 的逆矩阵.(5)设n 维向量0,),0,,0,(<=a a a Tα;E 为n 阶单位矩阵,矩阵 TE A αα-=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a= -1 .【分析】 这里Tαα为n 阶矩阵,而22a T=αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.【详解】 由题设,有)1)((T Ta E E AB αααα+-= =TT T T aa E αααααααα⋅-+-11=T T T Ta a E αααααααα)(11-+- =TT T a a E αααααα21-+-=E aa E T=+--+αα)121(,于是有 0121=+--a a ,即 0122=-+a a ,解得 .1,21-==a a 由于A<0 ,故a=-1.(6)设随机变量X 和Y 的相关系数为0.5, EX=EY=0,222==EY EX , 则2)(Y X E += 6 .【分析】 利用期望与相关系数的公式进行计算即可.【详解】 因为2)(Y X E +=22)(2EY XY E EX ++ =4+]),([2EY EX Y X Cov ⋅+=4+2.625.024=⨯⨯+=⋅⋅DY DX XY ρ【评注】 本题的核心是逆向思维,利用公式EY EX Y X Cov XY E ⋅+=),()(.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)曲线21x xe y =(A) 仅有水平渐近线. (B) 仅有铅直渐近线.(C) 既有铅直又有水平渐近线. (D) 既有铅直又有斜渐近线. [ D ] 【分析】 先考虑是否有水平渐近线,若无水平渐近线应进一步考虑是否存在斜渐近线,而是否存在铅直渐近线,应看函数是否存在无定义点.【详解】 当±∞→x 时,极限y x ±∞→lim 均不存在,故不存在水平渐近线;又因为 1lim lim 21==∞→∞→x x x e x y ,0)(lim 21=-∞→x xe x x ,所以有斜渐近线y=x.另外,在 x=0 处21x xe y =无定义,且∞=→21lim x x xe ,可见 x=0为铅直渐近线.故曲线21x xe y =既有铅直又有斜渐近线,应选(D).【评注】 本题为常规题型.(2)设函数)(1)(3x x x f ϕ-=,其中)(x ϕ在x=1处连续,则0)1(=ϕ是f(x)在x=1处可导的(A) 充分必要条件. (B )必要但非充分条件.(C) 充分但非必要条件 . (D) 既非充分也非必要条件. [ A ] 【分析】 被积函数含有绝对值,应当作分段函数看待,利用f(x)在x=1处左右导数定义讨论即可.【详解】 因为)1(3)(11lim 1)1()(lim 311ϕϕ=⋅--=--++→→x x x x f x f x x , )1(3)(11lim 1)1()(lim 311ϕϕ-=⋅---=----→→x x x x f x f x x , 可见,f(x)在x=1处可导的充分必要条件是 .0)1()1(3)1(3=⇔-=ϕϕϕ 故应选(A). 【评注】 函数表达式中含有绝对值、取极值符号(max,min)等,均应当作分段函数处理.一般地,函数)()(0x x x x g ϕ-=在点0x x =处可导的充要条件是.0)(0=x ϕ(3)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. [ A ] 【分析】 可微必有偏导数存在,再根据取极值的必要条件即可得结论.【详解】 可微函数f(x,y)在点),(00y x 取得极小值,根据取极值的必要条件知0),(00='y x f y ,即),(0y x f 在0y y =处的导数等于零, 故应选(A).【评注1】 本题考查了偏导数的定义,),(0y x f 在0y y =处的导数即),(00y x f y ';而),(0y x f 在0x x =处的导数即).,(00y x f x '【评注2】 本题也可用排除法分析,取22),(y x y x f +=,在(0,0)处可微且取得极小值,并且有2),0(y y f =,可排除(B),(C),(D), 故正确选项为(A).(4)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100B . 已知矩阵A 相似于B ,则秩(A-2E)与秩(A-E)之和等于(A) 2. (B) 3. (C) 4. (D) 5. [ C ]【分析】 利用相似矩阵有相同的秩计算,秩(A-2E)与秩(A-E)之和等于秩(B-2E)与秩(B-E)之和.【详解】 因为矩阵A 相似于B ,于是有矩阵A-2E 与矩阵B-2E 相似,矩阵A-E 与矩阵B-E 相似,且相似矩阵有相同的秩,而秩(B-2E)=秩3201010102=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---,秩(B-E)=秩1101000101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--,可见有 秩(A-2E)+秩(A-E)= 秩(B-2E)+秩(B-E)=4,故应选(C).【评注】 若B A ~,则)(~)(B f A f ,且相似矩阵有相同的行列式、相同的秩和相同的特征值等性质.(5)对于任意二事件A 和B(A) 若φ≠AB ,则A,B 一定独立. (B) 若φ≠AB ,则A,B 有可能独立. (C) 若φ=AB ,则A,B 一定独立. (D) 若φ=AB ,则A,B 一定不独立. [ B ]【分析】 本题考查独立与互斥事件之间的关系,事实上,独立与互斥事件之间没有必然的互推关系.【详解】 φ≠AB 推不出P(AB)=P(A)P(B), 因此推不出A,B 一定独立,排除(A); 若φ=AB ,则P(AB)=0,但P(A)P(B)是否为零不确定,因此(C),(D) 也不成立,故正确选项为(B).【评注】 当P(A)0≠,P(B)0≠时,若A,B 相互独立,则一定有0)()()(≠=B P A P AB P ,从而有φ≠AB . 可见,当A,B 相互独立时,往往A,B 并不是互斥的.(6)设随机变量X 和Y 都服从正态分布,且它们不相关,则(A) X 与Y 一定独立. (B) (X,Y)服从二维正态分布.(C) X 与Y 未必独立. (D) X+Y 服从一维正态分布. [ C ] 【分析】 本题考查正态分布的性质以及二维正态分布与一维正态分布之间的关系.只有(X,Y) 服从二维正态分布时,不相关与独立才是等价的.【详解】 只有当(X,Y) 服从二维正态分布时,X 与Y 不相关⇔X 与Y 独立,本题仅仅已知X 和Y 服从正态分布,因此,由它们不相关推不出X 与Y 一定独立,排除(A); 若X 和Y 都服从正态分布且相互独立,则(X,Y)服从二维正态分布,但题设并不知道X,Y 是否独立,可排除(B); 同样要求X 与Y 相互独立时,才能推出X+Y 服从一维正态分布,可排除(D).故正确选项为(C).【评注】 ① 若X 与Y 均服从正态分布且相互独立,则(X,Y)服从二维正态分布. ② 若X 与Y 均服从正态分布且相互独立,则bY aX +服从一维正态分布. ③ 若(X,Y)服从二维正态分布,则X 与Y 相互独立⇔X 与Y 不相关.三 、(本题满分8分) 设],21,0(,)1(11sin 1)(∈---=x x x x x f πππ 试补充定义f(0),使得f(x)在]21,0[上连续.【详解】)(lim 0x f x +→= -.1π+xx xx x ππππsin sin lim 0-+→= -220sin lim 1ππππx xx x -++→= -xxx 22cos lim 1πππππ-++→= -2202sin lim 1ππππxx +→+= -.1π由于f(x)在]21,0(上连续,因此定义π1)0(-=f ,使f(x)在]21,0[上连续.【评注】 本题实质上是一求极限问题,但以这种形式表现出来,还考查了连续的概念.完全类似例题在一般教科书上都可找到四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=,求.2222y gx g ∂∂+∂∂ 【分析】 本题是典型的复合函数求偏导问题:),(v u f g =,)(21,22y x v xy u -==,直接利用复合函数求偏导公式即可,注意利用.22uv fv u f ∂∂∂=∂∂∂ 【详解】vf x u f y xg ∂∂+∂∂=∂∂, .vf y u f x yg ∂∂-∂∂=∂∂故 v f vf x v u f xy u f y xg ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222, .2222222222v f vf y u v f xy u f x yg ∂∂-∂∂+∂∂∂-∂∂=∂∂ 所以 222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂ =.22y x +【评注】 本题考查半抽象复合函数求二阶偏导.五 、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x e I Dy x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算. 【详解】 作极坐标变换:θθsin ,cos r y r x ==,有 dxdy y x e e I Dy x)sin(22)(22+=⎰⎰+-π=.sin 2022dr r re d e r ⎰⎰-πππθ令2r t =,则 tdt e e I t sin 0⎰-=πππ.记 tdt e A t sin 0⎰-=π,则t t de e A --⎰-=int 0π=]cos sin [0⎰----ππtdt e te t t=⎰--πcos ttde=]sin cos [0tdt e t e t t⎰--+-ππ=.1A e -+-π因此 )1(21π-+=e A ,).1(2)1(2πππππe e e I +=+=-【评注】 本题属常规题型,明显地应该选用极坐标进行计算,在将二重积分化为定积分后,再通过换元与分步积分(均为最基础的要求),即可得出结果,综合考查了二重积分、换元积分与分步积分等多个基础知识点.六、(本题满分9分)设a>1,at a t f t-=)(在),(+∞-∞内的驻点为).(a t 问a 为何值时,t(a)最小?并求出最小值. 【分析】 先由f(t)的导数为零确定驻点t(a),它是关于a 的函数,再把此函数对a 求导,然后令此导数为零,得到可能极值点,进一步判定此极值为最小值即可.【详解】 由0ln )(=-='a a a t f t,得唯一驻点 .ln ln ln 1)(aaa t -= 考察函数aaa t ln ln ln 1)(-=在a>1时的最小值. 令 0)(ln ln ln 1)(ln ln ln 11)(22=--=--='a a a a aa a a t , 得唯一驻点 .ee a =当ee a >时,0)(>'a t ;当ee a <时,0)(<'a t ,因此ee t e11)(-=为极小值,从而是最小值.【评注】 本题属基本题型,只是函数表达式由驻点给出,求极值与最值的要求均是最基本的.七、(本题满分9分)设y=f(x) 是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C 为M 在x 轴上的投影,O 为坐标原点. 若梯形OCMA 的面积与曲边三角形CBM 的面积之和为3163+x ,求f(x)的表达式. 【分析】 梯形OCMA 的面积可直接用梯形面积公式计算得到,曲边三角形CBM 的面积可用定积分计算,再由题设,可得一含有变限积分的等式,两边求导后可转化为一阶线性微分方程,然后用通解公式计算即可.【详解】 根据题意,有316)()](1[213+=++⎰x x dt t f x f x .两边关于x 求导,得.21)()(21)](1[212x x f x f x x f =-'++ 当0≠x 时,得.1)(1)(2xx x f x x f -=-' 此为标准的一阶线性非齐次微分方程,其通解为 y]1[)(121C dx e xx ex f dx x dxx+⎰-⎰=---⎰ =]1[ln 2ln C dx e xx ex x+--⎰ =)1(22C dx x x x +-⎰ O C B x =.12Cx x ++当x=0时,f(0)=1.由于x=1时,f(1)=0 ,故有2+C=0,从而C=-2. 所以.)1(21)(22-=-+=x x x x f【评注】 本题一阶线性微分方程的求解比较简单,一般教材中都可找到标准的求解方法.八、(本题满分8分)设某商品从时刻0到时刻t 的销售量为kt t x =)(,).0(],,0[>∈k T t 欲在T 时将数量为A 的该商品销售完,试求(1) t 时的商品剩余量,并确定k 的值; (2) 在时间段[0,T]上的平均剩余量.【分析】 在时刻t 的剩余量y(t)可用总量A 减去销量x(t)得到; 由于y(t)随时间连续变化,因此在时间段[0,T] 上的平均剩余量,即函数平均值可用积分⎰Tdt t y T 0)(1表示.【详解】 (1) 在时刻t 商品的剩余量为 )()(t x A t y -==kt A -, ].,0[T t ∈ 由kt A -=0,得 TA k =, 因此,)(t TAA t y -= ].,0[T t ∈ (2) 依题意,)(t y 在[0,T]上的平均值为⎰=Tdt t y T y 0)(1 =⎰-T dt t T AA T 0)(1=.2A因此在时间段[0,T] 上的平均剩余量为.2A 【评注】 函数f(x)在[a,b] 上的平均值记为⎰-badx x f a b .)(1本题考查了函数平均值的概念,但大纲中只对数学一、二明确提出要求,而数学三、四的考试大纲中没有相应的要求,因此本题有超纲的嫌疑.九、(本题满分13分)设有向量组(I ):T )2,0,1(1=α,T )3,1,1(2=α,T a )2,1,1(3+-=α和向量组(II ):T a )3,2,1(1+=β,T a )6,1,2(2+=β,.)4,1,2(3T a +=β 试问:当a 为何值时,向量组(I )与(II )等价?当a 为何值时,向量组(I )与(II )不等价?【分析】 两个向量组等价也即两个向量组可以相互线性表示,而两个向量组不等价,只需其中一组有一个向量不能由另一组线性表示即可. 而线性表示问题又可转化为对应非齐次线性方程组是否有解的问题,这可通过化增广矩阵为阶梯形来判断. 一个向量1β是否可由321,,ααα线性表示,只需用初等行变换化增广矩阵(1321,,βααα)为阶梯形讨论,而一组向量321,,βββ是否可由321,,ααα线性表示,则可结合起来对矩阵(321321,,,,βββααα)同时作初等行变换化阶梯形,然后类似地进行讨论即可.【详解】 作初等行变换,有),,,,(321321βββααα =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++-463232112110221111a a a a⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+--→111100112110111201a a a a .(1) 当1-≠a 时,有行列式[]01321≠+=a ααα,秩(3),,321=ααα,故线性方程组)3,2,1(332211==++i x x x i βααα均有唯一解. 所以,321,,βββ可由向量组(I )线性表示.同样,行列式[]06321≠=βββ,秩(3),,321=βββ,故321,,ααα可由向量组(II )线性表示. 因此向量组(I )与(II )等价.(2) 当a=-1时,有),,,,(321321βββααα ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→202000112110111201 . 由于秩(321,,ααα)≠秩(),,1321βααα ,线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示. 因此,向量组(I )与(II )不等价.【评注1】 涉及到参数讨论时,一般联想到利用行列式判断,因此,本题也可这样分析: 因为行列式1,,321+=a ααα,06,,321≠=βββ,可见(1) 当1-≠a 时,秩3),,(),,(321321==βββαααr r ,因此三维列向量组321,,ααα与321,,βββ等价,即向量组(I )与(II )等价.(2) 当a=-1时,,秩2),,(321=αααr ,而行列式04,,132≠=βαα,可见2),,(321=αααr ≠r (),,,1321βααα=3, 因此线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示. 即向量组(I )与(II )不等价.【评注2】 向量组(I )与(II )等价,相当于321,,ααα与321,,βββ均为整个向量组321321,,,,,βββααα的一个极大线性无关组,问题转化为求向量组321321,,,,,βββααα的极大线性无关组,这可通过初等行变换化阶梯形进行讨论.十、(本题满分13分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a A 11121112可逆,向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11b α是矩阵*A 的一个特征向量,λ是α对应的特征值,其中*A 是矩阵A 的伴随矩阵. 试求a,b 和λ的值.【分析】 题设已知特征向量,应想到利用定义:λαα=*A ,又与伴随矩阵*A 相关的问题,应利用E A AA =*进行化简.【详解】 矩阵*A 属于特征值λ的特征向量为α,由于矩阵A 可逆,故*A 可逆.于是0≠λ,0≠A ,且λαα=*A .两边同时左乘矩阵A ,得αλαA AA =*,αλαA A =,即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111111121112b A b a λ, 由此,得方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=+.1,22,3λλλA b a b A b A b )3()2()1( 由式(1),(2)解得1=b或2-=b ;由式(1),(3)解得a=2.由于 42311121112=-==a aA ,根据(1)式知,特征向量α所对应的特征值.343bb A+=+=λ 所以,当1=b 时,1=λ;当2-=b 时,.4=λ【评注】 本题若先求出*A ,再按特征值、特征向量的定义进行分析,则计算过程将非常复杂. 一般来说,见到*A ,首先应想到利用公式E A AA =*进行化简.十一、(本题满分13分)设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f F(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.【分析】 先求出分布函数F(x) 的具体形式,从而可确定Y=F(X) ,然后按定义求Y 的分布函数即可。
2003年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1))1ln(12)(coslim x x x +→ = .(2)曲面22yx z +=与平面042=-+z y x 平行的切平面的方程是 .(3)设)(cos 02ππ≤≤-=∑∞=x nx axn n,则2a =.(4)从2R 的基1211,01⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭αα到基1211,12⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ββ的过渡矩阵为. (5)设二维随机变量(,)X Y 的概率密度为(,)f x y =60x01x y ≤≤≤其它,则=≤+}1{Y X P.(6)已知一批零件的长度X (单位:cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则μ的置信度为0.95的置信区间是 .(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ二、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设函数()f x 在),(+∞-∞内连续,其导函数的图形如图所示,则()f x 有(A)一个极小值点和两个极大值点 (B)两个极小值点和一个极大值点 (C)两个极小值点和两个极大值点(2)设}{},{},{n n nc b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A)nnb a<对任意n 成立(B)nnc b<对任意n 成立(C)极限n n n c a ∞→lim不存在(D)极限n n n c b ∞→lim不存在(3)已知函数(,)f x y 在点(0,0)的某个邻域内连续,且1)(),(lim222,0=+-→→y x xy y x f y x ,则(A)点(0,0)不是(,)f x y 的极值点 (B)点(0,0)是(,)f x y 的极大值点(C)点(0,0)是(,)f x y 的极小值点(D)根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点(4)设向量组I:12,,,rααα 可由向量组II:12,,,sβββ 线性表示,则(A)当s r <时,向量组II 必线性相关 (B)当s r >时,向量组II 必线性相关(C)当s r <时,向量组I 必线性相关 (D)当s r >时,向量组I 必线性相关(5)设有齐次线性方程组0x =A 和0x =B ,其中,A B 均为n m ⨯矩阵,现有4个命题: ① 若0x =A 的解均是0x =B 的解,则秩()≥A 秩()B ② 若秩()≥A 秩()B ,则0x =A 的解均是0x =B 的解 ③ 若0x =A 与0x =B 同解,则秩()=A 秩()B ④ 若秩()=A 秩()B , 则0x =A 与0x =B 同解 以上命题中正确的是 (A)①② (B)①③(C)②④(D)③④(6)设随机变量21),1)((~XY n n t X =>,则(C)~(,1)Y F n(D)~(1,)Y F n三、(本题满分10分)过坐标原点作曲线lny x=的切线,该切线与曲线lny x=及x轴围成平面图形D.(1)求D的面积A.(2)求D绕直线ex=旋转一周所得旋转体的体积V. 将函数xxxf2121arctan)(+-=展开成x的幂级数,并求级数∑∞=+-12)1(nnn的和.五、(本题满分10分)已知平面区域}0,),{(ππ≤≤≤≤=yxyxD,L为D的正向边界.试证:(1)sin sin sin sine e e ey x y xL Lx dy y dx x dy y dx---=-⎰⎰.(2)sin sin2e e2.y xLx dy y dxπ--≥⎰六、(本题满分10分)某建筑工程打地基时,需用汽锤将桩打进土层.汽锤每次击打,都将克服土层对桩的阻力而作功.设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为.0k k>).汽锤第一次击打将桩打进地下a m.根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数(01)r r<<.问(1)汽锤击打桩3次后,可将桩打进地下多深?(2)若击打次数不限,汽锤至多能将桩打进地下多深?(注:m表示长度单位米.)设函数()y y x=在),(+∞-∞内具有二阶导数,且)(,0yxxy=≠'是()y y x=的反函数.(1)试将()x x y=所满足的微分方程0))(sin(322=++dydxxydyxd变换为()y y x=满足的微分方程.(2)求变换后的微分方程满足初始条件23)0(,0)0(='=yy的解.八 、(本题满分12分) 设函数()f x 连续且恒大于零,⎰⎰⎰⎰⎰+++=Ω)(22)(222)()()(t D t d y x f dvz y x f t F σ,⎰⎰⎰-+=tt D dxx f d y x f t G 12)(22)()()(σ,其中}),,{()(2222t zy xz y x t ≤++=Ω,}.),{()(222t yx y x t D ≤+=(1)讨论()F t 在区间),0(+∞内的单调性. (2)证明当0t >时,).(2)(t G t F π>九 、(本题满分10分)设矩阵322232223⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,01010101⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦P ,1*-=B PA P,求2+B E 的特征值与特征向量,其中*A为A 的伴随矩阵,E 为3阶单位矩阵.十 、(本题满分8分).0=++cba十一、(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品. 从甲箱中任取3件产品放入乙箱后,求:(1)乙箱中次品件数的数学期望.(2)从乙箱中任取一件产品是次品的概率.十二、(本题满分8分)设总体X的概率密度为()f x=2()2exθ--xxθ>≤其中0>θ是未知参数. 从总体X中抽取简单随机样本n XXX,,,21,记).,,,min(ˆ21nXXX=θ(1)求总体X的分布函数()F x.(2)求统计量θˆ的分布函数)(ˆxFθ.(3)如果用θˆ作为θ的估计量,讨论它是否具有无偏性.2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e)exxf x -'=,且(1)0f =,则()f x =__________ .(3)设L 为正向圆周222=+yx 在第一象限中的部分,则曲线积分⎰-Lydxxdy 2的值为__________. (4)欧拉方程)0(024222>=++x y dxdy xdxy d x的通解为__________ .(5)设矩阵21012001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABABA E,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (7)把+→0x 时的无穷小量dtt dt t dt t xxx⎰⎰⎰===32sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,, (C)γαβ,,(D)αγβ,,(8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得(A)()f x 在(0,)δ内单调增加(B)()f x 在)0,(δ-内单调减少(C)对任意的),0(δ∈x 有()(0)f x f >(D)对任意的)0,(δ-∈x 有()(0)f x f >(A)若n n na ∞→lim=0,则级数∑∞=1n na 收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na 发散(C)若级数∑∞=1n na 收敛,则0lim2=∞→n n a n(D)若级数∑∞=1n na 发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=ttydxx f dy t F 1)()(,则)2(F '等于(A)2(2)f(B)(2)f (C)(2)f -(D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010(C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡11001010 (D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10001110(12)设,A B 为满足=A B O 的任意两个非零矩阵,则必有(A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关 (13)设随机变量X服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x XP ,则x 等于 (A)2αu(B)21α-u (C)u(D)u(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni iX nY11,则(A)21C ov(,)X Y nσ=(B)21C ov(,)XY σ=(C)212)(σnn Y X D +=+(D)211)(σnn Y XD +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分12分) 设2e e a b <<<,证明2224lnln ()eb a b a ->-.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k问从着陆点算起,飞机滑行的最长距离是多少?(注:kg 表示千克,km/h 表示千米/小时)(17)(本题满分12分) 计算曲面积分,)1(322233dxdy z dzdx y dydz xI ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y xz 的上侧.(18)(本题满分11分) 设有方程10nxnx +-=,其中n 为正整数.证明此方程存在惟一正实根nx ,并证明当1α>时,级数1nn x α∞=∑收敛.(19)(本题满分12分) 设(,)z z x y =是由2226102180xxy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分)设有齐次线性方程组121212(1)0,2(2)20,(2),()0,n n n a x x x x a x x n nx nx n a x ++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩试问a 取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a-⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.(22)(本题满分9分) 设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令;,,0,1不发生发生A A X ⎩⎨⎧=.,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XYρ(23)(本题满分9分) 设总体X 的分布函数为,1,1,11),(≤>⎪⎨⎧-=x x xx F ββ求:(1)β的矩估计量. (2)β的最大似然估计量.2005年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线122+=x xy 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为____________.(3)设函数181261),,(222zyxz y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(n u ∂∂=.________.(4)设Ω是由锥面22yx z +=与半球面222yx R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz____________.(5)设123,,ααα均为3维列向量,记矩阵123(,,)=A ααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B .(6)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7)设函数nnn xx f 31lim)(+=∞→,则()f x 在),(+∞-∞内(A)处处可导 (B)恰有一个不可导点 (C)恰有两个不可导点(D)至少有三个不可导点(8)设()F x 是连续函数()f x 的一个原函数,""N M⇔表示"M 的充分必要条件是",N 则必有(A)()F x 是偶函数()f x ⇔是奇函数(B)()F x 是奇函数()f x ⇔是偶函数函数(9)设函数⎰+-+-++=yx yx dtt y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A)2222yu xu ∂∂-=∂∂ (B)2222yu xu ∂∂=∂∂(C)222yu yx u ∂∂=∂∂∂(D)222xu yx u ∂∂=∂∂∂(10)设有三元方程ln e 1xzxy z y -+=,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A)只能确定一个具有连续偏导数的隐函数(,)z z x y = (B)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y = (C)可确定两个具有连续偏导数的隐函数(,)y y x z =和(,)z z x y =(D)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是(A)01≠λ (B)02≠λ(C)01=λ(D)02=λ(12)设A 为(2)n n ≥阶可逆矩阵,交换A 的第1行与第2行得矩阵**.,B AB分别为,A B 的伴随矩阵,则(A)交换*A 的第1列与第2列得*B(B)交换*A 的第1行与第2行得*B(C)交换*A 的第1列与第2列得*-B(D)交换*A 的第1行与第2行得*-B(13)设二维随机变量(,)X Y 的概率分布为已知随机事件}0{=X与}1{=+Y X 相互独立,则(A)0.2,0.3a b == (B)0.4,0.1a b == (C)0.3,0.2a b ==(D)0.1,0.4a b ==(14)设)2(,,,21≥n X X Xn 为来自总体(0,1)N 的简单随机样本,X为样本均值,2S 为样本方差,则(A))1,0(~N X n(B)22~()nSn χ(C))1(~)1(--n t SXn(D)2122(1)~(1,1)nii n X F n X=--∑三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x yx y x D,]1[22y x ++表示不超过221yx++的最大整数. 计算二重积分⎰⎰++Ddxdy y xxy .]1[22(16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n nn xn n 的收敛区间与和函数()f x .(17)(本题满分11分) 如图,曲线C 的方程为()y f x =,点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数()f x 具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==. 证明: (1)存在),1,0(∈ξ 使得ξξ-=1)(f . (2)存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f(19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分24()22Ly dx xydyx yφ++⎰的值恒为同一常数.(1)证明:对右半平面0x >内的任意分段光滑简单闭曲线,C 有24()202Cy dx xydyx yφ+=+⎰.(2)求函数)(y ϕ的表达式.(20)(本题满分9分) 已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2. (1)求a 的值;(2)求正交变换x y =Q ,把),,(321x x x f 化成标准形. (3)求方程),,(321x x x f =0的解.(21)(本题满分9分) 已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵12324636k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B (k 为常数),且=A B O ,求线性方程组0x =A 的通解.(22)(本题满分9分)设二维随机变量(,)X Y 的概率密度为(,)f x y = 101,02x y x <<<<其它求:(1)(,)X Y 的边缘概率密度)(),(y f x fY X.(2)YX Z -=2的概率密度).(z fZ设)2(,,,21>n X X Xn 为来自总体(0,1)N 的简单随机样本,X为样本均值,记.,,2,1,n i X X Y i i =-=求:(1)iY 的方差n i DYi,,2,1, =.(2)1Y 与nY 的协方差1Cov(,).nY Y2006年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)0ln(1)lim1cos x x x x→+=-.(2)微分方程(1)y x y x-'=的通解是 . (3)设∑是锥面z =(01z ≤≤)的下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰ .(4)点(2,1,0)到平面3450x y z ++=的距离z = . (5)设矩阵2112⎛⎫=⎪-⎝⎭A ,E为2阶单位矩阵,矩阵B满足2=+B A B E,则B= . (6)设随机变量X与Y 相互独立,且均服从区间[0,3]上的均匀分布,则{}max{,}1P X Y ≤= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A)0dx y <<∆ (B)0y dy <∆< (C)0y dy ∆<<(D)0dy y <∆<(8)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdrπθθθ⎰⎰等于(A)0(,)xf x y dy⎰⎰(B)0(,)f x y dy⎰⎰(9)若级数1nn a ∞=∑收敛,则级数(A)1nn a ∞=∑收敛 (B)1(1)nnn a ∞=-∑收敛(C)11n n n aa ∞+=∑收敛(D)112nn n aa ∞+=+∑收敛(10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0yx y ϕ≠.已知00(,)xy 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A)若00(,)0xf xy '=,则00(,)0y f x y '= (B)若00(,)0x f xy '=,则00(,)0y f x y '≠ (C)若00(,)0xf xy '≠,则00(,)0y f x y '=(D)若00(,)0xf xy '≠,则00(,)0y f x y '≠(11)设12,,,,s ααα 均为n维列向量,A 是m n ⨯矩阵,下列选项正确的是(A)若12,,,,s ααα 线性相关,则12,,,,s A αA αA α 线性相关 (B)若12,,,,s ααα 线性相关,则12,,,,s A αA αA α 线性无关(C)若12,,,,s ααα 线性无关,则12,,,,s A αA αA α 线性相关 (D)若12,,,,s ααα 线性无关,则12,,,,s A αA αA α 线性无关.(12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001⎛⎫ ⎪= ⎪ ⎪⎝⎭P ,则 (A)1-=C P AP(B)1-=C PAP(C)T=C PAP(D)T=C PAP(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有(A)()()P A B P A > (B)()()P A B P B >(C)()()P A B P A =(D)()()P A B P B =(14)设随机变量X 服从正态分布211(,)N μσ,Y服从正态分布222(,)N μσ,且12{||1}{||1},P XP Y μμ-<>-<则(C)12μμ<(D)12μμ>三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分10分) 设区域D=(){}22,1,0x y x y x +≤≥,计算二重积分2211DxyI dxdyx y+=++⎰⎰.(16)(本题满分12分) 设数列{}nx 满足()110,sin 1,2,...n xx x n ππ+<<==.求:(1)证明lim nx x →∞存在,并求之.(2)计算211lim nx n x n x x +→∞⎛⎫ ⎪⎝⎭.(17)(本题满分12分) 将函数()22x f x x x=+-展开成x 的幂级数.(18)(本题满分12分)设函数()()0,,f u +∞在内具有二阶导数且z f=满足等式2222zz xy∂∂+=∂∂.(1)验证()()0f u f u u'''+=.(2)若()()10,11,f f '==求函数()f u 的表达式.(19)(本题满分12分) 设在上半平面(){},0D x y y =>内,数(),f x y 是有连续偏导数,且对任意的0t >都有()()2,,f tx ty t f x y =.证明: 对L内的任意分段光滑的有向简单闭曲线L,都有(,)(,)Lyf x y d x x f x yd y-=⎰ .(20)(本题满分9分) 已知非齐次线性方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩ 有3个线性无关的解,(1)证明方程组系数矩阵A 的秩()2r =A . (2)求,a b 的值及方程组的通解.(21)(本题满分9分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1T T=--=-αα是线性方程组0x =A 的两个解.(1)求A 的特征值与特征向量. (2)求正交矩阵Q 和对角矩阵A ,使得T=Q AQ A.(22)(本题满分9分)随机变量x 的概率密度为()()21,1021,02,,40,令其它x x f x x y x F x y ⎧-<<⎪⎪⎪=≤<=⎨⎪⎪⎪⎩为二维随机变量(,)X Y 的分布函数.(1)求Y 的概率密度()Yf y .(2)1,42F ⎛⎫-⎪⎝⎭.(23)(本题满分9分)设总体X的概率密度为(,0)F X =10θθ-0112x x <<≤<其它,其中θ是未知参数(01)θ<<,12n ,...,X X X 为来自总体X的简单随机样本,记N 为样本值12,...,n x xx 中小于1的个数,求θ的最大似然估计.2007年全国硕士研究生入学统一考试数学(一)试卷一、选择题(本题共10小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后括号内) (1)当0x +→时,(A)1-(B)ln(C)1(D)1cos -(2)曲线1ln(1e )xy x=++,渐近线的条数为(A)0 (B)1 (C)2(D)3(3)如图,连续函数()y f x =在区间[3,2],[2,3]--上的图形分别是直径为1的上、下半圆周,在区间[2,0],[0,2]-的图形分别是直径为2的上、下半圆周,设0()()x F x f t dt =⎰.则下列结论正确的是(A)3(3)(2)4F F =--(B)5(3)(2)4F F =(C)3(3)(2)4F F =(D)5(3)(2)4F F =--(4)设函数()f x 在0x =处连续,下列命题错误的是 (A)若0()lim x f x x →存在,则(0)0f = (B)若0()()lim x f x f x x →+- 存在,则(0)0f = (C)若0()limx f x x→ 存在,则(0)0f '=(D)若()()limx f x f x x→-- 存在,则(0)0f '=(5)设函数()f x 在(0, +∞)上具有二阶导数,且"()0f x >, 令()1,2,,,nuf n n == 则下列结论正确的是 (A)若12u u >,则{n u }必收敛(B)若12uu >,则{nu }必发散(C)若12uu <,则{n u }必收敛(D)若12uu <,则{n u }必发散(6)设曲线:(,)1L f x y =((,)f x y 具有一阶连续偏导数),过第2象限内的点M 和第Ⅳ象限内的点,N Γ为L 上从点M 到N 的一段弧,则下列小于零的是 (A)(,)x y dxΓ⎰(B)(,)f x y dyΓ⎰(C)(,)f x y ds Γ⎰(D)'(,)'(,)x y f x y dx f x y dyΓ+⎰(7)设向量组123,,ααα线性无关,则下列向量组线形相关的是(A),,122331---αααααα(B),,122331+++αααααα(C)1223312,2,2---αααααα(D)1223312,2,2+++αααααα(8)设矩阵211121112--⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A ,100010000⎛⎫⎪= ⎪ ⎪⎝⎭B ,则A 与B(A)合同,且相似 (B)合同,但不相似 (C)不合同,但相似(D)既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为()01p p <<,则此人第4次射击恰好第2次命中目标的概率为(A)23(1)p p -(B)26(1)p p -(C)223(1)pp -(D)226(1)pp -(10)设随即变量(,)X Y 服从二维正态分布,且X 与Y 不相关,()Xfx ,()Yfy 分别表示,X Y的概率密度,则在Yy=的条件下,X 的条件概率密度|(|)X Yf x y 为(A)()Xfx (B)()Yf y(C)()Xf x ()Y f y(D)()()X Y f x f y二、填空题(11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上) (11)31211e x dx x⎰=_______.(12)设(,)f u v 为二元可微函数,(,)yxz f x y =,则z x∂∂=______.(13)二阶常系数非齐次线性方程2''4'32e xy y y -+=的通解为y =____________. (14)设曲面:||||||1x y z ++=∑,则(||)x y ds ∑+⎰⎰=_____________.(15)设矩阵01000010000100⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭A ,则3A 的秩为________. (16)在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于12的概率为________.三、解答题(17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤) (17)(本题满分11分) 求函数 2222(,)2f x y x y x y=+-在区域22{(,)|4,0}D x y xy y =+≤≥上的最大值和最小值.(18)(本题满分10分)计算曲面积分23,I xzdydz zydzdx xydxdy ∑=++⎰⎰其中∑为曲面221(01)4yz xz =--≤≤的上侧.(19)(本题满分11分) 设函数(),()f xg x 在[,]a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f a g a f b g b ==,证明:存在(,)a b ξ∈,使得 ()()f g ξξ''''=.(20)(本题满分10分) 设幂级数 0nnn ax ∞=∑ 在(,)-∞+∞内收敛,其和函数()y x 满足240,(0)0,(0y x y y y y ''''--=== (1)证明:22,1,2,.1n n aa n n +==+(2)求()y x 的表达式.(21)(本题满分11分)设线性方程组1231232123020,40x x x x x ax x x a x ++=⎧⎪++=⎨⎪++=⎩与方程 12321,x x x a ++=-有公共解,求a 的值及所有公共解.(22)(本题满分11分)设3阶实对称矩阵A 的特征向量值12311,2, 2.(1,1,1)Tλλλ===-=-α是A 的属于特征值1λ的一个特征向量,记534,=-+B AA E 其中E 为3阶单位矩阵.(1)验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量. (2)求矩阵B .(23)(本题满分11分)设二维随机变量(,)X Y的概率密度为2,01,01 (,)0,x y x yf x y--<<<<⎧=⎨⎩其他(1)求{2}.P X Y>(2)求Z X Y=+的概率密度.(24)(本题满分11分)设总体X的概率密度为1,021(;),12(1)0,xf x xθθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他12,,nX X X是来自总体x的简单随机样本,X是样本均值(1)求参数θ的矩估计量ˆθ.(2)判断24X是否为2θ的无偏估计量,并说明理由.2008年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1)设函数2()ln(2)x f x t dt =+⎰则()f x '的零点个数(A)0 (B)1(C)2(D)3(2)函数(,)arctan x f x y y=在点(0,1)处的梯度等于 (A)i (B)-i (C)j(D)-j(3)在下列微分方程中,以123cos 2sin 2x y C e C x C x =++(123,,C C C 为任意常数)为通解的是(A)440y y y y ''''''+--= (B)440y y y y ''''''+++= (C)440y y y y ''''''--+=(D)440y y y y ''''''-+-=(4)设函数()f x 在(,)-∞+∞内单调有界,{}nx 为数列,下列命题正确的是 (A)若{}nx 收敛,则{}()nf x 收敛(B)若{}nx 单调,则{}()nf x 收敛(C)若{}()nf x 收敛,则{}nx 收敛(D)若{}()nf x 单调,则{}nx 收敛(5)设A 为n 阶非零矩阵,E 为n 阶单位矩阵. 若30=A ,则(A)-E A 不可逆,+E A 不可逆(B)-E A 不可逆,+E A 可逆(C)-E A 可逆,+E A 可逆(D)-E A 可逆,+E A 不可逆(6)设A 为3阶实对称矩阵,如果二次曲面方程(,,)1x x y z y z ⎛⎫ ⎪= ⎪⎪⎝⎭A 在正交变换下的标准方程的图形如图,则A 的正特征值个数为(A)0(B)1 (C)2(D)3(7)设随机变量,X Y 独立同分布且X 分布函数为()F x ,则{}max ,ZX Y =分布函数为(A)()2F x(B) ()()F x F y(C) ()211F x --⎡⎤⎣⎦(D)()()11F x F y --⎡⎤⎡⎤⎣⎦⎣⎦(8)设随机变量()~0,1XN ,()~1,4Y N 且相关系数1X Y ρ=,则(A){}211P Y X =--= (B){}211P Y X =-= (C){}211P Y X =-+=(D){}211P YX =+=二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.) (9)微分方程0xy y '+=满足条件()11y =的解是y =.(10)曲线()()sin ln xy y x x +-=在点()0,1处的切线方程为 .(11)已知幂级数()02nnn a x ∞=+∑在0x =处收敛,在4x =-处发散,则幂级数()3nnn a x ∞=-∑的收敛域为 . (12)设曲面∑是z =的上侧,则2xydydz xdzdx xdxdy ∑++=⎰⎰ .(13)设A 为2阶矩阵,12,αα为线性无关的2维列向量,12120,2==+A αA ααα,则A 的非零特征值为 .(14)设随机变量X 服从参数为1的泊松分布,则{}2P X EX==.三、解答题(15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分10分)求极限()40sin sin sin sin lim x x x xx→-⎡⎤⎣⎦.(16)(本题满分10分) 计算曲线积分()2sin 221Lxdx x ydy +-⎰,其中L是曲线s in y x =上从点()0,0到点(),0π的一段.(17)(本题满分10分)已知曲线22220:35x y z C x y z ⎧+-=⎨++=⎩,求曲线C 距离X O Y 面最远的点和最近的点.(18)(本题满分10分) 设()f x 是连续函数, (1)利用定义证明函数()()0xF x f t dt=⎰可导,且()()F x f x '=.(2)当()f x 是以2为周期的周期函数时,证明函数()22()()x G x f t dt x f t dt=-⎰⎰也是以2为周期的周期函数.(19)(本题满分10分)()21(0)f x x xπ=-≤≤,用余弦级数展开,并求()1211nnn-∞=-∑的和.(20)(本题满分11分)T T=+Aααββ,Tα为α的转置,Tβ为β的转置.证明:(1)()2r≤A. (2)若,αβ线性相关,则()2r<A.(21)(本题满分11分) 设矩阵2221212n na a a aa ⨯⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭A,现矩阵A满足方程=A XB ,其中()1,,Tn x x =X ,()1,0,,0=B ,(1)求证()1nn a=+A.(2)a 为何值,方程组有唯一解,求1x .(3)a 为何值,方程组有无穷多解,求通解.(22)(本题满分11分)设随机变量X 与Y 相互独立,X 的概率分布为{}()11,0,13P X i i ===-,Y 的概率密度为()1010Yy f y ≤≤⎧=⎨⎩其它,记ZX Y=+,(1)求102P ZX ⎧⎫≤=⎨⎬⎩⎭. (2)求Z 的概率密度.(23)(本题满分11分)设12,,,nX X X 是总体为2(,)N μσ的简单随机样本.记11ni i XX n==∑,2211()1ni i S X X n ==--∑,221TXSn=-(1)证明T 是2μ的无偏估计量.(2)当0,1μσ==时 ,求D T .2009年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-等价无穷小,则(A)11,6a b ==-(B)11,6a b ==(C)11,6a b =-=-(D)11,6a b =-=(2)如图,正方形(){},1,1x y x y ≤≤被其对角线划分为四个区域()1,2,3,4kD k =,cos kkD Iy xdxdy =⎰⎰,则{}14m ax kk I ≤≤=(A)1I(B)2I(C)3I(D)4I(3)设函数()y f x =在区间[]1,3-上的图形为则函数()()0xF x f t dt=⎰的图形为(A) (B)(C)(D)(4)设有两个数列{}{},nna b ,若lim 0nn a →∞=,则(A)当1n n b ∞=∑收敛时,1nnn ab ∞=∑收敛.(B)当1nn b ∞=∑发散时,1nnn ab ∞=∑发散.(C)当1nn b ∞=∑收敛时,221nnn ab∞=∑收敛.(D)当1nn b ∞=∑发散时,221nn n ab ∞=∑发散. (5)设123,,ααα是3维向量空间3R的一组基,则由基12311,,23ααα到基12233,,+++αααααα的过渡矩阵为 (A)101220033⎛⎫ ⎪ ⎪ ⎪⎝⎭(B)120023103⎛⎫ ⎪ ⎪ ⎪⎝⎭(C)111246111246111246⎛⎫-⎪⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭(D)111222111444111666⎛⎫-⎪ ⎪⎪- ⎪⎪ ⎪- ⎪⎝⎭(6)设,A B 均为2阶矩阵,**,A B分别为,A B 的伴随矩阵,若2,3==AB ,则分块矩阵O A BO ⎛⎫⎪⎝⎭的伴随矩阵为(A)**32O B AO ⎛⎫⎪⎝⎭(B)**23O B AO ⎛⎫⎪⎝⎭(C)**32O A BO ⎛⎫⎪⎝⎭(D)**23O A BO ⎛⎫⎪⎝⎭(7)设随机变量X 的分布函数为()()10.30.72x F x x -⎛⎫=Φ+Φ ⎪⎝⎭,其中()x Φ为标准正态分布函数,则EX = (A)0 (B)0.3(C)0.7(D)1(8)设随机变量X 与Y 相互独立,且X 服从标准正态分布()0,1N ,Y 的概率分布为{}{}1012P Y P Y ====,记()ZF z 为随机变量ZX Y=的分布函数,则函数()ZF z 的间断点个数为 (A)0 (B)1(C)2(D)3二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.) (9)设函数(),f u v 具有二阶连续偏导数,(),z f x xy =,则2z x y∂=∂∂ .(10)若二阶常系数线性齐次微分方程0y ay by '''++=的通解为()12exy CC x =+,则非齐次方程y ay by x '''++=满足条件()()02,00y y '==的解为y = . (11)已知曲线(2:0L y x x =≤≤,则Lxds =⎰.(12)设(){}222,,1x y z x y z Ω=++≤,则2zdxdydz Ω=⎰⎰⎰.(13)若3维列向量,αβ满足2T=αβ,其中Tα为α的转置,则矩阵Tβα的非零特征值为 . (14)设12,,,m XX X 为来自二项分布总体(),B n p 的简单随机样本,X 和2S 分别为样本均值和样本方差.若2XkS+为2np 的无偏估计量,则k = .三、解答题(15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分9分)求二元函数()22(,)2ln f x y x y y y =++的极值.(16)(本题满分9分) 设na 为曲线ny x=与()11,2,.....n y x n +==所围成区域的面积,记122111,nn n n SaS a∞∞-====∑∑,求1S 与2S 的值.(17)(本题满分11分) 椭球面1S 是椭圆22143xy+=绕x 轴旋转而成,圆锥面2S 是过点()4,0且与椭圆22143xy+=相切的直线绕x 轴旋转而成.(1)求1S 及2S 的方程. (2)求1S 与2S 之间的立体体积.(18)(本题满分11分)(1)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(,)a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-.(2)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A+→'=,则()0f +'存在,且()0f A +'=(19)(本题满分10分) 计算曲面积分()32222xdydz ydzdx zdxdyI xy z++=∑++⎰⎰,其中∑是曲面222224xy z ++=的外侧.(20)(本题满分11分)设111111042--⎛⎫ ⎪=- ⎪⎪--⎝⎭A ,1112-⎛⎫ ⎪= ⎪ ⎪-⎝⎭ξ (1)求满足21=A ξξ的2ξ.231=A ξξ的所有向量2ξ,3ξ. (2)对(1)中的任意向量2ξ,3ξ证明123,,ξξξ无关.(21)(本题满分11分) 设二次型()()2221231231323,,122f x xx ax ax a x x x x x =++-+-.(1)求二次型f 的矩阵的所有特征值; (2)若二次型f 的规范形为2212yy +,求a的值.(22)(本题满分11分)袋中有1个红色球,2个黑色球与3个白球,现有回放地从袋中取两次,每次取一球,以,,X Y Z 分别表示两次取球所取得的红球、黑球与白球的个数. (1) 求{}10p X Z ==.(2)求二维随机变量(),X Y 概率分布(23)(本题满分11 分) 设总体X 的概率密度为2,0()0,x xe x f x λλ-⎧>=⎨⎩其他,其中参数(0)λλ>未知,1X ,2X ,…nX是来自总体X 的简单随机样本.(1)求参数λ的矩估计量. (2)求参数λ的最大似然估计量.2010年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)极限2lim ()()xx xx a x b →∞⎡⎤⎢⎥-+⎣⎦= (A)1(B)e (C)e a b-(D)eb a-(2)设函数(,)z z x y =由方程(,)0y zF x x=确定,其中F 为可微函数,且20,F '≠则z z x yx y∂∂+∂∂=(A)x (B)z (C)x -(D)z -(3)设,m n 为正整数,则反常积分0⎰的收敛性(A)仅与m 取值有关 (B)仅与n 取值有关(C)与,m n 取值都有关(D)与,m n 取值都无关(4)2211lim ()()n nx i j nn i n j →∞==++∑∑=(A)121(1)(1)x dx dy x y ++⎰⎰(B)101(1)(1)x dx dy x y ++⎰⎰(C)1101(1)(1)dx dyx y ++⎰⎰(D)1121(1)(1)dx dyx y ++⎰⎰(5)设A 为m n ⨯型矩阵,B 为n m ⨯型矩阵,若,=AB E 则 (A)秩(),m =A 秩()m =B (B)秩(),m =A 秩()n =B(C)秩(),n =A 秩()m =B(D)秩(),n =A 秩()n =B (6)设A 为4阶对称矩阵,且20,+=AA 若A的秩为3,则A 相似于(A)1110⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭(B)1110⎛⎫ ⎪⎪ ⎪- ⎪⎝⎭(C)1110⎛⎫ ⎪-⎪ ⎪- ⎪⎝⎭(D)1110-⎛⎫ ⎪-⎪ ⎪- ⎪⎝⎭(7)设随机变量X的分布函数()F x =00101,21e 2xx x x -<≤≤->则{1}P X ==(A)0(B)1(C)11e 2--(D)11e --(8)设1()fx 为标准正态分布的概率密度2,()f x 为[1,3]-上均匀分布的概率密度,()f x =12()()af x bf x00x x ≤> (0,0)a b >>为概率密度,则,a b 应满足 (A)234a b += (B)324a b +=(C)1a b +=(D)2a b +=二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.)(9)设2e,ln(1),t tx y u du -==+⎰求220t d y dx== .(10)2π⎰= .(11)已知曲线L 的方程为1{[1,1]},y x x =-∈-起点是(1,0),-终点是(1,0),则曲线积分2Lxydx x dy+⎰= .(12)设22{(,,)|1},x y z x y z Ω=+≤≤则Ω的形心的竖坐标z = .(13)设123(1,2,1,0),(1,1,0,2),(2,1,1,),TTTα=-==ααα若由123,,ααα形成的向量空间的维数是2,则α= .(14)设随机变量X 概率分布为{}(0,1,2,),!C P X k k k === 则2EX = .三、解答题(15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分10分)求微分方程322e xy y y x '''-+=的通解.(16)(本题满分10分)求函数221()()extf x x t dt -=-⎰的单调区间与极值.(17)(本题满分10分)(1)比较10ln [ln(1)]nt t dt +⎰与1ln (1,2,)n t t dt n =⎰ 的大小,说明理由(2) 记1ln [ln(1)](1,2,),nnu t t dt n =+=⎰求极限lim .n x u →∞(18)(本题满分10分) 求幂级数121(1)21n nn xn -∞=--∑的收敛域及和函数.(19)(本题满分10分) 设P 为椭球面222:1S xy z yz ++-=上的动点,若S在点P 的切平面与xoy 面垂直,求。
2003年考研真题数学四2003年的考研数学四真题是一套具有一定难度的试卷,涵盖了多个数学知识点。
本文将对该真题进行分析和解答,帮助考生更好地理解和应对该题。
一、选择题分析选择题是数学试卷中的必答题,也是考生检验数学基础知识掌握情况的重要指标。
首先我们来看一道选择题:1. 已知函数 f(x) 在区间 [a, b] 上连续且单调递增,下列结论中正确的是:()A. 当 a<t<b 时, f(t) 取得最大值。
B. 当 t=a 或 t=b 时,f(t) 取得最小值。
C. f(x) 在区间 [a, b] 上有界。
D. (a, b) 内存在唯一点 c,使得 f(c)=c。
对于这道题,我们可以通过分析函数在区间 [a, b] 上的性质来判断正确选项。
由于函数 f(x) 在该区间上连续且单调递增,因此选项B“当t=a 或 t=b 时,f(t) 取得最小值”是正确的。
二、填空题分析填空题考察的是数学思维的灵活运用和计算能力。
接下来我们看一道填空题:2. 在平面直角坐标系中,已知点 A(1,0)、B(0,1),过点 A 作直线 l,且与 x 轴交于点 C,与 y 轴交于点 D,则角 D 是 _________ 度。
该题需要找到直线 l 与 x 轴和 y 轴的交点,并求解角 D 的度数。
我们可以写出直线 l 的方程为 y = kx + 1,通过代入 A(1,0) 这个点得到 k= -1。
直线 l 与 x 轴的交点为(1, 0),与 y 轴的交点为(0, 1),所以角 D的度数为 90°。
三、解答题分析解答题是数学试卷中的较难部分,需要考生具备良好的理解能力和解题思路。
下面我们来看一道解答题:3. 设函数 f(x) = x^2 + ax + b,若对任意 x∈R,都有 f(f(x)) = f(x) + x 成立,则常数 a 和 b 的值分别是多少?解答这道题时,我们先推导出 f(f(x)) 的表达式,然后和 f(x) + x 进行比较来确定 a 和 b 的值。
20031、 设矩阵,,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=322232223A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100101010P P A P B *1−=,求B+2E 的特征 值与特征向量,其中*A 为A 的伴随矩阵,E 为三阶单位矩阵。
2、设α为3维列向量,是 T αα的转置, = T αα⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−111111111 =_________3、设三阶方阵满足其中E 为三阶单位矩阵,B A ,,2E B A B A =−− ,则 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=102020101A _______||=B 4 从2R 的基,到基,的过渡矩阵为 ⎟⎟⎠⎞⎜⎜⎝⎛=011α⎟⎟⎠⎞⎜⎜⎝⎛−=112α⎟⎟⎠⎞⎜⎜⎝⎛=111β⎟⎟⎠⎞⎜⎜⎝⎛=212β __________5 设向量组I :r αα,...,1可由II :r ββ,...,1线性表示,则(A )当r<s 时,向量组II 必线性相关(B )当r>s 时,向量组II 必线性相关(C )当r<s 时,向量组I 必线性相关(D )当r>s 时,向量组I 必线性相关6 设有齐次线性方程组AX=0和BX=0,其中A ,B 均为矩阵。
n m × 现有四个命题:(1)若AX=0的解均是BX=0的解,则秩(A )≥秩(B )(2)若秩(A )秩(B ),则AX=0的解均是BX=0的解≥ (3)若AX=0与BX=0同解,则秩(A )=秩(B )(4)若秩(A )=秩(B ),则AX=0与BX=0同解以上命题中正确的是:(A )1,2 (B ) 1,3 (C )2,4 (D )3,47 、 已知平面上三条不同的直线的方程分别为032:1=++c by ax l032:1=++a cy bx l032:1=++b ay cx l 试证:这三条直线交于一点的充分必要条件是0=++c b a8、若矩阵相似于对角矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A Λ,试确定常数的值;并求出可逆 矩阵P ,使Λ=−AP P 19、设向量,T a a ),0,...,0,0,(,=α0<a ;E 为单位矩阵,矩阵, T E A αα−= T aE B αα1+=,其中A 的可逆矩阵为B ,则________=a10、设三阶矩阵,若的伴随矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A *A 的秩为1,则必有 (A )a=b 或 a+2b=0(B )a=b 或 02≠+b a (C )b a ≠且 a+2b=0 (D )且b a ≠02≠+b a 11、设A ,B 为三阶矩阵,已知AB=2A+B ,B=,则: ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡202040202 (A-E)-1=_______12 设矩阵,已知矩阵A ,B 相似,则秩(A-2E )与秩 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=001010100B (A-E)之和等于(A) 2 (B)3 (C )4 (D)513 设有向量组(1))2,0,1(1=α,)3,1,1(2=α,)2,1,1(3+−=a α和向量组(2))3,2,1(1+=a β, ),1,2(2b a +=β,)4,1,2(3+=a β 试问;当a 为何值时,向量组(1)与(2)等价?当为 a 为 何值时,向量组(1)与(2)向量组不等价?14、设s αα,...,1 均为n 维向量,下列结构不正确的是:(A )若对任意一组不全为零的数,都有s k k k ,...2,10...2211≠+++s s k k k ααα, 则s αα,...,1线性无关(B )若s αα,...,1线性相关,则对于任意一组不全为零的数,总有 s k k k ,...2,10...2211=+++s s k k k ααα(C )s αα,...,1线性无关的充分必要条件是此向量组的秩为s(D )s αα,...,1线性无关的必要条件是此向量组中任意两个向量都线性无 关.15、已知齐次线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+++++=+++++=+++++0)(...0...)(0...)(332211332211332211n n n n n n x b a x a x a x a x a x a x b a x a x a x a x a x b a "其中 ,试讨论满足什么条件时∑=≠ni i a 10b a a a n ,,...,,21(1) 方程组仅有零解?(2) 方程组有非零解。
2003年全国硕士入学统考数学(四)试题及答案一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限xx x 20)]1ln(1[lim ++→= 2e .【分析】 本题属∞1型未定式,化为指数函数求极限即可.【详解】 xx x 20)]1ln(1[lim ++→=)]1ln(1ln[2lim x xx e++→=.2)1ln(2lim)]1ln(1ln[2lim00e ee xx x x x x ==+++→→(2)dx ex x x⎰--+11)(= )21(21--e .【分析】 对称区间上的积分应注意利用被积函数的对称性,这里有.011=⎰--dx xex【详解】dx ex x x⎰--+11)(=dx xedx ex xx⎰⎰----+1111=dx ex x--⎰11=⎰⎰---=11022xxxdedx xe=][2110dx e xex x⎰----=)21(21--e . (3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(= 2a .【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】 ⎰⎰-=D dxdy x y g x f I )()(=dxdy a x y x ⎰⎰≤-≤≤≤10,102=.])1[(212112a dx x x a dy dx ax x=-+=⎰⎰⎰+(4)设A,B 均为三阶矩阵,E 是三阶单位矩阵. 已知AB=2A+B,B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡202040202,则1)(--E A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100 .【分析】 应先化简,从AB=2A+B 中确定1)(--E A . 【详解】 由AB=2A+B, 知AB-B=2A-2E+2E, 即有 E E A B E A 2)(2)(=---, E E B E A 2)2)((=--, E E B E A =-⋅-)2(21)(, 可见 1)(--E A =)2(21E B -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100.(5)设n 维向量0,),0,,0,(<=a a a TΛα;E 为n 阶单位矩阵,矩阵 TE A αα-=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a= -1 .【分析】 这里Tαα为n 阶矩阵,而22a T=αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.【详解】 由题设,有)1)((T Ta E E AB αααα+-= =TT T T a a E αααααααα⋅-+-11=TT T T a a E αααααααα)(11-+-=TT T a a E αααααα21-+-=E aa E T=+--+αα)121(,于是有 0121=+--a a ,即 0122=-+a a ,解得 .1,21-==a a 由于A<0 ,故a=-1.(6)设随机变量X 和Y 的相关系数为0.5, EX=EY=0,222==EY EX , 则2)(Y X E += 6 .【分析】 利用期望与相关系数的公式进行计算即可.【详解】 因为2)(Y X E +=22)(2EY XY E EX ++ =4+]),([2EY EX Y X Cov ⋅+=4+2.625.024=⨯⨯+=⋅⋅DY DX XY ρ二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)曲线21x xe y =(A) 仅有水平渐近线. (B) 仅有铅直渐近线.(C) 既有铅直又有水平渐近线. (D) 既有铅直又有斜渐近线. [ D ] 【分析】 先考虑是否有水平渐近线,若无水平渐近线应进一步考虑是否存在斜渐近线,而是否存在铅直渐近线,应看函数是否存在无定义点.【详解】 当±∞→x 时,极限y x ±∞→lim 均不存在,故不存在水平渐近线;又因为 1lim lim 21==∞→∞→x x x e x y ,0)(lim 21=-∞→x xe x x ,所以有斜渐近线y=x.另外,在 x=0 处21x xe y =无定义,且∞=→21lim x x xe ,可见 x=0为铅直渐近线.故曲线21x xe y =既有铅直又有斜渐近线,应选(D).(2)设函数)(1)(3x x x f ϕ-=,其中)(x ϕ在x=1处连续,则0)1(=ϕ是f(x)在x=1处可导的(A) 充分必要条件. (B )必要但非充分条件.(C) 充分但非必要条件 . (D) 既非充分也非必要条件. [ A ] 【分析】 被积函数含有绝对值,应当作分段函数看待,利用f(x)在x=1处左右导数定义讨论即可.【详解】 因为)1(3)(11lim 1)1()(lim 311ϕϕ=⋅--=--++→→x x x x f x f x x , )1(3)(11lim 1)1()(lim 311ϕϕ-=⋅---=----→→x x x x f x f x x , 可见,f(x)在x=1处可导的充分必要条件是 .0)1()1(3)1(3=⇔-=ϕϕϕ 故应选(A). (3)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零.(C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. [ A ] 【分析】 可微必有偏导数存在,再根据取极值的必要条件即可得结论.【详解】 可微函数f(x,y)在点),(00y x 取得极小值,根据取极值的必要条件知0),(00='y x f y ,即),(0y x f 在0y y =处的导数等于零, 故应选(A).(4)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100B . 已知矩阵A 相似于B ,则秩(A-2E)与秩(A-E)之和等于(A) 2. (B) 3. (C) 4. (D) 5. [ C ] 【分析】 利用相似矩阵有相同的秩计算,秩(A-2E)与秩(A-E)之和等于秩(B-2E)与秩(B-E)之和.【详解】 因为矩阵A 相似于B ,于是有矩阵A-2E 与矩阵B-2E 相似,矩阵A-E 与矩阵B-E 相似,且相似矩阵有相同的秩,而秩(B-2E)=秩3201010102=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---,秩(B-E)=秩1101000101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--,可见有 秩(A-2E)+秩(A-E)= 秩(B-2E)+秩(B-E)=4,故应选(C).(5)对于任意二事件A 和B(A) 若φ≠AB ,则A,B 一定独立. (B) 若φ≠AB ,则A,B 有可能独立. (C) 若φ=AB ,则A,B 一定独立. (D) 若φ=AB ,则A,B 一定不独立. [ B ]【分析】 本题考查独立与互斥事件之间的关系,事实上,独立与互斥事件之间没有必然的互推关系.【详解】 φ≠AB 推不出P(AB)=P(A)P(B), 因此推不出A,B 一定独立,排除(A); 若φ=AB ,则P(AB)=0,但P(A)P(B)是否为零不确定,因此(C),(D) 也不成立,故正确选项为(B).(6)设随机变量X 和Y 都服从正态分布,且它们不相关,则(A) X 与Y 一定独立. (B) (X,Y)服从二维正态分布.(C) X 与Y 未必独立. (D) X+Y 服从一维正态分布. [ C ] 【分析】 本题考查正态分布的性质以及二维正态分布与一维正态分布之间的关系.只有(X,Y) 服从二维正态分布时,不相关与独立才是等价的.【详解】 只有当(X,Y) 服从二维正态分布时,X 与Y 不相关⇔X 与Y 独立,本题仅仅已知X 和Y 服从正态分布,因此,由它们不相关推不出X 与Y 一定独立,排除(A); 若X和Y 都服从正态分布且相互独立,则(X,Y)服从二维正态分布,但题设并不知道X,Y 是否独立,可排除(B); 同样要求X 与Y 相互独立时,才能推出X+Y 服从一维正态分布,可排除(D).故正确选项为(C).三 、(本题满分8分) 设],21,0(,)1(11sin 1)(∈---=x x x x x f πππ 试补充定义f(0),使得f(x)在]21,0[上连续.【详解】)(lim 0x f x +→= -.1π+xx xx x ππππsin sin lim 0-+→= -220sin lim 1ππππx xx x -++→= -xxx 22cos lim 1πππππ-++→= -2202sin lim 1ππππxx +→+= -.1π由于f(x)在]21,0(上连续,因此定义π1)0(-=f ,使f(x)在]21,0[上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=,求.2222ygx g ∂∂+∂∂ 【分析】 本题是典型的复合函数求偏导问题:),(v u f g =,)(21,22y x v xy u -==,直接利用复合函数求偏导公式即可,注意利用.22uv fv u f ∂∂∂=∂∂∂【详解】vf x u f y xg ∂∂+∂∂=∂∂, .vf y u f x yg ∂∂-∂∂=∂∂ 故 v f vf x v u f xy u f y xg ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222, .2222222222v f vf y u v f xy u f x yg ∂∂-∂∂+∂∂∂-∂∂=∂∂ 所以 222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂ =.22y x +五 、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x eI Dy x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算. 【详解】 作极坐标变换:θθsin ,cos r y r x ==,有 dxdy y x e e I Dy x )sin(22)(22+=⎰⎰+-π=.sin 2022dr r re d e r ⎰⎰-πππθ令2r t =,则 tdt e e I t sin 0⎰-=πππ.记 tdt e A t sin 0⎰-=π,则tt de e A --⎰-=int 0π=]cos sin [0⎰----ππtdt e t e t t=⎰--πcos t tde=]sin cos [0tdt e te t t⎰--+-ππ=.1A e -+-π因此 )1(21π-+=e A , ).1(2)1(2πππππe e e I +=+=-六、(本题满分9分)设a>1,at a t f t-=)(在),(+∞-∞内的驻点为).(a t 问a 为何值时,t(a)最小?并求出最小值.【分析】 先由f(t)的导数为零确定驻点t(a),它是关于a 的函数,再把此函数对a 求导,然后令此导数为零,得到可能极值点,进一步判定此极值为最小值即可.【详解】 由0ln )(=-='a a a t f t,得唯一驻点 .ln ln ln 1)(aaa t -= 考察函数aaa t ln ln ln 1)(-=在a>1时的最小值. 令 0)(ln ln ln 1)(ln ln ln 11)(22=--=--='a a a a aa a a t , 得唯一驻点 .ee a =当ee a >时,0)(>'a t ;当ee a <时,0)(<'a t ,因此ee t e11)(-=为极小值,从而是最小值.七、(本题满分9分)设y=f(x) 是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C 为M 在x 轴上的投影,O 为坐标原点. 若梯形OCMA 的面积与曲边三角形CBM的面积之和为3163+x ,求f(x)的表达式. 【分析】 梯形OCMA 的面积可直接用梯形面积公式计算得到,曲边三角形CBM 的面积可用定积分计算,再由题设,可得一含有变限积分的等式,两边求导后可转化为一阶线性微分方程,然后用通解公式计算即可.【详解】 根据题意,有316)()](1[213+=++⎰x x dt t f x f x . 两边关于x 求导,得.21)()(21)](1[212x x f x f x x f =-'++ 当0≠x 时,得.1)(1)(2xx x f x x f -=-' 此为标准的一阶线性非齐次微分方程,其通解为]1[)(121C dx e xx ex f dx x dxx+⎰-⎰=---⎰ =]1[ln 2ln C dx e xx ex x+--⎰ =)1(22C dx xx x +-⎰ O C B x =.12Cx x ++当x=0时,f(0)=1.由于x=1时,f(1)=0 ,故有2+C=0,从而C=-2. 所以.)1(21)(22-=-+=x x x x f八、(本题满分8分)设某商品从时刻0到时刻t 的销售量为kt t x =)(,).0(],,0[>∈k T t 欲在T 时将数量为A 的该商品销售完,试求(1) t 时的商品剩余量,并确定k 的值; (2) 在时间段[0,T]上的平均剩余量.【分析】 在时刻t 的剩余量y(t)可用总量A 减去销量x(t)得到; 由于y(t)随时间连续变化,因此在时间段[0,T] 上的平均剩余量,即函数平均值可用积分⎰Tdt t y T0)(1表示. 【详解】 (1) 在时刻t 商品的剩余量为 )()(t x A t y -==kt A -, ].,0[T t ∈ 由kt A -=0,得 TAk =, 因此,)(t TAA t y -= ].,0[T t ∈ (2) 依题意,)(t y 在[0,T]上的平均值为⎰=Tdt t y T y 0)(1=⎰-T dt t T AA T 0)(1=.2A因此在时间段[0,T] 上的平均剩余量为.2A九、(本题满分13分)设有向量组(I ):T )2,0,1(1=α,T )3,1,1(2=α,T a )2,1,1(3+-=α和向量组(II ):T a )3,2,1(1+=β,T a )6,1,2(2+=β,.)4,1,2(3T a +=β 试问:当a 为何值时,向量组(I )与(II )等价?当a 为何值时,向量组(I )与(II )不等价?【分析】 两个向量组等价也即两个向量组可以相互线性表示,而两个向量组不等价,只需其中一组有一个向量不能由另一组线性表示即可. 而线性表示问题又可转化为对应非齐次线性方程组是否有解的问题,这可通过化增广矩阵为阶梯形来判断. 一个向量1β是否可由321,,ααα线性表示,只需用初等行变换化增广矩阵(1321,,βααα)为阶梯形讨论,而一组向量321,,βββ是否可由321,,ααα线性表示,则可结合起来对矩阵(321321,,,,βββααα)同时作初等行变换化阶梯形,然后类似地进行讨论即可.【详解】 作初等行变换,有),,,,(321321βββαααM =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++-463232112110221111a a a a M M M⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+--→111100112110111201a a a a M M M .(1) 当1-≠a 时,有行列式[]01321≠+=a ααα,秩(3),,321=ααα,故线性方程组)3,2,1(332211==++i x x x i βααα均有唯一解. 所以,321,,βββ可由向量组(I )线性表示.同样,行列式[]06321≠=βββ,秩(3),,321=βββ,故321,,ααα可由向量组(II )线性表示. 因此向量组(I )与(II )等价.(2) 当a=-1时,有),,,,(321321βββαααM ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→202000112110111201M M M .由于秩(321,,ααα)≠秩(),,1321βαααM ,线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示. 因此,向量组(I )与(II )不等价.十、(本题满分13分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a A 11121112可逆,向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11b α是矩阵*A 的一个特征向量,λ是α对应的特征值,其中*A 是矩阵A 的伴随矩阵. 试求a,b 和λ的值.【分析】 题设已知特征向量,应想到利用定义:λαα=*A ,又与伴随矩阵*A 相关的问题,应利用E A AA =*进行化简.【详解】 矩阵*A 属于特征值λ的特征向量为α,由于矩阵A 可逆,故*A 可逆.于是0≠λ,0≠A ,且λαα=*A . 两边同时左乘矩阵A ,得 αλαA AA =*, αλαAA =,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111111121112b A b a λ,由此,得方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=+.1,22,3λλλA b a b A b A b )3()2()1(由式(1),(2)解得1=b或2-=b ;由式(1),(3)解得a=2.由于 42311121112=-==a aA ,根据(1)式知,特征向量α所对应的特征值.343bb A+=+=λ 所以,当1=b 时,1=λ;当2-=b 时,.4=λ十一、(本题满分13分)设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f F(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.【分析】 先求出分布函数F(x) 的具体形式,从而可确定Y=F(X) ,然后按定义求Y 的分布函数即可。
2003年全国硕士研究生入学统一考试经济数学四试题详解及评析一、填空题(1)极限xx x 20)]1ln(1[lim ++→= .【答】 2e【详解】 xx x 20)]1ln(1[lim ++→=)]1ln(1ln[2lim x xx e++→=.2)1ln(2lim)]1ln(1ln[2lim 00e ee x x x x x x ==+++→→(2)dx e x x x∫−−+11)(= .【答】 )21(21−−e 【详解】dx ex x x∫−−+11)(=dx xedx ex xx∫∫−−−−+1111=dx ex x−−∫111122x x xe dx xde −−+=−∫∫=1102()xx xe e dx −−−−∫ =)21(21−−e .(3)设a>0,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则∫∫−=Ddxdy x y g x f I )()(= .【答】2a 【详解】 ∫∫−=Ddxdy x y g x f I )()(=dxdy ax y x ∫∫≤−≤≤≤10,102=.])1[(212112a dx x x a dy dx ax x=−+=∫∫∫+(4)设A,B 均为三阶矩阵,E 是三阶单位矩阵. 已知AB=2A+B,B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡202040202,则 1)(−−E A = .【答】 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100 【详解】 由AB=2A+B, 知 AB-B=2A-2E+2E, 即有 E E A B E A 2)(2)(=−−−, E E B E A 2)2)((=−−, E E B E A =−⋅−)2(21)(, 可见 1)(−−E A =)2(21E B −=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100.(5)设n 维向量0,),0,,0,(<=a a a T"α;E 为n 阶单位矩阵,矩阵 TE A αα−=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a= . 【答】 -1【详解】 由题设,有)1)((T Ta E E AB αααα+−= =TT T T a a E αααααααα⋅−+−11=TT T T a a E αααααααα)(11−+−=TT T a a E αααααα21−+−=E aa E T=+−−+αα)121(,于是有 0121=+−−a a ,即 0122=−+a a ,解得 .1,21−==a a 由于a<0 ,故a=-1.(6)设随机变量X 和Y 的相关系数为0.5, EX=EY=0,222==EY EX, 则2)(Y X E += .【答】 6 【详解】 因为2)(Y X E +=22)(2EY XY E EX ++ =4+]),([2EY EX Y X Cov ⋅+=4+2.625.024=××+=⋅⋅DY DX XY ρ二、选择题(1)曲线21x xe y =(A) 仅有水平渐近线. (B) 仅有铅直渐近线.(C) 既有铅直又有水平渐近线. (D) 既有铅直又有斜渐近线. 【答】 [ D]【详解】 当±∞→x 时,极限y x ±∞→lim 均不存在,故不存在水平渐近线;又因为 1lim lim 21==∞→∞→x x x e x y ,0)(lim 1=−∞→x xe x x ,所以有斜渐近线y=x.另外,在 x=0 处21x xe y =无定义,且∞=→1lim x x xe ,可见 x=0为铅直渐近线.故曲线21x xe y =既有铅直又有斜渐近线,应选(D).(2)设函数)(1)(3x x x f ϕ−=,其中)(x ϕ在x=1处连续,则0)1(=ϕ是f(x)在x=1处可导的(A) 充分必要条件. (B )必要但非充分条件.(C) 充分但非必要条件 . (D) 既非充分也非必要条件. 【答】 [ A ] 【详解】 因为)1(3)(11lim 1)1()(lim 311ϕϕ=⋅−−=−−++→→x x x x f x f x x , )1(3)(11lim 1)1()(lim 311ϕϕ−=⋅−−−=−−−−→→x x x x f x f x x , 可见,f(x)在x=1处可导的充分必要条件是 .0)1()1(3)1(3=⇔−=ϕϕϕ 故应选(A).(3)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. 【答】 [ A ]【详解】 可微函数f(x,y)在点),(00y x 取得极小值,根据取极值的必要条件知0),(00=′y x f y ,即),(0y x f 在0y y =处的导数等于零, 故应选(A).(4)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100B . 已知矩阵A 相似于B ,则秩(A-2E)与秩(A-E)之和等于(A) 2. (B) 3. (C) 4. (D) 5. 【答】 [ C ]【详解】 因为矩阵A 相似于B ,于是有矩阵A-2E 与矩阵B-2E 相似,矩阵A-E 与矩阵B-E 相似,且相似矩阵有相同的秩,而秩(B-2E)=秩3201010102=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−,秩(B-E)=秩1101000101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−, 可见有 秩(A-2E)+秩(A-E)= 秩(B-2E)+秩(B-E)=4,故应选(C). (5)对于任意二事件A 和B(A) 若φ≠AB ,则A,B 一定独立. (B) 若φ≠AB ,则A,B 有可能独立. (C) 若φ=AB ,则A,B 一定独立. (D) 若φ=AB ,则A,B 一定不独立. 【答】 [ B ]【详解】 φ≠AB 推不出P(AB)=P(A)P(B), 因此推不出A,B 一定独立,排除(A); 若φ=AB ,则P(AB)=0,但P(A)P(B)是否为零不确定,因此(C),(D) 也不成立,故正确选项为(B).(6)设随机变量X 和Y 都服从正态分布,且它们不相关,则 (A) X 与Y 一定独立. (B) (X,Y)服从二维正态分布. (C) X 与Y 未必独立. (D) X+Y 服从一维正态分布. 【答】 [ C ]【详解】 只有当(X,Y) 服从二维正态分布时,X 与Y 不相关⇔X 与Y 独立,本题仅仅已知X 和Y 服从正态分布,因此,由它们不相关推不出X 与Y 一定独立,排除(A); 若X 和Y 都服从正态分布且相互独立,则(X,Y)服从二维正态分布,但题设并不知道X,Y 是否独立,可排除(B); 同样要求X 与Y 相互独立时,才能推出X+Y 服从一维正态分布,可排除(D).故正确选项为(C).三 、(本题满分8分) 设 21,0(,)1(11sin 1)(∈−−−=x x x x x f πππ 试补充定义f(0),使得f(x)在]21,0[上连续.【详解】)(lim 0x f x +→= -.1π+xx xx x ππππsin sin lim 0−+→= -220sin lim 1ππππx x x x −++→= -xxx 202cos lim 1πππππ−++→= -2202sin lim 1ππππxx +→+ = -.1π由于f(x)在]21,0(上连续,因此定义π1)0(−=f ,使f(x)在]21,0[上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂vfu f ,又)](21,[),(22y x xy f y x g −=,求.2222ygx g ∂∂+∂∂ 【详解】v f x u f y x g ∂∂+∂∂=∂∂,.vfy u f x y g ∂∂−∂∂=∂∂ 故 v f v f x v u f xy u f y x g ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222, .2222222222v f v f y u v f xy u f x y g ∂∂−∂∂+∂∂∂−∂∂=∂∂所以 222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂ =.22y x +五 、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x e I Dy x+=∫∫−+−π其中积分区域D=}.),{(22π≤+y x y x【详解】 作极坐标变换:θθsin ,cos r y r x ==,有 dxdy y x e e I Dy x)sin(22)(22+=∫∫+−π=.sin 2022dr r re d e r ∫∫−πππθ令2r t =,则 tdt e e I t sin 0∫−=πππ.记 tdt e A t sin 0∫−=π,则t t de e A −−∫−=int 0π=]cos sin [0∫−−−−ππtdt e te t t=∫−−πcos t tde =]sin cos [0tdt e te t t ∫−−+−ππ=.1A e −+−π因此 )1(21π−+=e A , ).1(2)1(2πππππe e e I +=+=−六、(本题满分9分)设a>1,at a t f t−=)(在),(+∞−∞内的驻点为).(a t 问a 为何值时,t(a)最小?并求出最小值.【详解】 由0ln )(=−=′a a a t f t,得唯一驻点.ln ln ln 1)(aaa t −= 考察函数aaa t ln ln ln 1)(−=在a>1时的最小值. 令 0)(ln ln ln 1)(ln ln ln 11)(22=−−=−−=′a a aa aa a a t ,得唯一驻点 .ee a =当ee a >时,0)(>′a t ;当ee a <时,0)(<′a t ,因此ee t e11)(−=为极小值,从而是最小值.七、(本题满分9分)设y=f(x) 是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C 为M 在x 轴上的投影,O 为坐标原点. 若梯形OCMA 的面积与曲边三角形CBM的面积之和为3163+x ,求f(x)的表达式.【详解】 根据题意,有316)()](1[213+=++∫x x dt t f x f x .两边关于x 求导,得.21)()(21)](1[212x x f x f x x f =−′++当0≠x 时,得.1)(1)(2xx x f x x f −=−′ 此为标准的一阶线性非齐次微分方程,其通解为 ]1[)(121C dx e xx ex f x dxx+∫−∫=−−−∫=]1[ln 2ln C dx e xx ex x+−−∫=)1(22C dx xx x +−∫ =.12Cx x ++ 当x=0时,f(0)=1.由于x=1时,f(1)=0 ,故有2+C=0,从而C=-2. 所以 .)1(21)(22−=−+=x x x x f八、(本题满分8分)设某商品从时刻0到时刻t 的销售量为kt t x =)(,).0(],,0[>∈k T t 欲在T 时将数量为A 的该商品销售完,试求(1) t 时的商品剩余量,并确定k 的值; (2) 在时间段[0,T]上的平均剩余量.【详解】 (1) 在时刻t 商品的剩余量为 )()(t x A t y −==kt A −, ].,0[T t ∈ 由kt A −=0,得 TA k =, 因此 ,)(t TAA t y −= ].,0[T t ∈ (2) 依题意,)(t y 在[0,T]上的平均值为∫=Tdt t y T y 0)(1 =∫−T dt t T A A T 0)(1=.2A因此在时间段[0,T] 上的平均剩余量为.2A九、(本题满分13分)设有向量组(I ):T)2,0,1(1=α,T)3,1,1(2=α,Ta )2,1,1(3+−=α和向量组(II ):T a )3,2,1(1+=β,T a )6,1,2(2+=β,.)4,1,2(3T a +=β 试问:当a 为何值时,向量组(I )与(II )等价?当a 为何值时,向量组(I )与(II )不等价?【详解】 作初等行变换,有),,,,(321321βββααα#=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++−463232112110221111a a a a ###⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−+−+−−→111100112110111201a a a a ###.(1) 当1−≠a 时,有行列式[]01321≠+=a ααα,秩(3),,321=ααα,故线性方程组)3,2,1(332211==++i x x x i βααα均有唯一解. 所以,321,,βββ可由向量组(I )线性表示.同样,行列式[]06321≠=βββ,秩(3),,321=βββ,故321,,ααα可由向量组(II )线性表示. 因此向量组(I )与(II )等价.(2) 当a=-1时,有),,,,(321321βββααα#⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−→202000112110111201###. 由于秩(321,,ααα)≠秩(),,1321βααα#,线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示. 因此,向量组(I )与(II )不等价.十、(本题满分13分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a A 11121112可逆,向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11b α是矩阵*A 的一个特征向量,λ是α对应的特征值,其中*A 是矩阵A 的伴随矩阵. 试求a,b 和λ的值.【详解】 矩阵*A 属于特征值λ的特征向量为α, 由于矩阵A 可逆,故*A 可逆.于是0≠λ,0≠A ,且 λαα=*A.两边同时左乘矩阵A ,得 αλαA AA =*, αλαAA =,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111111121112b A b a λ, 由此,得方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=+.1,22,3λλλA b a b A b A b (1)(2)(3) 由式(1),(2)解得1=b或2−=b ;由式(1),(3)解得 a=2. 由于 42311121112=−==a aA ,根据(1)式知,特征向量α所对应的特征值.343bb A+=+=λ 所以,当1=b 时,1=λ;当2−=b 时,.4=λ十一、(本题满分13分)设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f F(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.【详解】 易见,当x<1时,F(x)=0; 当x>8 时,F(x)=1.对于]8,1[∈x ,有.131)(3132−==∫x dt t x F x设G(y)是随机变量Y=F(X)的分布函数.显然,当0<y 时,G(y)=0;当1≥y 时,G(y)=1.对于)1,0[∈y ,有})({}{)(y X F P y Y P y G ≤=≤==})1({}1{33+≤=≤−y X P y X P=.])1[(3y y F =+于是,Y=F(X)的分布函数为 0,0,(),01,1, 1.y G y y y y <⎧⎪=≤<⎨⎪≥⎩十二、(本题满分13分)对于任意二事件A 和B ,1)(0,1)(0<<<<B P A P ,)()()()()()()(B P A P B P A P B P A P AB P −=ρ称做事件A 和B 的相关系数.(1) 证明事件A 和B 独立的充分必要条件是其相关系数等于零;(2) 利用随机变量相关系数的基本性质,证明.1≤ρ【详解】 (1) 由ρ的定义,可见0=ρ当且仅当P(AB)-P(A)P(B)=0,而这恰好是二事件A 和B 独立的定义,即0=ρ是A 和B 独立的充分必要条件.(2) 考虑随机变量X 和Y:A A X 不出现若出现若⎩⎨⎧=,0,1 .,0,1不出现若出现若B B Y ⎩⎨⎧= 由条件知,X 和Y 都服从0—1分布:⎟⎟⎠⎞⎜⎜⎝⎛)((10~A P A P X ,.)((10~⎟⎟⎠⎞⎜⎜⎝⎛B P B P Y 易见)(A P EX =, )(B P EY =;)()(A P A P DX =, )()(B P B P DY =;).()()(),cov(B P A P AB P EXEY EXY Y X −=−= 因此,事件A 和B 的相关系数就是随机变量X 和Y 的相关系数.于是由二随机变量相关系数的基本性质,可见 .1≤ρ。