最新精品高中数学数列复习试题教师版(含答案)
- 格式:doc
- 大小:1.44 MB
- 文档页数:16
高中数学《数列》专题练习1.与的关系:,已知求,应分时;n S n a 11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩n S n a 1=n 1a =1S 时,=两步,最后考虑是否满足后面的.2≥n n a 1--n n S S 1a n a 2.等差等比数列等差数列等比数列定义()1n n a a d--=2n ≥*1()n na q n N a +=∈通项,dn a a n )1(1-+=(),()n m a a n m d n m =+->mn m n n n q a a q a a --==,11中项如果成等差数列,那么叫做与,,a A b A a 的等差中项.。
b 2a b A +=等差中项的设法:da a d a +-,,如果成等比数列,那么叫做与的等,,a G b G a b 比中项.abG =2等比中项的设法:,,aq a aq前项n 和,)(21n n a a nS +=d n n na S n 2)1(1-+=时;时1=q 1,na S n =1≠q qqa a q q a S n n n --=--=11)1(,11*(,,,,)m n p q a a a a m n p q N m n p q +=+∈+=+若,则2m p q =+qp ma a a +=2若,则q p n m +=+qp nm a a a a =2*2,,(,,,)m p q m p q a a a p q n m N =+=⋅∈若则有性质、、为等差数列n S 2n n S S -32n n S S -、、为等比数列n S 2n n S S -32n n S S -函数看数列12221()()22n n a dn a d An B d d s n a n An Bn=+-=+=+-=+111(1)11nn n n n n a a q Aq q a as q A Aq q q q===-=-≠--判定方法(1)定义法:证明为常数;)(*1N n a a n n ∈-+(2)等差中项:证明,*11(2N n a a a n n n ∈+=+-)2≥n (1)定义法:证明为一个常数)(*1N n a a n n ∈+(2)等比中项:证明21n n a a -=*1(,2)n a n N n +⋅∈≥(3)通项公式:均是不为0常数)(,nn a cq c q =3.数列通项公式求法:(1)定义法(利用等差、等比数列的定义);(2)累加法;(3)累乘法(型);n n n c a a =+1(4)利用公式;(5)构造法(型);(6)倒数法等11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩b ka a n n +=+14.数列求和(1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。
一、选择题1.已知数列{}n a ,{}n b 中满足()1231n n a a n ++=≥,110a =,1n n b a =-,若{}n b 前n 项之和为n S ,则满足不等式16170n S -<的最小整数n 是( ). A .8B .9C .11D .102.我国古代著名的数学专著《九章算术》里有一段叙述:今有良马和驽马发长安至齐,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,九日后二马相逢.问:齐去长安多少里?( ) A .1125B .1250C .2250D .25003.在函数()y f x =的图像上有点列{},n n x y ,若数列{}n x 是等比数列,数列{}n y 是等差数列,则函数()y f x =的解析式可能是( ) A .3(4)f x x =+B .2()4f x x =C .3()4xf x ⎛⎫= ⎪⎝⎭D .4()log f x x =4.已知无穷等比数列{}n a 的各项的和为3,且12a =,则2a =( ) A .13B .25C .23D .325.已知正项等比数列{}n a 的公比不为1,n T 为其前n 项积,若20172021T T =,则20202021ln ln a a =( ) A .1:3B .3:1C .3:5D .5:36.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( ) A .132项B .133项C .134项D .135项7.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第一次操作;再将剩下的两个区间1[0,]3,2[,1]3分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于910,则需要操作的次数n 的最小值为( )(参考数据:lg 20.3010=,lg30.4771=)A .4B .5C .6D .78.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n ﹣1,则a 12+a 22+a 32+…+a n 2等于( ) A .n 2(31)-B .()n1912- C .n 91- D .()n1314- 9.已知等差数列{}n a 的前n 项的和为n S ,且675S S S >>,有下面4个结论: ①0d <;②110S >;③120S <;④数列{}n S 中的最大项为11S , 其中正确结论的序号为( ) A .②③B .①②C .①③D .①④10.设y =f (x )是一次函数,若f (0)=1,且(1),(4),(13)f f f 成等比数列,则(2)(4)(2)f f f n +++等于( )A .n (2n +3)B .n (n +4)C .2n (2n +3)D .2n (n +4)11.在等差数列{}n a 中,若12336a a a ++=,11121384a a a ++=,则59a a +=( ) A .30B .35C .40D .4512.设等比数列{}n a 的前n 项和为n S ,且510315S S ==,,则20S =( ) A .255B .375C .250D .200二、填空题13.数列1,()12+,()223234122,1222,(1222()2),....+++++++++的前n 项之和n S =____________.14.若数列{}n a 满足,111nn na a a ++=-,12a =,则数列{}n a 前2022项的积等于________. 15.将数列{2}n 与{32}n -的公共项从小到大排列得到数列{}n a ,则{}n a 的前n 项和n S =___.16.设n S 是数列{}n a 的前n 项和,13a =,当2n ≥时有1122n n n n n S S S S na --+-=,则使122021m S S S ≥成立的正整数m 的最小值为______.17.已知n S 为正项数列{}n a 的前n 项和,且()2*1122n n n S a a n =+∈N .则数列{}n a 的通项公式为________.18.数列{}n a 满足, 123231111212222n na a a a n ++++=+,写出数列{}n a 的通项公式__________.19.已知数列{}n a 的前n 项和为11,1,2n n n S a S a +==,则n S =__________. 20.已知等差数列{}n a 的前n 项n S 有最大值,且871a a <-,则当0n S <时n 的最小值为________.三、解答题21.设各项均为正数的数列{}n a 的前n 项和为n S ,满足对任意*n ∈N ,都有333212n n a a a S +++=.(1)求证:数列{}n a 为等差数列;(2)若()2(1)2n n n b a =-,求数列{}n b 的前n 项和n T .22.已知数列{}n a 的前n 项和为n S ,且满足()*112n n a S n N =+∈ (1)求数列{}n a 的通项公式 (2)若2log n n b a =,21n n n c b b +=且{}n c 的前n 项和为n T ,求使得132424n k k T +<<对*n N ∈都成立的所有正整数k 的值.23.在各项均为正数的等比数列{}n a 中,1212a a +=,34108a a +=, (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记n n b na =,求数列{}n b 的前n 项和n S . 24.在数列{}n a 中,已知114a =,(),m t m t a a a m t +++=⋅∈∈N N ,1423log n nb a +=,(n ∈+N )(1)求数列{}n a ,{}n b 的通项公式;(2)设数列{}n c 满足n n n c a b =⋅,求{}n c 的前n 项和n S .25.已知数列{a n }的前n 项和S n 和通项a n 满足2S n +a n =1,数列{b n }中,b 1=1,212b =,12n b +211n n b b +=+,(n ∈N *). (1)求数列{a n },{b n }的通项公式; (2)数列{c n }满足n n n a c b =,求证:12334n c c c c ++++<…. 26.设各项均为正数的数列{}n a 的前n 项和为n S ,已知数列{}n a 满足()*1(1)1N n n na n a n +-+=∈,且11a =.(1)求数列{}n a 的通项公式; (2)求λ的值使数列为等差数列; (3)数列{}n b 满足141n n b S =-,n T 为数列{}n b 的前n 项和,是否存在正整数m ,()1k m k <<,使得23k m T T =?若存在,求出m ,k 的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由123n n a a ++=可求得数列{}n a 的通项公式,进而求得数列{}n b ,表示出n S , 令16170n S -<,即可得到满足不等式16170n S -<的最小整数n . 【详解】解:由题意可知:123n n a a ++=, 即11322n n a a +=-+, 即()11112n n a a +-=--, 又110a =,119a ∴-=,即数列{}1n a -是以首项为9,公比为12-的等比数列, 11192n n a -⎛⎫∴-=⨯- ⎪⎝⎭,即11192n n a -⎛⎫=+⨯- ⎪⎝⎭,11192n n n b a -⎛⎫∴=-=⨯- ⎪⎝⎭,12111219661212n nn n S b b b ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦∴=++⋅⋅⋅+=⨯=-⨯- ⎪⎛⎫⎝⎭-- ⎪⎝⎭, 则111632170n n S --=⨯<, 即1112510n -⎛⎫<⎪⎝⎭,又9112512⎛⎫= ⎪⎝⎭,∴满足不等式16170n S -<的最小整数19n -=, 即10n =. 故选:D. 【点睛】关键点点睛:本题解题的关键是利用构造法求出数列{}n a 的通项公式.2.A解析:A 【分析】由题意可知,良马每日行的距离{}n a 以及驽马每日行的距离{}n b 均为等差数列,确定这两个数列的首项和公差,利用等差数列的求和公式可求得结果. 【详解】由题意可知,良马每日行的距离成等差数列,记为{}n a ,其中1103a =,公差113d =. 驽马每日行的距离成等差数列,记为{}n b ,其中197b =,公差20.5d =-. 设长安至齐为x 里,则1291292a a a b b b x +++++++=,即9813980.521039979225022x ⨯⨯⨯⨯=⨯++⨯-=,解得1125x =. 故选:A. 【点睛】关键点点睛:解本题的关键在于得出长安至齐的距离等于良马和驽马九日所行的距离之和的 2倍,并结合题意得知两匹马所行的距离成等差数列,解题时要充分抓住题中信息进行分析,将实际问题转化为数学问题来求解.3.D解析:D 【分析】把点列代入函数解析式,根据{x n }是等比数列,可知1n nx x +为常数进而可求得1n n y y +-的结果为一个与n 无关的常数,可判断出{y n }是等差数列. 【详解】对于A ,函数3(4)f x x =+上的点列{x n ,y n },有y n =43n x +,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=()()()()114343441n n n n n x x x x x q +++-+=-=-这是一个与n 有关的数,故{y n }不是等差数列;对于B ,函数2()4f x x =上的点列{x n ,y n },有y n =24n x ,由于{x n }是等比数列,所以1n nx x +为常数,因此1n n y y +-=()222214441n n n x x x q +-=-这是一个与n 有关的数,故{y n }不是等差数列;对于C ,函数3()4xf x ⎛⎫= ⎪⎝⎭上的点列{x n ,y n },有y n =3()4n x ,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=133()()44n n x x+-=33()()144n qx⎡⎤-⎢⎥⎣⎦,这是一个与n 有关的数,故{y n }不是等差数列;对于D ,函数4()log f x x =上的点列{x n ,y n },有y n =4log n x,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=114444log log log log n n n nx x x x q ++-==为常数,故{y n }是等差数列;故选:D . 【点睛】 方法点睛:判断数列是不是等差数列的方法:定义法,等差中项法.4.C解析:C 【分析】设等比数列的公比为q ,进而根据题意得()21lim lim31n n n n q S q→+∞→+∞-==-,且()0,1q ∈,从而解得13q =,故223a =【详解】解:设等比数列的公比为q ,显然1q ≠, 由于等比数列{}n a 中,12a = 所以等比数列{}n a 的前n 项和为:()()112111n n n a q q S qq--==--,因为无穷等比数列{}n a 的各项的和为3, 所以()21lim lim31n n n n q S q→+∞→+∞-==-,且()0,1q ∈,所以231q =-,解得13q =, 所以2123a a q ==. 故选:C. 【点睛】本题解题的关键在于根据题意将问题转化为()21lim lim31n n n n q S q→+∞→+∞-==-,且()0,1q ∈,进而根据极限得13q =,考查运算求解能力,是中档题. 5.A解析:A 【分析】由20172021T T =得20182019202020211a a a a =,由等比数列性质得20182021201920201a a a a ==,这样可把2020a 和2021a 用q 表示出来后,可求得20202021ln ln a a . 【详解】{}n a 是正项等比数列,0n a >,0n T ≠,*n N ∈,所以由2017202120172018201920202021T T T a a a a ==⋅,得20182019202020211a a a a =, 所以20182021201920201a a a a ==,设{}n a 公比为q ,1q ≠,22021201820213()1a a a q ==,2202020192020()1a a a q==,即322021a q =,122020a q =, 所以1220203202121ln ln ln 123ln 3ln ln 2qa q a q q ===. 故选:A . 【点睛】本题考查等比数列的性质,解题关键是利用等比数列性质化简已知条件,然后用公比q 表示出相应的项后可得结论.6.D解析:D 【分析】由题意抽象出数列是等差数列,再根据通项公式计算项数. 【详解】被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则()8151157n a n n =+-=-,令1572020n a n =-≤,解得:213515n ≤, 所以该数列的项数共有135项. 故选:D 【点睛】关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列.7.C解析:C 【分析】依次求出第次去掉的区间长度之和,这个和构成一个等比数列,再求其前n 项和,列出不等式解之可得. 【详解】第一次操作去掉的区间长度为13;第二次操作去掉两个长度为19的区间,长度和为29;第三次操作去掉四个长度为127的区间,长度和为427;…第n 次操作去掉12n -个长度为13n 的区间,长度和为123n n -,于是进行了n 次操作后,所有去掉的区间长度之和为1122213933nn n n S -⎛⎫=++⋅⋅⋅+=- ⎪⎝⎭,由题意,902131n⎛⎫-≥ ⎪⎝⎭,即21lg lg1031n ≤=-,即()lg3lg21n -≥,解得:115.679lg3lg 20.47710.3010n ≥=≈--,又n 为整数,所以n 的最小值为6. 故选:C . 【点睛】本题以数学文化为背景,考查等比数列通项、前n 项和等知识及估算能力,属于中档题.8.B解析:B 【分析】由a 1+a 2+a 3+…+a n =3n ﹣1,可求得a n ,从而可知2n a ,利用等比数列的求和公式即可求得答案. 【详解】∵a 1+a 2+a 3+…+a n =3n ﹣1,①,∴a 1+a 2+a 3+…+a n +1=3n +1﹣1,② ②﹣①得:a n +1=3n +1﹣3n =2×3n ,∴a n =2×3n ﹣1()2n ≥. 当n =1时,a 1=31﹣1=2,符合上式,∴a n =2×3n ﹣1.∴221211249,4,9n n nna a a a -+=⨯∴==,∴{}2n a 是以4为首项,9为公比的等比数列, ∴a 12+a 22+a 32+…+a n 2=()()419191921n n⨯-=--. 故选B . 【点睛】本题考查数列通项公式的确定及等比数列的判断与求和公式的综合应用,属于中档题.9.B解析:B 【分析】利用等差数列的前n 项和的性质可得正确的选项. 【详解】由675S S S >>得760S S -<,750S S ->,则70a <,670a a +>, 所以60a >,所以0d <,①正确; 111116111102a a S a +=⨯=>,故②正确; 1126712126()02a a S a a +=⨯=+>,故③错误; 因为60a >,70a <,故数列{}n S 中的最大项为6S ,故④错误. 故选:B. 【点睛】本题考查等差数列的性质, 考查等差数列前n 项和的性质.10.A解析:A 【分析】由已知可以假设一次函数为1y kx =+,在根据(1),(4),(13)f f f 成等比数列,得出3k =,利用等差数列的求和公式求解即可. 【详解】由已知,假设()f x kx b =+,(0)k ≠(0)10f k b ==⨯+,1b ∴=.(1),(4),(13)f f f 成等比数列,且41,(13(1)1,(4)1)13k f f k f k =+=+=+.1k ∴+,41k +,131k +成等比数列,即2(41)(1)(131)k k k +=++,22161813141k k k k ++=++,从而解得0k =(舍去),2k =,(2)(4)(2)f f f n +++(221)(421)(221)n =⨯++⨯++⋯+⨯+(242)2n n =++⋯+⨯+(1)42n n n +=⨯+2(1)n n n =++ ()22332n n n n ==++.故选:A . 【点睛】本题考查了等比数列、等差数列和函数的综合应用,考查了学生的计算能力,解题时要认真审题,仔细解答,避免错误,属于中档题.11.C解析:C 【分析】利用等差数列性质,若++m n p q =,则++m n p q a a a a =及等差中项公式可求. 【详解】因为 12336a a a ++=,由等差中项公式,得2336a =, 同理11121384a a a ++=,得12384a =,2123+3=81036+42a a ∴=.212+=40a a ∴ 21529+=40a a a a ∴+=故选:C . 【点睛】本题考查等差数列性质与等差中项公式.(1)如果{}n a 为等差数列,若++m n p q =,则++m n p q a a a a = ()*m n p q N ∈,,,. (2){}n a 为等差数列,则有11n n n a a a =2-++.12.A解析:A 【分析】由等比数列的性质,510515102015,,,S S S S S S S ---仍是等比数列,先由51051510,,S S S S S --是等比数列求出15S ,再由10515102015,,S S S S S S ---是等比数列,可得20S . 【详解】由题得,51051510,,S S S S S --成等比数列,则有210551510()()S S S S S -=-,215123(15)S =-,解得1563S =,同理有215101052015()()()S S S S S S -=--,2204812(63)S =-,解得20255S =.故选:A 【点睛】本题考查等比数列前n 项和的性质,这道题也可以先由510315S S ==,求出数列的首项和公比q ,再由前n 项和公式直接得20S 。
强力推荐人教版数学高中必修5习题第二章数列1. {a n}是首项a1=1,公差为d=3的等差数列,如果a n=2 005,那么序号n等于()•A. 667B. 668C. 669D. 6702.在各项都为正数的等比数列{a n}中,首项a i=3,前三项和为21,那么a3 + a4 + a5=(A. 33B. 72C. 84D. 1893.如果a1, a2, …,a8为各项都大于零的等差数列,公差dw0,A. a i a8>34a5B. a i a8< a4a5C. a i + a8 v a4 + a5D. a i a8= a4a54.方程(x2— 2x+m)( x2—2x+ n) = 0的四个根组成一个首项为的等差数列,那么I m— nI等于()•C. 12 D.5. 等比数列{a n}中,a2=9, a5=243,那么{ a n}的前 4 项和为().81 B. 120 C. 168 D. 1926. 假设数列{a n}是等差数列,首项a1>0,a2 003 + a2 004>0, a2 003 , a2 004< 0,那么使前n项和S n>0成立的最大自然数)•4 005 B. 4 006 C. 4 007 D. 4 0087. 等差数列{a n}的公差为2,假设a1, a3, a4成等比数列,那么a2 = (B. - 6C. - 8D. -108. 设S n是等差数列{a n}的前n项和, a5a35 ,那么呈 =(S5B. C. D.9. 数列一—4成等差数列,—1, b1, b2, b3, —4成等比数列,那么a2 a1b2的值是( )•B. C. D.-4210.在等差数列{a n}中,a nW0, a n-1—a n+ a n+1 = 0( n>2),右S2n 1 = 38,那么n =( )•、填空题+ f( 6)的值为 ________________________12 .等比数列{a n }中,(1)假设 a 3 • a 4 • a 5 = 8,贝U a 2 • a 3 • a 4 • a 5 • a 6 =. (2)假设 a 1 + a 2= 324, a 3+a 4=36,贝U a 5+a 6=. (3)假设 S 4=2, S e= 6, 那么 a 〔7 +a 〔8+a 〔9+a 20=.13 .在8和27之间插入三个数,使这五个数成等比数列,那么插入的三个数的乘积为 3 2 14 .在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 〔3) =24,那么此数列前 13项之和为 . 15 .在等差数列{a n }中,a 5= 3, a 6= —2,那么 a 4+a5+…+ a 〔0=.16 .设平面内有n 条直线(n>3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.假设用 f(n)表示这n 条直线交点的个数,那么 f(4) =;当n>4时,f(n)=.三、解做题17 . (1)数列{a n }的前n 项和S n=3n 2-2n,求证数列{ a n }成等差数列.(2)1 , 1 , 1成等差数列,求证 b —c , c —a , b 也成等差数列.a b c a b c 18 .设{a n }是公比为q 的等比数列,且 a i, a 3, a 2成等差数列. (1)求q 的值;(2)设{b n }是以2为首项,q 为公差的等差数列,其前 n 项和为S n,当n>2时,比拟S n 与b n 的大小,并说明理由.A. 38B. 20C. 10D. 911 .设 f( x)= —一,利用课本中推导等差数列前2x 、,2n 项和公式的方法, 可求得f( —5) +f( —4) +…+ f(0) +…+ f(5)19 .数列{ a n}的前n 项和记为Si,a i=1, a n+i= —~- S n( n = 1, 2, 3…). n求证:数列{ S n}是等比数列.n20 .数列{a n}是首项为a且公比不等于1的等比数列,S n为其前n项和,a1,2a7, 3a4成等差数列,求证:12S3, S6, S12—S6成等比数列.第二章数列一、选择题1. C解析:由题设,代入通项公式an=ai + (n-1)d,即2 005= 1+3(n—1),n= 699.2. C解析:此题考查等比数列的相关概念,及其有关计算水平.设等比数列{a n}的公比为q(q>0),由题意得a i+a2+ 83 = 21,即a i( 1 + q + q2) = 21,又a〔= 3, ,1 + q+q2= 7.解得q = 2或q = —3(不合题意,舍去),• •a3+a4+a5=a1q2(1 + q + q2) =3 X 22 X 7= 84.3. B.解析:由a1+a8=a4+a5,排除C.又a1 , a8= 81( a1 + 7d) = a12+ 7a1d,a4 • a5= ( a1+ 3d)( a1 + 4d) =a12+ 7a1d + 12d2>a1 - a8.4. C解析:1 1 1 1解法 1 :设81= 一, a2= - +d, 83= - + 2d, 84= —+ 3d,而方程x2—2x+ m= 0 中两根之和为2, x2—2x+ n= 0 中4 4 4 4两根之和也为2,• • 81 + 82 + 83 + 84= 1 + 6d = 4 ,. .d= 1 , 81= 1 , 84= 7是一个方程的两个根,81=3, 83=夕是另一个方程的两个根.2 4 4 4 4••• —, 15分别为m或n,16 16| m— n I = 1 ,应选C.2解法2:设方程的四个根为x1,x2, x3, x4,且x1 + x2= x3+x4= 2, x1 • x2= m, x3 • x4=n.由等差数列的性质:假设+s= p+q,那么a +a s= a p+a q,假设设x i为第一项,X2必为第四项, 那么X2=1,于是可得等差4数列为1, 3, 5, 7,4 4 4 4一m=5. B解析:= a2=9, a5= 243, a5 = q3 = 3^L = 27,a2 9• • q = 3, aiq=9, ai=3,3- 35240 …S4= --------------- =------------ = i20.i-3 26. B解析:解法i:由a2 003 + a2 004>0, a2 003 , a2 004V 0,知a2 003和a2 004两项中有一■正数一■负数,又ai>0,那么公差为负数,否那么各项总为正数,故a2 003 > a2 004, 即a2 003> 0, a2 004c 0.4 006 a1 + a, } 4 00a a… nn+ a… …).•・ S4 006=———__i^ =———-^003__2^1 >0,c 4 007 , 4 007 c• • S4 007= -------------- , (a i + a4 007) = ----------------------- • 2a2 004<0,故4 006为S n>0的最大自然数.选B.解法2:由ai>0, a2 003+22 004>0, a2 003 , a2 004c 0,同解法i的分析得a2 003>0,a2 004V 0,• • S2 003为Sn中的最大值..「S n是关于n的二次函数,如草图所示,2 003到对称轴的距离比2 004到对称轴的距离小,生^07在对称轴的右侧.2 〔第6题〕根据条件及图象的对称性可得 4 006在图象中右侧零点B的左侧,4 007,4 008 都在其右侧,S n>0的最大自然数是4 006 .7. B解析:・•・ {a n }是等差数列,a 3=a i + 4, a 4=a i+6, 又由a 1,a 3, a 4成等比数列, (a i+ 4) 2= a i ( a i + 6),解得 a i = —8, ••a2=— 8 + 2= — 6. 8. A9(a 〔 a g )解析:— = ------- 2 ----- = a 5 = 9- _5=1, 「•选 A.& 5(a i a 5) 5 a 3 5 92 9. A解析:设d 和q 分别为公差和公比,那么— 4= — 1 + 3d 且—4= ( — 1)q 4, d= - 1, q 2= 2,- a 2 a i - d - 1• •2 .b 2q 210. C解析:{a n }为等差数列,, a2 = a n-1 +a n+1, a2 =2a n又a nW 0,a n=2, {a n }为常数数列,n= 10. 二、填空题 11. 3& . 解析:= f(x) =设 S=f( —5)+f(—4)+…+ f(0) +…+ f(5) + f(6), 那么 S=f(6) +f(5)+…+ f(0) +…+ f( —4)+f( —5),• .2S=[f(6)+f( —5)] + [f(5)+f( —4)] + …+ [f( —5) + f(6)] = 6 <2 ,而 an= _SU ,2n 1 即 2n-1= 38 = 19,2••f(1-x)= - 22x2 2 2x•• 1• ・f(x)+f(1 —x) = 丁—2 22x12(2 泊;2 2x・•.S= f( —5)+f(—4) +…+ f(0) +…+ f(5)+f(6) = 32 .12. (1) 32; (2) 4; (3) 32.5cca4 • a5 • a6= a 4=32. a 2 324212 qa 2)q 2369• ・ a 5+ a 6= ( ai+ a 2)q 4=4.a 17+ a 〔8 + a 19 + a 20= S 4q 16= 32 • 13. 216.解析:此题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与中间数为J 8 27=6,插入的三个数之积为 8X 27X6=216.3 2'3 214. 26.解析:a 3+a 5=2a 4, a 7+a 13=2a 1o, • • 6( a 4+a 10)= 24, a 4+a 1o=4,• S 13= 13a 1+a 13)= 13(%+包.)=13 4 = 26.215. — 49.解析:d = a6—a5=—5,a4+ a5+…+ a107( a 4 a 10) =2_ 7(a 5-d + a 5 + 5d) —2=7( a5+2d)解析: (1)(3)S4=a1+ a2+ a3+ a4=2S8= a 〔+a2+ + a 8= S 4+ S 4q q 4=2 ,(2)a i 8,2同号,由等比中项的3 216. 5, 1 (n+ 1)( n- 2).2解析:同一平面内两条直线假设不平行那么一定相交, 故每增加一条直线一定与前面已有的每条直线都相交, —1) +(k —1).由 f(3) =2,f(4) =f(3) +3 = 2+3=5, f(5) =f(4) +4 = 2+3+4 = 9,f(n) =f(n —1) +(n —1),相加得 f(n) = 2+3 + 4+…+ (n-1)= l(n+1)( n-2).2 三、解做题17.分析:判定给定数列是否为等差数列关键看是否满足从第 证实:(1) n=1 时,a 1=S 1=3 —2=1,当 n>2 时,a n = S n —S n 1 = 3n 2—2n — [ 3( n —1) 2—2(n —1)] = 6n —5, n=1 时,亦满足,an= 6n —5( n C N* ).首项 a 〔=1, a n-a n 1=6n-5-[6(n- 1) -5] =6(常数)(nCN*), ,数列{a n }成等差数列且a 1=1,公差为6. (2) •「I, 1,1成等差数列, a b c211,,化间得 2ac= b( a+ c).b a c• a1W0, ••• 2q 2-q - 1 = 0,(2)假设 q= 1,那么 S n= 2n+ n(n-1) =b + c+ a+ bbc+c 2+a 2+ab Ha+c)+a 2+ c 2 (a+c)2 (a+c)2 0 a + c2 b( a + c) b2acacacc+a b史也也成等差数列. c18.解: (1)由题设 2a 3=a 〔 + a 2,即 2a 1q 2= a 〔+ aq.•.f( k) = f(k2项开始每项与其前一项差为常数.2 _n + 3nS-b n=S n 1=(nT )(n + 2) >0,故 S n>b n.2 .那么 S=2n+ n(nT) (_1)=-n+9n 22 4S n>b n;当 n=10 时,S n=b n;当 n>11 时,S nV b n.19 .证实:= a n+1= S n+1 — Si ,. . ( n + 2) S n= n( S n+1 — S n ) ,整理得 nS n+1=2(n+1) S, 所以 SU = 2S. .n + 1 n故{ S n }是以2为公比的等比数列. n20 .证实:由 a 1,2a 7, 3a 4成等差数列,得 4a 7=a I+3a 4,即 4 a 〔q 6= a 〔+3a 〔q 3,变形得(4q 3+1)( q 3—1) = 0, /. q 3= — 1 或 q 3= 1(舍).4a41 q 6)一 :3由三 ='^ =心=上; 12$ 12a 1(1 q )12161 q12、 国(1 q )S-S^ = SL _ 1 = _1 q 6 -1=1+q 6-1= ±; S 6 S 6 a 1(1 q )161 q得生=星上 12S 3 S 12S 3, S 6, S 12— S 6 成等比数列.当n>2时, 当n>2时,S n _b n =S n1=(n-1)(10- n)故对于nCN +,当2W nW 9时, n + 2 an +1 = ------------ Sn ,n。
高中数学数列多选题复习题含答案一、数列多选题1.已知数列{},{}n n a b 均为递增数列,{}n a 的前n 项和为,{}n n S b 的前n 项和为,n T 且满足*112,2()n n n n n a a n b b n N +++=⋅=∈,则下列结论正确的是( )A .101a << B.11b <<C .22n n S T <D .22n n S T ≥【答案】ABC 【分析】利用数列单调性及题干条件,可求出11,a b 范围;求出数列{},{}n n a b 的前2n 项和的表达式,利用数学归纳法即可证明其大小关系,即可得答案. 【详解】因为数列{}n a 为递增数列, 所以123a a a <<,所以11222a a a <+=,即11a <, 又22324a a a <+=,即2122a a =-<, 所以10a >,即101a <<,故A 正确; 因为{}n b 为递增数列, 所以123b b b <<,所以21122b b b <=,即1b <又22234b b b <=,即2122b b =<, 所以11b >,即11b <<,故B 正确;{}n a 的前2n 项和为21234212()()()n n n S a a a a a a -=++++⋅⋅⋅++= 22(121)2[13(21)]22n n n n +-++⋅⋅⋅+-==,因为12n n n b b +⋅=,则1122n n n b b +++⋅=,所以22n n b b +=,则{}n b 的2n 项和为13212422()()n n n b b b b b b T -=++⋅⋅⋅++++⋅⋅⋅+=1101101122(222)(222)()(21)n n nb b b b --++⋅⋅⋅++++⋅⋅⋅+=+-1)1)n n>-=-,当n =1时,222,S T =>,所以22T S >,故D 错误; 当2n ≥时假设当n=k时,21)2k k ->21)k k ->, 则当n=k +11121)21)21)2k k k k k ++-=+-=->2221(1)k k k >++=+所以对于任意*n N ∈,都有21)2k k ->,即22n n T S >,故C 正确 故选:ABC 【点睛】本题考查数列的单调性的应用,数列前n 项和的求法,解题的关键在于,根据数列的单调性,得到项之间的大小关系,再结合题干条件,即可求出范围,比较前2n 项和大小时,需灵活应用等差等比求和公式及性质,结合基本不等式进行分析,考查分析理解,计算求值的能力,属中档题.2.两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列命题中正确的是( )A .若为等差数列,则112da =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d +【答案】AB 【分析】对于A ,利用=对于B ,利用()2211332S T S T S T +=+++化简可得答案; 对于C ,利用2211332a b a b a b =+化简可得答案; 对于D ,根据112n n b b a a d d +-=可得答案. 【详解】对于A ,因为为等差数列,所以=即== 化简得()21120d a -=,所以112d a =,故A 正确;对于B ,因为{}n n S T +为等差数列,所以()2211332S T S T S T +=+++, 所以()11121111122223333a d b d a b a d b d +++=+++++, 所以120d d +=,故B 正确;对于C ,因为{}n n a b 为等差数列,所以2211332a b a b a b =+, 所以11121111122()()(2)(2)a d b d a b a d b d ++=+++, 化简得120d d =,所以10d =或20d =,故C 不正确;对于D ,因为11(1)n a a n d =+-,且*n b N ∈,所以11(1)n b n a a b d =+-()112111a b n d d =++--⎡⎤⎣⎦,所以()()1111211n b a a b d n d d =+-+-,所以()()()11111211112111n n b b a a a b d nd d a b d n d d +-=+-+-----12d d =, 所以{}n b a 也为等差数列,且公差为12d d ,故D 不正确. 故选:AB 【点睛】关键点点睛:利用等差数列的定义以及等差中项求解是解题关键.3.设数列{}{},n n a b 的前n 项和分别为,n n S T ,1121,n n n S S S n++==,且212n n n n a b a a ++=,则下列结论正确的是( ) A .20202020a = B .()12n n n S += C .()112n b n n =-+D .1334n T n ≤-< 【答案】ABD 【分析】可由累乘法求得n S 的通项公式,再由()12n n n S +=得出n a n =,代入212n n n n a b a a ++=中可得()112n b n n =++.由裂项相消法求出n T ,利用数列的单调性证明1334n T n ≤-<.【详解】由题意得,12n n S n S n++=, ∴当2n ≥时,121121112n n n n n S S S n n S S S S S n n ---+=⋅⋅⋅⋅⋅=⋅⋅⋅⋅--()13112n n +⋅=,且当1n =时也成立, ∴ ()12n n n S +=,易得n a n =,∴ 20202020a =,故,A B 正确; ∴ ()()()211111112222n n b n n n n n n +⎛⎫==+=+- ⎪+++⎝⎭,∴11111111111111112324351122212n T n n n n n n n n ⎛⎫⎛⎫=+-+-+-++-+-=++-- ⎪ ⎪-++++⎝⎭⎝⎭3111342124n n n n ⎛⎫=+-+<+ ⎪++⎝⎭, 又n T n -随着n 的增加而增加, ∴1113n T n T -≥-=,∴1334n T n ≤-<,C 错误,D 正确, 故选:ABD. 【点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.4.数列{}n a 满足11a =,且对任意的*n ∈N 都有11n n a a a n +=++,则下列说法中正确的是( ) A .(1)2n n n a +=B .数列1n a ⎧⎫⎨⎬⎩⎭的前2020项的和为20202021 C .数列1n a ⎧⎫⎨⎬⎩⎭的前2020项的和为40402021 D .数列{}n a 的第50项为2550 【答案】AC 【分析】用累加法求得通项公式,然后由裂项相消法求1n a ⎧⎫⎨⎬⎩⎭的和即可得.【详解】因为11n n a a a n +=++,11a =, 所以11n n a a n +-=+, 所以2n ≥时,121321(1)()()()1232n n n n n a a a a a a a a n -+=+-+-++-=++++=, 11a =也适合此式,所以(1)2n n n a +=, 501275a =,A 正确,D 错误, 12112()(1)1n a n n n n ==-++, 数列1n a ⎧⎫⎨⎬⎩⎭的前2020项和为202011111404021223202020212021S ⎛⎫=-+-++-=⎪⎝⎭,B错,C 正确. 故选:AC . 【点睛】本题考查用累加法数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.5.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <. 【答案】ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】对于A :因为正数,公差不为0,且100S =,所以公差0d <, 所以1101010()02a a S +==,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <, 所以50a >,60a <,故A 正确; 对于B :因为412S S =,则1240S S -=,所以561112894()0a a a a a a ++⋅⋅⋅++=+=,又10a >, 所以890,0a a ><, 所以115815815()15215022a a a S a +⨯===>,116891616()16()022a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确;对于C :因为115815815()15215022a a a S a +⨯===>,则80a >, 116891616()16()022a a a a S ++===,则890a a +=,即90a <, 所以则{}n S 中8S 最大,故C 错误;对于D :因为89S S <,则9980S a S =->,又10a >, 所以8870a S S =->,即87S S >,故D 正确, 故选:ABD 【点睛】解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题.6.若数列{}n a 的前n 项和是n S ,且22n n S a =-,数列{}n b 满足2log n n b a =,则下列选项正确的为( ) A .数列{}n a 是等差数列B .2nn a =C .数列{}2na 的前n 项和为21223n +-D .数列11n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,则1n T <【答案】BD 【分析】根据22n nS a =-,利用数列通项与前n 项和的关系得1,1,2n n S n a S n =⎧=⎨≥⎩,求得通项n a ,然后再根据选项求解逐项验证. 【详解】当1n =时,12a =,当2n ≥时,由22n n S a =-,得1122n n S a --=-, 两式相减得:12n n a a -=, 又212a a =,所以数列{}n a 是以2为首项,以2为公比的等比数列, 所以2nn a =,24nn a =,数列{}2na 的前n 项和为()141444143n n nS +--'==-, 则22log log 2nn n b a n ===,所以()1111111n n b b n n n n +==-⋅⋅++,所以 1111111 (11123411)n T n n n =-+-++-=-<++, 故选:BD 【点睛】方法点睛:求数列的前n 项和的方法 (1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩;(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.7.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a >B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列C .0n S <时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项【答案】ACD 【分析】 由已知得()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,可判断A ;由已知得出2437d -<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1na 在1,6n n N上单调递增,1na 在7n nN ,上单调递增,可判断B ;由()313117713+12203213a a a S a ⨯==<=,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ; 【详解】由已知得311+212,122d a a a d ===-,()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,故A 正确;由7161671+612+40+512+3>0+2+1124+7>0a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得2437d -<<-,又()()3+312+3n a n d n d a =-=-,当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,所以[]1,6n ∈时,1>0na ,7n ≥时,10n a <,所以1na 在1,6nn N上单调递增,1na 在7nn N,上单调递增,所以数列1n a ⎧⎫⎨⎬⎩⎭不是递增数列,故B 不正确;由于()313117713+12203213a a a S a ⨯==<=,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,0n S <,所以当[]7,12n ∈时,0n a <,>0n S ,0nnS a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项,故D 正确;【点睛】本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题.8.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .2437d -<<- C .S n <0时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项【答案】ABCD 【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确. 【详解】 ∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0.对于:7≤n ≤12时,nn S a <0.S n >0,但是随着n 的增大而减小;a n <0,但是随着n 的增大而减小,可得:nnS a <0,但是随着n 的增大而增大.∴n =7时,nnS a 取得最小值. 综上可得:ABCD 都正确. 故选:ABCD . 【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.二、平面向量多选题9.在平行四边形ABCD 中,2AB =,1AD =,2DE EC =,AE 交BD 于F 且2AE BD ⋅=-,则下列说法正确的有( )A .1233AE AC AD =+B .25DF DB =C .,3AB AD π=D .2725FB FC ⋅=【答案】BCD 【分析】根据向量的线性运算,以及向量的夹角公式,逐一判断四个选项的正误即可得正确选项. 【详解】对于选项A :()22233133AE AD DE AD DC AD AD D C A A A C =+=+=+-=+,故选项A 不正确; 对于选项B :易证DEF BFA ,所以23DF DE BF AB ==,所以2235DF FB DB ==,故选项B 正确;对于选项C :2AE BD ⋅=-,即()223AD A B D AB A ⎛⎫+-=- ⎪⎝⎭,所以 2221233AD AD AB AB -⋅-=-,所以1142332AD AB -⋅-⨯=-,解得:1AB AD ⋅=,11cos ,212AB AD AB AD AB AD⋅===⨯⨯,因为[],0,AB AD π∈,所以,3AB AD π=,故选项C 正确; 对于选项D :()()332555AB FB FC DB FD DC AD BD AB ⎛⎫⋅=⋅+=-⋅+ ⎪⎝⎭()()()3233255555AD AD AB AB AD A AB AB B AD ⎡⎤⎛⎫=-⋅-+=-⋅+ ⎪⎢⎥⎣⎦⎝⎭22969362734252525252525AB AB AD AD =⨯-⋅-⨯=⨯--=,故选项D 正确. 故选:BCD【点睛】关键点点睛:选项B 的关键点是能得出DEF BFA ,即可得23DF DE BF AB ==,选项D 的关键点是由于AB 和AD 的模长和夹角已知,故将FB 和FC 用AB 和AD 表示,即可求出数量积.10.如图,在平行四边形ABCD 中,,E F 分别为线段,AD CD 的中点,AFCE G =,则( )A .12AF AD AB =+B .1()2EF AD AB =+C .2133AG AD AB =- D .3BG GD =【答案】AB【分析】 由向量的线性运算,结合其几何应用求得12AF AD AB =+、1()2EF AD AB =+、2133AG AD AB =+、2BG GD =,即可判断选项的正误 【详解】 1122AF AD DF AD DC AD AB =+=+=+,即A 正确 11()()22EF ED DF AD DC AD AB =+=+=+,即B 正确 连接AC ,知G 是△ADC 的中线交点, 如下图示由其性质有||||1||||2GF GE AG CG ==∴211121()333333AG AE AC AD AB BC AD AB =+=++=+,即C错误同理21212()() 33333BG BF BA BC CF BA AD AB =+=++=-211()333DG DF DA AB DA=+=+,即1()3GD AD AB=-∴2BG GD=,即D错误故选:AB【点睛】本题考查了向量线性运算及其几何应用,其中结合了中线的性质:三角形中线的交点分中线为1:2,以及利用三点共线时,线外一点与三点的连线所得向量的线性关系。
高考数学数列多选题复习训练题(含答案解析)1.(2022·江苏江苏·一模)记n S 为等差数列{}n a 的前n 项和,则( ) A .6422S S S =−B .()6423S S S =−C .2n S ,42n n S S −,64n n S S −成等差数列D .22S ,44S ,66S 成等差数列【答案】BCD 【解析】 【分析】利用等差数列求和公式分别判断. 【详解】 由已知得()112n n n dS a n −=+, A 选项,61615S a d =+,4146S a d =+,212S a d =+,所以42162611S S a d S −=+≠,A 选项错误;B 选项,()42163615S S a d S −=+=,B 选项正确;C 选项,()()221122122n S a n n n d a n n n d =+−=+−,()414241n S a n n n d =+−,()616361n S a n n n d =+−,()242126n n S S a n n n d −=+−,()2641210n n S S a n n n d −=+−,则()()()22264114241222262n n n n S S S a n n n d a n n n d S S ⎡⎤+−=+−=+−=−⎣⎦,C 选项正确;D 选项,2112222S a d d a +==+,411463442S a d a d +==+,6116155662S a d a d +==+,则6241232264S S Sa d +=+=⨯,D 选项正确; 故选:BCD.2.(2022·江苏南通·模拟预测)若数列{}n a 是等比数列,则( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是等比数列B .数列{}n ka 是等比数列C .数列{}1n n a a ++是等比数列D .数列{}2n a 是等比数列【答案】AD 【解析】 【分析】设等比数列{}n a 的公比为()0q q ≠,利用等比数列的定义结合特例法可判断各选项的正误. 【详解】设等比数列{}n a 的公比为()0q q ≠,11111n n n na a a q a ++==,则1n a ⎧⎫⎨⎬⎩⎭是以1q 为公比的等比数列,A 对; 0k =时,0n ka =,则{}n ka 不是等比数列,B 错;()11n n n n n a a a a q a q ++=+=+,1q =−时,10n n a a ++=,此时{}1n n a a ++不是等比数列,C 错;2212n na q a +=,所以,{}2n a 是公比为2q 的等比数列,D 对. 故选:AD .3.(2022·福建宁德·模拟预测)数列{n a }中,设12n n T a a a =⋅…….若n T 存在最大值,则n a 可以是( ) A .62n n a −= B .()1nn a =− C .29n a n =− D .121n n a n +=− 【答案】BD 【解析】 【分析】根据数列的单调性即可判断. 【详解】对于A ,()()115436212322n n n n n T a a aa −−−−+−=== ,当n 趋于无穷大时,n T 也趋于无穷大, 故n T 不存在最大值; 对于B ,()()()()()()1123211111n n nn T +=−−−−=− ,当()12n n + 为偶数时,1n T = ,当()12n n +为奇数时,1n T =− , 故n T 的最大值为1;对于C ,()()1121128n n n n n T T a a a a T n ++−=−=− ,当5n ≥ 时,10,n n n T T T +>> ,∴5n ≥ 时n T 是递增的数列,不存在最大值; 对于D ,1232342,1,,135a a a ===== 即当3n ≥ 时,0121n n <+<− ,1n a < , 即3n ≥ 时,()1110n n n n T T T a ++−=−< ,所以n T 是递减的数列, 最大值为122T T == ; 故选:BD.4.(2022·福建·模拟预测)已知等差数列{}n a 的前n 项和为2212n a n n S +=,公差为d ,则( )A .11a =B .1d =C .()213521n n S a n −=+++⋅⋅⋅+−D .2222n nn S a a =+ 【答案】ABC 【解析】 【分析】运用代入法,结合等差数列的通项公式和前n 项和公式逐一判断即可. 【详解】取1n =,则21112a a +=,解得11a =,即A 正确;由A 可知,22n n nS +=,则212321d S a =−=−=,即B 正确;于是有1(1)1n a n n =+−⋅=,因为22n n S a n −=,且()()212113212n n n n +−+++−==,即C 正确; 因为()222222222nn n n nS n n a a +==+=+,即D 错误.故选:ABC5.(2021·山东·模拟预测)设等比数列{an }的公比为q ,其前n 项和为Sn ,前n 项积为Tn ,并满足条件a 1>1,a 2019a 2020>1,2019202011a a −−<0,下列结论正确的是( )A .S 2019<S 2020B .a 2019a 2021﹣1<0C .T 2020是数列{Tn }中的最大值D .数列{Tn }无最大值 【答案】AB 【解析】 【分析】根据题意,由等比数列的通项公式可得(a 1q 2018)(a 1q 2019)=(a 1)2(q 4037)>1,分析可得q >0,可得数列{an }各项均为正值,又由2019202011a a −−<0可得2019202011a a <⎧⎨>⎩或2019202011a a >⎧⎨<⎩,由等比数列的性质分析可得q 的范围,据此分析4个选项,综合即可得答案. 【详解】根据题意,等比数列{an }的公比为q ,若a 2019a 2020>1,则(a 1q 2018)(a 1q 2019)=(a 1)2(q 4037)>1,又由a 1>1,必有q >0,则数列{an }各项均为正值, 又由2019202011a a −−<0,即(a 2019﹣1)(a 2020﹣1)<0,则有2019202011a a <⎧⎨>⎩或2019202011a a >⎧⎨<⎩,又由a 1>1,必有0<q <1,则有2019202011a a >⎧⎨<⎩,对于A ,有S 2020﹣S 2019=a 2020>0,即S 2019<S 2020,则A 正确; 对于B ,有a 2020<1,则a 2019a 2021=(a 2020)2<1,则B 正确;对于C ,2019202011a a >⎧⎨<⎩,则T 2019是数列{Tn }中的最大值,C 错误,同理D 错误;故选:AB6.(2022·海南·模拟预测)在数列{}n a 中,11a =,数列11n a ⎧⎫+⎨⎬⎩⎭是公比为2的等比数列,设n S 为{}n a 的前n 项和,则( )A .121n na =− B .1122n n a =+ C .数列{}n a 为递减数列 D .378S >【答案】ACD 【解析】 【分析】由已知结合等比数列通项公式可求11na +,进而可求n a ,然后结合单调性定义及数列的求和分别检验各选项即可判断和选择. 【详解】因为11a =,数列11n a ⎧⎫+⎨⎬⎩⎭是公比为2的等比数列,所以111222n nna −+=⋅=所以121n n a =−,故A 正确,B 错误; 因为()21,1xy x =−≥是单调增函数,故()1,121x y x =≥−是单调减函数, 故数列{}n a 是减数列,故C 正确; 31231171378S a a a =++=++>,故D 正确.故选:ACD .7.(2022·江苏连云港·模拟预测)“外观数列”是一类有趣的数列,该数列由正整数构成,后一项是前一项的“外观描述”.例如:取第一项为1,将其外观描述为“1个1”,则第二项为11;将11描述为“2个1”,则第三项为21;将21描述为“1个2,1个1”,则第四项为1211;将1211描述为“1个1,1个2,2个1”,则第五项为111221,…,这样每次从左到右将连续的相同数字合并起来描述,给定首项即可依次推出数列后面的项.对于外观数列{}n a ,下列说法正确的是( ) A .若13a =,则5131213a =B .若122a =,则10022a =C .若16a =,则100a 的最后一个数字为6D .若1123a =,则100a 中没有数字4【答案】BCD 【解析】 【分析】根据题干中的递推规律,依次分析各项的正误. 【详解】对于A 项,13a =,即“1个3”,213a =,即“1个1,1个3”,31113a =,即“3个1,1个3”,故43113a =,故A 项错;对于B 项,122a =,即“2个2”, 222a =,即“2个2”,以此类推,该数列的各项均为22,则10022a =,故B 项正确;对于C 项,16a =,即“1个6”, 216a =,即“1个1,1个6”, 31116a =,即“3个1,1个6”,故43116a =,即“1个3,2个1,1个6”,以此类推可知,()*n a n ∈N 的最后一个数字均为6,故C 项正确;对于D 项,1123a =,则2111213a =,331121113a =,41321123113a =,L ,若数列{}n a 中,()5,N k a k k *≥∈中为第一次出现数字4,则1k a −中必出现了4个连续的相同数字,如11111k a −=,则在2k a −的描述中必包含“1个1,1个1”, 即211k a −=,显然2k a −的描述是不合乎要求的, 若12222k a −=或13333k a −=,同理可知均不合乎题意,故()N n a n *∈不包含数字4,故D 项正确. 故选:BCD.8.(2022·广东茂名·模拟预测)一组数据1x ,2x ,…,10x 是公差为1−的等差数列,若去掉首末两项1x ,10x 后,则( ) A .平均数不变 B .中位数没变C .极差没变D .方差变小【答案】ABD 【解析】 【分析】根据平均数的概念结合等差数列的性质判断A ,由中位数的概念可判断B ,由方差及等差数列的通项公式计算即可判断C ,根据极差及等差数列的通项公式可判断D . 【详解】由题意可知,对于选项A , 原数据的平均数为1210511()5(1010x x x x x =+++=⨯+ 6561)()2x x x =+,去掉1x ,10x 后的平均数为2395656111()4()()882x x x x x x x x x '=+++=⨯+=+=,即平均数不变,故选项A 正确;对于选项B ,原数据的中位数为561()2x x +,去掉1x ,10x 后的中位数仍为561()2x x +,即中位数没变,故选项B 正确;对于选项C ,原数据的极差为11099x x d −=−=, 去掉1x ,10x 后的极差为2977x x d −=−=, 即极差变小,故选项C 错误;对于选项D ,设公差为d ,则原数据的方差为222215625610561111()()()10222s x x x x x x x x x ⎧⎫⎪⎪⎡⎤⎡⎤⎡⎤=−++−+++−+⎨⎬⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎪⎪⎩⎭2221975()()()10222[d d d =−+−+−222311()()()222d d d +−+−++2222357933()()()()2224]2d d d d +++=, 去掉1x ,10x 后的方差为22222563569561111()()()8222s x x x x x x x x x ⎧⎫⎪⎪⎡⎤⎡⎤⎡⎤'=−++−+++−+⎨⎬⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎪⎪⎩⎭2222222217531135721()()()()()()()()8222222224[]d d d d d d d d =−+−+−+−++++=, 即方差变小,故选项D 正确. 故选:ABD.9.(2022·山东济宁·二模)已知一组数据1x ,2x ,…,11x 是公差不为0的等差数列,若去掉数据6x ,则( ) A .中位数不变 B .平均数变小 C .方差变大 D .方差变小【答案】AC 【解析】 【分析】由中位数的概念可判断A ,根据平均数的概念结合等差数列的性质判断B ,由方差计算公式即可判断CD. 【详解】对于选项A ,原数据的中位数为6x ,去掉6x 后的中位数为5761()2x x x +=,即中位数没变,故选项A 正确;对于选项B ,原数据的平均数为()111121161111()11112x x x x x x x +=+++=⨯=,去掉6x 后的平均数为1111257811610()11()10102x x x x x x x x x x x +'=+++++++=⨯==即平均数不变,故选项B 错误:对于选项C ,则原数据的方差为()()22221626116]1[()11s x x x x x x =−+−++−,去掉6x 后的方差为()()()()()22222216265676116110s x x x x x x x x x x ⎡⎤'=−+−++−+−++−⎣⎦,故2s 2s '<,即方差变大,故选项C 正确,选项D 错误.10.(2022·山东临沂·模拟预测)设数列{}n a 的前n 项和为n S ,已知233=+nn S .数列{}n b 满足3log n n n a b a =,则( )A .13,1,3, 1.n n n a n −=⎧=⎨>⎩B .113n n n b −−=C .数列{}n b 的前n 项和113211243n n n T −+=−⋅ D .数列{}n b 的前n 项和113211243n n n T −−=+⋅ 【答案】AC 【解析】 【分析】根据n S 与n a 的关系,即可求出n a ,利用错位相减法即可求出数列{}n b 的前n 项和n T ,据此,逐个选项判断即可得出答案. 【详解】对于A ,因为233=+nn S ,所以,当1n =时,11226S a ==,得13a =,当2n ≥时,1113332n n n n n n a S S −−−−=−==,经检验,当1n =时,不符合13−=n n a ,所以,13,1,3, 1.n n n a n −=⎧=⎨>⎩故A 正确;对于B ,因为3log n n n a b a =,得311,1log 31,23n n nn n a b n a n −⎧=⎪⎪==⎨−⎪≥⎪⎩,故B 错误; 对于C ,数列{}n b 的前n 项和1232311123133333n n n n T b b b b −−=++++=+++++①, 234111231393333n nn T −=+++++②,所以,−①②得, 23122111111()3933333n n n n T −−=++⨯+++−11515311193293929333n n n n n n −−−⎛⎫=+−=+⨯−− ⎪⎝⎭1823n=−⋅,得 113211243n n n T −+=−⋅,故C 正确,D 错误; 故选:AC11.(2023·福建漳州·三模)已知数列{n a }的前n 项和为211n S n n =−,则下列说法正确的是( ). A .{}n a 是递增数列 B .{}n a 是递减数列C .122n a n =-D .数列{}n S 的最大项为5S 和6S【答案】BCD 【解析】 【分析】根据211n S n n =−,利用二次函数的性质判断D ,利用数列通项和前n 项和关系求得通项公式判断ABC. 【详解】解:因为22111211124n S n n n ⎛⎫=−=−−+ ⎪⎝⎭,所以数列{}n S 的最大项为5S 和6S ,故D 正确;当1n =时,110a =,当2n ≥时,由211n S n n =−,得()()211111n S n n −=−−−,两式相减得:212n a n =−+, 又110a =,适合上式, 所以212n a n =−+,故C 正确;因为120n n a a −−=−<,所以{}n a 是递减数列,故A 错误,B 正确; 故选:BCD12.(2022·湖南怀化·一模)设{}()*n a n N ∈是各项为正数的等比数列,q 是其公比,nK是其前n 项的积,且56678,K K K K K <=>,则下列选项中成立的是( ) A .01q << B .71a =C .95K K >D .6K 与7K 均为n K 的最大值【答案】ABD【分析】结合等比数列的定义利用数列的单调性判断各选项. 【详解】由已知数列各项均为正,因此乘积n K 也为正,公比0q >, 又56678,K K K K K <=>, 6651K a K =>,7761Ka K ==,B 正确; 8871K a K =<,761aq a =<,即01q <<,A 正确; 由71a =得681a a =,591a a =,所以49K K =,而51a >,54K K >,因此95K K <,C 错; 由上知126781a a a a a <<<<=<<,{}n K 先增后减,6K 与7K 均为n K 的最大值,D 正确.故选:ABD .13.(2022·福建龙岩·模拟预测)已知等比数列{}n a 的前n 项和为n S ,公比为q ,则下列命题正确的是( )A .若11a =,2q =,则663S =B .若1q >,则数列{}n a 是单调递增数列C .若10a >,0q >,lg n n b a =,则数列{} n b 是公差为lg q 的等差数列D .若10a >,0q >,且()21105612a a a a +=+,则110a a +的最小值为4 【答案】AC 【解析】 【分析】A :利用等比数列前n 项和公式即可计算;B :根据函数单调性即可判断;C :根据等差数列定义即可判断;D :利用基本不等式即可判断. 【详解】对于A ,66612216312S −==−=−,故A 正确;对于B ,∵11n n a a q −=⋅,故{}n a 的单调性由q 和1a 共同决定,q >1无法判断数列为递增数列,如10a <,此时数列为递减数列,故B 错误;对于C ,∵111lg lg lg lg n n n n n na b b a a q a +++−=−==为常数,∴数列{}n b 是公差为lg q 的等差数列,故C 正确;对于D ,若10a >,0q >,则0n a >,56110a a a a =, ∵()21105612a a a a +=+, ∴()2211011011012122a a a a a a +⎛⎫+=++ ⎪⎝⎭…,即()()22110110124a a a a +++…,即()211016a a +≤,即11004a a <+…,即当110a a =时,110a a +的最大值为4,故D 错误. 故选:AC .14.(2022·江苏泰州·模拟预测)数列{}n a 满足1111,,2n n n a a a n N *+==∈,n S 为数列{}n a 的前n 项和,则( ) A .418a =B .1n n a a +≤C .3n S <D .132n n S S −<【答案】BC 【解析】 【分析】根据题意求得212112n n n n n n a a a a a a ++++==,得到{}n a 的奇数项和偶数项分别构成公比为12的等比数列,且首项分别为1211,2a a ==,由414a =,可判定A 错误;求得n 为奇数和n 为偶数时,数列的通项公式,可判定B 正确;根据n 为奇数和偶数,求得n S ,可判定C 正确;结合2n =时,可判定D 错误. 【详解】由题意,数列{}n a 满足11,2n n na a n N *+=∈,可得212112n n n n n na a a a a a ++++==, 因为11a =,可得2112a a =,所以212a =, 所以{}n a 的奇数项和偶数项分别构成公比为12的等比数列,且首项分别为1211,2a a ==,对于A 中,可得421124a a =⨯=,所以A 错误; 对于B 中,若n 为奇数时,可数列的通项公式为1122111()()22n n n a −−=⨯=; 若n 为偶数时,可数列的通项公式为122111()()222n n n a +=⨯=,当n 为奇数时,121()2n n a −=,2211()2n n a ++=,此时1n n a a +<,当n 为偶数时,121()2n n a +=,1211()2n n a ++=,此时1n n a a +=,综上可得:1n n a a +≤,所以B 正确; 对于C 中,数列{}n a 为1111111,,,,,,,224488,可得{}1n n a a ++构成首项为32,公比为12的等比数列,当n 为偶数时,可得2231[1()]1223[1()]31212nn n S −==⋅−<−, 当n 为奇数时,可得121211[1()]12112[1()]31212n n n S −−⋅−=+=+⋅−<−,所以C 正确;对于D 中,当2n =时,可得213122S =+=,13322S =,此时132n n S S −=,所以D 错误.故选:BC.15.(2022·重庆·二模)设数列{}n a 的前n 项和为n S ,已知12a =,且()1210n n n a na ++−=()n N *∈,则下列结论正确的是( ) A .{}n na 是等比数列 B .n a n ⎧⎫⎨⎬⎩⎭是等比数列C .2n n a n =⋅D .()122nn S n =−⋅+【答案】BC 【解析】 【分析】由条件变形,先求n a n ⎧⎫⎨⎬⎩⎭的通项公式,再判断选项【详解】 由题意得121n n a a n n +=⋅+,故n a n ⎧⎫⎨⎬⎩⎭是首项为2,公比为2的等比数列, 1222n n na n−=⋅=,则2n n a n =⋅.故B ,C 正确,A 错误 122222n n S n =+⋅++⋅, 23122222n n S n +=+⋅++⋅,两式相减得:()1212(222)122n n n n S n n ++=⋅−+++=−⋅+,故D 错误.故选:BC16.(2022·广东茂名·模拟预测)已知数列{}n a 的前n 项和为S ,11a =,121n n n S S a +=++,数列12n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,*n ∈N ,则下列选项正确的为( ) A .数列{}1n a +是等比数列 B .数列{}1n a +是等差数列C .数列{}n a 的通项公式为21n n a =−D .1n T > 【答案】AC 【解析】 【分析】由1121n n n n a S S a ++=−=+可得,1121n n a a ++=+,可判断A,B 的正误,再求出n a ,可判断C 的正误,利用裂项相消法求n T ,可判断D 的正误. 【详解】因为121n n n S S a +=++,所以1121n n n n a S S a ++=−=+,1+122n n a a +=+, 即1121n n a a ++=+,且112a +=, 所以数列{}1n a +是首项为2,公比为2的等比数列,故A 正确,B 错误;所以12nn a +=,即21n n a =−,故C 正确;因为()()111212122211121n n n n n n n n a a +++−−−−==−⋅,所以12231121212121111111111212121n n n n T ++−+−+=−−−−+−−−=−−<…, 故D 错误; 故选:AC.17.(2022·重庆·二模)设等差数列{}n a 前n 项和为n S ,公差0d >,若920S S =,则下列结论中正确的有( ) A .150a = B .当15n =时,n S 取得最小值 C .10220a a +> D .当0n S >时,n 的最小值为29【答案】ABC 【解析】 【分析】根据等差数列的前n 项和公式,结合该数列的单调性逐一判断即可. 【详解】 解:根据题意,由9201111511998202019140022S S a d a d a d a =⇒+⨯⨯=+⨯⨯⇒+=⇒=.故A 正确;因为0d >,故当15n <时,0n a <,150a =,当15n >时,0n a >,当15n =或14n =时,n S 取得最小值,故B 正确;由于()102216150a a a a d d +=2=2+=2>,故C 正确;因为0d >,n *∈N ,所以由1111(1)(14)(1)(29)0222n S na n n d n d n n d dn n =+−=−+−=−>,可得:29,n >n *∈N ,因此n 的最小值为30,故D 错误.故选:ABC18.(2022·河北保定·一模)已知数列{}n a 的前n 项和为n S ,且满足11a =,22a =,1143n n n a a a +−=−,则下面说法正确的是( ) A .数列{}1n n a a +−为等比数列 B .数列{}13n n a a +−为等差数列C .131n n a -=+D .3142n n nS −=+【答案】ABD【分析】由已知递推式可得()113n n n n a a a a +−−=−或1133n n n n a a a a +−−=−,从而可得数列{}1n n a a +−为公比为3的等比数列,数列{}13n n a a +−为常数列,从而可求出,n n a S ,进而可分析判断 【详解】根据题意得()()111113434344n n n n n n n n n a a a a ka k a a k a a k +−+−−⎛⎫=−⇒+=+−=+−⎪+⎝⎭,令2343014k k k k k =−⇒++=⇒=−+或3k =−,所以可得:()113n n n n a a a a +−−=−或1133n n n n a a a a +−−=−,所以数列{}1n n a a +−为公比为3的等比数列,故选项A 正确;数列{}13n n a a +−为常数列,即为公差为0的等差数列,故选项B 正确;所以1113n n n a a −+−=⨯,且131n n a a +−=−,解得1312n n a −+=,所以C 错误,所以12n n S a a a =++⋅⋅⋅+ 011313131222n −+++=++⋅⋅⋅+()011133322n n −=++⋅⋅⋅++ 1132132n n −=⨯+− 3142n n −=+,所以D 正确,故选:ABD .19.(2022·全国·模拟预测)已知数列{}n a 满足()1213n n n a a a m ++=+,12n a ≠−,则下列说法正确的有( )A .若12=−m ,11a =,则35a =B .若0m =,112a =,则11331n n n a −−=+C .若12m =,12a ≠−,3,则32n n a a ⎧⎫−⎨⎬+⎩⎭是等比数列 D .若12m =−,11a =,则766n n a =−【答案】BC 【解析】A 选项由递推关系计算可判断;B 选项,递推关系变形为1111113n n a a +⎛⎫−=− ⎪⎝⎭,构造一个等比数列11n a ⎧⎫−⎨⎬⎩⎭,可求出通项公式,从而判断;C 选项由递推关系变形出1132n n a a ++−+3372n n a a −=−⨯+,从而得到判断;D 选项,递推关系变形得出112n a ⎧⎫⎪⎪⎨⎬⎪⎪−⎩⎭是等比数列,从而求得通项公式进行判断. 【详解】A 选项:若12=−m ,则()121312n n n a a a ++=−,即131221n n n a a a +−=+.又11a =,则231233a −==−,391221615a −−==−+,故A 错误. B 选项:若0m =,则()1213n n n a a a ++=,即1321nn n a a a +=+, 即112133n n a a +=+,则1111113n n a a +⎛⎫−=− ⎪⎝⎭.又112a =,则111211a −=−=, 所以11n a ⎧⎫−⎨⎬⎩⎭是首项为1,公比为13的等比数列,则11113n n a −⎛⎫−= ⎪⎝⎭,即1111113133n n n n a −−−+⎛⎫=+= ⎪⎝⎭,即11331n n n a −−=+,故B 正确.C 选项:若12m =,则()121312n n n a a a ++=+,即131221n n n a a a ++=+,则()()1131233123213213122312221221n n n n n n n n n n a a a a a a a a a a +++−+−+−+===+++++++393371472n n n n a a a a ⎛⎫−+−=−⨯ ⎪++⎝⎭,所以32n n a a ⎧⎫−⎨⎬+⎩⎭是公比为37−的等比数列,故C 正确.D 选项:若12m =−,则113221n n n a a a +−=+,则11132112222121n n n n n n a a a a a a +−−−−−==++,则1212121111112121222n n n n n n a a a a a a +−+⎛⎫==+=+≠ ⎪−−⎝⎭−−,即11111122n n a a +−=−−.又11a =,则11212a =−,所以112n a ⎧⎫⎪⎪⎨⎬⎪⎪−⎩⎭是首项为2,公差为1的等差数列,所以1112n n a =+−, 即1121n a n −=+,即1112n a n =++,故D 错误, 故选:BC.20.(2022·广东·一模)已知数列{}n a 满足11a =,*12()N n n n a a n ++=∈,则下列结论中正确的是( ) A .45a =B .{}n a 为等比数列C .202212202123a a a +++=−D .2023122022223a a a −+++=【答案】AD 【解析】 【分析】利用递推式可求得234,,a a a 的值,可判断A,B;将122021a a a +++变为1235202042021()()()a a a a a a a ++++++++,利用等比数列的求和公式,求得结果,判断C; 将122022a a a +++变为412320212022))()((a a a a a a +++++++,利用等比数列的求和公式,求得结果,判断D; 【详解】11a =,则1222,1a a a +== ,又2334,3a a a +== ,同理33442,5a a a +== ,故A 正确;而32121,3a a a a == ,故{}n a 不是等比数列,B 错误; 1220211235204202021()()()a a a a a a a a a a =+++++++++++1010101120222420204-4-12-112+2++2=1+==1-433=+(14) ,故C 错误; 122022123202120242()a a a a a a a a a ++++=++++++()()101110112023132021-24-22-22+2++2===1-433⨯=2(14),故D 正确, 故选:AD21.(2022·福建·模拟预测)已知{}n a 是正项等差数列,其公差为d ,若存在常数c ,使得对任意正整数n 均有12n n n ac a a c+=+,则以下判断不正确的是( ) A .0d > B .0d = C .1c > D .01c <<【答案】ACD 【解析】 【分析】利用基本不等式可得101n a +<≤,结合通项公式可得0d =,从而可得()212c c a −=,故可得02c <<,故可得正确的选项.【详解】由题设可得{}n a 是无穷正项等差数列,故0d ≥且0c >, 由基本不等式有122nn n a c a a c+=+≥, 所以101n a +<≤对任意的正整数n 恒成立, 即101a nd <+≤对任意的正整数n 恒成立,即111a nd a −<≤−对任意的正整数n 恒成立,故0d =且101a <≤. 而1112a c a a c=+,故()212c c a −=, 所以()021c c <−≤,所以02c <<, 故选:ACD22.(2022·重庆市育才中学模拟预测)已知数列{an }满足11a =,21n n n a a a +=+,则( )A .{an }是递增数列B .n a n ≥C .202120222a ≤D .121111111n a a a ++⋅⋅⋅+<+++ 【答案】ABD 【解析】 【分析】由递推公式和20n a >可判断A ,由数列递增和11a =可判断B ,由递推公式知21n n a a +>可判断C ,对递推公式取倒裂项,然后累加、放缩可判断D. 【详解】因为a 1=1,21n n n a a a +=+,所以1n n a a +>,故A 正确;易知,所以n a 为正整数,又{an }是递增数列,所以n a n ≥,故B 正确;由递推公式得:232,64a a ==>,又221n n n n a a a a +=+>,所以244a >,22225(4)4a >=,()23222644a >=,易知201922021202242a >>,故C 不正确;取倒得1111(1)11n n n n n a a a a a +=−++=,则由累加法得2341123123111111111111()1111n n n a a a a a a a a a a a a ++++⋅⋅⋅+=+++⋅⋅⋅+−+++⋅⋅⋅+++++整理得123111111111111111n n n a a a a a a a +++++⋅⋅⋅+=−=−++++, 又110n a +>所以121111111n a a a ++⋅⋅⋅+<+++故选:ABD23.(2022·河北张家口·三模)已知公差为d 的等差数列{}n a 的前n 项和为n S ,则( ) A .n S n ⎧⎫⎨⎬⎩⎭是等差数列B .n S 是关于n 的二次函数C .{}n na 不可能是等差数列D .“0d >”是“112n n n S S S −++>”的充要条件【答案】AD 【解析】 【分析】根据等差数列前n 项公式及函数特征结合等差数列的定义即可判断ABC ,再结合充分条件和必要条件的定义即可判断D. 【详解】解:由11(1)2n S na n n d =+−知,11(1)2n S a n d n =+−,则1112+−=+n n S S d n n ,所以n S n ⎧⎫⎨⎬⎩⎭是等差数列,故A 正确; 当0d =时,1n S na =不是n 的二次函数,故B 不正确; 当0d =时,11,n n a a na na ==,则()111n n n a na a ++−=,所以{}n na 是等差数列,故C 不正确; 当0d >时,1102n n n S S d S −+=−>+,故112n n n S S S −++>,11111120n n n n n n n n n n n S S S S S S S a a a a d −++−+++>⇔−>−⇔>⇔−=>,所以“0d >”是“112n n n S S S −++>”的充要条件,故D 正确. 故选:AD.24.(2022·江苏江苏·三模)已知各项都是正数的数列{}n a 的前n 项和为n S ,且122n n na S a =+,则( ) A .{}2n S 是等差数列B .212n n n S S S +++<C .1n n a a +>D .1ln n nS n S −≥ 【答案】ABD 【解析】 【分析】对于A,求出1a ,再将n a 转化为n S ,即可证明,对于B,利用A 的结论求出n S ,再利用基本不等式,即可证明. 对于C ,求出21a a <,即可判断正误,对于D ,构造函数()12ln f x x x x=−−,即可判断正误【详解】 1111122a a S a ==+,10a >,解得:111S a == 2n ≥时,()11122n n n n n S S S S S −−−=+−, 整理得:2211n n S S −−=故{}2n S 是等差数列,选项A 正确;2211n S S n n =+−=,则=n S212n n n S S S +++<==,选项B 正确;22111a S S a =−=<,选项C 错误;令()12ln f x x x x =−−,1≥x ,()()2210x f x x −'=≥ ()f x 在[)1,+∞递增,()()10f x f ≥=,则ln 0fn≥ 即1ln n nS n S −≥,选项D 正确; 故选:ABD.25.(2022·河北保定·一模)已知n S 是数列{}n a 的前n 项和,且21n n S S n +=−+,则下列选项中正确的是( ).A .121n n a a n ++=−(2n ≥)B .22n n a a +−=C .若10a =,则1004950S =D .若数列{}n a 单调递增,则1a 的取值范围是11,43⎛⎫− ⎪⎝⎭【答案】AC 【解析】 【分析】对于A , 由 21n n S S n +=−+,多写一项,两式相减即可得出答案.对于B ,由 121n n a a n ++=−(2n ≥),多递推一项,两式相减即可得出答案少了条件2n ≥. 对于C ,由分析知22n n a a +−=,所以{}n a 奇数项是以10a =为首项,2为公差的等差数列,偶数项是以21a =为首项,2为公差的等差数列,由等差数列得前n 项和公式即可得出答案. 对于D ,因为数列{}n a 单调递增,根据1234n a a a a a <<<<<,即可求出1a 的取值范围.【详解】对于A ,因为21n n S S n +=−+,当()2121n n n S S n −≥=−+−,,两式相减得:121n n a a n ++=−(2n ≥),所以A 正确.对于B ,因为121n n a a n ++=−(2n ≥),所以()+122+11=21n n a a n n ++=−+, 两式相减得:22n n a a +−=(2n ≥),所以B 不正确.对于C ,21n n S S n +=−+,令1n =,则211S S =−+,1211a a a +=−+,因为10a =,所以21a =.令2n =,则324S S =−+,112324a a a a a ++=−−+ ,所以32a =.因为22n n a a +−=(2n ≥),而312a a −=,所以22n n a a +−=.所以{}n a 奇数项是以10a =为首项,2为公差的等差数列. 偶数项是以21a =为首项,2为公差的等差数列. 则:()()10012399100139924100=+++S a a a a a a a a a a a =+++++++++5049504950025012=495022⨯⨯⎛⎫⎛⎫=⨯+⨯+⨯+⨯ ⎪ ⎪⎝⎭⎝⎭,所以C 正确.对于D ,21n n S S n +=−+,令1n =,则211S S =−+,1211a a a +=−+,则2121a a =−+又因为+12=21n n a a n +++,令1n =则23=3a a +,所以()3211=332122a a a a −=−−+=+, 同理:()4311=552223a a a a −=−+=−+,()5411=772324a a a a −=−−+=+,因为数列{}n a 单调递增,所以1234n a a a a a <<<<<,解12a a <得:113a <,解23a a <得:114a >−,解34a a <得:114a <, 解45a a <得:114a >−,解56a a <得:114a <, 所以1a 的取值范围是11,44⎛⎫− ⎪⎝⎭,所以D 不正确.故选:AC. 【点睛】本题考查的是等差数列的知识,解题的关键是利用121n n a a n ++=−,得出{}n a 的奇数项、偶数项分别成等差数列,考查学生的逻辑推理能力和运算求解能力,属于难题.26.(2022·山东日照·二模)已知数列{}n a 满足11a =,()12ln 11n n n a a a +=++,则下列说法正确的有( ) A .31225a a a <+ B .2211n nn a a a +−≤+ C .若2n ≥,则131141n i i a =≤<+∑ D .()()1ln 121ln 2nni i a =+≤−∑【答案】BCD 【解析】 【分析】直接计算出23,a a 即可判断A 选项;构造函数函数()ln 1f x x x =−−,由ln 1x x +…,得到ln 1n n a a +…,进而判断B 选项;由ln 11n a +…得到121n n a a ++…,再结合累乘法得到12n n a +…,按照等比数列求和公式即可判断C 选项;构造函数()12ln g x x x x=−+,由11ln 2x x x ⎛⎫− ⎪⎝⎭…得到212n n n a a a ++…,结合累乘法求得()1ln 12ln2n n a −+…,按照等比数列求和公式即可判断D 选项.【详解】()()2113222ln 113,2ln 116ln37a a a a a a =++==++=+,则()3122512ln360a a a −+=−>,又120a a +>,所以31225a a a >+,A 不正确. 令函数()ln 1f x x x =−−,则()11f x x'=−,则()f x 在()0,1上单调递减,在()1,∞+上单调递增,()()10f x f =…,即ln 1x x +…,又易得{}n a 是递增数列,11n a a =…,故ln 1n n a a +…,所以2121n n a a ++…,B 正确.易知{}n a 是递增数列,所以11n a a =…,则()1ln 11,2ln 1121n n n n n a a a a a ++=+++厖,则()1121n n a a +++…,即1121n n a a +++…,所以11212111211n n n n n a a a a a a −−−−++⋅⋅++…,即()111212n n n a a −++=…,所以1112n n a +…,所以2111111111221111222212n n n ni i a =⎛⎫− ⎪⎝⎭+++==−<+−∑…,而当2n …时,则有11211131114ni i a a a =+=+++∑…,C 正确. 令函数()12ln g x x x x =−+,则()222212110x x g x x x x−+−=−−='…,所以()g x 在()0,∞+上单调递减,所以当1x …时,()()10g x g =…,则11ln 2x x x ⎛⎫− ⎪⎝⎭…, 所以211121122n n n n n n a a a a a a +⎡⎤⎛⎫−++=+⎢⎥ ⎪⎢⎥⎝⎭⎣⎦…,()()()()()()()()()211121211ln 1ln 1ln 1ln 111,2,2ln 1ln 1ln 1ln 1n n n n n n n n n a a a a a a a a a a +−−+−−++++++⋅⋅⋅++++剟?,()()111ln 12ln 12ln2n n n a a −−++=…,所以())()11ln 1(122ln221ln2nn n i i a −=++++=−∑…,D 正确.故选:BCD. 【点睛】本题关键点在于B 选项通过构造函数()ln 1f x x x =−−进行放缩得到ln 1n n a a +…,结合()12ln 11n n n a a a +=++即可判断;C 选项由ln 11n a +…放缩得到121n n a a ++…,D 选项构造函数()12ln g x x x x=−+得到212n nn a a a ++…,再结合累乘法和求和公式进行判断. 27.(2022·福建南平·三模)如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n =⋅⋅⋅⋅⋅⋅且,i i x y ∈Z .记n n n a x y =+,如()11,0A 记为11a =,()21,1A −记为20a =,()30,1A −记为31,a =−⋅⋅⋅,以此类推;设数列{}n a 的前n 项和为n S .则( )A .202242a =B .202287S =−C .82n a n =D .()245312n n n n S ++=【答案】ABD 【解析】 【分析】由图观察可知第n 圈的8n 个点对应的这8n 项的和为0,则2440n n S +=,同时第n 圈的最后一个点对应坐标为(),n n ,设2022a 在第k 圈,则k 圈共有()41k k +个数,可判断前22圈共有2024个数,2024a 所在点的坐标为()22,22,向前推导,则可判断A ,B 选项;当2n =时,16a 所在点的坐标为()2,2−−,即可判断C 选项;借助2440n n S +=与图可知22222244144245454544n n n n n nn n n n n n S S S aaa++++++++=−=+++,即n 项之和,对应点的坐标为()1,+n n ,()1,1n n +−,…,()1,1n +,即可求解判断D 选项.【详解】由题,第一圈从点()1,0到点()1,1共8个点,由对称性可知81280S a a a =+++=;第二圈从点()2,1到点()2,2共16个点,由对称性可知248910240S S a a a −=+++=,即 240S =,以此类推,可得第n 圈的8n 个点对应的这8n 项的和为0,即()214482n nn n SS ++⨯==,设2022a 在第k 圈,则()()888168412k k k kk ++++==+,由此可知前22圈共有2024个数,故20240S =,则()2022202420242023S S a a =−+,2024a 所在点的坐标为()22,22,则2024222244a =+=,2023a 所在点的坐标为()21,22,则2023212243a =+=,2022a 所在点的坐标为()20,22,则2022202242a =+=,故A 正确;()()20222024202420230444387S S a a =−+=−+=−,故B 正确;8a 所在点的坐标为()1,1,则8112a =+=,16a 所在点的坐标为()2,2−−,则16224a =−−=−,故C 错误;22222244144245454544n n n n n nn n n n n n S S S aaa++++++++=−=+++,对应点的坐标为()1,+n n ,()1,1n n +−,…,()1,1n +,所以()()()()()245111112122n n S n n n n n n n n +=+++++−++++=+++++()()2123122n n n n n ++++==,故D 正确.故选:ABD 【点睛】关键点点睛:观察图形,利用对称性求解问题,对D 选项,考虑已知的前n 项和与所求的关系,结合图形,可适当先列举找到规律,再求解.28.(2022·辽宁·东北育才学校二模)如图所示,正五边形ABCDE 的边长为1a ,正五边形11111A B C D E 的边长为2a ,正五边形22222A B C D E 的边长为3a ,……,依次下去,正五边形11111n n n n n A B C D E −−−−−的边长为n a ,记ACE α∠=,则下列结论中正确的是( )A.cos α=B .数列{}n aC .数列{}n a的等比数列D .对任意θ∈R ,cos cos(2)cos(4)cos(6)cos(8)1θθαθαθαθα++++++++= 【答案】AB 【解析】 【分析】根据正五边形的几何性质可知1111111,,,B EAC AE AC CE AB AE CB AB AE B E B C λ======,根据长度关系列方程解得λ=,再利用正弦定理可求得cos α,通过图形类比归纳的12211n n a a a a λ+==,对于D ,注意5πα=,利用诱导公式和两角和差公式化简计算. 【详解】在△ACE ,2CAE AEC α∠=∠=,设1AC CE AE a λλ=== 易知△ACE ∽△1B AE ,则111B E a λ=,11AB AE a ==1ACE CAB ∠=∠,则111AB CB a ==∵11CB B E CE +=,即1111a a a λλ+=,解得λ=又∵AC AE λ=,由正弦定理得sin 2sin αλα=,即2sin cos sin ααλα=∴cos 2λα=,A 正确; 同理:△11B EC ∽△1B AE ,则111211B C B E AE λλ==即2121a a λ=,则2211a a λ==以此类推,1n n a a +={}n aB 正确,C 不正确;∵cos α=2cos 22cos 1αα=−=又∵5πα=,则可得: cos cos(2)cos(4)cos(6)cos(8)θθαθαθαθα++++++++[][][]cos cos(2)cos ()πcos ()πcos (2)2πθθαθαθαθα=+++−+++++−+cos cos(2)cos()cos()cos(2)θθαθαθαθα=++−−−++−()cos 2cos cos 22cos cos cos 12cos 22cos 0θθαθαθαα=+−=+−=D 不正确; 故选:AB .。
一、选择题1.在各项为正的递增等比数列{}n a 中,12664a a a =,13521a a a ++=,则n a =( ) A .12n +B .12n -C .132n -⨯D .123n -⨯2.已知数列{}n a ,{}n b 中满足()1231n n a a n ++=≥,110a =,1n n b a =-,若{}n b 前n 项之和为n S ,则满足不等式16170n S -<的最小整数n 是( ). A .8B .9C .11D .103.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36B .48C .56D .724.已知数列{}n a 满足25111,,25a a a ==且*121210,n n n n a a a ++-+=∈N ,则*n N ∈时,使得不等式100n n a a +≥恒成立的实数a 的最大值是( ) A .19B .20C .21D .225.数列{}n a 满足1n n a a n +=+,且11a =,则8a =( ). A .29B .28C .27D .266.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8B .13C .26D .1627.设数列{}n a 满足122,6,a a ==且2122n n n a a a ++-+=,若[]x 表示不超过x 的最大整数,则121024102410241024a a a ⎡⎤+++=⎢⎥⎣⎦( ) A .1022 B .1023 C .1024 D .10258.已知定义在R 上的函数()f x 是奇函数,且满足3()(),(1)32f x f x f -=-=,数列{}n a 满足11a =,且21n nS a n n=-,(n S 为{}n a 的前n 项和,*)n N ∈,则56()()f a f a +=( )A .1B .3C .-3D .09.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0D .若S 2020>0,则a 2+a 4>010.删去正整数1,2,3,4,5,…中的所有完全平方数与立方数(如4,8),得到一个新数列,则这个数列的第2020项是( ) A .2072B .2073C .2074D .207511.已知数列{}n a 的前n 项和为n S ,且21n n S a =-,则66(S a = ) A .6332B .3116C .12364 D .12712812.数列{}n a 中,2n ka n n=+,若对任意n ∈+N ,都有3n a a ≥成立,则实数k 的取值范围为( ) A .[]12,24B .(]12,24C .[]3,12D .[]3,12二、填空题13.已知等比数列{}n a 的首项为2,公比为13-,其前n 项和记为n S ,若对任意的*n N ∈,均有13n nA SB S ≤-≤恒成立,则B A -的最小值为______. 14.设n S 是数列{}n a 的前n 项和,13a =,当2n ≥时有1122n n n n n S S S S na --+-=,则使122021m S S S ≥成立的正整数m 的最小值为______.15.已知等差数列{} n a 的前n 项和为n S ,若1100OB a OA a OC =+,且A 、B 、C 三点共线(该直线不过原点O ),则100S =____________.16.设公差不为零的等差数列{}n a 的前n 项和为n S ,12a =.若存在常数λ,使得2n n a a λ=()*N n ∈恒成立,则910nn S ⎛⎫ ⎪⎝⎭取最大值时,n =________.17.已知n S 为正项数列{}n a 的前n 项和,且()2*1122n n n S a a n =+∈N .则数列{}n a 的通项公式为________. 18.等差数列{}n a 满足:123202012320201111a a a a a a a a ++++=-+-+-+⋯+-12320201111a a a a =++++++++,则其公差d 的取值范围为______.19.根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式n a =__________.20.正项数列{}n a 的前n 项和为n S ,且()22n nn S a a n N *++∈,设()2112n n n na c S +=-⋅,则数列{}n c 的前2019项的和为___________.三、解答题21.已知数列{}n a 满足12a =,1496n n a a n +=+-.(Ⅰ)问是否存在实数x ,y ,使得数列{}n a xn y ++是等比数列?若存在,求出x ,y 的值,若不存在,请说明理由; (Ⅱ)设1231nin i aa a a a ==++++∑,求()13ni i i a i =+∑.22.设数列{}n a 的前n 项和为n S ,且122n n n S a +=-,*n N ∈.(1)求数列{}n a 的通项公式; (2)令11n n n n b a a n +=-+,记数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n T .求证:43n T <,*n N ∈. 23.设{}n a 是公比为正数的等比数列, 12a =,324a a =+. (1)求{}n a 的通项公式;(2)设{}n b 是首项为1,公差为2的等差数列,求数列{}n n a b +的前n 项和n S . 24.已知数列{}n a 的前n 项和n S 满足()*12n n a S n N =-∈.(1)求数列{}n a 的通项公式, (2)设函数13()log f x x =,()()()12n n b f a f a f a =+++,1231111n nT b b b b =+++求证:2n T <. 25.已知数列{}n a 的前n 项和为n S ,当2n ,*n N ∈时,112n n S a -=-,且112a =. (1)求数列{}n a 的通项公式;(2)设n n b na =,数列{}n b 的前n 项和n T ,求使得158n T <成立的n 的最大值. 26.设n S .是数列{}n a 的前n 项和,()2n S k n n n N =⋅+∈,其中k 是常数.(1)求1a 及n a 的值;(2)当k =2时,求证:12n 1112 (3)S S S +++<;(3)设0k >,记21n nb a =,求证:当2n ≥时,23411...14(1)n n b b b b n k k -<++++<-++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】设其公比为q ,由等比数列通项公式得34a =,进而得2333221a a a q q++=,解得2q =±或12q =±,再根据数列单调性即可得2q ,进而得12n na【详解】{}n a 为等比数列,设其公比为q ,()3362312611364a a a a q a q a ∴====,则34a =,13521a a a ∴++=,2333221a a a q q∴++=, 即2244421q q++=, 解得2q =±或12q =±, 又{}n a 各项为正且递增,2q ∴=,3313422n n n n a a q ---∴==⨯=.故选:B . 【点睛】本题解题的关键是先根据题意得34a =,进而将13521a a a ++=转化为2333221a a a q q++=求q ,考查运算求解能力,是中档题. 2.D解析:D 【分析】由123n n a a ++=可求得数列{}n a 的通项公式,进而求得数列{}n b ,表示出n S , 令16170n S -<,即可得到满足不等式16170n S -<的最小整数n . 【详解】解:由题意可知:123n n a a ++=, 即11322n n a a +=-+, 即()11112n n a a +-=--, 又110a =,119a ∴-=,即数列{}1n a -是以首项为9,公比为12-的等比数列, 11192n n a -⎛⎫∴-=⨯- ⎪⎝⎭,即11192n n a -⎛⎫=+⨯- ⎪⎝⎭,11192n n n b a -⎛⎫∴=-=⨯- ⎪⎝⎭,12111219661212n nn n S b b b ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦∴=++⋅⋅⋅+=⨯=-⨯- ⎪⎛⎫⎝⎭-- ⎪⎝⎭, 则111632170n n S --=⨯<, 即1112510n -⎛⎫<⎪⎝⎭, 又9112512⎛⎫= ⎪⎝⎭,∴满足不等式16170n S -<的最小整数19n -=, 即10n =. 故选:D. 【点睛】关键点点睛:本题解题的关键是利用构造法求出数列{}n a 的通项公式.3.A【分析】根据等差数列的性质,由题中条件,得出54a =,再由等差数列前n 项和公式,即可得出结果. 【详解】因为{}n a 为等差数列,25812a a a ++=, 所以5312a =,即54a =, 所以()1999983622a a S +⨯===. 故选:A . 【点睛】熟练运用等差数列性质的应用及等差数列前n 项和的基本量运算是解题关键.4.B解析:B 【分析】由等差数列的性质可得数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,再由等差数列的通项公式可得1n n a ,进而可得1n a n=,再结合基本不等式即可得解. 【详解】因为*121210,n n n n a a a ++-+=∈N ,所以12211n n n a a a ++=+, 所以数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,设其公差为d , 由25111,25a a a ==可得25112,115a a a ==⋅, 所以111121145d a d a a ⎧+=⎪⎪⎨⎪+=⋅⎪⎩,解得1111a d ⎧=⎪⎨⎪=⎩,所以()1111n n d n a a =+-=,所以1n a n=,所以不等式100n n a a +≥即100n a n+≥对任意的*n N ∈恒成立,又10020n n +≥=,当且仅当10n =时,等号成立, 所以20a ≤即实数a 的最大值是20.【点睛】关键点点睛:解决本题的关键是构造新数列求数列通项及基本不等式的应用.5.A解析:A 【分析】由已知得11n n n a a -=--,运用叠加法可得选项. 【详解】 解:由题意知:1n n a a n +=+,11n n a a n -∴-=-,即:211a a -=,322a a -=,,11n n n a a -=--,把上述所有式子左右叠加一起得:(1)12n n n a -=+, 88(81)1292a ⨯-∴=+=. 故选:A. 【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式1(1)n a a n d =+-,或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a ,是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第n −1项的差是个有规律的数列,就可以利用这种方法;(5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第n −1项商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且k ≠1,k ≠0).一般化方法:设()1n n a m k a m -+=+,得到()11b b k m m k =-=-,, 可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭ 是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于112(),n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,m ≠0),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子;(7)1nn n a ba c +=+(b 、c 为常数且不为零,n *∈N )型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用(6)中的方法求解即可.6.B解析:B 【分析】先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据()11313713132a a S a +==求解出结果.【详解】因为()351041072244a a a a a a ++=+==,所以71a =,又()1131371313131132a a S a +===⨯=, 故选:B. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.7.B解析:B 【分析】由2122n n n a a a ++-+=变形得()2112n n n n a a a a +++---=,令1n n n b a a +=-,可得n b 为等差数列,求得{}n b 通项进而求得{}n a 通项, 结合裂项公式求1n a ⎧⎫⎨⎬⎩⎭前n 项和,再由最大整数定义即可求解 【详解】由()12121222n n n n n n n a a a a a a a +++++--=-+⇒=-,设1n n n b a a +=-,则12n nb b ,{}n b 为等差数列,1214b a a =-=,公差为2d =,故22=+n b n ,112n n n b n a a --==-,()1221n n a a n ---=-,,2122a a -=⨯,叠加得()()121n a a n n -=+-,化简得2n a n n =+,故()111111n a n n n n ==-++,所以1210241024102410241111111024110241223102410251025a a a ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫+++=⨯-+-++-=⨯-⎢⎥⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦ 1024102410231025⎡⎤=-=⎢⎥⎣⎦故选:B 【点睛】方法点睛:本题考查构造数列的使用,等差通项的求解,叠加法求前n 项和,裂项公式求前n 项和,新定义的理解,综合性强,常用以下方法: (1)形如()1n n a a f n --=的数列,常采用叠加法求解;(2)常见裂项公式有:()11111n n n n =-++,()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭,()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭8.C解析:C 【分析】判断出()f x 的周期,求得{}n a 的通项公式,由此求得56()()f a f a +. 【详解】依题意定义在R 上的函数()f x 是奇函数,且满足3()()2f x f x -=, 所以()333332222f x f x f x fx ⎛⎫⎛⎫⎛⎫⎛⎫+=---=--=-+ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()()()32f x f x f x ⎛⎫=---=--= ⎪⎝⎭,所以()f x 是周期为3的周期函数.由21n n S a n n=-得2n n S a n =-①, 当1n =时,11a =,当2n ≥时,()1121n n S a n --=--②,①-②得11221,21n n n n n a a a a a --=--=+(2n ≥),所以21324354213,217,2115,2131a a a a a a a a =+==+==+==+=,652163a a =+=.所以56()()f a f a +=()()()()()()()316331013211013f f f f f f f +=⨯++⨯=+=--=-故选:C【点睛】如果一个函数既是奇函数,图象又关于()0x a a =≠对称,则这个函数是周期函数,且周期为4a .9.A解析:A 【分析】根据等比数列的求和公式及通项公式,可分析出答案. 【详解】等比数列{}n a 的前n 项和为n S ,当1q ≠时,202112021(1)01a q S q-=>-,因为20211q-与1q -同号,所以10a >,所以2131(1)0a a a q +=+>,当1q =时,2021120210S a =>,所以10a >,所以1311120a a a a a +=+=>, 综上,当20210S >时,130a a +>, 故选:A 【点睛】易错点点睛:利用等比数列求和公式时,一定要分析公比是否为1,否则容易引起错误,本题需要讨论两种情况.10.C解析:C 【分析】由于数列22221,2,3,2,5,6,7,8,3,45⋯共有2025项,其中有45个平方数,12个立方数,有3个既是平方数,又是立方数的数,所以还剩余20254512+31971--=项,所以去掉平方数和立方数后,第2020项是在2025后的第()20201971=49-个数,从而求得结果. 【详解】∵2452025=,2462116=,20202025<,所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉45个平方数,因为331217282025132197=<<=,所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉12个立方数,又66320254<<,所以在从数列22221,2,3,2,5,6,7,8,3,45⋯中有3个数即是平方数, 又是立方数的数,重复去掉了3个即是平方数,又是立方数的数,所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉平方数和立方数后还有20254512+31971--=项,此时距2020项还差2020197149-=项,所以这个数列的第2020项是2025492074+=,故选:C.【点睛】本题考查学生的实践创新能力,解决该题的关键是找出第2020项的大概位置,所以只要弄明白在数列22221,2,3,2,5,6,7,8,3,45⋯去掉哪些项,去掉多少项,问题便迎刃而解,属于中档题. 11.A解析:A【分析】利用数列递推关系:1n =时,1121a a =-,解得1a ;2n 时,1n n n a S S -=-.再利用等比数列的通项公式与求和公式即可得出.【详解】21n n S a =-,1n ∴=时,1121a a =-,解得11a =;2n 时,1121(21)n n n n n a S S a a --=-=---,化为:12n n a a -=.∴数列{}n a 是等比数列,公比为2.56232a ∴==,66216321S -==-. 则666332S a =. 故选:A .【点睛】本题考查数列递推关系、等比数列的通项公式与求和公式,考查推理能力与计算能力,属于中档题.12.A解析:A【分析】根据题意,可知当0k ≤时,数列{}n a 单调递增,不符合题意;当0k >时,对任意n ∈+N ,都有3n a a ≥成立,得出2343a a a a ≥⎧⎨≥⎩,即可求出实数k 的取值范围,再通过数列的单调性进行验证,符合题意,即可得出答案.【详解】解:由题可知,2n k a n n=+,对任意n ∈+N ,都有3n a a ≥成立, 当0k ≤时,可知数列{}n a 单调递增,不符合题意;当0k >时,若对任意n ∈+N ,都有3n a a ≥成立,则2343a a a a ≥⎧⎨≥⎩,即46238643k k k k ⎧+≥+⎪⎪⎨⎪+≥+⎪⎩,解得:1224k k ≥⎧⎨≤⎩, 1224k ∴≤≤,此时,数列在()1,2上递减,()3,+∞上递增,或在()1,3上递减,()4,+∞上递增, 故符合题意,所以实数k 的取值范围为[]12,24.故选:A.【点睛】本题考查数列的恒成立问题,根据数列的单调性求参数范围,考查分析解题和运算能力.二、填空题13.【分析】根据等比数列的求和公式由题中条件得到讨论为奇数和为偶数两种情况分别判定其单调性得出最大值和最小值进而可求出结果【详解】因为等比数列的首项为2公比为其前项和记为所以当为奇数时显然单调递减因为所 解析:94【分析】根据等比数列的求和公式,由题中条件,得到n S ,讨论n 为奇数和n 为偶数两种情况,分别判定其单调性,得出最大值和最小值,进而可求出结果.【详解】因为等比数列{}n a 的首项为2,公比为13-,其前n 项和记为n S , 所以121331331112322313n n n n S ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦==--=-⋅-⎢⎥ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎢⎥⎣⎦-- ⎪⎝⎭, 当n 为奇数时,331223n n S ⎛⎫=+⋅ ⎪⎝⎭,显然单调递减, 因为*n N ∈,所以13312223n S S ≤=+⋅=,又33132232nn S ⎛⎫=+⋅> ⎪⎝⎭,所以322n S <≤; 当n 为偶数时,331223n n S ⎛⎫=-⋅ ⎪⎝⎭,显然单调递增, 因为*n N ∈,所以233142293n S S ≥=-⋅=, 又33132232n n S ⎛⎫=-⋅< ⎪⎝⎭,所以4332n S ≤<, 综上,对任意的*n N ∈,都有423n S ≤≤, 所以436n S ≤≤,11324n S ≤≤,则31142n S -≤-≤-, 所以31143642n n S S -≤-≤-,即13111342n n S S ≤-≤, 因此对任意的*n N ∈,都有13111342n n S S ≤-≤; 为使对任意的*n N ∈,均有13n n A S B S ≤-≤恒成立, 只需112B ≥,134A ≤, 所以B A -的最小值为11139244-=. 故答案为:94. 【点睛】关键点点睛: 求解本题的关键在于根据等比数列的求和公式求出n S 后,利用分类讨论的方法,根据n S 的单调性,求n S 的最值,进而即可求解.14.1010【分析】由与关系当时将代入条件等式得到数列为等差数列求出进而求出即可求出结论【详解】∵∴∴∴令则∴数列是以为首项公差的等差数列∴即∴∴由解得即正整数的最小值为故答案为:【点睛】方法点睛:本题 解析:1010【分析】由n S 与n a 关系,当2n ≥时,将1n n n a S S -=-代入条件等式,得到数列21{}n n S +为等差数列,求出n S ,进而求出12m S S S ,即可求出结论.【详解】∵1122n n n n n S S S S na --+-=,∴()11122n n n n n n S S S S n S S ---+-=-,∴()()1122121n n n n S S n S n S --=+--, ∴121212n n n n S S -+--=, 令21n n n b S +=,则()122n n b b n --=≥, ∴数列{}n b 是以111331b S a ===为首项,公差2d =的等差数列, ∴21n b n =-,即2121n n n S +=-,∴2121n n S n +=-, ∴12521321321m m S S S m m +=⨯⨯⨯=+-, 由212021m +≥,解得1010m ≥,即正整数m 的最小值为1010.故答案为: 1010.【点睛】方法点睛:本题考查等差数列的通项公式,考查递推关系式,求通项公式的主要方法有: 观察法:若已知数列前若干项,通过观察分析,找出规律;公式法:已知数列是等差数列或等比数列,或者给出前n 项和与通项公式的关系; 累加法:形如()1n n a a f n +=+的递推数列;累乘法:形如()1n n a a f n +=⋅的递推数列.15.【分析】先证明出当三点共线(该直线不过原点)且时可得出然后利用等差数列的求和公式可求得的值【详解】当三点共线(该直线不过原点)时则与共线则存在使得即可得因为且三点共线(该直线不过原点)则由等差数列求 解析:50【分析】先证明出当A 、B 、C 三点共线(该直线不过原点O )且OB xOA yOC =+时,1x y +=,可得出11001a a +=,然后利用等差数列的求和公式可求得100S 的值.【详解】当A 、B 、C 三点共线(该直线不过原点O )时,则AB 与AC 共线,则存在R λ∈,使得AB AC λ=,即()OB OA OC OA λ-=-,可得()1OB OA OC λλ=-+,OB xOA yOC =+,()11x y λλ∴+=-+=,因为1100OB a OA a OC =+,且A 、B 、C 三点共线(该直线不过原点O ),则11001a a +=,由等差数列求和公式可得()110010010010015022a a S +⨯===. 故答案为:50.【点睛】本题考查等差数列求和,同时也考查了平面向量三点共线结论的推导与应用,考查计算能力,属于中等题. 16.或19【分析】利用等差数列的通项公式求出再利用等差数列的前项和公式求出记利用作商法判断出数列的单调性即可求解【详解】设等差数列的公差为由题意当时当时所以解得或(舍去)所以记所以当时此时当时时此时所以 解析:18或19【分析】利用等差数列的通项公式求出λ、d ,再利用等差数列的前n 项和公式求出n S ,记910nn n T S ⎛⎫= ⎪⎝⎭,利用作商法判断出数列的单调性即可求解. 【详解】设等差数列{}n a 的公差为d ,由题意,当1n =时,21a a λ=,当2n =时,42a a λ=, 所以()22232d d d λλ+=⎧⎨+=+⎩,解得22d λ=⎧⎨=⎩ 或10d λ=⎧⎨=⎩(舍去), 所以()2112n n n d S na n n -=+=+, 记()2991010n n n n n T S n =⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭+, 所以()()()12129119210110910n n n n n n T T n n n ++⎛⎫⎡⎤+++ ⎪⎣⎦⎛⎫⎝⎭==+ ⎪⎝⎭⎛⎫+ ⎪⎝⎭, 当118n ≤≤,n *∈N 时,1921110n n T T n +⎛⎫=+≥ ⎪⎝⎭,此时1n n T T +≥, 当10n >时,n *∈N 时,1921110n n T T n +⎛⎫=+< ⎪⎝⎭,此时1n n T T +<,所以910nn S ⎛⎫ ⎪⎝⎭取最大值时,18n =或19 故答案为:18或19【点睛】本题考查了差数列的通项公式、等差数列的前n 项和公式、数列的单调性求数列中的最大项,属于中档题. 17.【分析】令由求出首项再由两式相减得出数列的递推关系式及可求出数列的通项公式【详解】由题意可得:当时所以当且时由所以两式作差可得整理可得因为所以因为所以数列为首项为1公差为1的等差1数列所以故答案为: 解析:n a n =【分析】令1n =,由()2*1122n n n S a a n =+∈N 求出首项11a =,再由()2*1122n n n S a a n =+∈N ,()2*1111122n n n S a a n ---=+∈N 两式相减得出数列的递推关系式,及可求出数列{}n a 的通项公式.【详解】 由题意可得:当1n =时,211111122a S a a ==+,所以11a =, 当2n ≥且*n ∈N 时,由()2*1122n n n S a a n =+∈N ,所以()2*1111122n n n S a a n ---=+∈N ,两式作差可得221111112222n n n n n a a a a a --+-=-,整理可得()()1101n n n n a a a a --+--=,因为10n n a a -+≠,所以11n n a a --=,因为11a =,所以数列{}n a 为首项为1,公差为1的等差1数列,所以n a n =.故答案为:n a n =【点睛】本题主要考查数列通项公式的求法,解题的关键是根据已知关系求出递推关系,属于中档题.18.【分析】由题意知等差数列中的项一定有正有负分成首项大于零和小于零两种情况进行讨论结合已知条件可知或从而可求出公差的取值范围【详解】解:由题意知等差数列中的项一定有正有负当时由则由则所以所以即;当时同 解析:(][),22,-∞-+∞【分析】由题意知,等差数列{}n a 中的项一定有正有负,分成首项大于零和小于零两种情况进行讨论,结合已知条件,可知101110101,1a a ≥<-或101110101,1a a ≤->,从而可求出公差的取值范围.【详解】解:由题意知,等差数列{}n a 中的项一定有正有负,当10,0a d <>时, 由123202012320201111a a a a a a a a ++++=-+-+-+⋯+-,则10111010100a a -≥⎧⎨≤⎩ , 由123202012320201111a a a a a a a a ++++=++++++++,则10111010010a a ≥⎧⎨+≤⎩, 所以101110101,1a a ≥≤-,所以10101a d +≥,即101012d a ≥-≥;当10,0a d ><时,同理可求出101012d a ≤--≤-,综上所述,公差d 的取值范围为(][),22,-∞-+∞. 故答案为: (][),22,-∞-+∞.【点睛】本题考查了等差数列的通项公式,考查了数列的单调性.本题的易错点是未讨论首项的正负问题. 19.【分析】观察图中点数增加规律是依次增加5可得求解【详解】第一图点数是1;第二图点数;第三图是;第四图是则第个图点数故答案为:【点睛】本题考查由数列的前几项求通项公式数列的前几项求通项公式的思路方法: 解析:54n -【分析】 观察图中点数增加规律是依次增加5,可得求解。
4.1 数列一、单选题1.已知数列{}n a 的前n 项和22n S n n m =-++,且对任意*1,0n n n a a +∈-<N ,则实数m 的取值范围是( ) A .()2,-+∞ B .(),2-∞- C .()2,+∞ D .(),2-∞【答案】A【分析】根据数列为递减数列,结合n a 与n S 的关系即可求解. 【详解】因为10n n a a +-<,所以数列{}n a 为递减数列,当2n ≥时,()2212(1)2123n n n a S S n n m n n m n -⎡⎤=-=-++---+-+=-+⎣⎦,故可知当2n ≥时,{}n a 单调递减, 故{}n a 为递减数列,只需满足21a a <, 因为1211,1a a S m =-==+, 所以11m -<+,解得2m >-,2.已知数列{}n a 的前n 项和2n S n n =+,那么它的通项公式n a =( ) A .n B .2nC .2n +1D .n +1【答案】B【分析】根据111,1,2n n n a S n a S S n -==⎧⎨=-≥⎩即可求n a .【详解】11112a S ==+=,()()()()221112,2n n n a S S n n n n n n -⎡⎤=-=+--+-=≥⎣⎦,当1n =时,122n a ==, 2n a n ∴=.3.已知数列{}n a 满足111n n a a ++=,若502a =,则1a =( ) A .1- B .12C .32D .24.在数列{}n a 中,12a =,11n n a a -=-(2n ≥,N n +∈),则2023a =( )A .12 B .1C .1-D .25.已知数列n 满足17n n +,则2( ) A .1- B .12C .2D .526.已知数列{}n a 满足*1120222022,,N 20232023nn a a n +⎛⎫==∈ ⎪⎝⎭,则下列结论成立的是( ) A .202120222020a a a << B .202220212020a a a << C .202120202022a a a << D .202020212022a a a <<【答案】A【分析】根据指数函数的性质判断1342a a a a <<<,即可猜想数列{}n a 的奇数项递增,偶数项递减,且奇数项小于偶数项,再证明即可,从而可得答案.7.已知数列n a 满足12111,3,N ,2n n n a a a a a n n *-+===+∈≥,则2022a =( )A .2-B .1C .4043D .4044【答案】A【分析】由递推式得到21n n a a +-=-,从而得到6n n a a +=,由此再结合11n n n a a a -+=+即可求得2022a 的值.【详解】由11n n n a a a -+=+得12n n n a a a ++=+, 两式相加得21n n a a +-=-,即3n n a a +=-,故6n n a a +=, 所以20226321()2a a a a a ==-=--=-.8.已知数列{}n a 的前n 项和221n S n =-+,则这个数列的通项公式为( ) A .42n a n =-+B .32n a n =-+C .1,1,4 2.2n n a n n -=⎧=⎨-+≥⎩D .1,1,32,2n n a n n -=⎧=⎨+≥⎩【答案】C【分析】已知和求通项公式:11,1,2n n n S n a S S n -=⎧=⎨-≥⎩进行计算.【详解】当1n =时,11211;a S ==-+=-当2n ≥时,()2212121142;n n n a S S n n n -=-=-++--=-+ 二、多选题9.已知数列{}n a 的通项公式为31,22,n n n a n n +⎧=⎨-⎩为奇数为偶数,则下列正确的是( )A .619a =B .76a a >C .522S =D .68S S >【答案】BC【分析】根据通项公式即可作出判断.【详解】对于A ,6是偶数,则621210a =-=-,A 错误; 对于B ,7622a a =>,B 正确;对于C ,54(2)10(6)1622S =+-++-+=,C 正确;对于D ,56612S S a =+=,86781222(14)20S S a a =++=++-=,68S S <,D 错误.10.下列数列{}n a 是单调递增数列的有( ) A .231n a n n =-+ B .12nn a ⎛⎫=- ⎪⎝⎭C .2n a n n=+D .ln1n n a n =+55,89,144,233,⋯,在现代生物及化学等领域有着广泛的应用,它可以表述为数列{}n a 满足()12211,n n n a a a a a n +++===+∈N .若此数列各项被3除后的余数构成一个新数列{}n b ,记{}n b 的前n 项和为n S ,则以下结论正确的是( ) A .910n n b b ++-= B .1029n n S S ++=+ C .20222b = D .20222696S =【答案】ABC【分析】根据数列{}n a 可得出数列{}n b 是以8为周期的周期数列,依次分析即可判断. 【详解】数列{}n a 为1,1,2,3,5,8,13,21,34,55,89,144,233,…, 被3除后的余数构成一个新数列{}n b ,∴数列{}n b 为1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,…,观察可得数列{}n b 是以8为周期的周期数列,故910n n b b ++-=,A 正确;。
专题六数列--2020-2023高考真题数学专题分类汇编真题卷题号考点考向2023新课标1卷7等差数列等差数列的判定、等差数列的性质20等差数列求等差数列的通项公式及基本量计算2023新课标2卷8等比数列等比数列的性质18等差数列、数列的综合应用求等差数列的通项公式及前n 项和、数列的综合应用(不等式证明)2022新高考1卷17数列的通项公式、数列求和由递推公式求通项公式、裂项相消法求和2022新高考2卷17等差数列、等比数列等差、等比数列的通项公式2021新高考1卷16数列的实际应用错位相减法求和17数列的通项公式、数列求和由递推公式求通项公式、公式法求和2021新高考2卷12等比数列数列的新定义问题17等差数列求等差数列的通项公式、等差数列求和2020新高考1卷14等差数列等差数列的性质、等差数列求和18等比数列、数列求和求等比数列的通项公式、数列求和2020新高考2卷15等差数列求等差数列的通项公式、等差数列求和18等比数列求等比数列的通项公式、等比数列求和【2023年真题】1.(2023·新课标I 卷第7题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列:乙:{}n sn为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】C 【解析】【分析】本题考查等差数列的判定、等差数列前n 项和、充分必要条件的判定,属于中档题.结合等差数列的判断方法,依次证明充分性、必要性即可.【解答】解:方法1:为等差数列,设其首项为1a ,公差为d ,则1(1)2n n n S na d -=+,111222n S n d d a d n a n -=+=+-,112n n S S dn n +-=+,故{}nS n为等差数列,则甲是乙的充分条件,,反之,{}n Sn为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t 即1(1)n nna S t n n +-=+,故1(1)n n S na t n n +=-⋅+故1(1)(1)n n S n a t n n -=--⋅-,2n 两式相减有:11(1)22n n n n n a na n a tn a a t ++=---⇒-=,对1n =也成立,故{}n a 为等差数列,则甲是乙的必要条件,故甲是乙的充要条件,故选.C 方法2:因为甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为.d 即1(1)2n n n S na d -=+,则11(1)222n S n d da d n a n -=+=+-,故{}n S n为等差数列,即甲是乙的充分条件.反之,乙:{}n S n为等差数列.即11n n S S D n n +-=+,1(1).n SS n D n =+-即1(1).n S nS n n D =+-当2n 时,11(1)(1)(2).n S n S n n D -=-+--上两式相减得:112(1)n n n a S S S n D -=-=+-,所以12(1).n a a n D =+-当1n =时,上式成立.又1112(2(1))2n n a a a nD a n D D +-=+-+-=为常数.所以{}n a 为等差数列.则甲是乙的必要条件,故甲是乙的充要条件,故选C .2.(2023·新课标II 卷第8题)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =()A.120B.85C.85- D.120-【答案】C 【解析】【分析】本题考查等比数列的基本性质,属于中档题.利用等比数列前n 项和之间差的关系可知2S ,42S S -,64S S -,86S S -成等比数列,列出关系式计算即可得解.【解答】解:2S ,42S S -,64S S -,86S S -成等比数列,242224264264262(1)55(21)521S S q S q S S S q S S q S S S⎧-=⎧+=-⎪-==+⇒⎨⎨-=⎩⎪=⎩从而计算可得24681,5,21,85S S S S =-=-=-=-故选.C 3.(2023·新课标I 卷第20题)设等差数列{}n a 的公差为d ,且 1.d >令2n nn nb a +=,记n S ,n T 分别为数列{}{},n n a b 的前n 项和.(1)若21333a a a =+,3321S T +=,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999S T -=,求.d【答案】解:因为21333a a a =+,故3132d a a d ==+,即1a d =,故n a nd =,所以21n n n n b nd d++==,(1)2n n n d S +=,(3)2n n n T d +=,又3321S T +=,即34362122d d ⨯⨯+=,即22730d d -+=,故3d =或1(2d =舍),故{}n a 的通项公式为:3.n a n =(2)方法一:(基本量法)若{}n b 为等差数列,则2132b b b =+,即11123123422a d a a d⨯⨯⨯⨯=+++,即2211320a a d d -+=,所以1a d =或12;a d =当1a d =时,n a nd =,1n nb d +=,故(1)2n n n d S +=,(3)2n n n T d+=,又999999S T -=,即99100991029922d d ⋅⋅-=,即250510d d --=,所以5150d =或1(d =-舍);当12a d =时,(1)n a n d =+,n n b d =,故(3)2n n n d S +=,(1)2n n n T d+=,又999999S T -=,即99102991009922d d ⋅⋅-=,即251500d d --=,所以50(51d =-舍)或1(d =舍);综上:51.50d =方法二:因为{}n a 为等差数列且公差为d ,所以可得1n a dn a d =+-,则211(1)n n n n nb dn a d dn a d++⋅==+-+-解法一:因为{}n b 为等差数列,根据等差数列通项公式可知n b 与n 的关系满足一次函数,所以上式中的分母“1dn a d +-”需满足10a d -=或者11da d=-,即1a d =或者12;a d =解法二:由211(1)n n n n nb dn a d dn a d++⋅==+-+-可得,112b a =,216b a d =+,31122b a d =+,因为{}n b 为等差数列,所以满足1322b b b +=,即111212622a a d a d+=⋅++,两边同乘111()(2)a a d a d ++化简得2211320a a d d -+=,解得1a d =或者12;a d =因为{}n a ,{}nb 均为等差数列,所以995099S a =,995099T b =,则999999S T -=等价于50501a b -=,①当1a d =时,n a dn =,1(1)n b n d =+,则505051501a b d d-=-=,得250510(5051)(1)0d d d d --=⇒-+=,解得5150d =或者1d =-,因为1d >,所以51;50d =②当12a d =时,(1)n a d n =+,1n b n d =,则505050511a b d d-=-=,化简得251500(5150)(1)0d d d d --=⇒+-=,解得5051d =-或者1d =,因为1d >,所以均不取;综上所述,51.50d =【解析】本题第一问考查数列通项公式的求解,第二问考查等差数列有关性质,等差数列基本量的求解,计算量较大,为较难题.4.(2023·新课标II 卷第18题)已知为等差数列,,记n S ,n T 分别为数列,的前n 项和,432S =,316.T =(1)求的通项公式;(2)证明:当5n >时,n S .n T >【答案】解:(1)设数列的公差为d ,由题意知:,即,解得52(1)2 3.n a n n ∴=+-=+(2)由(1)知23n a n =+,,212121n n b b n -+=+,当n 为偶数时,当n 为奇数时,22113735(1)(1)4(1)652222n n n T T b n n n n n ++=-=+++-+-=+-,∴当n 为偶数且5n >时,即6n 时,22371(4)(1)022222n n n nT S n n n n n n -=+-+=-=->,当n 为奇数且5n >时,即7n 时,22351315(4)5(2)(5)0.22222n n T S n n n n n n n n -=+--+=--=+->∴当5n >时,n S .n T >【解析】本题考查了等差数列的通项公式、前n 项和公式等.(1)由已知432S =,316T =,根据等差数列的前n 项和公式展开,即可得出等差数列的首项15a =,公差2d =,进而得出通项公式2 3.n a n =+(2)由(1)知23n a n =+,可得(4)n S n n =+,数列的通项公式,进而212121n n b b n -+=+,分两情况讨论,当n 为偶数时,n T 中含有偶数项,相邻两项两两一组先求和,得出237.22n T n n =+当n 为奇数时,1n +为偶数,此时11.n n n T T b ++=-最后只需证明0n n T S ->即可.【2022年真题】5.(2022·新高考I 卷第17题)记n S 为数列{}n a 的前n 项和,已知11a =,n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112.na a a +++< 【答案】解:1112(1)(1)33n n S S n n a a +=+-=,则23n n n S a +=①,1133n n n S a +++∴=②;由②-①得:111322;33n n n n n a n n n a a a a n++++++=-⇒=∴当2n 且*n N ∈时,13211221n n n n n a a a a a a a a a a ---=⋅⋅ 1543(1)(1)1232122n n n n n n n a n n +++=⋅⋅⋅=⇒=-- ,又11a =也符合上式,因此*(1)();2n n n a n N +=∈1211(2)2((1)1n a n n n n ==-++,1211111111112(2(12122311n a a a n n n ∴+++=-+-++-=-<++ ,即原不等式成立.【解析】本题考查了数列与不等式,涉及裂项相消法求和、等差数列的通项公式、根据数列的递推公式求通项公式等知识,属中档题.(1)利用11n n n a S S ++=-进行求解然后化简可求出{}n a 的通项公式;(2)由(1)可求出1112()1n a n n =-+,然后再利用裂项相消法求和可得.6.(2022·新高考II 卷第17题)已知{}n a 为等差数列,{}n b 为公比为2的等比数列,且223344.a b a b b a -=-=-(1)证明:11;a b =(2)求集合1{|,1500}k m k b a a m =+中元素个数.【答案】解:(1)设等差数列{}n a 公差为d由2233a b a b -=-,知1111224a d b a d b +-=+-,故12d b =由2244a b b a -=-,知111128(3)a d b b a d +-=-+,故11124(3);a d b d a d +-=-+故1112a d b d a +-=-,整理得11a b =,得证.(2)由(1)知1122d b a ==,由1k m b a a =+知:11112(1)k b a m d a -⋅=+-⋅+即111112(1)2k b b m b b -⋅=+-⋅+,即122k m -=,因为1500m ,故1221000k -,解得210k ,故集合1{|,1500}k m k b a a m =+中元素的个数为9个.【解析】本题考查等差、等比数列的通项公式,解指数不等式,集合中元素的个数问题,属于中档题.【2021年真题】7.(2021·新高考II 卷第12题)(多选)设正整数010112222k k k k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ ,则()A.()()2n n ωω= B.()()231n n ωω+=+C.()()8543n n ωω+=+ D.()21nnω-=【答案】ACD 【解析】【分析】本题重在对新定义进行考查,合理分析所给条件是关键,属于拔高题.利用()n ω的定义可判断ACD 选项的正误,利用特殊值法可判断B 选项的正误.【解答】解:对于A 选项,010112222k k k k n a a a a --=⋅+⋅++⋅+⋅ ,,则12101122222kk k k n a a a a +-=⋅+⋅++⋅+⋅ ,,A 选项正确;对于B 选项,取2n =,012237121212n +==⋅+⋅+⋅,,而0120212=⋅+⋅,则()21ω=,即,B 选项错误;对于C 选项,34302340101852225121222k k n a a a a a ++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅+ 32k k a ++⋅,所以,,23201230101432223121222k k n a a a a a ++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅+ 22k k a ++⋅,所以,,因此,,C 选项正确;对于D 选项,01121222n n --=+++ ,故,D 选项正确.故选.ACD 8.(2021·新高考I 卷第16题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推.则对折4次共可以得到不同规格图形的种数为____________________;如果对折*()n n N ∈次,那么12n S S S ++= __________2dm .【答案】5;3240(3)2nn +⨯-【解析】【分析】本题考查实际生活中的数列问题,由特殊到一般的数学思想.根据题设列举,可以得到折叠4次时会有五种规格的图形.由面积的变化关系得到面积通项公式,从而由错位相减法得到面积和.【解答】解:对折3次时,可以得到2.512dm dm ⨯,56dm dm ⨯,103dm dm ⨯,20 1.5dm dm ⨯四种规格的图形.对折4次时,可以得到2.56dm dm ⨯,1.2512dm dm ⨯,53dm dm ⨯,10 1.5dm dm ⨯,200.75dm dm ⨯五种规格的图形.对折3次时面积之和23120S dm =,对折4次时面积之和2475S dm =,即12402120S ==⨯,2180360S ==⨯,3120430S ==⨯,475515S ==⨯,……得折叠次数每增加1,图形的规格数增加1,且()*12401,2nn S n n N ⎛⎫=+⨯∈ ⎪⎝⎭,121111240[234(1)]2482n n S S S n ∴++=⨯⨯+⨯+⨯++⋅+ 记231242n n n T +=+++ ,则112312482n n n T ++=+++ ,11111111()224822n n n n n n T T T ++-==++++- 113113322222n n n n n ++++=--=-,得332n nn T +=-,123240(32n nn S S S +∴++=⨯-,故答案为5;3240(3).2n n +⨯-9.(2021·新高考I 卷第17题)已知数列{}n a 满足11a =,,(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.【答案】解:⑴12b a =,且21+1=2a a =,则1=2b ,24b a =,且4321215a a a =+=++=,则25b =;1222121213n n n n n b a a a b +++==+=++=+,可得13n n b b +-=,故{}n b 是以2为首项,3为公差的等差数列;故()21331n b n n =+-⨯=-.(2)数列{}n a 的前20项中偶数项的和为2418201210109=102+3=1552a a a ab b b ⨯++++=+++⨯⨯ ,又由题中条件有211a a =+,431a a =+, ,20191a a =+,故可得n a 的前20项的和【解析】本题考查了数列递推关系式运用,等差数列通项公式求法,数列求和,考查了分析和运算能力,属于中档题.(1)结合题干给的递推关系,可以快速的算出1b 和2b ,同时利用1222121213n n n n n b a a a b +++==+=++=+可判断出数列n b 为等差数列,即可求出数列通项公式;(2)n a 的前20项的和可分组求和,求出其对应的偶数项的和,再结合奇数项与偶数项的关系求解即可.10.(2021·新高考II 卷第17题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35a S =,244.a a S =(1)求数列{}n a 的通项公式n a ;(2)求使n n S a >成立的n 的最小值.【答案】解:(1)由等差数列的性质可得:535S a =,则3335,0a a a =∴=,设等差数列的公差为d ,从而有22433()()a a a d a d d =-+=-,412343333(2)()()2S a a a a a d a d a a d d =+++=-+-+++=-,从而22d d -=-,由于公差不为零,故:2d =,数列的通项公式为:*3(3)26().n a a n d n n N =+-=-∈(2)由数列的通项公式可得1264a =-=-,则2(1)(4)252n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即2526n n n ->-,整理可得(1)(6)0n n -->,解得1n <或6n >,又n 为正整数,故n 的最小值为7.【解析】本题考查等差数列基本量的求解,是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式;(2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值.【2020年真题】11.(2020·新高考I 卷第14题、II 卷第15题)将数列{21}n -与{32}n -的公共项从小到大排列得到数列{n a },则{}n a 的前n 项和为__________.【答案】232n n-【解析】【分析】本题考查数列的特定项与性质以及等差数列求和.利用公共项构成首项为1,公差为6的等差数列,利用求和公式即可求出答案.【解答】解:数列{21}n -的首项是1,公差为2的等差数列;数列{32}n -的首项是1,公差为3的等差数列;公共项构成首项为1,公差为6的等差数列;故{}n a 的前n 项和S n 为:.故答案为232.n n -12.(2020·新高考I 卷第18题)已知公比大于1的等比数列{}n a 满足24320,8.a a a +==(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m N ∈中的项的个数,求数列{}m b 的前100项和100.S 【答案】解:(1)设等比数列的公比为q ,且1q >,2420a a += ,38a =,,解得舍)或,∴数列{}n a 的通项公式为2;n n a =(2)由(1)知12a =,24a =,38a =,416a =,532a =,664a =,7128a =,则当1m =时,10b =,当2m =时,21b =,以此类推,31b =,45672b b b b ====,815...3b b ===,1631...4b b ===,3263...5b b ===,64100...6b b ===,10012100...S b b b ∴=+++0122438416532637480.=+⨯+⨯+⨯+⨯+⨯+⨯=【解析】本题考查了数列求和及等比数列通项公式,属中档题.(1)根据等比数列通项公式列出方程,求出首项和公比,即可求出通项公式;(2)根据等比数列通项公式,归纳数列{}m b 的规律,从而求出其前100项和.13.(2020·新高考II 卷第18题)已知公比大于1的等比数列{}n a 满足2420a a +=,38.a =(1)求{}n a 的通项公式;(2)求1223a a a a -+…11(1).n n n a a -++-【答案】解:(1)设等比数列{}n a 的公比为(1)q q >,则32411231208a a a q a q a a q ⎧+=+=⎨==⎩,1q > ,122a q =⎧∴⎨=⎩,1222.n n n a -∴=⋅=1223(2)a a a a -+ (11)(1)n n n a a -++-35792222=-+-+…121(1)2n n -++-⋅,322322[1(2)]82(1).1(2)55n n n +--==----【解析】本题考查等比数列的通项公式,前n 项求和公式,考查转化思想和方程思想,属于基础题.(1)根据题意,列方程组32411231208a a a q a q a a q ⎧+=+=⎨==⎩,解得1a 和q ,然后求出{}n a 的通项公式;(2)根据条件,可知12a a ,23a a -,…11(1)n n n a a -+-,是以32为首项,22-为公比的等比数列,由等比数列求和公式,即可得出答案.。
一、选择题1.已知数列{}n a 中,12a =,111(2)n n a n a -=-≥,则2021a 等于( ) A .1-B .12-C .12D .22.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题,其中正确的命题的个数是( )①若100S =,则280S S +=;②若412S S =,则使0n S >的最大的n 为15;③若150S >,160S <,则{}n S 中8S 最大;④若78S S <,则89S S <.A .1个B .2个C .3个D .4个3.已知数列{}n a 满足2122111,16,2n n n a a a a a ++===则数列{}n a 的最大项为( ) A .92B .102C .8182D .1124.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8B .13C .26D .1625.已知数列{}n a 满足11a =,122n n a a n n+=++,则10a =( ) A .259B .145 C .3111D .1766.已知正项等比数列{}n a 的公比不为1,n T 为其前n 项积,若20172021T T =,则20202021ln ln a a =( ) A .1:3B .3:1C .3:5D .5:37.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0D .若S 2020>0,则a 2+a 4>08.两等差数列{}n a 和{}n b ,前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b ++的值为( ) A .14924B .7914C .165D .51109.设n S 是等差数列{}n a 的前n 项和,若535,9a a =则95S S =( ) A .1B .1-C .2D .1210.函数()2cos 2f x x x =-{}n a ,则3a =( ) A .1312πB .54π C .1712πD .76π 11.已知数列{}n a 是等比数列,11a >,且前n 项和n S 满足11lim n n S a →∞=,那么1a 的取值范围是( ) A.(B .()1,4C .()1,2D .()1,+∞12.已知等比数列{}141,1,8n a a a ==,且12231n n a a a a a a k ++++<,则k 的取值范围是( ) A .12,23⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .12,23⎡⎫⎪⎢⎣⎭D .2,3⎡⎫+∞⎪⎢⎣⎭二、填空题13.数列{}n a 满足2121231722222n n a a a a n n -+++⋅⋅⋅+=-,若对任意0λ>,所有的正整数n 都有22n k a λλ-+>成立,则实数k 的取值范围是_________.14.将正整数12分解成两个正整数的乘积有112⨯,26⨯,34⨯,三种,其中34⨯是这三种分解中两数差的绝对值最小的,我们称34⨯为12的最佳分解,当(),,p q p q p N q N **⨯≤∈∈是正整数n 的最佳分解时,我们定义函数()f n q p =-,例如(12)431f =-=,则数列(){}3nf 的前2020项和为______.15.设数列{}n a 是以4为首项,12为公比的等比数列,其前n 项和为{}n S ,则{}n S 的前n 项和为_________.16.计算:111113355720192021++++=⨯⨯⨯⨯__________.17.已知{}{},n n a b 均为等差数列,其前n 项和分别为,n n S T ,且233n n S n T n -=+,则55a b =________.18.已知等差数列{}n a 的前n 项和n S 满足318S =,3180n S -=,270n S =,则n =________.19.数列{}n a 满足, 123231111212222n na a a a n ++++=+,写出数列{}n a 的通项公式__________.20.正项数列{}n a 的前n 项和为n S ,且()22n nn S a a n N *++∈,设()2112n n n na c S +=-⋅,则数列{}n c 的前2019项的和为___________.三、解答题21.设数列{}n a 的前n 项和为n S ,已知()*214,21n n S a S n N +==+∈.数列{}nb 是首项为1a ,公差不为零的等差数列,且127,,b b b 成等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)若nn nb c a =,数列{}n c 的前n 项和为n T ,且n T m <恒成立,求m 的取值范围. 22.已知数列{a n }的前n 项和S n =3n +1-t ,求证:数列{a n }是等比数列的充要条件为t =3.23.已知正项数列{}n a 满足2220n n a na n --=,数列(){}12n nn aa -⋅+的前n 项和为n S .(1)求数列{}n a 的通项公式; (2)求n S .24.设数列{}n a 的前n 项和为n S ,且12n n S a +=. (1)求数列{}n a 的通项公式; (2)设21nn b a n =+,求数列{}n b 的前n 项和n T . 25.已知数列{}n a 的前n 项和为n S ,点(),n n a s 在直线22y x =-,上n *∈N . (1)求{}n a 的通项公式;(2)若n n b n a =+,求数列{}n b 的前n 项和n T .26.已知各项都是正数的数列{}n a 的前n 项和为n S ,212n n n S a a =+,*n ∈N . (1)求数列{}n a 的通项公式.(2)设数列{}n b 满足:11b =,()122n n n b b a n --=≥,数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T .求证:2n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【分析】先计算出{}n a 的前几项,然后分析{}n a 的周期性,根据周期可将2021a 转化为2a ,结合12a =求解出结果.【详解】因为12a =,所以23412311111,11,12,......2a a a a a a =-==-=-=-= 所以3211111111111111111111n n nn n n n na a a a a a a a +++-=-=-=-=-=-=------, 所以{}n a 是周期为3的周期数列,所以20213673+2212a a a ⨯===, 故选:C. 【点睛】思路点睛:根据递推公式证明数列{}n a 为周期数列的步骤:(1)先根据已知条件写出数列{}n a 的前几项,直至出现数列中项循环,判断循环的项包含的项数A ;(2)证明()*n A n a a A N+=∈,则可说明数列{}na 是周期为A 的数列.2.B解析:B 【分析】①②③根据条件可分析数列是首项为正数,公差小于0的等差数列,所以存在*n N ∈,使10n n a a +≥⎧⎨≤⎩,再结合等差数列的前n 项和公式判断选项;④利用公式1n n n S S a --=()2n ≥,判断选项.【详解】 ①若100S =,则()()110561010022a a a a ++==,因为数列是首项为正数,公差不为0的等差数列,所以50a >,60a <,那么()()()()18281212458402a a S S a a a a a a ++=++=+++>,故①不成立; ②若412S S =,则()124561289...40S S a a a a a -=+++=+=,因为数列是首项为正数,公差不为0的等差数列,所以80a >,90a <,()115158151502a a S a +==>,()()11689161616022a a a a S ++===,则使0n S >的最大的n 为15,故②成立; ③()115158151502a a S a +==>,()()116168916802a a S a a +==+<,则90a <,因为数列是首项为正数,公差不为0的等差数列,所以{}n S 中的最大项是8S ,故③正确; ④若78S S <,则8780S S a -=>,但989S S a -=,不确定9a 的正负,故④不正确. 故选:B 【点睛】方法点睛:一般等差数列前n 项和的最值的常用方法包含:1.单调性法,利用等差数列的单调性,求出其正负转折项,便可求得等差数列前n 项和的最值;2.利用二次函数的性质求最值,公差不为0的等差数列{}n a 的前n 项和2n S An Bn =+(,A B 为常数)为关于n的二次函数,利用二次函数的性质解决最值问题.3.B解析:B 【分析】本题先根据递推公式进行转化得到21112n n n n a a a a +++=.然后令1n n na b a +=,可得出数列{}n b 是等比数列.即11322nn n a a +⎛⎫= ⎪⎝⎭.然后用累乘法可求出数列{}n a 的通项公式,根据通项公式及二次函数的知识可得数列{}n a 的最大项. 【详解】解:由题意,可知: 21112n n n na a a a +++=. 令1n n n ab a +=,则112n n b b +=. 21116a b a ==, ∴数列{}n b 是以16为首项,12为公比的等比数列. 111163222n nn b -⎛⎫⎛⎫∴== ⎪⎪⎝⎭⎝⎭.∴11322nn n a a +⎛⎫= ⎪⎝⎭. ∴1211322aa ⎛⎫= ⎪⎝⎭,2321322a a ⎛⎫= ⎪⎝⎭,111322n n n a a --⎛⎫= ⎪⎝⎭.各项相乘,可得: 12111111(32)222n n na a --⎛⎫⎛⎫⎛⎫=⋯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)2511()22n n n --⎛⎫= ⎪⎝⎭ 2115(1)221122n n n ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭211552212n n n --+⎛⎫= ⎪⎝⎭21(1110)212n n -+⎛⎫= ⎪⎝⎭.令2()1110f n n n =-+,则,根据二次函数的知识,可知:当5n =或6n =时,()f n 取得最小值. ()2551151020f =-⨯+=-,()2661161020f =-⨯+=-,()f n ∴的最小值为20-.∴211(1110)(20)1022101112222n n -+⨯--⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴数列{}n a 的最大项为102.故选:B . 【点睛】本题主要考查根据递推公式得出通项公式,构造新数列的方法,累乘法通项公式的应用,以及利用二次函数思想求最值;4.B解析:B 【分析】先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据()11313713132a a S a +==求解出结果.因为()351041072244a a a a a a ++=+==,所以71a =,又()1131371313131132a a S a +===⨯=, 故选:B. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.5.B解析:B 【分析】 由122n n a a n n +=++转化为11121n n a a n n +⎛⎫-=- ⎪+⎝⎭,利用叠加法,求得23na n =-,即可求解. 【详解】 由122n n a a n n +=++,可得12112(1)1n n a a n n n n +⎛⎫-==- ⎪++⎝⎭, 所以()()()()11223211n n n n n n n a a a a a a a a a a -----=-+-+-++-+11111111222*********n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭⎝⎭122113n n ⎛⎫=-+=- ⎪⎝⎭,所以102143105a =-=. 故选:B. 【点睛】数列的通项公式的常见求法:对于递推关系式可转化为1()n n a a f n +-=的数列,通常采用叠加法(逐差相加法)求其通项公式;对于递推关系式可转化为1()n na f n a +=的数列,并且容易求数列{()}f n 前n 项积时,通常采用累乘法求其通项公式; 对于递推关系式形如1n n a pa q +=+的数列,可采用构造法求解数列的通项公式.6.A解析:A由20172021T T =得20182019202020211a a a a =,由等比数列性质得20182021201920201a a a a ==,这样可把2020a 和2021a 用q 表示出来后,可求得20202021ln ln a a . 【详解】{}n a 是正项等比数列,0n a >,0n T ≠,*n N ∈,所以由2017202120172018201920202021T T T a a a a ==⋅,得20182019202020211a a a a =, 所以20182021201920201a a a a ==,设{}n a 公比为q ,1q ≠,22021201820213()1a a a q ==,2202020192020()1a a a q==,即322021a q =,122020a q =,所以1220203202121ln ln ln 123ln 3ln ln 2qa q a q q ===. 故选:A . 【点睛】本题考查等比数列的性质,解题关键是利用等比数列性质化简已知条件,然后用公比q 表示出相应的项后可得结论.7.A解析:A 【分析】根据等比数列的求和公式及通项公式,可分析出答案. 【详解】等比数列{}n a 的前n 项和为n S ,当1q ≠时,202112021(1)01a q S q-=>-,因为20211q-与1q -同号,所以10a >,所以2131(1)0a a a q +=+>,当1q =时,2021120210S a =>,所以10a >,所以1311120a a a a a +=+=>, 综上,当20210S >时,130a a +>, 故选:A易错点点睛:利用等比数列求和公式时,一定要分析公比是否为1,否则容易引起错误,本题需要讨论两种情况.8.A解析:A 【分析】在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以结合此性质可得:2202171521a a Sb b T +=+,再根据题意得到答案.【详解】解:在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以1212202171521121121()2121()2a a a a Sb b T b b ⨯+⨯+==+⨯+⨯, 又因为723n n S n T n +=+, 所以22071514924a ab b +=+. 故选:A . 【点睛】本题主要考查等差数列的下标和性质,属于中档题.9.A解析:A 【分析】利用等差数列的前n 项和公式和等差数列的性质可得结果. 【详解】在等差数列{a n }中,由5359a a =,得()()9955115392199555952a a S a a a S a +==⨯=⨯=+ 故选:A 【点睛】本题考查等差数列的性质,考查等差数列的前n 项和,是基础题.10.B解析:B 【分析】先将函数化简为()2sin 26f x x π⎛⎫=-⎪⎝⎭4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可. 【详解】 解:∵()2cos 22sin 26f x x x x π⎛⎫=-=-- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈, ∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B. 【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题.11.A解析:A 【分析】设等比数列{}n a 的公比为q ,可知10q -<<或01q <<,计算出111lim 1n n a S q a →∞==-,可得出q 关于1a 的表达式,结合q 的范围,可解出1a 的取值范围. 【详解】设等比数列{}n a 的公比为q ,由于11lim n n S a →∞=,则10q -<<或01q <<, ()111n n a q S q-=-,则()11111lim lim11n n n n a q a S qq a →∞→∞-===--,得211q a =-. ①若10q -<<,则21110a -<-<,即2112a <<,11a >,解得1a <<; ②当01q <<,则21011a <-<,得2101a <<,11a >,则2101a <<不成立.综上所述,1a的取值范围是(. 故选A. 【点睛】本题考查利用极限求等比数列首项的取值范围,解题的关键就是得出公比与首项的关系,结合公比的取值范围得出关于首项的不等式,考查运算求解能力,属于中等题.12.D解析:D 【分析】设等比数列{}n a 的公比为q ,由11a =,418a =,可得318q =,解得q .可得n a .可得1124n n na a +=⨯.利用等比数列的求和公式及其数列的单调性即可得出. 【详解】解:设等比数列{}n a 的公比为q ,11a =,418a =, 318q ∴=,解得12q =. 11111()()22n n n a --=⨯=.12111111()()()22224n n n n n n a a --+∴===⨯.12231211(1)111212442()2(1)144434314n n n n na a a a a a +-∴++⋯+=++⋯⋯+=⨯=-<-. 12231n n a a a a a a k +++⋯+<,23k. k ∴的取值范围是:2,3⎡⎫+∞⎪⎢⎣⎭.故选:D . 【点睛】本题考查了数列递推关系、等比数列的通项公式与求和公式、数列的单调性,考查了推理能力与计算能力,属于中档题.二、填空题13.【分析】记设根据即可求出从而得到再根据题意可得分参利用基本不等式即可求出实数k 的取值范围【详解】记设当时;当时当时也满足上式所以即显然当时当时因此的最大值若存在必为正值当时因为当且仅当时取等号所以的解析:,2⎛-∞ ⎝⎭【分析】记12n n n b a -=,设21212317222222n n n S a a a a n n -=+++⋅⋅⋅+=-, 根据1112n n n S n b S S n -=⎧=⎨-≥⎩即可求出n b ,从而得到n a ,再根据题意可得()m 2ax 2n k a λλ-+>,分参利用基本不等式即可求出实数k 的取值范围.【详解】记12n n n b a -=,设21212317222222n n n S a a a a n n -=+++⋅⋅⋅+=-, 当1n =时,117322b =-=-; 当2n ≥时,()()21217171142222n n n b S n S n n n n -⎡⎤-----=-⎢⎥⎣⎦=-=. 当1n =时,13b =-也满足上式,所以()*4n b n n N =-∈,即142n n n a --=. 显然当3n ≤时,0n a <,40a =,当5n ≥时,0n a >,因此n a 的最大值若存在,必为正值.当5n ≥时,()1324n n a n a n +-=-,因为()151024n n a na n +--=≤-,当且仅当5n =时取等号. 所以n a 的最大值为116.故()m 2ax 1126n k a λλ>=-+,变形得,3116k λλ<+,而31162λλ+≥=,当且仅当λ=时取等号,所以k <.故答案为:,2⎛-∞ ⎝⎭.【点睛】本题主要考查n S 与n a 的关系1112n nn S n a S S n -=⎧=⎨-≥⎩应用,不等式恒成立问题的解法应用,以及基本不等式的应用,意在考查学生的转化能力和数学运算能力,属于中档题.解题关键是记12n n n b a -=,设21212317222222n n n S a a a a n n -=+++⋅⋅⋅+=-,利用通项n b 与前n 项和n S 的关系1112n nn Sn b S S n -=⎧=⎨-≥⎩求出通项n b ,再利用数列的单调性进而求出数列中的最大值,由基本不等式解出.14.【分析】先通过归纳得再利用等比数列求和得解【详解】由题意得归纳得则故答案为:【点睛】关键点睛:解答本题的关键在通过特殊值归纳出归纳出这个结论之后后面利用等比数列求和就迎刃而解了 解析:101031-【分析】 先通过归纳得()()2111233323,3330k kk k k k k f f ---=-=⨯=-=,再利用等比数列求和得解. 【详解】由题意得()()232(3)312,3330,333236f f f =-==-==-=⨯=,()4223330f =-=,归纳得()()2111233323,3330k kk k kkkf f ---=-=⨯=-=,则()()()()()()232020352019(3)333(3)333f f f f f f f f ++++=++++012100923232323=⨯+⨯+⨯++⨯()10101210091010132333323113-=⨯++++=⨯=--.故答案为:101031- 【点睛】关键点睛:解答本题的关键在通过特殊值归纳出()()2111233323,3330k k k k k k k f f ---=-=⨯=-=,归纳出这个结论之后,后面利用等比数列求和就迎刃而解了.15.【分析】先根据题意得由于数列是以为首项为公比的等比数列进而利用分组求和法求和即可得答案【详解】解:由等比数列的前项和公式得由于数列是以为首项为公比的等比数列设的前项和则故答案为:【点睛】本题考查等比 解析:3288n n -+-【分析】先根据题意得382nn S -=-,由于数列{}32n-是以4为首项,12为公比的等比数列,进而利用分组求和法求和即可得答案. 【详解】解:由等比数列的前n 项和公式得()13141121818211212n n n n n a q S q -⎡⎤⎛⎫-⎢⎥⎪-⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦===-=-⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦-,由于数列{}32n-是以4为首项,12为公比的等比数列, 设{}n S 的前n 项和n T ,则31412188812881212n nn nT n n n -⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=-=--=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-. 故答案为:3288n n -+- 【点睛】本题考查等比数列求和,分组求和,考查运算能力,是基础题.本题解题的关键是求出382n n S -=-,再结合数列{}32n -是以4为首项,12为公比的等比数列,再次求和即可. 16.【分析】用裂项相消法求和【详解】故答案为:【点睛】本题考查裂项相消法求和数列求和的常用方法:设数列是等差数列是等比数列(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列的 解析:10102021【分析】用裂项相消法求和. 【详解】111111111111(1)()()1335572019202123235220192021++++=-+-++-⨯⨯⨯⨯111010(1)220212021=-=. 故答案为:10102021.【点睛】本题考查裂项相消法求和.数列求和的常用方法:设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.17.【分析】根据等差数列的前n 项和公式有结合已知条件令即可得进而求【详解】∵均为等差数列令公差分别为则有∴令则有∴故答案为:【点睛】思路点睛:利用等差数列的前n 项和公式结合等差数列通项公式的特点合理假设解析:54【分析】根据等差数列的前n 项和公式有11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+,结合已知条件,令122,1d d ==即可得11,a b ,进而求55a b . 【详解】∵{}{},n n a b 均为等差数列,令公差分别为12,d d ,则有11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+, ∴11121222323n n S nd a d n T nd b d n +--==+-+,令122,1d d ==,则有111,22a b =-=, ∴5115124544a a db b d +==+, 故答案为:54【点睛】思路点睛:利用等差数列的前n 项和公式,结合等差数列通项公式的特点合理假设即可得到数列的基本量11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+,则有11121222n n S nd a d T nd b d +-=+-.结合已知233n n S n T n -=+,假设122,1d d ==,即可求11,a b . 18.15【分析】根据等差数列的前项和与等差数列的性质求解【详解】因为所以又所以故解得故答案为:15【点睛】本题考查等差数列的前项和等差数列的性质利用等差数列的性质求解可以减少计算量解析:15 【分析】根据等差数列的前n 项和与等差数列的性质求解, 【详解】因为32318S a ==,所以26a =,又2311390n n n n n n a a S S a a ----=++-==, 所以130n a -=.故()()12127022n n n n a a n a a S -++===,解得15n =. 故答案为:15. 【点睛】本题考查等差数列的前n 项和,等差数列的性质,利用等差数列的性质求解可以减少计算量.19.【分析】当时有作差可求出再验证是否成立即可得出答案【详解】当时由所以—可得所以当时所以不满足上式所以故答案为:【点睛】本题主要考查数列通项公式的求法做题的关键是掌握属于中档题解析:16,12,2n n n a n +=⎧=⎨≥⎩【分析】当2n ≥时,有()12312311111211212222n n a a a a n n --+++=-+=+-,作差可求出12n n a +=,再验证1a 是否成立,即可得出答案.【详解】当2n ≥时,由123231111212222n na a a a n ++++=+, 所以()12312311111211212222n n a a a a n n --+++=-+=+-, —可得()1212122n n a n n =+--=,所以1222n n n a +⋅==, 当1n =时,112132a =+=,所以16a =,不满足上式,所以16,12,2n n n a n +=⎧=⎨≥⎩. 故答案为: 16,12,2n n n a n +=⎧=⎨≥⎩【点睛】本题主要考查数列通项公式的求法,做题的关键是掌握1n n n a S S -=-,属于中档题.20.【分析】直接利用递推关系式求出数列的通项公式进一步利用裂项相消法求出数列的和【详解】解:正项数列的前项和为①则②②-①得:整理得:当时解得:所以:数列是以1为首项1为公差的等差数列则所以:则:数列的 解析:20212020-【分析】直接利用递推关系式求出数列的通项公式,进一步利用裂项相消法求出数列的和. 【详解】解:正项数列{}n a 的前n 项和为n S ,22()n nn S a a n N *=+∈①, 则221112n n n n n a a a a a +++=-+-②,②-①得:221112n n n n n a a a a a +++=-+-,整理得:11n n a a +-=,当1n =时,21112S a a =+,解得:11a =,所以:数列{}n a 是以1为首项,1为公差的等差数列. 则11n a n n =+-=,所以:2(1)22n n n n nS ++==. 则:()()21111121nn n n n a c S n n +⎛⎫=-=-+ ⎪+⎝⎭,数列{}n c 的前2019项的和为:201911111122320192020T ⎛⎫⎛⎫⎛⎫=-++++⋅⋅⋅-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,112020=--, 20212020=-. 故答案为:20212020- 【点睛】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,属于中档题.三、解答题21.(1)13-=n n a ,43n b n =-;(2)9+2⎡⎫∞⎪⎢⎣⎭,. 【分析】(1)运用数列的递推式和等比数列的通项公式可得{}n a ,再由等差数列的通项公式以及等比的定义,解方程可得公差,进而得到所求通项公式;(2)利用错位相减法求出()34391223nn n T +⎛⎫=- ⎪⎝⎭,易得92n T <,进而可得结果. 【详解】(1)∵()*121n n a S n N+=+∈,当2n ≥时,121n n a S -=+,两式相减化简可得:13n n a a +=, 即数列{}n a 是以3为公比的等比数列,又∵24S =,∴1134a a +=,解得14a =,即13-=n n a , 设数列{}n b 的公差为d ,111b a ==,∵127,,b b b 成等比数列,∴()()21161d d ⨯+=+, 解得4d =或0d =(舍去),即43n b n =-, ∴数列{}n a 和{}n b 的通项公式为13-=n n a ,43n b n =-. (2)由(1)得1433n n n n b n c a --==, ∴()0121111159433333n n T n -⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()12311111594333333nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得:()1212111114444333333n nn T n -⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯++⨯-- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭()13433nn ⎛⎫=-+ ⎪⎝⎭∴()34391223nn n T +⎛⎫=- ⎪⎝⎭,即有92n T <恒成立, n T m <恒成立,可得92m ≥, 即m 的范围是9+2⎡⎫∞⎪⎢⎣⎭,. 【点睛】一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解. 22.证明见解析. 【分析】由定义法分别结合n a 和n S 的关系分别证明充分性和必要性成立即可. 【详解】当n =1时,S 1=32-t =9-t , 当n ≥2时,由S n =3n +1-t 得S n -1=3n -t , 两式相减得a n =3n +1-3n =2·3n (n ≥2), (1)充分性已知t =3,此时S 1=32-t =9-3=6,令n =1,得a 1=2·31=6=S 1,所以a n =2·3n (n ∈N *) 所以13n na a +=,所以数列{a n }是等比数列. (2)必要性因为数列{a n }是等比数列,所以a 1=2·31=6, 又因为S 1=9-t ,所以9-t =6,所以t =3, 综上所述:数列{a n }是等比数列的充要条件为t =3. 【点睛】关键点睛:本题考查等比数列的判断和证明,解题的关键是利用n a 和n S 的关系得出()232n n a n =⋅≥,再根据充分必要的定义证明.23.(1)2n a n =;(2)()()123?216n n S n n n +=-+++. 【分析】(1)由已知得()()20n n a n a n -+=且0n a >,即可得通项公式.(2)由(1)有()()122122nnn n a a n n -⋅+=-⋅+,利用分组、错位相减法求n S .【详解】(1)由2220n n a na n --=得()()20n n a n a n -+=,又{}n a 为正项数列,∴2n a n =.(2)由(1)知()()122122nnn n a a n n -⋅+=-⋅+,令n T 为数列(){}212nn -⋅的前n 项和,则()123123252212n nTn =⨯+⨯+⨯+⋅⋅⋅+-⨯,∴()23412123252212n n T n +=⨯+⨯+⨯+⋅⋅⋅+-⨯,两式相减,得()123112222222212nn n T n +-=⨯+⨯+⨯+⋅⋅⋅+⨯--⨯,所以()()2112212221212n n nT n ++⨯⨯--=+--⨯-,所以()12326n n T n +=-⨯+,令n B 为数列{}2n 的前n 项和,则()()1212n n n B n n +=⨯=+, 所以()()123216n n n n S T B n n n +=+=-⨯+++.【点睛】 关键点点睛:(1)由已知方程,将n a 作为未知数求正解,即为数列通项公式. (2)将所得数列分为(){}212nn -⋅、{}2n 两组分别求和,应用错位相减、等差数列前n项和公式求n S . 24.(1)12n n a ;(2)12n n T n +=⋅.【分析】(1)由1(2)n n n a S S n -=-≥得出数列{}n a 是等比数列,(先求出10a ≠),可得通项公式;(2)由(1)得n b ,用错位相减法求和. 【详解】解:(1)当1n =时,1112S a +=,解得11a =. 因为21n n S a =-,①所以当2n ≥时,1121n n S a --=-,②①-②得,1122n n n n S S a a ---=-,所以12n n a a -=. 故数列{}n a 是首项为1,公比为2的等比数列,其通项公式为12n n a .(2)由题知,(1)2nn b n =+⋅,所以123223242(1)2nn T n =⨯+⨯+⨯+⋯++,③23412223242(1)2n n T n +=⨯+⨯+⨯+⋯++,④③-④得,()123122222(1)2nn n T n +-=++++⋯+-+()112122(1)2212n n n n n ++⨯-=+-+=-⋅-.所以12n n T n +=⋅.【点睛】方法点睛:本题考查求等比数列的通项公式,考查错位相减法求和.数列求和的常用方法:(1)公式法;(2)错位相减法;(3)裂项相消法;(4)分组(并项)求和法;(5)倒序相加法.25.(1)2nn a =;(2)1(1)222n n n n T ++=+-. 【分析】(1)利用公式11,1=,2n n n S n a S S n -=⎧⎨-≥⎩求{}n a 的通项公式;(2)由题得2nn b n =+,再利用分组求和求数列{}n b 的前n 项和n T .【详解】解:(1)∵点(),n n a S 在直线22y x =-上,n *∈N , ∴22n n S a =-.当1n =时,1122a a =-,则12a =, 当2n 时,22n n S a =-,1122n n S a --=-. 两式相减,得122n n n a a a -=-,所以12n n a a -=. 所以{}n a 是以首项为2,公比为2等比数列,所以2nn a =.(2)2nn b n =+,()23(123)2222n n T n =+++⋯++++++,所以1(1)222n n n n T ++=+-. 【点睛】方法点睛:数列求和常用的方法有:(1)公式法;(2)错位相减法;(3)裂项相消法;(4)分组求和法;(5)倒序相加法.要根据数列的通项特征选择合适的方法求解. 26.(1)12n a n =;(2)证明见解析. 【分析】(1)212n n n S a a =+,*n N ∈.2n 时,利用1n n n a S S -=-,及其等差数列的通项公式即可得出. (2)11b =,12(2)n n n b b a n n --==,利用112211()()()n n n n n b b b b b b b b ---=-+-+⋯⋯+-+,及其裂项求和方法即可得出n T .进而证明结论.【详解】解:(1)①当1n =时, 得211112S a a =+,211112a a a ∴=+ ∴112a =或0(舍去); ②当2n ≥时,211112n n n S a a ---=+, ∴221111122n n n n n n n a S S a a a a ---=-=+-- 221111022n n n n a a a a --∴---= ()()()111102n n n n n n a a a a a a ---∴-+-+= ()11102n n n n a a a a --⎛⎫∴+--= ⎪⎝⎭. 又∵{}n a 各项为正, ∴1102n n a a ---=,112n n a a -∴-= ∴{}n a 为首项是12,公差是12的等差数列, ∴()1112n a a n d n =+-=. (2)由题得,1n n b b n --=121n n b b n --∴-=-┇323b b ∴-=212b b ∴-=,所有式子相加,得1231n b b n n -=++⋅⋅⋅+-+()()212222n n n n -++-==. 又∵11b =,∴22n n n b +=, ∴()212211211n b n n n n n n ⎛⎫===- ⎪+++⎝⎭, ∴111111212231n T n n ⎛⎫=-+-+⋅⋅⋅+- ⎪+⎝⎭ 1221211n n ⎛⎫=-=- ⎪++⎝⎭. 又∵10n +>,∴2n T <.【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和.(2)错位相减:用于等差数列与等比数列的积数列的求和.(3)分组求和:用于若干个等差或等比数列的和或差数列的求和.。
一、选择题1.对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:仿此,若3m 的“分裂数”中有一个是2017,则m 的值为( )3331373152,39,4,5171119⎧⎧⎪⎧⎪⎪⎨⎨⎨⎩⎪⎪⎩⎪⎩A .44B .45C .46D .472.已知等比数列{}n a 的n 项和2n n S a =-,则22212n a a a +++=( )A .()221n -B .()1213n- C .41n -D .()1413n- 3.已知数列{}n a 满足111n n n n a a a a ++-=+,且113a =,则{}n a 的前2021项之积为( ) A .23B .13C .2-D .3-4.数列{}n a 的通项公式为12n n a +=,其前n 项和为n T ,若不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,则实数λ的取值范围为( )A .3λB .4λC .23λ D .34λ5.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=(n N +∈,d 为常数),称{}n a 为“等差比数列”。
已知在“等差比数列”{}n a 中,1231,3a a a ===则20152013a a =( ) A .2420151⨯- B .2420141⨯- C .2420131⨯-D .242013⨯6.数列{}n a 是等差数列,51260a a =>,数列{}n b 满足123n n n n b a a a +++=,*n N ∈,设n S 为{}n b 的前n 项和,则当n S 取得最大值时,n 的值等于( )A .9B .10C .11D .127.数列{}n a 是等比数列,若21a =,518a =,则12231n n a a a a a a ++++的取值范围是( ) A .8,3⎛⎫-∞ ⎪⎝⎭B .2,23⎛⎤ ⎥⎝⎦C .81,3⎡⎫⎪⎢⎣⎭D .82,3⎡⎫⎪⎢⎣⎭8.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n ﹣1,则a 12+a 22+a 32+…+a n 2等于( )A .n 2(31)-B .()n1912- C .n 91- D .()n1314- 9.已知正项数列{a n }的前n 项和为S n ,a 1>1,且6S n =a n 2+3a n +2.若对于任意实数a ∈[﹣2,2].不等式()2*1211+<+-∈+n a t at n N n 恒成立,则实数t 的取值范围为( ) A .(﹣∞,﹣2]∪[2,+∞) B .(﹣∞,﹣2]∪[1,+∞) C .(﹣∞,﹣1]∪[2,+∞) D .[﹣2,2]10.函数()2cos 2f x x x =-{}n a ,则3a =( ) A .1312πB .54π C .1712πD .76π 11.已知数列{}n a 是等比数列,11a >,且前n 项和n S 满足11lim n n S a →∞=,那么1a 的取值范围是( ) A.(B .()1,4C .()1,2D .()1,+∞12.已知数列{}n a 满足:11a =,()*12nn n a a n N a +=∈+.若()*+11()1n n b n n N a λ⎛⎫=-+∈ ⎪⎝⎭,1b λ=-,且数列{}n b 是单调递增数列,则实数λ的取值范围为( ) A .2λ>B .3λ>C .2λ<D .3λ<二、填空题13.数列{}n a 的前n 项和是11,1,0,31n n n n n S a a S a a +=≠=+,若2020k a =,则k =______.14.将正整数12分解成两个正整数的乘积有112⨯,26⨯,34⨯,三种,其中34⨯是这三种分解中两数差的绝对值最小的,我们称34⨯为12的最佳分解,当(),,p q p q p N q N **⨯≤∈∈是正整数n 的最佳分解时,我们定义函数()f n q p =-,例如(12)431f =-=,则数列(){}3nf 的前2020项和为______.15.已知{}{},n n a b 均为等差数列,其前n 项和分别为,n n S T ,且233n n S n T n -=+,则55a b =________.16.如图所示,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点,,,E F G H ,作第2个正方形EFGH ,然后再取正方形EFGH 各边的中点,,,I J K L ,作第3个正方形IJKL ,依此方法一直继续下去.如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于___2cm ?17.设n S 是数列{}n a 的前n 项和,若点(),n n S a 在直线21y x =+上,则5a =__________. 18.设公差不为零的等差数列{}n a 的前n 项和为n S ,12a =.若存在常数λ,使得2n n a a λ=()*N n ∈恒成立,则910nn S ⎛⎫ ⎪⎝⎭取最大值时,n =________. 19.下表给出一个“直角三角形数阵”:满足每一列成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i 行第j 列的数为(,)i j a (i ,j ∈N *),则(20,20)a =_____. 20.若数列{}n a 满足11a =,且()*1111n nn a a N +∈-=,则 ①数列{}na e是等比数列;②满足不等式:1112n n a a +++≥ ③若函数()f x 在R 上单调递减,则数列(){}n f a 是单调递减数列; ④存在数列{}n a 中的连续三项,能组成三角形的三条边; ⑤满足等式:122311n n n a a a a a a n +++⋅⋅⋅+=+. 正确的序号是________三、解答题21.直线:2l x =与x 轴交于点M ,过动点P 作直线l 的垂线交l 于点N ,若OM 、OP 、PN 成等比数列,其中O 为坐标原点.(1)求动点P 的轨迹方程. (2)求OP PN -的最大值.22.数列{}n a 满足()1121nn n a a n ++-=-,n *∈N 且1a a =(a 为常数).(1)(i )当n 为偶数时,求4n n a a +-的值; (ii )求{}n a 的通顶公式;(2)设n S 是数列{}n a 的前n 项和,求证:48411114n S S S ++⋅⋅⋅+< 23.设等差数列{}n a 的前n 项和为n S ,34a =,43a S =.数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列.(1)求数列{}n a ,{}n b 的通项公式; (2)记n c =*n N ∈,证明:12n c c c +++<.24.已知数列{}n a 是等差数列,数列{}n b 是等比数列,且满足112a b ==,35730a a a ++=,2316b b a =.(1)求数列{}n a 与和{}n b 的通项公式;(2)设数列{}n a ,{}n b 的前n 项和分别为n S ,n T .①是否存在正整数k ,使得132k k k T T b +=++成立?若存在,求出k 的值,若不存在,请说明理由;②解关于n 的不等式n n S b ≥.25.已知数列{a n }的前n 项和S n =3n +1-t ,求证:数列{a n }是等比数列的充要条件为t =3. 26.已知n S 是数列{}n a 的前n 项和,131n n S S +=+,11a =. (1)证明:数列{}n a 是等比数列,并求n a 的通项公式; (2)若()11n n n b na -=-⋅,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由题意,从32到3m ,正好用去从3开始的连续奇数,共123(2)(1)2m m m +++=+-个,再由2017是从3开始的第1008个奇数,可得选项. 【详解】由题意,从32到3m ,正好用去从3开始的连续奇数,共123(2)(1)2m m m +++=+-个,212017n += ,得1008n =, 所以2017是从3开始的第1008个奇数,当45m =时,从32到345,用去从3开始的连续奇数共474410342⨯=个, 当44m =时,从32到344,用去从3开始的连续奇数共46439892⨯=个, 所以45m =, 故选:B . 【点睛】方法点睛:对于新定义的数列问题,关键在于找出相应的规律,再运用等差数列和等比数列的通项公式和求和公式,得以解决.2.D解析:D 【分析】由n a 与n S 的关系可求得12n n a ,进而可判断出数列{}2n a 也为等比数列,确定该数列的首项和公比,利用等比数列的求和公式可求得所化简所求代数式.【详解】已知等比数列{}n a 的n 项和2n n S a =-. 当1n =时,112a S a ==-;当2n ≥时,()()111222nn n n n n a S S a a ---=-=---=.由于数列{}n a 为等比数列,则12a a =-满足12n na ,所以,022a -=,解得1a =,()12n n a n N -*∴=∈,则()221124n n na --==,2121444n n n n a a +-∴==,且211a =, 所以,数列{}2n a 为等比数列,且首项为1,公比为4, 因此,222121441143n n na a a --+++==-. 故选:D. 【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +-=或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第1n -项的差是个有规律的数列,就可以利用这种方法; (5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第1n -项的商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且1k ≠,0k ≠).一般化方法:设()1n n a m k a m -+=+,得到()1b k m =-,1bm k =-,可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于()112,n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b-=+的式子;⑦1nn n a ba c +=+(b 、c 为常数且不为零,n *∈N )型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用⑥中的方法求解即可.3.B解析:B 【分析】由111n n n n a a a a ++-=+,且113a =,可得:111n n n a a a ++=-,可得其周期性,进而得出结论. 【详解】因为111n n n n a a a a ++-=+,且113a =, 所以111nn na a a ++=-, 21132113a +∴==-,33a =-,412a =-,513a =,⋯⋯,4n n a a +∴=.123411···2(3)()132a a a a ∴=⨯⨯--⋅⨯=.则{}n a 的前2021项之积50511133=⨯=.故选:B 【点睛】方法点睛:已知递推关系式求通项:(1)用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.(2)通过具体的前几项找到其规律,如周期性等求解.4.A解析:A 【分析】将不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,转化为271n n n λ-++对任意*n N ∈恒成立,由2min71n n n λ⎛⎫-+ ⎪+⎝⎭求解.【详解】 依题意得,()24122412n n nT +-==--,∴不等式()2log 4(1)73n n T n n λ+-++可化为22log 2(1)73n n n n λ+-++,即27(1)n n n λ-++.又*n N ∈,∴271n n n λ-++对任意*n N ∈恒成立.只需满足2min71n n n λ⎛⎫-+ ⎪+⎝⎭即可.设1n t +=,则*t N ∈,2t ,∴27931n n t n tλ-+=+-+.∵993233t t t t+-⋅-=,当且仅当3t =,即2n =时等号成立, ∴2min731n n n ⎛⎫-+= ⎪+⎝⎭.∴3λ,故选:A. 【点睛】方法点睛:恒(能)成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<. 5.C解析:C 【分析】 利用定义,可得1n n a a +⎧⎫⎨⎬⎩⎭是以1为首项,2为公差的等差数列,从而121n na n a +=-,利用201520152014201320142013a a a a a a =⋅,可得结论. 【详解】121a a ==,33a =,32212a a a a ∴-=, 1n n a a +⎧⎫∴⎨⎬⎩⎭是以1为首项,2为公差的等差数列, 121n na n a +∴=-, ()()20152015201420132014201322014122013140274025a a a a a a ∴=⋅=⨯-⨯-=⨯ 22(40261)(40261)40261420131=+-=-=⨯-.故选:C. 【点睛】数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.6.D解析:D 【分析】由51260a a =>,得到首项和公差的关系以及公差的范围,然后求得通项公式,判断,n n a b 的正负,再利用通项与前n 项和关系求解.【详解】设数列{}n a 的公差为d , 因为51260a a =>,所以()1104116a a d d +=>+,即1625a d =-, 因为512a a >, 所以0d <,所以167(1)5n a n d n d a ⎛⎫=+-=-⎪⎝⎭, 当113n ≤≤时,0n a >,当14n ≥时,0n a <, 所以12101314...0...b b b b b >>>>>>>, 又因为()111213141215131405db b a a a a a a +=+=>, 所以1210S S >,故n S 中12S 最大 , 故选:D 【点睛】本题主要考查等差数列的通项公式以及数列前n 项和的最值问题,还考查逻辑推理的能力,属于中档题.7.D解析:D 【分析】由题意计算出{}n a 的公比q ,由等比数列的性质可得{}1n n a a +也为等比数列,由等比数列前n 项和计算即可得结果. 【详解】因为数列{}n a 是等比数列,21a =,518a =,所以35218a q a ==,即12q =,所以12a =,由等比数列的性质知{}1n n a a +是以2为首项,以14为公比的等比数列. 所以12122311214881813343142n n n n a a a a a a a a +⎛⎫⎛⎫- ⎪⎪ ⎪⎝⎭⎛⎫⎝⎭≤==-< ⎪⎝⎭=+++-, 故选:D. 【点睛】本题主要考查了等比数列的性质以及等比数列前n 项和的计算,属于中档题.8.B解析:B 【分析】由a 1+a 2+a 3+…+a n =3n ﹣1,可求得a n ,从而可知2n a ,利用等比数列的求和公式即可求得答案. 【详解】∵a 1+a 2+a 3+…+a n =3n ﹣1,①,∴a 1+a 2+a 3+…+a n +1=3n +1﹣1,② ②﹣①得:a n +1=3n +1﹣3n =2×3n ,∴a n =2×3n ﹣1()2n ≥. 当n =1时,a 1=31﹣1=2,符合上式,∴a n =2×3n ﹣1. ∴221211249,4,9n n nna a a a -+=⨯∴==,∴{}2n a 是以4为首项,9为公比的等比数列, ∴a 12+a 22+a 32+…+a n 2=()()419191921n n⨯-=--. 故选B . 【点睛】本题考查数列通项公式的确定及等比数列的判断与求和公式的综合应用,属于中档题.9.A解析:A 【分析】根据a n 与S n 的关系,由6S n =a n 2+3a n +2,得6S n ﹣1=a n ﹣12+3a n ﹣1+2,两式相减整理得a n ﹣a n﹣1=3,由等差数列的定义求得a n 的通项公式,然后将不等式()2*1211+<+-∈+n a t at n N n 恒成立,转化为2t 2+at ﹣4≥0,对于任意的a ∈[﹣2,2],n ∈N *恒成立求解. 【详解】由6S n =a n 2+3a n +2,当n =1时,6a 1=a 12+3a 1+2.解得a 1=2, 当n ≥2时,6S n ﹣1=a n ﹣12+3a n ﹣1+2,两式相减得6a n =a n 2+3a n ﹣(a n ﹣12+3a n ﹣1), 整理得(a n +a n ﹣1)(a n ﹣a n ﹣1﹣3)=0,由a n >0,所以a n +a n ﹣1>0,所以a n ﹣a n ﹣1=3, 所以数列{a n }是以2为首项,3为公差的等差数列, 所以a n +1=2+3(n +1﹣1)=3n +2,所以11n a n ++=321++n n =3﹣11n +<3,因此原不等式转化为2t 2+at ﹣1≥3,对于任意的a ∈[﹣2,2],n ∈N *恒成立, 即为:2t 2+at ﹣4≥0,对于任意的a ∈[﹣2,2],n ∈N *恒成立, 设f (a )=2t 2+at ﹣4,a ∈[﹣2,2], 则f (2)≥0且f (﹣2)≥0,即有222020t t t t ⎧+-⎨--⎩,解得t ≥2或t ≤﹣2,则实数t 的取值范围是(﹣∞,﹣2]∪[2,+∞) 故选:A . 【点睛】本题主要考查数列与不等式的,a n 与S n 的关系,等差数列的定义,方程的根的分布问题,还考查了转化化归思想和运算求解的能力,属于中档题.10.B解析:B 【分析】先将函数化简为()2sin 26f x x π⎛⎫=-⎪⎝⎭4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可. 【详解】 解:∵()2cos 22sin 26f x x x x π⎛⎫=-=-- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈, ∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B. 【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题.11.A解析:A 【分析】设等比数列{}n a 的公比为q ,可知10q -<<或01q <<,计算出111lim 1n n a S q a →∞==-,可得出q 关于1a 的表达式,结合q 的范围,可解出1a 的取值范围. 【详解】设等比数列{}n a 的公比为q ,由于11lim n n S a →∞=,则10q -<<或01q <<,()111n n a q S q-=-,则()11111lim lim11n n n n a q a S qq a →∞→∞-===--,得211q a =-. ①若10q -<<,则21110a -<-<,即2112a <<,11a >,解得1a <<; ②当01q <<,则21011a <-<,得2101a <<,11a >,则2101a <<不成立.综上所述,1a的取值范围是(. 故选A. 【点睛】本题考查利用极限求等比数列首项的取值范围,解题的关键就是得出公比与首项的关系,结合公比的取值范围得出关于首项的不等式,考查运算求解能力,属于中等题.12.C解析:C 【分析】 数列{a n }满足()*12nn n a a n N a +=∈+,两边取倒数可得1121n na a +=+,从而得到11=2n n a +,于是b n +1=(n ﹣λ)(11a +1)=(n ﹣λ)•2n ,由于数列{b n }是单调递增数列,可得b n +1>b n ,解出即可. 【详解】∵数列{a n }满足:a 1=1,()*12nn n a a n N a +=∈+, ∴1121n n a a +=+,化为111121n n a a +⎛⎫+=+ ⎪⎝⎭, ∴数列11n a ⎧⎫+⎨⎬⎩⎭是首项为11a +1=2,公比为2的等比数列,∴11=2n na +, ∴b n +1=(n ﹣λ)(11a +1)=(n ﹣λ)•2n ,∵数列{b n }是单调递增数列,∴b n +1>b n ,∴n ≥2时,(n ﹣λ)•2n >(n ﹣1﹣λ)•2n ﹣1,化为λ<n +1, ∵数列{n +1}为单调递增数列,∴λ<3.当n =1时,b 2=(1﹣λ)×2>﹣λ=b 1,解得λ<2. 综上可得:实数λ的取值范围为λ<2. 故选:C . 【点睛】本题考查由数列的递推关系式求数列的通项公式、考查由数列的单调性求解参数问题,考查等比数列的通项公式,考查推理能力与计算能力,属于中档题.二、填空题13.1347【分析】当时则两式相减得到得到代入数据计算得到答案【详解】解:当时当时由则两式相减得到因为故数列的奇数项为以为首项3为公差的等差数列;偶数项为以为首项3为公差的等差数列;所以当为奇数时成立;解析:1347 【分析】当2n ≥时131n n n S a a +=+则1131n n n S a a --=+,两式相减得到113n n a a +--=,得到31,2231,2n n n a n n ⎧-⎪⎪=⎨⎪-⎪⎩为奇数为偶数,代入数据计算得到答案.【详解】解:当1n =时,2112312S a a a =+∴=当2n ≥时,由131n n n S a a +=+则1131n n n S a a --=+,两式相减得到()113n n n n a a a a +-=- 因为0n a ≠113n n a a +-∴-=,故数列的奇数项为以1为首项,3为公差的等差数列;偶数项为以2为首项,3为公差的等差数列;所以31,2231,2n n n a n n ⎧-⎪⎪=⎨⎪-⎪⎩为奇数为偶数 当k 为奇数时,202013473122k a k k ==-=∴,成立; 当k 为偶数时,404220203312k a k k ∴==-=,不成立; 故答案为:1347 【点睛】本题考查了数列的通项公式,灵活运用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩是解题的关键.14.【分析】先通过归纳得再利用等比数列求和得解【详解】由题意得归纳得则故答案为:【点睛】关键点睛:解答本题的关键在通过特殊值归纳出归纳出这个结论之后后面利用等比数列求和就迎刃而解了 解析:101031-【分析】 先通过归纳得()()2111233323,3330k kk k k k k f f ---=-=⨯=-=,再利用等比数列求和得解.【详解】由题意得()()232(3)312,3330,333236f f f =-==-==-=⨯=,()4223330f =-=,归纳得()()2111233323,3330k kk k kkkf f ---=-=⨯=-=,则()()()()()()232020352019(3)333(3)333f f f f f f f f ++++=++++012100923232323=⨯+⨯+⨯++⨯()10101210091010132333323113-=⨯++++=⨯=--.故答案为:101031- 【点睛】关键点睛:解答本题的关键在通过特殊值归纳出()()2111233323,3330k k k k k k k f f ---=-=⨯=-=,归纳出这个结论之后,后面利用等比数列求和就迎刃而解了.15.【分析】根据等差数列的前n 项和公式有结合已知条件令即可得进而求【详解】∵均为等差数列令公差分别为则有∴令则有∴故答案为:【点睛】思路点睛:利用等差数列的前n 项和公式结合等差数列通项公式的特点合理假设解析:54【分析】根据等差数列的前n 项和公式有11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+,结合已知条件,令122,1d d ==即可得11,a b ,进而求55a b .【详解】∵{}{},n n a b 均为等差数列,令公差分别为12,d d ,则有11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+, ∴11121222323n n S nd a d n T nd b d n +--==+-+,令122,1d d ==,则有111,22a b =-=, ∴5115124544a a db b d +==+, 故答案为:54【点睛】思路点睛:利用等差数列的前n 项和公式,结合等差数列通项公式的特点合理假设即可得到数列的基本量11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+,则有11121222n n S nd a d T nd b d +-=+-.结合已知233n n S n T n -=+,假设122,1d d ==,即可求11,a b . 16.50【分析】根据题意正方形边长成等比数列正方形的面积等于边长的平方可得代入求出的通项公式然后根据等比数列的前n 项和的公式得到的和即可求解【详解】记第1个正方形的面积为第2个正方形的面积为第n 个正方形解析:50 【分析】根据题意,正方形边长成等比数列,正方形的面积等于边长的平方可得2n n S a =,代入求出n S 的通项公式,然后根据等比数列的前n 项和的公式得到123n s S S S +++⋯+的和即可求解. 【详解】记第1个正方形的面积为1S ,第2个正方形的面积为2S ,⋯,第n 个正方形的面积为n S ,设第n 个正方形的边长为n a ,则第nn , 所以第n +1个正方形的边长为12n n a a +=,12n n a a +∴=, 即数列{n a }是首项为15a =,公比为2的等比数列,15n n a -∴=⋅, 数列{n S }是首项为125S =,公比为12的等比数列, 123125(1)1250(1)1212nn nS S S S -+++⋯+==⋅-∴-,所以如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于50, 故答案为:5017.【分析】由得两式相减得时然后利用等比数列的定义求解【详解】由题意知当时两式相减得即当时所以数列是首项为公比为的等比数列则故答案为:-1【点睛】本题主要考查数列的递推关系还考查了运算求解能力属于中档题解析:1-【分析】由21n n a S =+,得1121n n a S --=+,两式相减得1n n a a -=-,1n =时,11a =-,然后利用等比数列的定义求解. 【详解】由题意知21n n a S =+, 当2n ≥时,1121n n a S --=+, 两式相减,得12n n n a a a --=, 即1n n a a -=-, 当1n =时,11a =-,所以数列{}n a 是首项为1-,公比为1-的等比数列, 则()()45111a =-⨯-=-. 故答案为:-1 【点睛】本题主要考查数列的递推关系,还考查了运算求解能力,属于中档题.18.或19【分析】利用等差数列的通项公式求出再利用等差数列的前项和公式求出记利用作商法判断出数列的单调性即可求解【详解】设等差数列的公差为由题意当时当时所以解得或(舍去)所以记所以当时此时当时时此时所以解析:18或19 【分析】利用等差数列的通项公式求出λ、d ,再利用等差数列的前n 项和公式求出n S ,记910nn n T S ⎛⎫= ⎪⎝⎭,利用作商法判断出数列的单调性即可求解.【详解】设等差数列{}n a 的公差为d ,由题意, 当1n =时,21a a λ=, 当2n =时,42a a λ=,所以()22232d d d λλ+=⎧⎨+=+⎩,解得22d λ=⎧⎨=⎩ 或10d λ=⎧⎨=⎩(舍去),所以()2112n n n dS na n n -=+=+, 记()2991010nnn n n T S n =⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭+,所以()()()12129119210110910n n nnn n T T n n n ++⎛⎫⎡⎤+++ ⎪⎣⎦⎛⎫⎝⎭==+ ⎪⎝⎭⎛⎫+ ⎪⎝⎭, 当118n ≤≤,n *∈N 时,1921110n n T T n +⎛⎫=+≥ ⎪⎝⎭,此时1n n T T +≥, 当10n >时,n *∈N 时,1921110n n T T n +⎛⎫=+< ⎪⎝⎭,此时1n n T T +<, 所以910nn S ⎛⎫ ⎪⎝⎭取最大值时,18n =或19 故答案为:18或19 【点睛】本题考查了差数列的通项公式、等差数列的前n 项和公式、数列的单调性求数列中的最大项,属于中档题.19.【分析】先计算第一列形成的数列再计算第20行形成的数列得到答案【详解】设第一列形成的数列为则是首项为公差为的等差数列故设第20行形成的数列为是首项为公比为的等比数列故即故答案为:【点睛】本题考查了等 解析:1952 【分析】先计算第一列形成的数列205b =,再计算第20行形成的数列201952c =,得到答案. 【详解】设第一列形成的数列为n b ,则{}n b 是首项为14,公差为14的等差数列,故4n n b =,205b =.设第20行形成的数列为n c ,{}n c 是首项为5,公比为12的等比数列,故201952c =. 即(20,20)201952a c ==. 故答案为:1952. 【点睛】本题考查了等差数列和等比数列的综合应用,意在考查学生对于数列公式方法的灵活运用.20.②④⑤【分析】利用所给递推公式求出的通项公式由证明数列不是等比数列根据的单调性求出范围证明②正确根据复合函数的增减性判断规则说明③错误举出例子证明④正确利用裂项相消法求和证明⑤正确【详解】且数列是以解析:②④⑤ 【分析】利用所给递推公式求出{}n a 的通项公式,由3212b b b b ≠证明数列{}n a e 不是等比数列,根据1111(1)1n n a n a n +++=+++的单调性求出范围证明②正确,根据复合函数的增减性判断规则说明③错误,举出例子证明④正确,利用裂项相消法求和证明⑤正确. 【详解】()*1111n n a a n N +-=∈且111a ,∴数列1{}n a 是以1为首项,1为公差的等差数列,则()*1nn n N a =∈, ()*1n a n N n∴=∈. ①设1n n na b e e ==,则1132123,,b e b e b e ===,因为11326212,b b e e b b --==,所以3212b b b b ≠,因此数列{}na e 不是等比数列;②1111(1)1n n a n a n +++=+++,因为1(1)1y n n =+++在[1,)+∞上单调递增,所以115(1)2122n n ++≥+=+,②正确; ③因为若数列{}n a 是单调递减的数列,所以若函数()f x 在R 上单调递减,则数列(){}nf a 是单调递增数列;④234111,,234a a a ===即可构成三角形的三边,所以④正确; ⑤因为1111(1)1n n n n a n a n +==-++,所以1223111112111231n n n a a a a a a n n n +++⋅⋅⋅+=--=++-+++,⑤正确. 故答案为:②④⑤ 【点睛】本题考查由递推公式求数列的通项公式,用定义证明等比数列,复合函数的单调性,裂项相消法求和,属于中档题.三、解答题21.(1)22(1)5x y ++=;(2)4-. 【分析】(1)本题首先可设(,)P x y ,然后根据OM 、OP 、PN 成等比数列得出2222x y x +=⋅-,最后分为2x >、2x <两种情况进行讨论,即可得出结果;(2)本题首先可根据动点P的轨迹方程得出1x ⎡⎤∈⎣⎦,然后将OP PN -转2x +,最后令()2f x x =+,根据导函数性质即可求出最值.【详解】(1)设(,)P x y ,则(2,)N y ,(2,0)M , 因为OM 、OP 、PN 成等比数列,所以2OP P O N M =⋅,即2222x y x +=⋅-,2x ≠, 当2x >时,2224x y x +=-,即22(1)3x y -+=-(舍去);当2x <时,2242x y x +=-,即22(1)5x y ++=,故动点P 的轨迹方程为22(1)5x y ++=.(2)因为动点P 的轨迹方程为22(1)5x y ++=,所以1x ⎡⎤∈⎣⎦,则(2)2OP PN x x -=-=+,令()2f x x =+,则()1f x '=因为当1x ⎡⎤∈⎣⎦时()0f x '>,所以)max ()121134f x f===+=,故OP PN -的最大值为4. 【点睛】关键点点睛:本题考查动点的轨迹方程的求法以及利用导函数求最值,考查等比中项的性质的应用,利用导函数求最值时,可先通过导函数求出函数单调性,然后根据函数单调性求出最值,考查计算能力,体现了综合性,是中档题.22.(1)(i )8;(ii )()()()(),4323,422,4121,4n a n k n a n k a a n k n a n k ⎧=-⎪+-=-⎪=⎨-=-⎪⎪--=⎩;(2)证明见解析. 【分析】(1)(i )推导出当n 为正偶数时,24n n a a n ++=,可得出+4248n n a a n ++=+,两式作差可得出结论成立;(ii )推导出当n 为正奇数时,4n n a a +=,求出2a 、3a 、4a ,对任意的k *∈N ,分43n k =-,42n k =-,41n k =-,4n k =四种情况讨论,结合等差数列的通项公式以及周期数列的定义可求得数列{}n a 的通项公式;(2)计算出4342414n n n n a a a a ---+++,可求得2482n S n n =+,利用放缩法得出4111142121n S n n ⎛⎫<- ⎪-+⎝⎭,结合裂项相消法可证得所证不等式成立. 【详解】(1)(i )当n 为正偶数时,121n n a a n ++=-,2121n n a a n ++-=+, 两式相加得24n n a a n ++=,① 可得+4248n n a a n ++=+,② ②-①得48n n a a +-=;(ii )当n 为正奇数时,121n n a a n +-=-,2121n n a a n +++=+, 两式作差得22n n a a ++=,所以,422n n a a +++=, 上述两个等式作差得4n n a a +=, 又211a a -=,则2111a a a =+=+,323a a +=,则3232a a a =-=-, 435a a -=,则4357a a a =+=-.对任意的k *∈N ,当43n k =-,则1n a a a ==; 当42n k =-时,()()()422811818722723n k a a a k a k a k a n a n -==+-=++-=+-=++-=+-;当41n k =-时,32n a a a ==-;当4n k =时,()()44817818121n k a a a k a k k a n a ==+-=-+-=--=--.综上所述,()()()(),4323,422,4121,4n a n k n a n k a a n k n a n k ⎧=-⎪+-=-⎪=⎨-=-⎪⎪--=⎩; (2)()434241424232241166n n n n a a a a a n a a n a n ---+++=+-+-+-+⨯--=-,()2410166822n n n S n n +-∴==+,()()2241111114212124241n S n n n n n ⎛⎫∴=<=- ⎪-++-⎝⎭, 所以,48411111111111111433521214214n S S S n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅+<-+-++-=-< ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 【点睛】方法点睛:证明数列不等式常用放缩法,常用的放缩公式如下: (1)()()21111211n n n n n n<=-≥--; (2)()()()211111211211n n n n n n ⎛⎫<=-≥ ⎪-+-+⎝⎭; (3)()()2221144112141212121214n n n n n n n ⎛⎫<===- ⎪--+-+⎝⎭-; (4()22n =<=≥. 23.(1)22n a n =-,(1)n b n n =+;(2)证明见解析.【分析】(1)根据等差数列的通项公式求出公差d 可得n a ,根据等差数列的求和公式可得n S ,根据n n S b +,1n n S b ++,2n n S b ++成等比数列可得(1)n b n n =+;(2)将n c 放大后再裂项,利用裂项求和方法求解可证不等式成立.【详解】(1)设等差数列{}n a 的公差为d ,由题意得31413124333a a d a a d S a d =+=⎧⎨=+==+⎩,解得102a d =⎧⎨=⎩, 从而22n a n =-,2(1)(1)2n n n S n n -==-. 因为n n S b +,1n n S b ++,2n n S b ++成等比数列所以()()()212n n n n n n S b S b S b +++=++,从而()211222n n n n n n n n S S b S S b S S +++++=++, 所以2221221(1)(1)(1)(2)2(1)(1)2(1)(1)(2)2(1)2n n n nn n n S S Sn n n n n n n n b n nS S S n n nn n n ++++-+--+++====++--+++-+. (2)证明:因为n c ===<=, 所以122(10211)2n c c c n n n +++<-+-++--=【点睛】关键点点睛:将n c 放大后再裂项,利用裂项求和方法求解是解题关键.24.(1)2n a n =,2n n b =;(2)①存在,5k =;②{}1,2,3,4.【分析】(1)由等差数列以及等比数列的性质以及通项公式得出答案;(2)①11k k k b T T ++-=结合数列{}n b 的通项公式得出k 的值;②由()1n S n n =+将不等式化为()210n n n -+≤,令()()21nf n n n =-+并得出其单调性,再由单调性确定解集. 【详解】(1)因为等差数列{}n a 中,3575330a a a a ++==,所以510a =. 设等差数列{}n a 的公差是d ,所以51251a a d -==- 所以()112n a a n d n =+-=.设等比数列{}n b 的公比是q ,因为2316b b a =所以2331432b q q ==,所以2q ,所以112n n n b b q -==. (2)①若存在正整数k ,使得132k k k T T b +=++成立,则132k k b b +=+ 所以12232k k +=+,即232k =,解得5k =.存在正整数5k =满足条件.②()()112n n n a a S n n +==+ 所以()12n n n +≥,即()210n n n -+≤令()()21nf n n n =-+, 因为()()()()()()11121221221n n n f n f n n n n n n +-⎡⎤+-=-++-++=-+⎣⎦ 所以当4n ≥时,(){}f n 单调递增.又()()210f f -<,()()320f f -<,()()430f f -=所以()()()()()1234f f f f f n >>=<<<因为()10f =,()44f =-,()52f =,所以1n =,2,3,4时,()0f n ≤,5n ≥时,()0f n >,所以不等式n n S b ≥,的解集为{}1,2,3,4.【点睛】解决本题的关键是构造新函数,通过作出确定函数的单调性,从而求得()0f n ≤的解集. 25.证明见解析.【分析】由定义法分别结合n a 和n S 的关系分别证明充分性和必要性成立即可.【详解】当n =1时,S 1=32-t =9-t ,当n ≥2时,由S n =3n +1-t 得S n -1=3n -t ,两式相减得a n =3n +1-3n =2·3n (n ≥2), (1)充分性已知t =3,此时S 1=32-t =9-3=6,令n =1,得a 1=2·31=6=S 1,所以a n =2·3n (n ∈N *) 所以13n na a +=,所以数列{a n }是等比数列. (2)必要性因为数列{a n }是等比数列,所以a 1=2·31=6, 又因为S 1=9-t ,所以9-t =6,所以t =3,综上所述:数列{a n }是等比数列的充要条件为t =3.【点睛】关键点睛:本题考查等比数列的判断和证明,解题的关键是利用n a 和n S 的关系得出()232n n a n =⋅≥,再根据充分必要的定义证明.26.(1)证明见解析,13-=n n a ;(2)()11316164n n n T ⎛⎫=-+⋅- ⎪⎝⎭. 【分析】(1)首先根据131n n S S +=+,131n n S S -=+两式相减得()132n n a a n +=≥,即可得到n a 的通项公式.(2)首先求出()13n n b n -=⋅-,再利用错位相减法求前n 项和n T 即可. 【详解】(1)证明:由131n n S S +=+,当2n ≥时,131n n S S -=+,两式相减得()132n n a a n +=≥,当1n =时,2131S S =+即12131a a a +=+,∴23a =,∴213a a =,∴1n ≥时都有13n n a a +=,∴数列{}n a 是首项为1,公比为3的等比数列,∴13-=n n a .(2)解:()()1113n n n n b na n --=-⋅=⋅-, ∴()()()()()122112333133n n n T n n --=+⋅-+⋅-+⋅⋅⋅+-⋅-+⋅-, ()()()()()12131323133n n n T n n --=⋅-+⋅-+⋅⋅⋅+-⋅-+⋅-, ∴()()()()111413333n n n T n -=+-+-+⋅⋅⋅+--⋅-,∴()()()131********nn n n T n n --⎛⎫=-⋅-=-+⋅- ⎪+⎝⎭∴()11316164n n n T ⎛⎫=-+⋅- ⎪⎝⎭. 【点睛】方法点睛:本题主要考查数列的求和,常见的数列求和方法如下:公式法:直接利用等差、等比数列的求和公式计算即可;分组求和法:把需要求和的数列分成熟悉的数列,再求和即可;裂项求和法:通过把数列的通项公式拆成两项之差,再求和即可;错位相减法:当数列的通项公式由一个等差数列和一个等比数列的乘积构成时,可使用此方法求和.。
新高中数学数列多选题专题复习含答案一、数列多选题1.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++,数列{}n a 的前n 项为n S ,则( ) A .12n k += B .133n n a a +=- C .()2332n a n n =+D .()133234n n S n +=+- 【答案】ABD 【分析】根据数列的构造方法先写出前面几次数列的结果,寻找规律,再进行推理运算即可. 【详解】由题意可知,第1次得到数列1,3,2,此时1k = 第2次得到数列1,4,3,5,2,此时3k = 第3次得到数列1, 5,4,7,3,8,5,7,2,此时 7k =第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时15k = 第n 次得到数列1,123,,,,k x x x x ,2 此时21n k =-所以12n k +=,故A 项正确;结合A 项中列出的数列可得: 123433339339273392781a a a a =+⎧⎪=++⎪⎨=+++⎪⎪=++++⎩123333(*)n n a n N ⇒=++++∈用等比数列求和可得()33132n n a -=+则 ()121331333322n n n a+++--=+=+23322n +=+ 又 ()3313333392n n a ⎡⎤-⎢⎥-=+-=⎢⎥⎣⎦22393332222n n +++--=+ 所以 133n n a a +=-,故B 项正确;由B 项分析可知()()331333122n nn a -=+=+即()2332n a n n ≠+,故C 项错误. 123n n S a a a a =++++23133332222n n +⎛⎫=++++ ⎪⎝⎭()231331322nn --=+ 2339424n n +=+-()133234n n +=+-,故D 项正确. 故选:ABD. 【点睛】本题需要根据数列的构造方法先写出前面几次数列的结果,寻找规律,对于复杂问题,著名数学家华罗庚指出:善于“退”,足够的“退”,退到最原始而不失重要的地方,是学好数学的一个诀窍.所以对于复杂问题我们应该先足够的退到我们最容易看清楚的地方,认透了,钻深了,然后再上去,这就是以退为进的思想.2.已知数列{}n a 的前n 项和为n S ,则下列说法正确的是( ) A .若21,n S n =-则{}n a 是等差数列B .若21,nn S =-则{}n a 是等比数列C .若{}n a 是等差数列,则995099S a =D .若{}n a 是等比数列,且10,0,a q >>则221212n n n S S S -+⋅>【答案】BC 【分析】由n S 求n a ,根据通项公式可判断AB 是否正确,由等差数列的性质可判断C ,取1n =时,结合等比数列求和公式作差比较13S S ⋅与22S 大小即可判断D. 【详解】对于A 选项,若21n S n =-,当2n ≥时,21n a n =-,10a =不满足21n a n =-,故A错误;对于B 选项,若21nn S =-,则1112,21,1n n n n S S n a S n --⎧-=≥=⎨==⎩,由于11a =满足12n n a -=,所以{}n a 是等比数列,故B 正确;对于C 选项,若{}n a 是等差数列,则()199995099992a a S a +==,故C 正确.对于D 选项,当1n =时,()()222222132111110S S S a q qa q a q ⋅-=++-+=-<,故当1n =时不等式不等式,故221212n n n S S S -+⋅>不成立,所以D 错误.故选:BC 【点睛】本题考查数列的前n 项和为n S 与n a 之间的关系,等差数列的性质,等比数列的前n 项和为n S 的公式等,考查运算求解能力.本题D 选项解题的关键将问题特殊化,讨论1n =时,13S S ⋅与22S 大小情况.此外还需注意一下公式:11,2,1n n n S S n a S n --≥⎧=⎨=⎩;若{}n a 是等差数列,则()2121n n S n a -=-.3.(多选题)数列{}n a 满足()2*1n n n a a a n N+=-+∈,110,2a ⎛⎫∈ ⎪⎝⎭,则以下说法正确的为( ) A .10n n a a +<<B .22221231n a a a a a +++⋅⋅⋅+<C .对任意正数b ,都存在正整数m 使得12311111111mb a a a a +++⋅⋅⋅+>----成立 D .11n a n <+ 【答案】ABCD 【分析】对于A ,结合二次函数的特点可确定正误;对于B ,将原式化简为111n a a a +-<,由10n a +>得到结果; 对于C ,结合1a 范围和A 中结论可确定12111111nn a a a ++⋅⋅⋅+>---,由此判断得到结果;对于D ,利用数学归纳法可证得结论. 【详解】对于A ,2211124n n n n a a a a +⎛⎫=-+=--+ ⎪⎝⎭,若10,2n a ⎛⎫∈ ⎪⎝⎭,则110,4n a +⎛⎫∈ ⎪⎝⎭,又110,2a ⎛⎫∈ ⎪⎝⎭,可知0n a >,10n a +>, 又210n n n a a a +-=-<,10n n a a +∴<<,A 正确; 对于B ,由已知得:21n n n a a a +=-,()()()2221212231111n n n n a a a a a a a a a a a a ++∴++⋅⋅⋅+=-+-+⋅⋅⋅+-=-<,B 正确;对于C ,由110,2a ⎛⎫∈ ⎪⎝⎭及A 中结论得:1112na <-<,1121n a <<-, 12111111nn a a a ∴++⋅⋅⋅+>---,显然对任意的正数b ,在在正整数m ,使得m b >,此时12311111111mb a a a a +++⋅⋅⋅+>----成立,C 正确; 对于D ,(i )当1n =时,由已知知:112a <成立, (ii )假设当()n k k N*=∈时,11nan <+成立, 则222111112411n n n n a a a a n n +⎛⎫⎛⎫=-+=--+<-+ ⎪ ⎪++⎝⎭⎝⎭, 又()()()221111012121n n n n n -+-=-<+++++,即()2111121n n n -+<+++, 112n a n +∴<+, 综上所述:当n *∈N 时,112n a n +<+,D 正确. 故选:ABCD. 【点睛】关键点点睛:本题考查数列与不等式的综合应用问题,关键在于能够熟练应用不等式的性质与函数的性质进行化简辨析,同时对于数列中的不等式证明问题,可采用数学归纳法进行证明.4.已知数列{}n a 中,112a =,且()11n n n a a a +=+,n *∈N ,则以下结论正确的是( ) A .11111n n n a a a +=-+ B .{}n a 是单调递增数列 C .211011111111a a a a +++>+++ D .若1212120111n n a a aa a a ⎡⎤+++=⎢⎥+++⎣⎦,则122n =([]x 表示不超过x 的最大整数) 【答案】ABD 【分析】利用裂项法可判断A 选项的正误;利用数列单调性的定义可判断B 选项的正误;利用裂项求和法可判断C 选项的正误;求出1212111nn a a a a a a ++++++的表达式,可判断D 选项的正误. 【详解】在数列{}n a 中,112a =,且()11n n n a a a +=+,n *∈N ,则()21110a a a =+>,()32210a a a =+>,,依此类推,可知对任意的n *∈N ,0n a >.对于A 选项,()()()111111111n n n n n n n n n a a a a a a a a a ++-===-+++,A 选项正确; 对于B 选项,210n n n a a a +-=>,即1n n a a +>,所以,数列{}n a 为单调递增数列,B 选项正确;对于C 选项,由A 选项可知,11111n n n a a a +=-+, 所以,1212231011111110111111111111111a a a a a a a a a a a a ⎛⎫⎛⎫⎛⎫+++=-+-++-=-< ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭,C 选项错误; 对于D 选项,12122311111111111111111n nn n a a a a a a a a a a a ++⎛⎫⎛⎫⎛⎫+++=-+-++-=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭, 所以,()()()12121212111111111111n nn n a a a a a aa a a a a a +-+++=+++++++++-+-+121111111112111n n n n n n a a a a a a ++⎛⎫⎛⎫=-+++=--=-+ ⎪ ⎪+++⎝⎭⎝⎭, 由112a =,且()11n n n a a a +=+得234a =,32116a =,又{}n a 是单调递增数列,则3n ≥时,1n a >,则101na <<, 从而1122120n n n a +⎡⎤-=-=⎢⎥⎣⎦+,得122n =,D 选项正确.故选:ABD. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.5.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为20【答案】BCD 【分析】由等差数列的求和公式和通项公式,结合等比数列的中项性质,解方程可得首项和公差,求得等差数列的通项n a 和n S ,由二次函数的最值求法和二次不等式的解法可得所求值,判断命题的真假. 【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,可得2739a a a =,即2111(6)(2)(8)a d a d a d +=++,化为1100a d +=,② 由①②解得120a =,2d =-, 则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-, 由221441()24n S n =--+,可得10n =或11时,n S 取得最大值110; 由0n S >,可得021n <<,即n 的最大值为20. 故选:BCD 【点睛】方法点睛:数列最值常用的方法有:(1)函数(单调性)法;(2)数形结合法;(3)基本不等式法.要结合已知条件灵活选择合适的方法求解.6.(多选题)已知函数()22()()n n f n n n ⎧=⎨-⎩当为奇数时当为偶数时,且()()1n a f n f n =++,则na 等于( )A .()21n -+B .21n -C .21nD .12n -【答案】AC【分析】对n 进行分类讨论,按照()()1n a f n f n =++写出通项即可. 【详解】当n 为奇数时,()()()()22112121n a f n f n n n n n =++=-+=--=-+; 当n 为偶数时,()()()221121n a f n f n n n n =++=-++=+,所以()()()2121n n n a n n ⎧-+⎪=⎨+⎪⎩当为奇数时当为偶数时. 故选:AC . 【点睛】易错点睛:对n 进行分类讨论时,应注意当n 为奇数时,1n +为偶数;当n 为偶数时,1n +为奇数.7.将()23nn ≥个数排成n 行n 列的一个数阵,如图:11a 12a 13a ……1n a21a 22a 23a ……2n a 31a 32a 33a ……3n a……1n a 2n a 3n a ……nn a该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知113a =,61131a a =+,记这2n 个数的和为S .下列结论正确的有( )A .2m =B .767132a =⨯C .()1212j ij a i -=+⨯D .()()221nS n n =+-【答案】ACD 【分析】由题中条件113a =,61131a a =+,得23531m m +=+解得m 的值可判断A ;根据第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列可判断BC ;由等差数列、等比数列的前n 项和公式可判断D. 【详解】由113a =,61131a a =+,得23531m m +=+,所以2m =或13m =-(舍去),A 正确;()666735132a m m =+=⨯,B 错误;()()112132212j j ij a i i --=-+⨯=+⨯⎡⎤⎣⎦,C 正确;()()()111212122212n n n n nn S a a a a a a a a a =++++++++++++1121(12)(12)(12)121212n n n nn a a a ---=+++--- ()()()11211332(1)21212n nn n a a a n ++-⎛⎫=+++-=⨯- ⎪⎝⎭()()221n n n =+-,D 正确.故选:ACD. 【点睛】方法点睛:本题考查了分析问题、解决问题的能力,解答的关键是利用等比数列、等差数列的通项公式、求和公式求解,考查了学生的推理能力、计算能力.8.(多选)设数列{}n a 是等差数列,公差为d ,n S 是其前n 项和,10a >且69S S =,则( ) A .0d > B .80a =C .7S 或8S 为n S 的最大值D .56S S >【答案】BC 【分析】根据69S S =得到80a =,再根据10a >得到0d <,可得数列{}n a 是单调递减的等差数列,所以7S 或8S 为n S 的最大值,根据6560S S a -=>得65S S >,故BC 正确. 【详解】由69S S =得,960S S -=, 即7890a a a ++=,又7982a a a +=,830a ∴=,80a ∴=,∴B 正确;由8170a a d =+=,得17a d =-,又10a >,0d ∴<, ∴数列{}n a 是单调递减的等差数列,()()0,70,9n n a n N n a n N n **⎧>∈≤⎪∴⎨<∈≥⎪⎩, 7S ∴或8S 为n S 的最大值,∴A 错误,C 正确; 6560S S a -=>,65S S ∴>,所以D 错误.故选:BC . 【点睛】关键点点睛:根据等差中项推出80a =,进而推出0d <是解题关键.9.已知首项为1的数列{}n a 的前n 项和为n S ,当n 为偶数时,11n n a a --=;当n 为奇数且1n >时,121n n a a --=.若4000m S >,则m 的值可以是( ) A .17 B .18C .19D .20【答案】BCD 【分析】由已知条件得出数列奇数项之间的递推关系,从而得数列21{3}k a -+是等比数列,由此可求得奇数项的表达式(也即得到偶数项的表达式),对2k S 可先求得其奇数项的和,再得偶数项的和,从而得2k S ,计算出与4000接近的和,184043S =,173021S =,从而可得结论. 【详解】依题意,2211k k a a -=+,21221k k a a +=+,*k N ∈,所以2211k k a a -=+,2122121212(1)123k k k k a a a a +--=+=++=+,∴()2121323k k a a +-+=+.又134a +=,故数列{}213k a -+是以4为首项,2为公比的等比数列,所以121423k k a --=⋅-,故S 奇()21321141232(44242)43321k k k k k a a a k k -+-===+⨯++⨯--+++-=---,S 偶21232412()242k k k a a a k k a a a +-=+=+++=+++--,故2k S S =奇+S 偶3285k k +=--,故121828454043S =--=,173021S =,故使得4000m S >的最小整数m 的值为18.故选:BCD . 【点睛】关键点点睛:本题考查数列的和的问题,解题关键是是由已知关系得出数列的奇数项满足的性质,求出奇数项的表达式(也可求出偶数项的表达式),而求和时,先考虑项数为偶数时的和,这样可分类求各:先求奇数项的和,再求偶数项的和,从而得所有项的和,利用这个和的表达式估计和n S 接近4000时的项数n ,从而得出结论.10.斐波那契数列{}n a :1,1,2,3,5,8,13,21,34,…,又称黄金分割数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,其通项公式1122n nn a ⎡⎤⎛⎛-⎢⎥=- ⎢⎥⎝⎭⎝⎭⎣⎦,是用无理数表示有理数的一个范例,该数列从第三项开始,每项等于其前相邻两项之和,即21n n n a a a ++=+,记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .10711S a =B .2021201920182a a a =+C .202120202019S S S =+D .201920201S a =-【答案】AB 【分析】选项A 分别求出710S a ,可判断,选项B 由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+可判断,选项C ,由202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可判断.选项D.由()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-可判断.【详解】因为10143S =,711143a =,所以10711S a =,则A 正确;由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+, 所以2021201920182a a a =+,所以B 正确; 因为202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得202120201220192019101S S a a a S -=+++++=+,所以2021202020191S S S =++,所以C 错误; 因为()()()()()123324354652122n n n n n S a a a a a a a a a a a a a a a a +++=++++=-+-+-+-++-=-21n a +=-,所以201920211S a =-,所以D 错误.故选:AB. 【点睛】关键点睛:本题考查数列的递推关系的应用,解答本题的关键是由202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得202120201220192019101S S a a a S -=+++++=+,以及由递推关系可得()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-,属于中档题.。
高中数学数列复习题集附答案高中数学数列复习题集附答案一、选择题1. 设数列 {an} 的通项公式为 an = 3n + 2,则 {an} 的首项是:A. 1B. 2C. 3D. 4答案:B2. 数列 {an} 的通项公式为 an = 2^n,则 {an} 的前5项分别是:A. 1, 2, 3, 4, 5B. 2, 4, 8, 16, 32C. 1, 4, 9, 16, 25D. 2, 3, 4, 5, 6答案:B3. 已知数列 {an} 的首项是 a1 = -5,公差是 d = 3,求 {an} 的通项公式。
A. an = -5 + 3nB. an = -5 - 3nC. an = -5n + 3D. an = -5 - 3^n答案:A二、填空题1. 求等差数列 {an} 的前5项和,已知首项 a1 = 3,公差 d = 4。
答案:S5 = 752. 求等差数列 {an} 的第10项,已知首项 a1 = 2,公差 d = -3。
答案:a10 = -253. 若等差数列 {an} 的第7项是 20,末项是 74,求首项和公差。
答案:a1 = -16,d = 6三、解答题1. 求等差数列 {an} 的通项公式,已知前三项分别是:a1 = 3,a2 = 7,a3 = 11。
解答:设通项公式为 an = a + (n-1)d,代入前三项得到以下等式:3 = a + 0d7 = a + 1d11 = a + 2d解上述方程组可得,a = 3,d = 4。
因此,该数列的通项公式为an = 3 + 4(n-1)。
2. 若等差数列 {bn} 的前5项的和为 40,已知首项 b1 = 1,公差 d = 2,求数列的前n项和 Sn。
解答:首先确定数列的通项公式为 bn = 1 + (n-1)2 = 2n-1。
因此,前n项和 Sn = (b1 + bn) * n / 2 = (1 + (2n-1)) * n / 2 = n^2。
高中数学数列复习试题重庆理1若等差数列{n a }的前三项和93=S 且11=a ,则2a 等于( A )A .3B .4C .5D .6安徽文3等差数列{}n a 的前n 项和为x S 若=则432,3,1S a a ==( B )A .12B .10C .8D .6辽宁文5等差数列{}n a 的前n 项和为x S 若=则432,3,1S a a ==( B )A .12B .10C .8D .6福建文2等差数列{}n a 的前n 项和为x S 若=则432,3,1S a a ==( B )A .12B .10C .8D .6广东理5已知数列{n a }的前n 项和29n S n n =-,第k 项满足58k a <<,则k =( B )A .9B .8 C. 7 D .6在等比数列{}n a (n ∈N*)中,若11a =,418a =,则该数列的前10项和为( B ) A .4122- B .2122- C .10122- D .11122-湖北理8已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n na b 为整数的正整数n 的个数是( D )A .2B .3C .4D .5已知a b c d ,,,成等比数列,且曲线223y x x =-+的顶点是()b c ,,则ad 等于( B )A.3 B.2 C.1 D.2-宁夏理4已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差d =( D ) A.23- B.13- C.13 D.23陕西文5等差数列{a n }的前n 项和为S n ,若2462,10,S S S ==则等于( C )A .12B .18C .24D .42四川文7等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( B )A .9B .10C .11D .12上海文14数列{}n a 中,22211100010012n n n a n n n n ⎧⎪⎪=⎨⎪⎪-⎩,≤≤,,≥, 则数列{}n a 的极限值( B ) A.等于0 B.等于1 C.等于0或1 D.不存在陕西理5各项均为正数的等比数列{}n a 的前n 项和为S n ,若S n =2,S 30=14,则S 40等于( C )A .80B .30C .26D .16天津理8设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k =( B )A.2 B.4 C.6 D.8重庆理14设{n a }为公比q>1的等比数列,若2004a 和2005a 是方程03842=+x x 的两根,则=+20072006a a _____.18已知数列的通项52n a n =-+,则其前n 项和n S = .(51)2n n +-全国1理15等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 .13宁夏文16已知{}n a 是等差数列,466a a +=,其前5项和510S =,则其公差d = .12江西文14已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++=.7广东文13已知数列{n a }的前n 项和29n S n n =-,则其通项n a = ;若它的第k 项满足58k a <<,则k = . 2n-10 ; 8 北京理10若数列{}n a 的前n 项和210(123)n S n n n =-=,,,,则此数列的通项公式为 ;数列{}n na 中数值最小的项是第 项.211n - 3浙江理21已知数列{}n a 中的相邻两项212k k a a -,是关于x 的方程2(32)320k k x k x k -++=的两个根,且212(123)k k a a k -=≤,,,. (I )求1a ,2a ,3a ,7a ;(II )求数列{}n a 的前2n 项和2n S ;(I )解:方程2(32)320k k x k x k -++=的两个根为13x k =,22k x =,当1k =时,1232x x ==,,所以12a =;当2k =时,16x =,24x =,所以34a =;当3k =时,19x =,28x =,所以58a =时;当4k =时,112x =,216x =,所以712a =.(II )解:2122n n S a a a =+++ 2(363)(222)n n =+++++++2133222n n n ++=+-. 19已知数列{n a }中的相邻两项21k a -、2k a 是关于x 的方程2(32)320k k x k x k -++⋅= 的两个根,且21k a -≤2k a (k =1,2,3,…).(I)求1357,,,a a a a 及2n a (n ≥4)(不必证明);(Ⅱ)求数列{n a }的前2n 项和S 2n .本题主要考查等差、等比数列的基本知识,考查运算及推理能力.满分14分.(I)解:方程2(32)320k k x k x k -++⋅=的两个根为123, 2k x k x ==.当k =1时,123,2x x ==,所以12a =;当k =2时,126,4x x ==,所以34a =;当k =3时,129,8x x ==,所以58a =;当k =4时,1212,16x x ==,所以712a =;因为n ≥4时,23n n >,所以22 (4)n n a n =≥(Ⅱ)22122(363)(222)nn n S a a a n =+++=+++++++=2133222n n n +++-.在数列{}n a 中,12a =,1431n n a a n +=-+,n ∈*N .(Ⅰ)证明数列{}n a n -是等比数列;(Ⅱ)求数列{}n a 的前n 项和n S ;(Ⅲ)证明不等式14n n S S +≤,对任意n ∈*N 皆成立.本小题以数列的递推关系式为载体,主要考查等比数列的概念、等比数列的通项公式及前n 项和公式、不等式的证明等基础知识,考查运算能力和推理论证能力.满分12分.(Ⅰ)证明:由题设1431n n a a n +=-+,得1(1)4()n n a n a n +-+=-,n ∈*N .又111a -=,所以数列{}n a n -是首项为1,且公比为4的等比数列.(Ⅱ)解:由(Ⅰ)可知14n n a n --=,于是数列{}n a 的通项公式为14n n a n -=+.所以数列{}n a 的前n 项和41(1)32n n n n S -+=+. (Ⅲ)证明:对任意的n ∈*N ,1141(1)(2)41(1)443232n n n n n n n n S S ++⎛⎫-++-+-=+-+ ⎪⎝⎭ 21(34)02n n =-+-≤. 所以不等式14n n S S +≤,对任意n ∈*N 皆成立.上海理20若有穷数列12,...n a a a (n 是正整数),满足1211,....n n n a a a a a a -===即1i n i a a -+=(i 是正整数,且1i n ≤≤),就称该数列为“对称数列”。
新高中数学数列多选题专题复习及答案(1)一、数列多选题1.已知等比数列{}n a 的公比为q ,前n 项和0n S >,设2132n n n b a a ++=-,记{}n b 的前n 项和为n T ,则下列判断正确的是( ) A .若1q =,则n n T S = B .若2q >,则n n T S > C .若14q =-,则n n T S > D .若34q =-,则n n T S > 【答案】BD 【分析】先求得q 的取值范围,根据q 的取值范围进行分类讨论,利用差比较法比较出n T 和n S 的大小关系. 【详解】由于{}n a 是等比数列,0n S >,所以110,0a S q =>≠, 当1q =时,10n S na =>,符合题意; 当1q ≠时,()1101n n a q S q-=>-,即101nq q ->-,上式等价于1010n q q ⎧->⎨->⎩①或1010n q q ⎧-<⎨-<⎩②.解②得1q >.解①,由于n 可能是奇数,也可能是偶数,所以()()1,00,1q ∈-.综上所述,q 的取值范围是()()1,00,-+∞.2213322n n n n b a a a q q ++⎛⎫=-=- ⎪⎝⎭,所以232n n T q q S ⎛⎫=- ⎪⎝⎭,所以()2311222n n n n T S S q q S q q ⎛⎫⎛⎫-=⋅--=⋅+⋅- ⎪ ⎪⎝⎭⎝⎭,而0n S >,且()()1,00,q ∈-⋃+∞.所以,当112q -<<-,或2q >时,0n n T S ->,即n n T S >,故BD 选项正确,C 选项错误. 当12(0)2q q -<<≠时,0n n T S -<,即n n T S <. 当12q =-或2q 时,0,n n n n T S T S -==,A 选项错误.综上所述,正确的选项为BD. 故选:BD 【点睛】本小题主要考查等比数列的前n 项和公式,考查差比较法比较大小,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.2.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,0n a ≠,且202021111212a a ++≤+( )A .若数列{}n a 为等差数列,则20210S ≥B .若数列{}n a 为等差数列,则10110a ≤C .若数列{}n a 为等比数列,则20200T >D .若数列{}n a 为等比数列,则20200a <【答案】AC 【分析】由不等关系式,构造11()212x f x =-+,易得()f x 在R 上单调递减且为奇函数,即有220200a a +≥,讨论{}n a 为等差数列、等比数列,结合等差、等比的性质判断项、前n 项和或积的符号即可. 【详解】 由202021111212a a ++≤+,得2020211110212212a a +-+-≤+, 令11()212x f x =-+,则()f x 在R 上单调递减,而1121()212212xx x f x --=-=-++, ∴12()()102121xx x f x f x -+=+-=++,即()f x 为奇函数,∴220200a a +≥,当{}n a 为等差数列,22020101120a a a +=≥,即10110a ≥,且2202020212021()02a a S +=≥,故A 正确,B 错误;当{}n a 为等比数列,201820202a a q=,显然22020,a a 同号,若20200a <,则220200a a +<与上述结论矛盾且0n a ≠,所以前2020项都为正项,则202012020...0T a a =⋅⋅>,故C 正确,D 错误. 故选:AC. 【点睛】关键点点睛:利用已知构造函数,并确定其单调性和奇偶性,进而得到220200a a +≥,基于该不等关系,讨论{}n a 为等差、等比数列时项、前n 项和、前n 项积的符号.3.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a >B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列C .0nS <时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项 【答案】ACD 【分析】 由已知得()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,可判断A ;由已知得出2437d -<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1na 在1,6n n N上单调递增,1na 在7n nN ,上单调递增,可判断B ;由()313117713+12203213a a a S a ⨯==<=,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ; 【详解】由已知得311+212,122d a a a d ===-,()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,故A 正确;由7161671+612+40+512+3>0+2+1124+7>0a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得2437d -<<-,又()()3+312+3n a n d n d a =-=-,当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,所以[]1,6n ∈时,1>0na ,7n ≥时,10n a <,所以1na 在1,6nn N上单调递增,1na 在7nn N,上单调递增,所以数列1n a ⎧⎫⎨⎬⎩⎭不是递增数列,故B 不正确;由于()313117713+12203213a a a S a ⨯==<=,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,0n S <,所以当[]7,12n ∈时,0n a <,>0n S ,0nnS a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项,故D 正确; 【点睛】本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题.4.已知等差数列{}n a 的前n 项和为n S ,若831a =,10210S =,则( ) A .19919S a = B .数列{}22na 是公比为8的等比数列C .若()1nnnb a =-⋅,则数列{}n b 的前2020项和为4040D .若11n n n b a a +=,则数列{}n b 的前2020项和为202024249【答案】CD 【分析】由等差数列性质可判断A ;结合已知条件可求出等差数列的公差,从而可求出通项公式以及22n a ,结合等比数列的定义可判断B ;写出n b ,由定义写出2020T 的表达式,进行分组求和即可判断C ;11144143n b n n ⎛⎫=- ⎪-+⎝⎭,裂项相消即可求和.【详解】由等差数列的性质可知,191019S a =,故A 错误;设{}n a 的公差为d ,则有811017311045210a a d S a d =+=⎧⎨=+=⎩,解得13a =,4d =,故41n a n =-,28122na n -=, 则数列{}22na 是公比为82的等比数列,故B 错误;若()()()1141nnnn b a n =-⋅=-⋅-,则{}n b 的前2020项20203711158079410104040T =-+-+-⋅⋅⋅+=⨯=,故C 正确; 若()()1111414344143n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,则{}n b 的前2020项和2020111111120204377118079808324249T ⎛⎫=-+-+⋅⋅⋅+-=⎪⎝⎭,故D 正确. 故选:CD . 【点睛】 方法点睛:求数列的前n 项和常见思路有:1、对于等差和等比数列,直接结合求和公式求解;2、等差数列±等比数列时,常采取分组求和法;3、等差数列⨯等比数列时,常采取错位相减法;4、裂项相消法.5.(多选题)数列{}n a 满足()2*1n n n a a a n N+=-+∈,110,2a ⎛⎫∈ ⎪⎝⎭,则以下说法正确的为( ) A .10n n a a +<<B .22221231n a a a a a +++⋅⋅⋅+<C .对任意正数b ,都存在正整数m 使得12311111111mb a a a a +++⋅⋅⋅+>----成立 D .11n a n <+ 【答案】ABCD 【分析】对于A ,结合二次函数的特点可确定正误;对于B ,将原式化简为111n a a a +-<,由10n a +>得到结果;对于C ,结合1a 范围和A 中结论可确定12111111nn a a a ++⋅⋅⋅+>---,由此判断得到结果;对于D ,利用数学归纳法可证得结论. 【详解】对于A ,2211124n n n n a a a a +⎛⎫=-+=--+ ⎪⎝⎭,若10,2n a ⎛⎫∈ ⎪⎝⎭,则110,4n a +⎛⎫∈ ⎪⎝⎭,又110,2a ⎛⎫∈ ⎪⎝⎭,可知0n a >,10n a +>, 又210n n n a a a +-=-<,10n n a a +∴<<,A 正确; 对于B ,由已知得:21n n n a a a +=-,()()()2221212231111n n n n a a a a a a a a a a a a ++∴++⋅⋅⋅+=-+-+⋅⋅⋅+-=-<,B 正确;对于C ,由110,2a ⎛⎫∈ ⎪⎝⎭及A 中结论得:1112na <-<,1121na <<-, 12111111nn a a a ∴++⋅⋅⋅+>---,显然对任意的正数b ,在在正整数m ,使得m b >,此时12311111111mb a a a a +++⋅⋅⋅+>----成立,C 正确; 对于D ,(i )当1n =时,由已知知:112a <成立, (ii )假设当()n k k N*=∈时,11n a n <+成立,则222111112411n nn n a a a a n n +⎛⎫⎛⎫=-+=--+<-+ ⎪ ⎪++⎝⎭⎝⎭, 又()()()221111012121n n n n n -+-=-<+++++,即()2111121n n n -+<+++, 112n a n +∴<+, 综上所述:当n *∈N 时,112n a n +<+,D 正确. 故选:ABCD. 【点睛】关键点点睛:本题考查数列与不等式的综合应用问题,关键在于能够熟练应用不等式的性质与函数的性质进行化简辨析,同时对于数列中的不等式证明问题,可采用数学归纳法进行证明.6.下面是关于公差0d >的等差数列{}n a 的几个命题,其中正确的有( ) A .数列{}n a 递增B .n S 为{}n a 的前n 项和,则数列n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列C .若n a n =,n S 为{}n a 的前n 项和,且n S n c ⎧⎫⎨⎬+⎩⎭为等差数列,则0cD .若70a =,n S 为{}n a 的前n 项和,则方程0n S =有唯一的根13n = 【答案】ABD 【分析】选项A. 由题意10n n a a d +-=>可判断;选项B.先求出112n S n a d n -=+⨯,根据1012n n S S dn n +-=>+可判断;选项C. 若n a n =,则()12n n n S +=,则0c 或1c =时n S n c ⎧⎫⎨⎬+⎩⎭为等差数列可判断;选项D.由1602n n S dn -⎛⎫=--= ⎪⎝⎭可判断. 【详解】选项A. 由题意10n n a a d +-=>,则1n n a a +>,所以数列{}n a 递增,故A 正确. 选项B. ()112n n n S na d -=+⨯,则112n S n a d n -=+⨯ 所以1012n n S S d n n +-=>+,则11n n S S n n +>+,所以数列n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列. 故B 正确.选项C. 若n a n =,则()12n n n S +=,则()()12n n n S n c n c =+++当0c时,12+n S n c n =+为等差数列. 当1c =时,2n S n c n=+为等差数列.所以选项C 不正确. 选项D. 70a =,即7160a a d =+=,则16a d =- 又()()1111660222n n n n n n S na d dn d dn ---⎛⎫=+⨯=-+⨯=--= ⎪⎝⎭ 由0,0d n >>,所以1602n --=,得13n =,故选项D 正确. 故选:ABD 【点睛】关键点睛:本题考查等差数列的判定和单调性的单调,解答本题的关键是利用等差数列的定义和前n 项和公式进行判断,求出162n n S dn -⎛⎫=-+⎪⎝⎭,从而判断,属于中档题.7.已知数列{}n a 满足11a =,()111n n na n a +-+=,*n N ∈,其前n 项和为n S ,则下列选项中正确的是( )A .数列{}n a 是公差为2的等差数列B .满足100n S <的n 的最大值是9C .n S 除以4的余数只能为0或1D .2n n S na = 【答案】ABC 【分析】根据题意对()111n n na n a +-+=变形得()1111111n n a a n n n n n n +=-+-=++,进而根据累加法求得()*21n a n n N =-∈,再依次讨论各选项即可得答案.【详解】解:因为()111n n na n a +-+=,故等式两边同除以()1n n +得:()1111111n n a a n n n n n n +=-+-=++, 所以()1111111n n a a n n n n n n -=-----=,()()12111221211n n a a n n n n n n --=------=--,,2111121122a a =-⨯-= 故根据累加法得:()11121n a a n nn =-≥-, 由于11a =,故()212n a n n =-≥,检验11a =满足, 故()*21n a n n N=-∈所以数列{}n a 是公差为2的等差数列,故A 选项正确; 由等差数列前n 项和公式得:()21212n n n S n +-==,故2100n n S =<,解得:10n <,故满足100n S <的n 的最大值是9,故B 选项正确; 对于C 选项,当*21,n k k N =-∈时,22441n n k S k ==-+,此时n S 除以4的余数只能为1;当*2,n k k N =∈时,224n n k S ==,此时n S 除以4的余数只能0,故C 选项正确;对于D 选项,222n S n =,()2212n n n n n n a =-=-,显然2n n S na ≠,故D 选项错误.故选:ABC 【点睛】本题考查累加法求通项公式,裂项求和法,等差数列的相关公式应用,考查运算求解能力,是中档题.本题解题的关键在于整理变形已知表达式得()1111111n n a a n n n n n n +=-+-=++,进而根据累加法求得通项公式.8.记数列{}n a 的前n 项和为n S ,*n ∈N ,下列四个命题中不正确的有( ) A .若0q ≠,且对于*212,n n n n a a a ++∀∈=N ,则数列{}n a 为等比数列B .若nn S Aq B =+(非零常数q ,A ,B 满足1q ≠,0A B +=),则数列{}n a 为等比数列C .若数列{}n a 为等比数列,则232,,,n n n n n S S S S S --仍为等比数列D .设数列{}n a 是等比数列,若123a a a <<,则{}n a 为递增数列 【答案】AC 【分析】若0n a =,满足对于*212,n n n n a a a ++∀∈=N ,但数列{}n a 不是等比数列,可判断A ;利用n a 与n S 的关系,可求得数列{}n a 的通项公式,可判断B ;若数列{}n a 为等比数列,当公比1q =-,且n 为偶数时,此时232,,,n n n n n S S S S S --均为0,可判断C ;设数列{}n a 是等比数列,且公比为q ,若123a a a <<,即1211a a q a q <<,分类讨论10a >与10a <两种情况,可判断D ; 【详解】对于A ,若0n a =,满足对于*212,n n n n a a a ++∀∈=N ,但数列{}n a 不是等比数列,故A 错误;对于B ,当2n ≥时,()111(1)nn n n n n a S S Aq B AqB Aq q ---=-=+-+=-且1q ≠;当1n =时,0A B +=,则()111a S Aq B A q ==+=-符合上式,故数列{}n a 是首项为()1A q -公比为q 的等比数列,故B 正确;对于C ,若数列{}n a 为等比数列,当公比1q =-,且n 为偶数时,此时232,,,n n n n n S S S S S --均为0,不为等比数列,故C 错误;对于D ,设数列{}n a 是等比数列,且公比为q ,若123a a a <<,即1211a a q a q <<,若10a >,可得21q q <<,即1q >,则{}n a 为递增数列;若10a <,可得21q q >>,即01q <<,则{}n a 为递增数列;故D 正确;故选:AC 【点睛】结论点睛:本题考查等比数列通项公式及和的性质,等比数列和的性质:公比为1q ≠-的等比数列{}n a 的前n 项和为n S ,则232,,,n n n n n S S S S S --仍成等比数列,其公比为n q ;同理等差数列和的性质:公差为d 的等差数列{}n a 的前n 项和为n S ,数列232,,,m m m m m S S S S S --构成等差数列,公差为md ,考查学生的分析能力,属于中档题.9.已知数列{}n a 中,112a =,且()11n n n a a a +=+,n *∈N ,则以下结论正确的是( )A .11111n n n a a a +=-+ B .{}n a 是单调递增数列C .211011111111a a a a +++>+++ D .若1212120111n n a a a a a a ⎡⎤+++=⎢⎥+++⎣⎦,则122n =([]x 表示不超过x 的最大整数) 【答案】ABD 【分析】利用裂项法可判断A 选项的正误;利用数列单调性的定义可判断B 选项的正误;利用裂项求和法可判断C 选项的正误;求出1212111nn a a aa a a ++++++的表达式,可判断D 选项的正误. 【详解】在数列{}n a 中,112a =,且()11n n n a a a +=+,n *∈N ,则()21110a a a =+>,()32210a a a =+>,,依此类推,可知对任意的n *∈N ,0n a >.对于A 选项,()()()111111111n n n n n n n n n a a a a a a a a a ++-===-+++,A 选项正确; 对于B 选项,210n n n a a a +-=>,即1n n a a +>,所以,数列{}n a 为单调递增数列,B 选项正确;对于C 选项,由A 选项可知,11111n n n a a a +=-+, 所以,1212231011111110111111111111111a a a a a a a a a a a a ⎛⎫⎛⎫⎛⎫+++=-+-++-=-< ⎪ ⎪⎪+++⎝⎭⎝⎭⎝⎭,C 选项错误; 对于D 选项,12122311111111111111111n n n n a a a a a a a a a a a ++⎛⎫⎛⎫⎛⎫+++=-+-++-=- ⎪ ⎪⎪+++⎝⎭⎝⎭⎝⎭, 所以,()()()12121212111111111111n nn n a a a a a a a a a a a a +-+++=+++++++++-+-+121111111112111n n n n n n a a a a a a ++⎛⎫⎛⎫=-+++=--=-+ ⎪ ⎪+++⎝⎭⎝⎭, 由112a =,且()11n n n a a a +=+得234a =,32116a =,又{}n a 是单调递增数列,则3n ≥时,1n a >,则101na <<, 从而1122120n n n a +⎡⎤-=-=⎢⎥⎣⎦+,得122n =,D 选项正确. 故选:ABD. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.10.数列{}n a 满足11a =,且对任意的*n ∈N 都有11n n a a a n +=++,则下列说法中正确的是( )A .(1)2n n n a += B .数列1n a ⎧⎫⎨⎬⎩⎭的前2020项的和为20202021 C .数列1n a ⎧⎫⎨⎬⎩⎭的前2020项的和为40402021 D .数列{}n a 的第50项为2550【答案】AC【分析】 用累加法求得通项公式,然后由裂项相消法求1n a ⎧⎫⎨⎬⎩⎭的和即可得. 【详解】因为11n n a a a n +=++,11a =,所以11n n a a n +-=+,所以2n ≥时,121321(1)()()()1232n n n n n a a a a a a a a n -+=+-+-++-=++++=, 11a =也适合此式,所以(1)2n n n a +=, 501275a =,A 正确,D 错误,12112()(1)1n a n n n n ==-++, 数列1n a ⎧⎫⎨⎬⎩⎭的前2020项和为202011111404021223202020212021S ⎛⎫=-+-++-= ⎪⎝⎭,B 错,C 正确.故选:AC .【点睛】 本题考查用累加法数列的通项公式,裂项相消法求和.数列求和的常用方法:设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.。
高中数学数列复习试题
重庆理1
若等差数列{n a }的前三项和93=S 且11=a ,则2a 等于( A )
A .3
B .4
C .5
D .6
安徽文3
等差数列{}n a 的前n 项和为x S 若=则432,3,1S a a ==( B )
A .12
B .10
C .8
D .6
辽宁文5
等差数列{}n a 的前n 项和为x S 若=则432,3,1S a a ==( B )
A .12
B .10
C .8
D .6
福建文2
等差数列{}n a 的前n 项和为x S 若=则432,3,1S a a ==( B )
A .12
B .10
C .8
D .6
广东理5
已知数列{n a }的前n 项和29n S n n =-,第k 项满足58k a <<,则k =( B )
A .9
B .8 C. 7 D .6 在等比数列{}n a (n ∈N *)中,若11a =,418a =
,则该数列的前10项和为( B ) A .4122- B .2122- C .10122- D .11
122-
湖北理8
已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n n
a b 为整数的正整数n 的个数是( D )
A .2
B .3
C .4
D .5
已知a b c d ,,,成等比数列,且曲线223y x x =-+的顶点是()b c ,,则ad 等于( B ) A.3 B.2 C.1 D.2-
宁夏理4
已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差d =( D ) A.2
3- B.1
3- C.13 D.2
3
陕西文5
等差数列{a n }的前n 项和为S n ,若2462,10,S S S ==则等于( C )
A .12
B .18
C .24
D .42
四川文7
等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( B )
A .9
B .10
C .11
D .12
上海文14
数列{}n a 中,22211100010012n n n a n n n n ⎧⎪⎪=⎨⎪⎪-⎩,≤≤
,
,≥,
则数列
{}n a 的极限值( B ) A.等于0 B.等于1 C.等于0或1 D.不存在
陕西理5
各项均为正数的等比数列{}n a 的前n 项和为S n ,若S n =2,S 30=14,则S 40等于( C )
A .80
B .30
C .26
D .16
天津理8
设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k =( B )。