过程控制基础知识
- 格式:ppt
- 大小:1.59 MB
- 文档页数:57
绪论一、过程控制工程课设置的目的和任务Process control(过程控制)课,是培养从事过程控制系统的方案设计,及其在工程上予以实施的能力。
控制方案的形成有两个来源:一是来自控制原理的进展,讨论的核心问题是在保证系统稳定的基础上,如何提高系统的品质;而另一来源是为了满足工艺的特殊要求而开发出来的控制方案。
本课的基础涉及到化工原理、控制原理和仪表计算机技术等学科知识。
二、过程控制的发展简史1、硬件第一阶段:30-40年代,基地式仪表,就地控制第二阶段:40-50年代,电气动单元组合仪表,车间、工段或全厂集中控制第三阶段:60年代后,由于计算机的出现,全厂性、企管性控制2、过程控制手段40年代初:“黑箱子”时期50年代末:“灰箱子”时期,用反馈控制理论于生产过程50年代初、中:①对生产过程的模型的建立导致化工动态学的发展②用实验方法来探讨模型、系统辩识60年代:现代控制理论发展,我国75年后计算机控制较普遍,发展快三、过程控制设计1、从局部的设计到总体的设计,从单回路到多回路再到大系统2、从定值控制到浮动控制3、事故出现硬停车到软保护控制4、从离散控制(模拟仪表)到计算机控制四、学习方法及基本要求本课程上本专业的一门只要专业课,要求学生能综合运用所学的基础课、专业基础课及其他专业课知识,进一步掌握过程控制工程理论和实践知识,培养学生具有解决过程控制系统的分析、设计及投运的能力。
本课程包括课堂教训、实验教学、课程设计、生产实习四个环节。
学习本课程应注意自己的工程实际能力的培养。
五、参考文献1、《化工过程控制工程》祝和运(浙江大学)化学工业出版社2、《过程控制系统及工程》翁维勤化学工业出版社3、《过程控制工程》庄兴稼华中理工大学出版社4、《过程控制系统》F.G.shinskeg 方崇智译化工出版社5、《化工过程控制理论与工程》stephanopoluos G. 关惕华译化学工业出版社六、学时安排课堂教学40学时;实验教学8学时。
第一节过程控制发展概况过程控制通常是指石油、化工、电力、冶金、轻工、纺织、建材、原子能等工业部门生产过程的自动化。
40年代以后,工业生产过程自动化技术发展很快。
尤其是近些年来,过程控制技术发展更为迅猛。
纵观过程控制的发展历史,大致经历了如下几个阶段:50年代前后,一些工厂企业的生产过程实现了仪表化和局部自动化。
这是过程控制发展的第一个阶段。
这个阶段的主要特点是:过程检测控制仪表普遍采用基地式仪表和部分单元组合式仪表(多数是气动仪表),过程控制系统结构大多数是单输入、单输出系统;被控参效主要是温度、压力、流量和液位四种参数。
控制的目的是保持这些过程参数的稳定,消除或减小主要扰动对生产过程的影响;过程控制理论是以频率法和根轨迹法为主体的经典控制理论.主要解决单输人、单输出的定位控制系统约分析和综合问题。
自60年代来,随着工业生产酌不断发展,对过程控制提出了新的要求:随着电子技术的迅速发展,也为自动化技术工具的完善创造了条件.从此开始丁过程控制的第二个阶段。
在仪表方面,开始大量采用气动和电动单元组合仪表。
在过程控制理论方面,除了仍然采用经典控制理论解决实际工业生产过程中遇到的问题外.现代控制理论得到应用,为实现高水平的过程控制奠定了理论基础.从而过程控制由单变量系统转向多变量系统。
但是。
由于过程机理复杂,过程建模困难等等原因,现代控制理论一时还难以应用于实际工业生产过程。
70年代以来.过程控制得到很大发展。
随着现代工业生产的迅猛发展.随着大规模集成电路制造成功与微处理器的相继问世.使功能丰富的计算机的可靠性大大提高、性能价格比又大大提高、尤其是工业控制机采用了冗余技术和软硬件的自诊断措施.使其满足工业控制的应用要求。
随着微型计算机的开发、应用和普及.使生产过程自动化的发展达到了一个新的水平。
过程控制发展到现代过程控制的新阶段:计算机时代。
这是过程控制发展的第三个阶段。
这一阶段纳主要特点是:对全工厂或整个工艺流程的集中控制、应用计算机系统进行多参数综合控制,或者由多台计算机对生产过程进行控制和经营管理。
(一) 概述1.过程控制概念:采用数字或模拟控制方式对生产过程的某一或某些物理参数进行的自动控制。
2.学科定位:过程控制是控制理论、工艺知识、计算机技术和仪器仪表知识相结合而构成的一门应用学科。
3.过程控制的目标:安全性,稳定性,经济性。
4.过程控制主要是指连续过程工业的过程控制。
5. 过程控制系统基本框图:6. 过程控制系统的特点 :1) 被控过程的多样性2) 控制方案的多样性,包括系统硬件组成和控制算法以及软件设计的多样性。
3) 被控过程属慢过程且多属参数控制4) 定值控制是过程控制的主要形式5) 过程控制有多种分类方法。
过程控制系统阶跃应曲线:7. 衰减比η:衡量振荡过程衰减程度的指标,等于两个相邻同向波峰值之比。
即:8. 衰减率ϕ:指每经过一个周期以后,波动幅度衰减的百分数,即:衰减比常用 表示。
9. 最大动态偏差y1:被控参数偏离其最终稳态值的最大值。
衡量过程控制系统动态准确性的指标10. 超调量:最大动态偏差占稳态值的百分比。
11. 余差:衡量控制系统稳态准确性的性能指标。
12. 调节时间 :从过渡过程开始到结束的时间。
当被控量进入其稳态值的 范围内,过渡过程结束。
调节时间是过程控制系统快速性的指标。
13. 振荡频率 :振荡周期P 的倒数,即: 当 相同, 越大则 越短;当 相同时,则 越高, 越短。
因此,振荡频率也可衡量过程控制系统快速性。
被控对象的数学模型(动态特性):过程在各输入量(包括控制量与扰动量)作用下,其相应输出量(被控量)变化函数关系的数学表达式。
14. 被控对象的动态特性的特点:1单调不振荡。
2具有延迟性和大的时间常数。
3具有纯时间滞后。
4具有自平衡和非平衡特性。
5非线性。
(二) 过程控制系统建模方法机理法建模:根据生产过程中实际发生的变化机理,写出各种有关方程式,从而得到所需的数学模型。
测试法建模:根据工业过程的输入、输出的实测数据进行某种数学处理后得到的模型。
1过程控制的任务和要求要求三项:安全性经济性稳定性,过程控制的任务就是在了解掌握工艺流程和生产过程的静态和动态特性的基础上,根据上述三项要求,应用理论对控制系统进行分析和综合,最后采用适宜的技术手段加以实现。
过程控制的任务是由控制系统的设计和实现来完成的。
2常用过程控制系统分为哪几类三类1.反馈控制系统(根据被控参数与给定值的偏差进行控制的)2.前馈控制系统(根据扰动量的大小进行控制的,扰动是控制的依据)3.前馈-反馈控制系统(前馈控制的主要优点是能迅速及时克服主要扰动对被控量的影响,而前馈反馈能控制利用的反馈控制克服其他扰动,能够使被控量迅速而准确的稳定在给定值上,提高系统的控制质量)1过程控制系统在运行中状态有几种?过程控制系统时域性能指标包括哪些?它们分别反应系统哪些方面性能?两种,一种是稳态,此时系统没有收到任何外来干扰,同时设定值保持不变,因而被调量也不会随时间变化,整个系统处于稳定平衡的工况。
一种是动态,当系统收到外来干扰的影响或者在改变了设定值之后原来的稳态受到破坏,各部分输入输出都发现变化。
时域性能指标(衰减比和衰减率,最大动态误差和超调量,残余偏差,调节时间和振荡频率)衰减比是衡量一个振荡过程的衰减程度的指标,它相当于两个相邻的波峰值之比。
衡量震荡频率过程衰减程度的另一个指标是衰减率,指的是每经过一个周期,波动幅度衰减的百分数。
最大动态误差和超调量最大动态误差是指设定阶跃响应中,过度过程开始后第一个波峰超过其新稳态值的幅度,最大动态偏差占被调量稳态变化幅度的百分比称为超调量残余偏差是指过渡结束之后被调量新的稳态值Y(∞)与新设定值r之间的差值,它是控制系统稳态准确性的衡量指标调节时间和振荡频率调节时间是从过渡过程开始到结束所需的时间过渡过程的振荡频率也可以作为衡量控制系统快速性的一个指标那你。
2什么是被控过程的特性?什么是被控过程的数学模型?目前研究过程数学模型的主要方法有哪些?指被控过程是否容易控制。
《过程控制技术基础知识概述》一、引言过程控制技术在现代工业生产中起着至关重要的作用,它能够确保生产过程的稳定、高效运行,提高产品质量,降低生产成本。
随着科技的不断进步,过程控制技术也在不断发展和创新,从传统的模拟控制到现代的数字化、智能化控制,其应用范围越来越广泛。
本文将对过程控制技术的基础知识进行全面的阐述与分析,包括基本概念、核心理论、发展历程、重要实践以及未来趋势。
二、基本概念1. 过程控制的定义过程控制是指对生产过程中的物理量(如温度、压力、流量、液位等)进行自动控制,使其在一定的范围内保持稳定,以满足生产工艺的要求。
2. 控制系统的组成过程控制系统通常由被控对象、传感器、变送器、控制器和执行器等部分组成。
被控对象是指需要进行控制的生产过程或设备;传感器用于检测被控对象的物理量,并将其转换为电信号;变送器将传感器输出的电信号转换为标准信号,以便传输和处理;控制器根据给定值和测量值的偏差,按照一定的控制规律计算出控制信号;执行器根据控制信号对被控对象进行控制,如调节阀门开度、改变电机转速等。
3. 控制方式过程控制的方式主要有开环控制和闭环控制两种。
开环控制是指控制信号只根据给定值进行计算,不考虑被控对象的实际输出;闭环控制则是将被控对象的实际输出反馈到输入端,与给定值进行比较,根据偏差进行控制。
闭环控制具有较高的控制精度和稳定性,但系统结构相对复杂。
三、核心理论1. 反馈控制理论反馈控制是过程控制的核心理论之一,它基于被控对象的输出反馈,通过调整控制信号来减小给定值与实际输出之间的偏差。
反馈控制可以分为比例控制、积分控制和微分控制三种基本控制方式,分别对应着对偏差的比例、积分和微分响应。
通过合理组合这三种控制方式,可以实现不同的控制性能要求。
2. 现代控制理论现代控制理论是在经典控制理论的基础上发展起来的,它采用状态空间法对控制系统进行描述和分析。
现代控制理论可以处理多输入多输出系统、非线性系统和时变系统等复杂控制问题,具有更高的控制精度和鲁棒性。
VDA过程质量控制基础知识
1,过程的概念:
将输入转化为输出的一组彼此相关的资源和活动。
资源包括人、机、料、法、环、测等。
2,VDA的概念:
VDA是Verband Der Automobilindustrie ev的缩写,德文直译为一德国汽车工业联合会。
3,VDA6.3是指什么方面的内容:
VDA6.3是汽车工业质量管理第三部分一过程审核,是对过程的质量能力进行评定,使过程能达到受控和有能力,能在各种干扰因素的影响下仍然稳定受控。
4,VDA6.3中与生产相关的要素有哪些:
与生产相关的是要素6,
其中分要素:6.1人员素质
4.2生产设备/工装
4.3运输/搬运/储存/包装
4.4缺陷分析/纠正措施/持续改进
5,过程质量控制的真正含义是什么:
过程质量控制就是控制过程相关要素(人、机、料、法、环、测)在规定的偏差范围内稳定运行,从而保证质量目标的实现。
6,过程质量审核的范围从概念说包括哪些方面:
人、机、料、法、环、测
7,过程质量控制检查提示要点的理解(见附文件)
10。
过程控制知识点总结工业过程控制的基础知识过程控制的基础知识涉及到控制系统的组成、控制原理和控制方法。
控制系统由控制器、执行器和传感器组成,通过操纵执行器来达到对被控制对象的控制目的。
传感器用于将被控制对象的状态信息转换成电信号,送入控制器进行处理。
控制系统的基本原理是根据被控对象的状态信息,通过控制器对执行器进行调节,实现对被控对象的控制。
控制方法包括开环控制和闭环控制两种。
开环控制是根据被控对象的状态信息直接进行调节,而闭环控制则需要不断地对被控对象的状态信息进行反馈和调节。
PID控制PID控制是目前工业生产中应用最为广泛的一种控制方法。
PID控制是基于被控对象的状态信息反馈,利用比例、积分和微分三种控制算法进行控制。
比例控制算法通过比较被控对象的实际值和期望值的差异,来实现对执行器的调节。
积分控制算法通过对被控对象状态的积分来对执行器进行调节,从而消除长期的稳态误差。
微分控制算法通过对被控对象状态的微分来对执行器进行调节,从而提高系统的动态响应性。
PID控制可以根据被控对象的特性进行调节,以适应不同的工艺过程需求。
过程控制的现代化技术随着科学技术的不断发展,过程控制领域也不断涌现出一些现代化的技术。
例如,现代化的控制系统往往集成了大量的信息技术、通信技术和自动化技术,能够实现控制系统的智能化和网络化。
传感器技术的不断进步也为过程控制提供了更为精确的信息反馈,从而提高了控制系统的性能。
同时,现代化的控制系统还可以通过远程监控和远程操作实现对生产过程的远程控制,大大提高了生产过程的安全性和可靠性。
过程控制的应用领域过程控制技术在工业生产中有着广泛的应用领域。
例如,在化工、石油、化肥、冶金、电力等行业中,过程控制技术被广泛应用于控制生产过程的各个环节。
在食品、医药等行业中,过程控制技术也被广泛应用于保证产品质量和安全。
在环保、能源等领域中,过程控制技术被应用于实现资源的有效利用和环境的保护。
过程控制技术还在交通、建筑、通信等领域中得到了应用。