07第七章 定积分的应用
- 格式:doc
- 大小:321.50 KB
- 文档页数:4
定积分的应用定积分是微积分中的重要概念,它在数学和实际问题的解决中扮演着关键的角色。
本文将探讨定积分的应用,并结合实例详细说明其在解决各类问题中的重要作用。
一、定积分的概念定积分是微积分中的一种运算符号,表示在一定区间上的函数曲线与坐标轴所围成的面积。
通常用符号∫ 表示,即∫f(x)dx,其中f(x)为被积函数,dx表示积分变量。
定积分的结果是一个数值。
二、定积分的几何意义定积分的几何意义是曲线与坐标轴所围成的面积。
例如,我们可以通过计算函数曲线与x轴之间的面积来求取定积分。
这种面积计算方法可以应用于各种形状的曲线,包括折线、曲线、圆弧等。
三、定积分的物理应用定积分在物理学中有广泛的应用。
例如,当我们需要计算物体的质量、体积、位移、功等物理量时,可以通过定积分来进行计算。
定积分可以将一个连续变化的物理量表示为无限个微小变化的和,从而得到准确的结果。
四、定积分的经济学应用定积分在经济学领域也被广泛应用。
例如,当我们需要计算市场供求曲线下的固定区间所代表的消费者剩余或生产者剩余时,可以通过定积分来计算。
定积分可以将变化的价格和数量转化为面积,以方便计算。
五、定积分的工程应用在工程学中,定积分也具有重要的应用价值。
例如,在力学领域,当需要计算曲线所代表的力的作用效果时,可以通过定积分来计算。
定积分可以将一个连续变化的力量表示为无限个微小作用力的和,从而得到准确的结果。
六、定积分的统计学应用再一个例子的统计学领域中,定积分同样发挥着重要作用。
例如,在概率密度函数下计算所得的面积可以表示某一事件发生的概率。
定积分可以将一个连续变化的概率密度函数表示为无限个微小概率的和,从而得到准确的概率结果。
七、定积分的计算方法定积分的计算方法有多种,例如,常用的有牛顿-莱布尼茨公式、变量替换法、分部积分法等。
根据不同的问题和函数形式,选择合适的计算方法对于准确求解定积分非常关键。
八、结语定积分作为微积分中的重要概念,在各个领域中均得到了广泛的应用。
111第七章 定积分及其应用积分学的基本任务是要解决两类问题:第一是求原函数问题,由此引出不定积分的概念;第二是求和式的极限问题,由此引出定积分的概念及其应用。
第一个问题在上一章中已经讨论过了,本章讨论和要解决的将是第二个问题。
应该注意到定积分作为一类和式的极限,以乘积的和式∑=∆ni ii x f 1)(ξ给出近似结果,极限过程改善了近似的程度,而极限是给所要测度的量的精确定义,故以这种形式的数量关系就导出了定积分这个概念。
定积分是由于解决实际问题的需要而产生并发展的,很多问题是在积分过程中才得到了所需要的精确数学表述。
基本内容:基本概念:定积分概念;定积分的元素法。
基本运算:计算定积分的值(牛顿——莱布尼兹公式、换元、分部积分法等); 基本理论:原函数存在定理、定积分存在定理、牛顿——莱布尼兹公式。
具体应用:为使学会掌握用定积分解决具体问题这一工具,广泛地介绍了定积分的应用,如求面积、体积、旋转体的侧面积、物理学和力学上的应用,以满足各个专业的不同需要。
本章重点:定积分的概念;定积分的中值定理;定积分作为变上限的函数及其求导定理;牛顿-莱布尼兹公式。
课标导航1.掌握定积分的定义、直观背景及其简单性质;2.掌握定积分与不定积分的关系,并会用牛顿——莱布尼兹公式计算定积分;3.必须学会正确使用定积分的换元积分法和分部积分法,熟练地解决定积分的计算问题; 4.会求一些常见平面曲线图形的面积(直角坐标、极坐标); 5.会求简单的已知平行截面的立体和旋转体的体积;6.初步掌握微元法,学会运用积分元素法建立积分表达式,解决有关的具体问题。
一、知识梳理与链接 (一)基本概念1.积分和数(或和式)设函数)(x f 在区间],[b a 上连续。
任意用分点b x x x x x an i i =<<<<<<=- 110把区间],[b a 分割成n个子区间],[1i i x x -,其长度分别为1--=∆i i i x x x ),,2,1(n i =.在每个子区间],[1i i x x -上任意取一点ii i ix x ≤≤-ξξ1:.则和数∑=∆ni ii x f 1)(ξ就是函数)(x f 在],[b a 上的积分和数。
第七章 定积分的应用一、本章提要1. 基本概念微元法,面积微元,体积微元,弧微元,功微元,转动惯量微元,总量函数. 2. 基本公式 平面曲线弧微元分式. 3. 基本方法(1) 用定积分的微元法求平面图形的面积, (2) 求平行截面面积已知的立体的体积, (3) 求曲线的弧长, (4) 求变力所作的功, (5) 求液体的侧压力, (6) 求转动惯量,(7) 求连续函数f (x )在[]b a ,区间上的平均值, (8) 求平面薄片的质心,也称重心.二、要点解析问题1 什么样的量可以考虑用定积分求解?应用微元法解决这些问题的具体步骤如何?解析 具有可加性的几何量或物理量可以考虑用定分求解,即所求量Q 必须满足条件:〔1〕Q 与变量x 和x 的变化区间[]b a ,以及定义在该区间上某一函数f (x )有关;〔2〕Q 在[]b a ,上具有可加性,微元法是“从分割取近似,求和取极限”的定积分基本思想方法中概括出来的,具体步骤如下:〔1〕选变量定区间:根据实际问题的具体情况先作草图,然后选取适当的坐标系及适当的变量〔如x 〕,并确定积分变量的变化区间[]b a ,;〔2〕取近似找微分:在[]b a ,内任取一代表性区间[]x x x d ,+,当x d 很小时运用“以 直代曲,以不变代变”的辩证思想,获取微元表达式d =()d Q f x x ≈Q ∆〔Q ∆为量Q 在小区间[]x x x d ,+上所分布的部分量的近似值〕;〔3〕对微元进行积分得 =d ()d b baaQ Q f x x =⎰⎰.下面举例说明.例1 用定积分求半径为R 的圆的面积.解一 选取如下列图的坐标系,取x 为积分变量,其变化区间为[]R R ,-,分割区间[]R R ,-成假设干个小区间,其代表性小区间[]x x x d ,+所对应的面积微元x x R x x R x R A d 2d ))((d 222222-=----=,于是⎰⎰---==RRR Rx x R A A d 2d 22=2πR .解二 选取如下列图的坐标系,取θ 为积分变量,其变化区间为[]π2,0.分割区间[]π2,0成假设干个小区间,其代表性小区间[]θθθd ,+所对应的面积微元θd 21d 2R A =,于是22π202π20ππ221d 21d R R R A A =⋅===⎰⎰θ.解三 选取r 为积分变量, 其变化区间为[]R ,0,如图,分割[]R ,0成假设干个小区间,其代表性小区间[]r r r d ,+所对应的面积微元r r A d π2d =,于是202π2π2d π2R r r r A RR =⋅==⎰.问题2 如何理解连续函数f (x ) 在闭区间[]b a ,上的平均值⎰-=b a x x f ab u d )(1是有限个数的算术平均值的推广.解析 首先,我们知道几个数 y y y n 12,,,⋅⋅⋅的算术平均值为y y y y n n y n k k n=++⋅⋅⋅+==∑()/1211,对于函数)(x f ,我们把区间[]b a , n 等分,设分点为a =x x x b n 01<<⋅⋅⋅<=.区间的长度(1,2,,)i b ax i n n-∆==⋅⋅⋅,各分点i x 所对应的函数值为12(),(),f x f x ,⋅⋅⋅()n f x ,其算术平均值 ∑=ni i x f n 1)(1可近似地表达函数)(x f 在[]b a ,上取得一切值的平均值.显然,n 越大,分点越多,这个平均值就越接近函数)(x f 在[]b a ,上取得一切值的平均值. 因此,称极限lim n →∞11n f x i i n()=∑为函数)(x f 在闭区间[]b a ,上的平均值,记为[]b a y ,.下面用定积分表示函数)(x f 在[]b a ,上的平均值[]b a y ,.在定积分定义中,假设取ξi i x =,∆x b ani =-,则∑∑⎰=∞→=→-=∆=ni i n n i i i b anab x f x f x x f 11)(lim )(lim d )(ξλ, 这里{}12max ,,,n b ax x x nλ-=∆∆∆=. 因此n ab x f a b x f n ni i n n i i n --=∑∑=∞→=∞→11)(lim 1)(1lim11lim ()ni i n i f x x b a →∞==∆-∑ ⎰-=b a x x f ab d )(1, 即 ⎰-=b a b a x x f ab y d )(1],[. 在生产实践和科学研究中,有许多连续量的平均值需要计算,如平均电流强度、平均电压、平均功率等等.例2 求从0到T 这段时间内自由落体运动的平均速度. 解 因为自由落体运动的速度gt v =,所以2001111d 022TT v gt t gt gT T T ⎛⎫===⎪-⎝⎭⎰. 三、例题精解例3 求纯电阻电路中正弦电流 t I t i m ωsin )(=在一个周期上的平均功率〔其中mI 及ω均为常数〕.解 设电阻为R 〔R 为常数〕,则电路中的电压t RI iR u m ωsin ==,而功率 2)sin (t I R iu p m ω==,因此p 在2π0,ω⎡⎤⎢⎥⎣⎦上的平均功率〔功率的平均值〕2π2π2222π0011cos 2sin d d 02π2m m RI tp R t t t I ωωωωωω-==-⎰⎰2π22011(1cos )d()()4π22m mm m m m I R t t I R I U U I R ωωω=-===⎰,这说明纯电阻电路中正弦电流的平均功率等于电流、电压的峰值之积的一半.对一般的周期为T 的交变电流)(t i ,它在R 上消耗的功率为R t i t i t u p )()()(2==,在[]T ,0上的平均功率为Tt R t i p T ⎰=2d )(.通常交流电器上标明的功率就是平均功率.例4 当交变电流)(t i 在其一个周期内在负载电阻R 上消耗的平均功率等于取固定值电流I 的直流电在R 上消耗的功率时,称I 为)(t i 的有效值,即电流)(t i 的有效值为I ,试求)(t i 的有效值.解 固定值为I 的电流在电阻R 上消耗的功率为2I R .对于交变电流)(t i 在其一个周期内在负载电阻R 上消耗的平均功率为 ⎰⎰==T T t t i T R t R t i T p 0202d )(d )(1, 于是 ⎰=T t t i TR R I 022d )(, 得 ⎰=T t t i TI 02d )(1为交变电流)(t i 的有效值.通常在交流电的电器上所标明的电流即为交变电流的有效值.一般地,把⎰-b a t t f ab d )(12称为连续函数)(x f 在[]b a ,上的均方根.因此,周期性电流)(t i 的有效值就是它的一个周期上的均方根.例5 由力学知道,位于平面上点),(i i y x 处的质量为),,2,1(n i m i ⋅⋅⋅=的几个质点所构成的质点系的质心〔也叫质点系的重心〕坐标),(y x 计算公式为mM x y =,mM y x=, 其中∑==ni imm 1(质点系中全部质点的质量之和),∑==ni ii y x m M 1〔质点系中,各质点关于y轴的静力矩m i x i 之和m xiii n=∑1,称其为质点系对y 轴的静力矩〕,∑==ni i i x y m M 1〔质点系对x 轴的静力矩〕.由此可见,质点系m i 〔 i n =⋅⋅⋅12,,,〕的质心坐标〔x y ,〕满足:质量为m mii n==∑1,坐标为〔x y ,〕的质点M 关于y 轴和x 轴的静力矩分别与质点系关于y 轴和x 轴的静力矩相等.按上述关于质点系之质心的概念,用定积分的微元法讨论均匀薄片的质心. 解 设均匀薄片由曲线)()((x f x f y =≥)0,直线x =a ,x =b 及x 轴所围成,其面密度μ为常数,其质心坐标〔x y ,〕.为研究该薄片的质心,首先要将该薄片分成假设干个小部分,每一小部分近似看成一个质点,于是该薄片就可近似看成质点系.具体做法如下:将[]b a ,区间分成假设干个小区间,代表性小区间[]x x x d ,+所对应的窄长条薄片的质量微元 x x f x y m d )(d d μμ==,由于d x 很小,这小窄条的质量可近似看作均匀分布在窄条的左面一条边上,由于质量是均匀分布的,故该窄条薄片又可看作质量集中在点⎪⎭⎫⎝⎛)(21,x f x 处且质量为d m 的质点,所以这窄条薄片关于x 轴及y 轴的静力矩微元x M d 与y M d 分别为x x f x x f x f M x d )(21d )()(21d 2μμ==, x x f x M y d )(d μ=,把它们分别在[]b a ,上作定积分,便得到静力矩 x x f M b ax d )(22⎰=μ,⎰=bay x x xf M d )(μ,又因为均匀薄片的总质量 ⎰⎰==bab ax x f m m d )(d μ,所以该薄片的质心坐标为⎰⎰==b aba y xx f x x xf mM x d )(d )(, 21()d 2()d b a x baf x x M y mf x x==⎰⎰. 上面关于质心〔y x ,〕的计算公式适用于求均匀薄片的质心,有关非均匀薄片质心的计算将在二重积分应用中予以介绍.例6 求密度均匀,半径为R 的半圆形薄片的质心. 解 如下列图建立坐标系,上半圆周方程22x R y -=,由对称性知,质心在y 轴上,即0=x ,利用例5中的质心计算公式得32202112()d 423,13ππ2R R R x R x x R y R -⨯-===故所求质心为4(0,)3πR. 四. 练习题判断正误(1) 由x 轴,y 轴及2)1(-=x y 所围平面图形的面积为定积分x x d )1(12⎰-;〔√ 〕解析 x 轴、y 轴及2)1(-=x y 所围成的曲边三角形位于x 轴的上方,由定积分的几何意义可知,其面积正是x x d )1(12⎰-.〔2〕闭区间[]b a ,上的连续函数)(x f 在该区间上的平均值为f x b a()- ; 〔 × 〕解析 由定积分中值定理可知,闭区间],[b a 上的连续函数)(x f 在该区间上的平均值为1()d b af x x b a -⎰.〔3〕由曲边梯形D :a ≤x ≤b ,0≤y ≤)(x f 绕x 轴旋转一周所产生的旋转体的体积 2π()d b aV f x x =⎰; 〔 √ 〕解析 如图,对任意的],[b a x ∈,旋转体的截面积)(x A =2π()f x .由平行截面物体的2)1体积得 V =()d b aA x x ⎰=2π()d b af x x ⎰.〔4〕假设变量y 关于x 的变化率为23x ,则 3x y =. 〔 × 〕解析 y 关于x 的变化率为23x ,则2d 3d yx x=,积分得 y =23d x x ⎰=3x C +.2.填空题(1) 设一平面曲线方程为)(x f y =,其中)(x f 在[]b a ,上具有一阶连续导数,则此曲线对应于a x =到b x =的弧长L=ax ⎰;假设曲线的参数方程为{(),(),x x t y y t ==〔a ≤t ≤β〕,)(),(t y t x 在[]αβ,上有连续导数,则此曲线弧长L=t βα⎰ ;(2) 设一平面图形由b x a x x g y x f y ====,),(),(所围成))()((x f x g >,其中)(x f ,)(x g 在[]b a ,上连续,则该平面图形的面积S =[()()]d b ag x f x x -⎰;解 如图,因为)()(x f x g >, 取x 为积分变量,于是得 d [()()]d A g x f x x =-,故平面图形的面积 A =[()()]d b ag x f x x -⎰.(3) 周期为T 的矩形脉冲电流 {,0(),(0)0,a t c i t a c t T≤≤=><≤的有效值为 Tca; 解)(x f 在],[b a 上的均方根.周期性电流)(t i 的有效值就是它的一个周期上的均方根, 则2()d T i t t ⎰=20d c a t ⎰+0d Tct ⎰=c a 2,所以此脉冲电流的有效值 ITca 2=T c a .(4) 假设某产品的总产量的变化率为210)(t t t f -=,那么t 从40=t 到81=t 这段时间内的总产量为3272. 解 设总产量为)(t Q , 则 )()(t f t Q ='=210t t -,积分得 Q =824(10)d t t t -⎰=8432)35(t t -=3272.3. 解答题〔1〕抛物线x y 22=把图形822=+y x 分成两部分,求这两部分面积之比; 解 曲线围成的区域如图中阴影部分.y联立方程 2222,8,y x x y ⎧=⎨+=⎩ ⇒ {2,2,x y ==或 {2,2,x y ==-得到两条曲线相交的交点为 〔2,2〕,〔2,2-〕.从而2S =222)d 2y y -⎰=2(2200d 2y y y -⎰⎰), 其中y⎰y t=π404)t t ⋅⎰=π2408cos d t t ⎰=π404(1cos 2)d t t +⎰=π40π2sin 2t +=2+π,220d 2y y ⎰=20361y =34, 所以 2S =2〔2+4π3-〕=2π+34, 而1S +2S =2π=8π,于是 =1S 48π(2π)3-+=46π3-, 所以,两部分面积比为 1S :2S =〔9π-2〕:〔3π+2〕.〔2〕计算e xy -=与直线0=y 之间位于第一象限内的平面图形绕x 轴旋转一周所得的旋转体的体积;解 如图,当+∞→x 时,y =e0x-→,我们可以把未封闭的区域看作当+∞→x 时的闭区域,则其绕 x 轴旋转一周的体积V =2π()d f x x +∞⎰=20πe d x x +∞-⎰=20πe 2x-+∞-=π2, 所以,所得旋转体体积为π2. 〔3〕一密度均匀的薄片,其边界由抛物线ax y =2与直线a x =围成,求此薄片的质心坐标;解 如图,由对称性知,质心在x 轴上,即y =0,利用质心计算公式,有x =222()d d a a a a y ya y ya --⎰⎰=3252352a a a a ⋅⋅=a 53, 所以,薄片的质心坐标为(a 53,0).〔4〕半径为r m 的半球形水池灌满了水,要把池内的水全部抽出需作多少功; 解 如图,设水池的上边缘为y 轴,原点在半球形水池的圆心位置,x 轴竖直向下.球面方程为y =22x r -±,则水深x 处所对应的截面半径为22x r -,截面面积22()π()S x r x =-.将x 到d x x +这层水抽出需克服的重力为d G =d g V ρ=g ρ()d S x x =22π()d g r x x ρ-,因为 W =22π()d r g r x x ρ-⎰=222201π()d()2r g r x r x ρ---⎰=2221π()40r g r x ρ--=41π4g r ρ(J ),所以,把水全部抽出需做功41π4g r ρ(J ). 〔5〕一直径为6m 的半圆形闸门,铅直地浸入水内,其直径恰位于水外表〔水的密度为 103 kg/m 3 〕,求闸门一侧受到水的压力;解 如图,设水面为y 轴,原点在圆心位置,x 轴竖直向下.半圆形闸门的方程为922=+y x ,则x 到d x x +这层闸门的截面面积d ()S x =2x ,所受到的压强P =gx ρ,压力d F =d ()P S x =gxx ρ,闸门所受到的压力F =302x ρ⎰=20)g x ρ--⎰=30232)9(32x g --ρ=41.810g ⨯ (N ),所以,闸门的一侧受到水的压力为41.810g ⨯ (N ).〔6〕某石油公司经营的一块油田的边际收入和边际成本分别为 )/(31)(,)/()(3131年百万元年百万元tt C tq t R +='-=',求该油田的最正确经营时间,以及在经营终止时获得的总利润〔已知固定成本为4百万元,q 为实数〕; 解 由最大利润原理,令 )()(t C t R '=',则 313131t t q +=-,得 t =64)1(3-q ,总利润 L =3(1)640[()()]d 4q R t C t t -''--⎰=311(1)33640(13)d 4q q t t t -----⎰=31(1)3640(14)d 4q q t t ----⎰=[34(1)3640(1)3]4q q t t ----=4256)1(4--q 〔百万元〕, 所以,油田的最正确经营时间为 64)1(3-q 年,经营终止时获得的总利润为4256)1(4--q 百万元.〔7〕有一弹簧,用5N 的力可以把它拉长0. 01m ,求把它拉长0. 1m ,力所作的功; 解 已知 kx F =, 5)01.0(=F , 所以 k 01.05=, 即 500=k , x F 500=, 所以 W =0.10500d x x ⎰=2501.002x =2.5(J )所以,力所做的功为2.5(J ).〔8〕求心形线)cos 1(θ+=a r 〔a 为常数〕的全长. 解一 将极坐标转换为直角坐标,有{cos (1cos )cos ,sin (1cos )sin ,x r a y r a θθθθθθ==+==+于是 d [(sin )cos (1cos )(sin )]d x a a θθθθθ=-++-=[(sin sin 2)]d a θθθ-+,d [(sin )sin (1cos )cos ]d y a a θθθθθ=-++=[(cos cos 2)]d a θθθ+,弧长微元 d sθθθθ=2cosd 2a θ,所以,心形线的全长 s=θ=π08cos d 22a θθ⎰=π8sin2a θ=8a .解二 将极坐标转换为直角坐标,有{cos (1cos )cos ,sin (1cos )sin ,x r a y r a θθθθθθ==+==+ 则 d d d cos d sin d ,d d d sin d cos d ,x x x r r r r y y y r r r r θθθθθθθθθθ∂∂⎧=+=-⎪∂∂⎨∂∂⎪=+=+∂∂⎩弧长微元d sθ, 心形线的全长s=02⎰θ =2π02cos d 2a θθ⎰=π08sin2a θ=8a ,所以,心形线的全长为8a .。
定积分的应用
一 、本章学习要求与内容提要
(一)学习要求
2.会用定积分的微元法求平面图形的面积. 3.会用定积分的微元法求旋转体的体积. 4.会用定积分的微元法求变力所做的功. 5.会用定积分的微元法求液体的侧压力.
重点 定积分的微元法,利用微元法求平面图形的面积和旋转体的体积. 难点 定积分的微元法,微元法在实际问题中的应用. (二)内容提要
1.定积分的微元法 2.面积微元与体积微元 (1)面积微元
①由曲线x b x a x x f y 及==≥=,,0)(轴所围成的图形,其面积微元x x f A d )(d =,面积⎰
=
b
a
x x f A d )(.
②由上下两条曲线b x a x x f x f x f y x f y ==≥==, ));()(( )(),(1212及所围成的图形,其面积微元[]x x f x f A d )()(d 12-=,面积[]x x f x f
A b
a
d )()(12
⎰-=
.
③由左右两条曲线 , ))()(( )(),(1221d y c y y g y g y g x y g x ==≥==及所围成的图形,其面积微元[]y y g y g A d )()(d 12-=,面积[]y y g y g
A d
c
d )()(12
⎰-=(注意,这时
应取横条矩形为A d ,即取y 为积分变量).
(2)体积微元
不妨设直线为x 轴,则在x 处的截面面积)(x A 是x 的已知连续函数,求该物体介于
a x =和 )(
b a b x <=之间的体积.
用“微元法”.为求出体积微元V d ,在微小区间[]x x x d ,+上视)(x A 不变,即把
[]x x x d ,+上的立体薄片近似看作以)(x A 为底,x d 为高的柱片,于是其体积微元
x x A V d )(d =,再在x 的变化区间[]b a ,上积分,则有⎰=b
a x x A V d )(.
3.弧微元与平面曲线弧微分公式
设曲线)(x f y =在[]b a ,上有一阶连续导数,仍用微元法,取x 为积分变量,在[]b a ,上任取小区间[]x x x d ,+,切线上相应小区间的小段MT 的长度近似代替一段小弧MN 的长
度,得弧长微元为
x y y x MT s d 1)d ()d (d 222'+=+==,
这里
t t y t x y x s d )()()d ()d (d 2222'+'=+=
.
二 、主要解题方法(微元法)
1.求平面图形的面积的方法 例1 求下列曲线所围成的图形的面积 (1)抛物线 2
2
x
y =
与直线42=-y x , (2)圆 ax y x 22
2
=+.
解 (1)先画图,如图所示,
并由方程⎪⎩⎪⎨⎧=-=
4
222y x x y ,
求出交点为(2,1-),(8,2). 解一 取y 为积分变量,y 的变化区间为[1-,2], 在区间[1-,2]上任取一子区间[y ,y +y d ], 则面积微元 A d =y y y d )242(2
-+, 则所求面积为
A =⎰--+2
1
2d )242(y y y = (3
23
24y y y -
+)21
-=9.
解二 取x 为积分变量,x 的变化区间 为[0,8],由图知,若在此区间上任取子区间, 需分成[0,2],[2,8]两部分完成.
在区间[0,2]上任取一子区间[x ,x +x d ], 则面积微元 A d 1=x x
d ]2
2
[, 在区间[2,8]上任取一子区间[x ,x +x d ], 则面积微元 A d 2=[)4(2
1
2--x x ]x d , 于是得
A =A 1+A 2 A =⎰2
0d 2
2
x x
+A x x
x d )22
2(
82
+-⎰
=2
3
3
22x 20
+[23
322x 2
24
x x -+]8
2
=9 .
y
显然,解法一优于解法二。
因此作题时,要先画图,然后根据图形选择适当的积分变量,尽量使计算方便.
小结 计算面积时要注意:
(1) 适当选择坐标系,以便简化计算 (2)要考虑图形的对称性. (3)积分区间尽量少分块. 2.求旋转体体积的方法
例2 求由曲线4=xy , 直线 1=x ,4=x ,0=y 绕x 轴旋转一周而形成的立体体积. 解 先画图形,因为图形绕x 轴旋转,所以取x 为积分变量,x 的变化区间为[1,4],相应于[1,4]上任取一子区间[x ,x +x d ]的小窄条,绕x 轴旋转而形成的小旋转体体积,可用高为x d ,底面积为2
πy 的小圆柱体体积近似代替, 即体积微元为
V d =2
πy x d =π2)4
(x
x d ,
于是,体积
V =π
⎰
412d )4
(x x
=16π
⎰
4
1
2d 1
x x
-=16π
41
1x
=12π.
小结 求旋转体体积时,第一要明确形成旋转的平面图形是由哪些曲线围成,这些曲线的方程是什么;第二要明确图形绕哪一条坐标轴或平行于坐标轴的直线旋转,正确选择积分变量,写出定积分的表达式及积分上下限.
3. 求曲线的弧长的方法
例3 (1)求曲线 23
3
2
x y =上从0到3一段弧的长度,
(2)求圆的渐开线方程 ⎩
⎨⎧-=+=)cos (sin )
sin (cos t t t a y t t t a x ,上相应于t 从0到π的一段弧的长度.
解 (1) 由公式 s =
x y b a d 12⎰
'+ ( b a <)知,弧长为
s =x y d 130
2
⎰'+=x x ⎰
+30
d 1=3
2
30
2
3)1(x +=
31632-=3
14. (2) 因为曲线方程以参数形式给出,所以弧微元为 t t y t x s d )()(d 22'+'=
,
=,
)sin cos (cos )(t t t t a t y +-='=t at sin ,
故
at ,
故所求弧长为
s =t t y t x d )()(π0
2
2⎰
'+'=t at d π0
⎰
=a π02)2(t =
2
π2
a . 三、学法建议
1.本章的重点是定积分的微元法,利用微元法求平面图形的面积和旋转体的体积.学好
本章内容的关键是如何应用微元法,解决一些实际问题,这也是本章的难点.
2.首先要弄清楚哪种量可以用积分表达,即用微元法来求它,所求的量F 必须满足 (1)与分布区间有关,且具有可加性;(2)分布不均匀,而部分量可以表示出来.
3.用微元法解决实际问题的关键是如何定出部分量的近似表达式,即微元.如面积微元,功微元.微元一般是部分量的线性主部,求它虽有一定规律,可以套用一些公式,但我们不希望死套公式,而应用所学知识学会自己去建立积分公式,这就需要多下工夫了.
4.用微元法解决实际问题应注意:
(1)选好坐标系,这关系到计算简繁问题;
(2)取好微元x x f d )(,经常应用“以匀代变”“以直代曲”的思想决定A ∆的线性主 部,这关系到结果正确与否的问题.。