2019高三物理人教版一轮教师用书:第13章 第2节 固体、液体和气体 Word版含解析
- 格式:doc
- 大小:1.11 MB
- 文档页数:18
第二节 固体、液体和气体(对应学生用书第229页)[教材知识速填]知识点1 固体和液体1.固体的分类 固体分为晶体和非晶体两类.石英、云母、明矾、食盐、味精、蔗糖等是晶体,玻璃、蜂蜡、松香、沥青、橡胶等是非晶体.2.晶体和非晶体比较3. (1)如图13-2-1所示,金刚石、石墨晶体的晶体微粒在空间排列上具有规律性、周期性.金刚石墨图13-2-1(2)晶体特性的解释:(1)作用:液体的表面张力使液面具有收缩的趋势.(2)方向:表面张力跟液面相切,跟这部分液面的分界线垂直.(3)大小:液体的温度越高,表面张力越小;液体中溶有杂质时,表面张力变小;液体的密度越大,表面张力越大.5.毛细现象是指浸润液体在细管中上升的现象,以及不浸润液体在细管中下降的现象,毛细管越细,毛细现象越明显.6.液晶的物理性质(1)具有液体的流动性.(2)具有晶体的光学各向异性.(3)从某个方向看其分子排列比较整齐,但从另一方向看,分子的排列是杂乱无章的.易错判断(1)单晶体的所有物理性质都是各向异性的.(×)(2)草叶上的露珠呈球形是表面张力引起的.(√)(3)液晶是液体和晶体的混合物.(×)知识点2饱和汽、饱和汽压和相对湿度1.饱和汽与饱和汽压与液体处于动态平衡的蒸汽叫做饱和汽;没有达到饱和状态的蒸汽叫做未饱和汽.在一定温度下,饱和汽的分子数密度是一定的,因而饱和汽的压强也是一定的,这个压强叫做这种液体的饱和汽压,饱和汽压随温度升高而增大.2.相对湿度空气中水蒸气的压强与同一温度时水的饱和汽压之比叫做空气的相对湿度.即:相对湿度=――――――――――→水蒸气的实际压强同温下水的饱和汽压⎝⎛⎭⎪⎫B=pp s×100%.知识点3气体分子动理论和气体的压强1.气体分子之间的距离远大于分子直径,气体分子之间的作用力十分微弱,可以忽略不计.2.气体分子的速率分布,表现出“中间多,两头少”的统计分布规律.3.气体分子向各个方向运动的机会均等.4.温度一定时,某种气体分子的速率分布是确定的,速率的平均值也是确定的,温度升高,气体分子的平均速率增大,但不是每个分子的速率都增大.5.气体压强(1)产生的原因由于大量分子无规则地运动而碰撞器壁,形成对器壁各处均匀、持续的压力,作用在器壁单位面积上的压力叫做气体的压强.(2)决定气体压强大小的因素①宏观上:决定于气体的温度和体积.②微观上:决定于分子的平均动能和分子数密度.易错判断(1)水蒸气达到饱和时,水蒸气的压强不再变化,这时,水不再蒸发和凝结.(×)(2)只要能增加气体分子热运动的剧烈程度,气体的温度就可以升高.(√)(3)绝对湿度是指空气中所含水蒸气的压强.(√)知识点4气体实验定律和理想气体状态方程1.气体实验定律(1)等温变化——玻意耳定律:①内容:一定质量的某种气体,在温度不变的情况下,压强与体积成反比.②公式:p1V1=p2V2或pV=C(常量).(2)等容变化——查理定律:①内容:一定质量的某种气体,在体积不变的情况下,压强与热力学温度成正比.②公式:p1p2=T1T2或pT=C(常数).(3)等压变化——盖—吕萨克定律:①内容:一定质量的某种气体,在压强不变的情况下,其体积与热力学温度成正比.②公式:V1V2=T1T2或VT=C(常数).2.理想气体及其状态方程(1)理想气体:①宏观上讲,理想气体是指在任何条件下始终遵守气体实验定律的气体.实际气体在压强不太大、温度不太低的条件下,可视为理想气体.②微观上讲,理想气体的分子间除碰撞外无其他作用力,分子本身没有体积,即它所占据的空间认为都是可以被压缩的空间.(2)状态方程:p1V1T1=p2V2T2或pVT=C(常数).易错判断(1)若气体的温度逐渐升高,则其压强可以保持不变.(√)(2)一定质量的理想气体在等压变化时,其体积与摄氏温度成正比.(×)(3)压强极大的气体不遵从气体实验定律.(√)(对应学生用书第231页)1.晶体和非晶体(1)单晶体具有各向异性,但不是在各种物理性质上都表现出各向异性.(2)只要是具有各向异性的物体必定是晶体,且是单晶体.(3)只要是具有确定熔点的物体必定是晶体,反之,必是非晶体.(4)晶体和非晶体在一定条件下可以相互转化.2.液体表面张力(1)形成原因:表面层中分子间的距离比液体内部分子间的距离大,分子间的相互作用力表现为引力.(2)表面特性:表面层分子间的引力使液面产生了表面张力,使液体表面好像一层绷紧的弹性薄膜.(3)表面张力的效果:表面张力使液体表面具有收缩趋势,使液体表面积趋于最小,而在体积相同的条件下,球形的表面积最小.[题组通关]1.(2017·全国Ⅰ卷)氧气分子在0 ℃和100 ℃温度下单位速率间隔的分子数占总分子数的百分比随气体分子速率的变化分别如图13-2-2中两条曲线所示.下列说法正确的是()图13-2-2A.图中两条曲线下面积相等B.图中虚线对应于氧气分子平均动能较小的情形C.图中实线对应于氧气分子在100 ℃时的情形D.图中曲线给出了任意速率区间的氧气分子数目E.与0 ℃时相比,100 ℃时氧气分子速率出现在0~400 m/s区间内的分子数占总分子数的百分比较大ABC[A对:面积表示总的氧气分子数,二者相等.B对:温度是分子平均动能的标志,温度越高,分子的平均动能越大,虚线为氧气分子在0 ℃时的情形,分子平均动能较小.C对:实线为氧气分子在100 ℃时的情形.D错:曲线给出的是分子数占总分子数的百分比.E错:速率出现在0~400 m/s区间内,100 ℃时氧气分子数占总分子数的百分比较小.]2.下列说法正确的是()【导学号:84370506】A.石墨和金刚石都是晶体,都是由碳元素组成的单质,但它们的原子排列方式不同B.晶体和非晶体在熔化过程中都吸收热量,温度不变C.液晶的光学性质随温度的变化而变化D.液晶的分子排列会因所加电压的变化而变化,由此引起光学性质的改变E.不是所有的物质都有液晶态ADE[石墨和金刚石都是晶体,都是由碳元素组成的单质,但它们的原子排列方式不同,选项A正确.晶体在熔化过程中吸收热量,温度不变;非晶体在熔化过程中吸收热量,温度升高,选项B错误.液晶的光学性质与温度的高低无关,其随所加电压的变化而变化,即液晶的分子排列会因所加电压的变化而变化,由此引起光学性质的改变,选项C错误,D 正确.不是所有的物质都有液晶态,选项E正确.]3.下列说法正确的是()A.在一定温度下,同种液体的饱和汽的分子数密度也会变化B.相对湿度是100%,表明在当时温度下,空气中水汽还没达到饱和状态C.处在液体表面层的分子与液体内部的分子相比有较大的势能D.空气的相对湿度越大,空气中水蒸气的压强越接近同一温度时水的饱和汽压E.露水总是出现在夜间和清晨,原因是气温的变化使空气里原来饱和的水蒸气液化CDE[饱和汽的分子数密度仅由温度决定,温度越高,饱和汽的分子数密度越大,故A错误;相对湿度是指空气中水蒸气的实际压强与同一温度下水的饱和汽压之比,相对湿度是100%,表明在当时的温度下,空气中的水蒸气已达到饱和状态,故B错误;液体表面层的分子间距离大于液体内部分子间的距离,液体内部分子间作用力接近于零,由于分子间的引力势能随分子间距增大而增大,故C正确;空气的相对湿度越大,空气中水蒸气的压强越接近同一温度下水的饱和汽压,故D正确;露水总是出现在夜间和清晨,是因为气温的变化使空气里原来饱和的水蒸气液化,故E正确.]4.下列说法正确的是()A.把一枚针轻放在水面上,它会浮在水面.这是由于水表面存在表面张力的缘故B.水在涂有油脂的玻璃板上能形成水珠,而在干净的玻璃板上却不能.这是因为油脂使水的表面张力增大的缘故C.在围绕地球飞行的宇宙飞船中,自由飘浮的水滴呈球形.这是表面张力作用的结果D.在毛细现象中,毛细管中的液面有的升高,有的降低,这与液体的种类和毛细管的材质有关E.当两薄玻璃板间夹有一层水膜时,在垂直于玻璃板的方向很难将玻璃板拉开.这是由于水膜具有表面张力的缘故ACD[水的表面张力托起针,A正确;水在油脂上不浸润,在干净的玻璃上浸润,B错误,C、D正确;在垂直于玻璃板方向很难将夹有水膜的玻璃板拉开是因为大气压的作用,E错误.]1.理想气体状态方程与气体实验定律的关系2.两个重要的推论(1)查理定律的推论:Δp =p 1T 1ΔT (2)盖—吕萨克定律的推论:ΔV =V 1T 1ΔT [多维探究]考向1 气体实验定律的应用1.(2017·全国Ⅰ卷)如图13-2-3所示,容积均为V 的汽缸A 、B 下端有细管(容积可忽略)连通,阀门K 2位于细管的中部,A 、B 的顶部各有一阀门K 1、K 3;B 中有一可自由滑动的活塞(质量、体积均可忽略).初始时,三个阀门均打开,活塞在B 的底部;关闭K 2、K 3,通过K 1给汽缸充气,使A 中气体的压强达到大气压p 0的3倍后关闭K 1.已知室温为27 ℃,汽缸导热.图13-2-3(1)打开K 2,求稳定时活塞上方气体的体积和压强;(2)接着打开K 3,求稳定时活塞的位置;(3)再缓慢加热汽缸内气体使其温度升高20℃,求此时活塞下方气体的压强.[解析](1)设打开K 2后,稳定时活塞上方气体的压强为p 1,体积为V 1.依题意,被活塞分开的两部分气体都经历等温过程.由玻意耳定律得p 0V =p 1V 1 ①(3p 0)V =p 1(2V -V 1)② 联立①②式得V 1=V 2③ p 1=2p 0. ④(2)打开K 3后,由④式知,活塞必定上升.设在活塞下方气体与A 中气体的体积之和为V 2(V 2≤2V )时,活塞下气体压强为p 2.由玻意耳定律得(3p 0)V =p 2V 2⑤由⑤式得p 2=3V V 2p 0 ⑥ 由⑥式知,打开K 3后活塞上升直到B 的顶部为止;此时p 2为p ′2=32p 0.(3)设加热后活塞下方气体的压强为p 3,气体温度从T 1=300 K 升高到T 2=320 K 的等容过程中,由查理定律得p ′2T 1=p 3T 2⑦将有关数据代入⑦式得p 3=1.6p 0. ⑧ [答案](1)V 2 2p 0 (2)上升直到B 的顶部 (3)1.6 p 02.如图13-2-4所示,有一圆柱形汽缸,上部有固定挡板,汽缸内壁的高度是2L ,一个很薄且质量不计的活塞封闭一定质量的理想气体,开始时活塞处在离底部L 高处,外界大气压强为1.0×105 Pa ,温度为27 ℃,现对气体加热,求:当加热到427 ℃时,封闭气体的压强.【导学号:84370507】图13-2-4[解析] 设汽缸横截面积为S ,活塞恰上升到汽缸上部挡板处时,气体温度为T2,气体做等压变化,则对于封闭气体,初状态:T1=(27+273)K,V1=LS,p1=p0;末状态:V2=2LS,p2=p0.由V1T1=V2T2,解得:T2=600 K,即t2=327 ℃设当加热到427 ℃时气体的压强变为p3,在此之前活塞已上升到汽缸上部挡板处,气体做等容变化,则对于封闭气体,初状态:T2=600 K,V2=2LS,p2=1.0×105 Pa;末状态:T3=700 K,V3=2LS.由p3T3=p2T2,代入数据得:p3=1.17×105 Pa.[答案] 1.17×105 Pa(2016·全国Ⅱ卷)一氧气瓶的容积为0.08 m3,开始时瓶中氧气的压强为20个大气压.某实验室每天消耗1个大气压的氧气0.36 m3.当氧气瓶中的压强降低到2个大气压时,需重新充气.若氧气的温度保持不变,求这瓶氧气重新充气前可供该实验室使用多少天.[解析]设氧气开始时的压强为p1,体积为V1,压强变为p2(2个大气压)时,体积为V2.根据玻意耳定律得p1V1=p2V2 ①重新充气前,用去的氧气在p2压强下的体积为V3=V2-V1 ②设用去的氧气在p0(1个大气压)压强下的体积为V0则有p2V3=p0V0 ③设实验室每天用去的氧气在p0下的体积为ΔV,则氧气可用的天数为N=V0ΔV④联立①②③④式,并代入数据得N=4(天).⑤[答案]4天考向2理想气体状态方程的应用3.如图13-2-5所示,粗细均匀的弯曲玻璃管A、B两端开口,管内有一段水银柱,中管内水银面与管口A 之间气体柱长为40 cm ,气体温度为27 ℃.将左管竖直插入水银槽中,整个过程温度不变,稳定后右管内水银面和中管内水银面出现4 cm 的高度差.已知大气压强p 0=76 cmHg ,气体可视为理想气体.图13-2-5(1)求左管A 端插入水银槽的深度d ;(2)为使右管内水银面和中管内水银面再次相平,需使气体温度降为多少℃?[解析](1)插入水银槽后封闭气体发生等温变化,由玻意耳定律得p 1L 1S =p 2L 2S插入水银槽后封闭气体的长度为L 2=p 1L 1p 2=76×4076+4 cm =38 cm 由题意知,中管水银面下降2 cm ,左管下端水银进入管中的长度为40 cm +2 cm -38 cm =4 cm ,管外水银面比管内高4 cm ,故左管A 端插入水银槽的深度d =4 cm +4 cm =8 cm.(2)由理想气体状态方程得:p 2L 2S T 2=p 3L 3S T 3当右管内水银面和中管内水银面再次相平时,封闭气柱的长度L 3=L 2-4 cm -2 cm =32 cm ,压强p 3=p 0=76 cm则气体温度降为T 3=p 3L 3T 2p 2L 2=76×32×(27+273)80×38K =240 K 即t 3=T 3-273 ℃=-33 ℃.[答案](1)8 cm (2)-33 ℃4.如图13-2-6所示,有两个不计质量的活塞M 、N 将两部分理想气体封闭在绝热汽缸内,温度均是27 ℃.M 活塞是导热的,N 活塞是绝热的,均可沿汽缸无摩擦地滑动,已知活塞的横截面积均为S =2 cm 2,初始时M 活塞相对于底部的高度为H =27 cm ,N 活塞相对于底部的高度为h =18 cm.现将一质量为m =400 g 的小物体放在M 活塞的上表面上,活塞下降.已知大气压强为p 0=1.0×105 Pa.图13-2-6(1)求下部分气体的压强多大;(2)现通过加热丝对下部分气体进行缓慢加热,使下部分气体的温度变为127 ℃,求稳定后活塞M、N距离底部的高度.[解析](1)对两个活塞和重物作为整体进行受力分析得:pS=mg+p0S解得p=1.2×105 Pa.(2)对下部分气体进行分析,由理想气体状态方程可得:p0hS T1=ph2S T2得:h2=20 cm,故活塞N距离底部的距离为h2=20 cm对上部分气体进行分析,根据玻意耳定律可得:p0(H-h)S=pLS得:L=7.5 cm故此时活塞M距离底端的距离为H2=20+7.5=27.5 cm.[答案](1)1.2×105 Pa(2)27.5 cm20 cm(2017·贵州七校高三联考)如图所示,水平放置一个长方体的封闭汽缸,用无摩擦活塞将内部封闭气体分为完全相同的A、B两部分.初始时两部分气体压强均为p、热力学温度均为T.使A的温度升高ΔT而保持B部分气体温度不变.则A部分气体的压强增加量为多少?[解析]设温度升高后,A、B压强增加量都为ΔpA部分气体升高温度后体积为V A由理想气体状态方程得:pVT=(p+Δp)V AT+ΔT对B部分气体,升高温度后体积为V B,由玻意耳定律得:pV=(p+Δp)V B两部分气体总体积不变:2V=V A+V B解得:Δp=pΔT 2T.[答案]pΔT 2T气体状态变化的图象问题一定质量气体状态变化图象对比特点之积越大的等温线,[题组通关]5.(多选)(2016·全国Ⅱ卷)一定量的理想气体从状态a开始,经历等温或等压过程ab、bc、cd、da回到原状态,其p-T图象如图13-2-7所示,其中对角线ac的延长线过原点O.下列判断正确的是()图13-2-7A.气体在a、c两状态的体积相等B.气体在状态a时的内能大于它在状态c时的内能C.在过程cd中气体向外界放出的热量大于外界对气体做的功D.在过程da中气体从外界吸收的热量小于气体对外界做的功E.在过程bc中外界对气体做的功等于在过程da中气体对外界做的功ABE[由ac的延长线过原点O知,直线Oca为一条等容线,气体在a、c两状态的体积相等,选项A正确;理想气体的内能由其温度决定,故在状态a时的内能大于在状态c时的内能,选项B正确;过程cd是等温变化,气体内能不变,由热力学第一定律知,气体对外放出的热量等于外界对气体做的功,选项C错误;过程da气体内能增大,从外界吸收的热量大于气体对外界做的功,选项D错误;由理想气体状态方程知:p a V a T a=p b V bT b=p c V cT c=p d V dT d=C,即p a V a=CT a,p b V b=CT b,p c V c=CT c,p d V d=CT d.设过程bc中压强为p0=p b=p c,过程da中压强为p′0=p d=p a.由外界对气体做功W=p·ΔV知,过程bc中外界对气体做的功W bc=p0(V b-V c)=C(T b-T c),过程da中气体对外界做的功W da=p′0(V a-V d)=C(T a-T d),T a=T b,T c=T d,故W bc=W da,选项E正确(此选项也可用排除法直接判断更快捷).]6.图13-2-8为一定质量理想气体的压强p与体积V关系图象,它由状态A经等容过程到状态B,再经等压过程到状态C.设A、B、C状态对应的温度分别为T A、T B、T C,则T A________T B(填“>”“<”或“=”),T B________T C(填“>”“<”或“=”).【导学号:84370508】图13-2-8[解析] 根据理想气体状态方程pV T =C 可知:从A 到B ,体积不变,压强减小,故温度降低即T A >T B ;从B 到C ,压强不变,体积增大,故温度升高,即T B <T C .[答案] > <7.一定质量的理想气体经历了温度缓慢升高的变化,如图13-2-9所示,p -T 和V -T 图象各记录了其部分变化过程,试求:(1)温度600 K 时气体的压强;(2)在p -T 图象上将温度从400 K 升高到600 K 的变化过程补充完整.图13-2-9[解析](1)已知p 1=1.0×105 Pa ,V 1=2.5 m 3,T 1=400 K ,V 2=3 m 3,T 2=600 K ,由理想气体状态方程有p 1V 1T 1=p 2V 2T 2p 2=p 1V 1T 2T 1V 2=1.25×105 Pa 也可以从图象解,但要有必要的说明.(2)画出两段直线如图.[答案](1)1.25×105 Pa(2)见解析。
(新课标)2019届高考物理一轮复习第13章热学第二节固体、液体和气体达标诊断高效训练编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((新课标)2019届高考物理一轮复习第13章热学第二节固体、液体和气体达标诊断高效训练)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(新课标)2019届高考物理一轮复习第13章热学第二节固体、液体和气体达标诊断高效训练的全部内容。
第二节固体、液体和气体(建议用时:60分钟)一、选择题1.下列说法正确的是()A.水在涂有油脂的玻璃板上能形成水珠,而在干净的玻璃板上却不能,这是因为油脂使水的表面张力增大B.在围绕地球飞行的宇宙飞船中,自由飘浮的水滴呈球形,这是表面张力作用的结果C.在毛细现象中,毛细管中的液面有的升高,有的降低,这与液体的种类和毛细管的材质有关D.当两薄玻璃板间夹有一层水膜时,在垂直于玻璃板的方向很难将玻璃板拉开,这是由于水膜具有表面张力解析:选BC。
水在油脂上不浸润,在干净的玻璃板上浸润,A错误;当宇宙飞船绕地球做匀速圆周运动时,里面的所有物体均处于完全失重状态,此时自由飘浮的水滴在表面张力作用下呈现球形,B正确;对于浸润液体,在毛细管中上升,对于非浸润液体,在毛细管中下降,C正确;在垂直于玻璃板方向很难将夹有水膜的玻璃板拉开,是大气压的作用,D错误.2.(2018·贵阳摸底)以下说法中正确的是()A.金刚石、食盐都有确定的熔点B.饱和汽的压强与温度无关C.一些小昆虫可以停在水面上是由于液体表面张力的作用D.多晶体的物理性质表现为各向异性E.当人们感觉空气干燥时,空气的相对湿度一定较小解析:选ACE.金刚石、食盐都是晶体,有确定的熔点,选项A正确;饱和汽的压强与温度有关,选项B错误;因为液体表面张力的存在,有些小昆虫能停在水面上,选项C正确;多晶体的物理性质表现为各向同性,选项D错误;在一定温度条件下,相对湿度越小,水蒸发得也就越快,人就越感到干燥,故当人们感到干燥时,空气的相对湿度一定较小,选项E正确.3.(2018·广东联考)下列说法正确的是()A.气体的内能是分子间势能B.气体的温度变化时,气体分子的平均动能一定改变C.晶体有固定的熔点且物理性质各向异性D.金属在各个方向具有相同的物理性质,但它是晶体解析:选BD.由热力学知识知:气体的内能是分子热运动的动能与分子间势能之和,A错误;气体的温度变化时,气体分子的平均动能变化,B正确;晶体分为单晶体和多晶体,单晶体具有各向异性,多晶体是各向同性的,C错误;通常金属在各个方向具有相同的物理性质,它为多晶体,D正确.4.(2018·武汉部分学校调研)下列说法正确的是()A.用油膜法可以估测分子的质量B.石英、云母、明矾、食盐等是晶体,玻璃、蜂蜡、松香、橡胶等是非晶体C.从微观角度来看,气体压强的大小跟气体分子的平均动能以及分子的密集程度有关D.英国物理学家焦耳通过实验测定了外界对系统做功和传热对于系统状态的影响,以及功与热量的相互关系解析:选BCD。
2019届高考物理一轮复习第十三章热学第二节固体、液体和气体随堂检测新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考物理一轮复习第十三章热学第二节固体、液体和气体随堂检测新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考物理一轮复习第十三章热学第二节固体、液体和气体随堂检测新人教版的全部内容。
第二节固体、液体和气体1.(2017·高考全国卷Ⅲ)如图,一定质量的理想气体从状态a出发,经过等容过程ab到达状态b,再经过等温过程bc到达状态c,最后经等压过程ca回到初态a.下列说法正确的是( )A.在过程ab中气体的内能增加B.在过程ca中外界对气体做功C.在过程ab中气体对外界做功D.在过程bc中气体从外界吸收热量E.在过程ca中气体从外界吸收热量解析:选ABD。
ab过程,气体压强增大,体积不变,则温度升高,内能增加,A项正确;ab过程发生等容变化,气体对外界不做功,C项错误;一定质量的理想气体内能仅由温度决定,bc过程发生等温变化,内能不变,bc过程,气体体积增大,气体对外界做正功,根据热力学第一定律可知气体从外界吸热,D项正确;ca过程发生等压变化,气体体积减小,外界对气体做正功,B 项正确;ca过程,气体温度降低,内能减小,外界对气体做正功,根据热力学第一定律可知气体向外界放热,E项错误.2.如图,竖直放置的U形管内装有水银,左端开口,右端封闭一定量的气体,底部有一阀门.开始时阀门关闭,左管的水银面较高.现打开阀门,流出一些水银后关闭阀门.当重新平衡时()A.左管的水银面与右管等高B.左管的水银面比右管的高C.左管的水银面比右管的低D.水银面高度关系无法判断解析:选D.初态时右侧封闭气体的压强p>p0,打开阀门,流出一些水银后关闭阀门,当重新平衡时,因封闭气体的体积变大,由pV=C知压强p减小,因气体末态压强p有可能大于p0、等于p0或小于p0,故左右两管水银面的高度关系无法判断,选项D正确.3.(2016·高考全国卷Ⅰ)在水下气泡内空气的压强大于气泡表面外侧水的压强,两压强差Δp与气泡半径r之间的关系为Δp=错误!,其中σ=0。
第十三章热学[选修3-3][全国卷5年考情分析]未曾独立命题的考点命题概率较小的考点命题概率较大的考点阿伏加德罗常数(Ⅰ)液晶的微观结构(Ⅰ)液体的表面张力现象(Ⅰ)饱和蒸气、未饱和蒸气、饱和蒸气压(Ⅰ)能量守恒定律(Ⅰ)气体分子运动速率的统计分布(Ⅰ)固体的微观结构、晶体和非晶体(Ⅰ)理想气体(Ⅰ)'17Ⅰ卷T33(1)(5分)'15Ⅰ卷T33(1)(5分)'14Ⅱ卷T33(1)(5分)'16Ⅱ卷T33(1)(5分)'16Ⅲ卷T33(1)(5分)温度、内能(Ⅰ)分子动理论的基本观点和实验依据(Ⅰ)'17气体'16实验'17Ⅱ卷T33(1)(5分)'16Ⅱ卷T33(1)(5分)'16Ⅲ卷T33(1)(5分)'15Ⅱ卷T33(1)(5分)'13Ⅰ卷T33(1)(6分)'13Ⅱ卷T33(1)(5分)Ⅰ卷T33(2)(10分),Ⅱ卷T33(2)(10分),Ⅲ卷T33(2)(10分)Ⅱ卷T33(2)(10分),Ⅰ卷T33(2)(10分)中学物理中涉及的国际单位制的基本单位和其他单位,例如摄氏度、标准大气压(Ⅰ)实验十三:用油相对湿度(Ⅰ)'14Ⅱ卷T33(1)(5分)定律(Ⅱ)'15'14'13Ⅰ卷T33(2)(10分),Ⅱ卷T33(2)(10分)Ⅰ卷T33(2)(9分),Ⅱ卷T33(2)(10分)Ⅰ卷T33(2)(9分),Ⅱ卷T33(2)(10分)膜法估测分子的大小热力学第二定律(Ⅰ)'16Ⅰ卷T33(1)(5分)热力'17学第一定律'16Ⅱ卷T33(1)(5分),Ⅲ卷T33(1)(5分)Ⅱ卷T33(1)(5分),Ⅰ卷T33(1)(5分)(Ⅰ)'14(1)布朗运动与分子热运动常考角度(2)对分子力和分子势能的理解(3)对固体和液体的考查(4)对气体实验定律及热力学图像的考查Ⅰ卷T33(1)(6分)(5)对热力学定律的考查(6)气体实验定律与热力学定律的综合第1节分子动理论__内能(1)布朗运动是液体分子的无规则运动。
第2节固体、液体和气体一、固体和液体液晶1.固体(1)晶体与非晶体分类比较项目晶体非晶体单晶体多晶体外形规则不规则不规则熔点确定确定不确定物理性质各向异性各向同性各向同性原子排列有规则晶粒的排列无规则无规则转化晶体和非晶体在一定条件下可以相互转化典型物质石英、云母、明矾、食盐玻璃、橡胶晶体的微观结构特点:组成晶体的物质微粒有规则地、周期性地在空间排列。
2.液晶(1)液晶分子既保持排列有序而显示各向异性,又可以自由移动位置,保持了液体的流动性。
(2)液晶分子的位置无序使它像液体,排列有序使它像晶体。
(3)液晶分子的排列从某个方向看比较整齐,而从另外一个方向看则是杂乱无章的。
3.液体的表面张力(1)作用液体的表面张力使液面具有收缩到表面积最小的趋势。
(2)方向表面张力跟液面相切,且跟这部分液面的分界线垂直。
(3)大小液体的温度越高,表面张力越小;液体中溶有杂质时,表面张力变小;液体的密度越大,表面张力越大。
二、饱和汽、饱和汽压和相对湿度1.饱和汽与未饱和汽(1)饱和汽:与液体处于动态平衡的蒸汽。
(2)未饱和汽:没有达到饱和状态的蒸汽。
2.饱和汽压(1)定义:饱和汽所具有的压强。
(2)特点:液体的饱和汽压与温度有关,温度越高,饱和汽压越大,且饱和汽压与饱和汽的体积无关。
3.相对湿度空气中水蒸气的压强与同一温度时水的饱和汽压之比。
即:相对湿度=水蒸气的实际压强同温度水的饱和汽压。
三、气体1.气体分子运动的特点2.气体的压强(1)产生原因:由于气体分子无规则的热运动,大量的分子频繁地碰撞器壁产生持续而稳定的压力。
(2)决定因素①宏观上:决定于气体的温度和体积。
②微观上:决定于分子的平均动能和分子的密集程度。
3.气体实验定律理想气体(1)气体实验定律玻意耳定律查理定律盖—吕萨克定律内容一定质量的某种气体,在温度不变的情况下,压强与体积成反比一定质量的某种气体,在体积不变的情况下,压强与热力学温度成正比一定质量的某种气体,在压强不变的情况下,体积与热力学温度成正比表达式p1V1=p2V2p1T1=p2T2V1T1=V2T2图象①理想气体:把在任何温度、任何压强下都遵从气体实验定律的气体称为理想气体。
第二节 固体、液体和气体(对应学生用书第229页)[教材知识速填]知识点1 固体和液体1.固体的分类 固体分为晶体和非晶体两类.石英、云母、明矾、食盐、味精、蔗糖等是晶体,玻璃、蜂蜡、松香、沥青、橡胶等是非晶体.2.晶体和非晶体比较3. (1)如图13-2-1所示,金刚石、石墨晶体的晶体微粒在空间排列上具有规律性、周期性.金刚石墨图13-2-1(2)晶体特性的解释:(1)作用:液体的表面张力使液面具有收缩的趋势.(2)方向:表面张力跟液面相切,跟这部分液面的分界线垂直.(3)大小:液体的温度越高,表面张力越小;液体中溶有杂质时,表面张力变小;液体的密度越大,表面张力越大.5.毛细现象是指浸润液体在细管中上升的现象,以及不浸润液体在细管中下降的现象,毛细管越细,毛细现象越明显.6.液晶的物理性质(1)具有液体的流动性.(2)具有晶体的光学各向异性.(3)从某个方向看其分子排列比较整齐,但从另一方向看,分子的排列是杂乱无章的.易错判断(1)单晶体的所有物理性质都是各向异性的.(×)(2)草叶上的露珠呈球形是表面张力引起的.(√)(3)液晶是液体和晶体的混合物.(×)知识点2饱和汽、饱和汽压和相对湿度1.饱和汽与饱和汽压与液体处于动态平衡的蒸汽叫做饱和汽;没有达到饱和状态的蒸汽叫做未饱和汽.在一定温度下,饱和汽的分子数密度是一定的,因而饱和汽的压强也是一定的,这个压强叫做这种液体的饱和汽压,饱和汽压随温度升高而增大.2.相对湿度空气中水蒸气的压强与同一温度时水的饱和汽压之比叫做空气的相对湿度.即:相对湿度=――――――――――→水蒸气的实际压强同温下水的饱和汽压⎝⎛⎭⎪⎫B=pp s×100%.知识点3气体分子动理论和气体的压强1.气体分子之间的距离远大于分子直径,气体分子之间的作用力十分微弱,可以忽略不计.2.气体分子的速率分布,表现出“中间多,两头少”的统计分布规律.3.气体分子向各个方向运动的机会均等.4.温度一定时,某种气体分子的速率分布是确定的,速率的平均值也是确定的,温度升高,气体分子的平均速率增大,但不是每个分子的速率都增大.5.气体压强(1)产生的原因由于大量分子无规则地运动而碰撞器壁,形成对器壁各处均匀、持续的压力,作用在器壁单位面积上的压力叫做气体的压强.(2)决定气体压强大小的因素①宏观上:决定于气体的温度和体积.②微观上:决定于分子的平均动能和分子数密度.易错判断(1)水蒸气达到饱和时,水蒸气的压强不再变化,这时,水不再蒸发和凝结.(×)(2)只要能增加气体分子热运动的剧烈程度,气体的温度就可以升高.(√)(3)绝对湿度是指空气中所含水蒸气的压强.(√)知识点4气体实验定律和理想气体状态方程1.气体实验定律(1)等温变化——玻意耳定律:①内容:一定质量的某种气体,在温度不变的情况下,压强与体积成反比.②公式:p1V1=p2V2或pV=C(常量).(2)等容变化——查理定律:①内容:一定质量的某种气体,在体积不变的情况下,压强与热力学温度成正比.②公式:p1p2=T1T2或pT=C(常数).(3)等压变化——盖—吕萨克定律:①内容:一定质量的某种气体,在压强不变的情况下,其体积与热力学温度成正比.②公式:V1V2=T1T2或VT=C(常数).2.理想气体及其状态方程(1)理想气体:①宏观上讲,理想气体是指在任何条件下始终遵守气体实验定律的气体.实际气体在压强不太大、温度不太低的条件下,可视为理想气体.②微观上讲,理想气体的分子间除碰撞外无其他作用力,分子本身没有体积,即它所占据的空间认为都是可以被压缩的空间.(2)状态方程:p1V1T1=p2V2T2或pVT=C(常数).易错判断(1)若气体的温度逐渐升高,则其压强可以保持不变.(√)(2)一定质量的理想气体在等压变化时,其体积与摄氏温度成正比.(×)(3)压强极大的气体不遵从气体实验定律.(√)(对应学生用书第231页)1.晶体和非晶体(1)单晶体具有各向异性,但不是在各种物理性质上都表现出各向异性.(2)只要是具有各向异性的物体必定是晶体,且是单晶体.(3)只要是具有确定熔点的物体必定是晶体,反之,必是非晶体.(4)晶体和非晶体在一定条件下可以相互转化.2.液体表面张力(1)形成原因:表面层中分子间的距离比液体内部分子间的距离大,分子间的相互作用力表现为引力.(2)表面特性:表面层分子间的引力使液面产生了表面张力,使液体表面好像一层绷紧的弹性薄膜.(3)表面张力的效果:表面张力使液体表面具有收缩趋势,使液体表面积趋于最小,而在体积相同的条件下,球形的表面积最小.[题组通关]1.(2017·全国Ⅰ卷)氧气分子在0 ℃和100 ℃温度下单位速率间隔的分子数占总分子数的百分比随气体分子速率的变化分别如图13-2-2中两条曲线所示.下列说法正确的是()图13-2-2A.图中两条曲线下面积相等B.图中虚线对应于氧气分子平均动能较小的情形C.图中实线对应于氧气分子在100 ℃时的情形D.图中曲线给出了任意速率区间的氧气分子数目E.与0 ℃时相比,100 ℃时氧气分子速率出现在0~400 m/s区间内的分子数占总分子数的百分比较大ABC[A对:面积表示总的氧气分子数,二者相等.B对:温度是分子平均动能的标志,温度越高,分子的平均动能越大,虚线为氧气分子在0 ℃时的情形,分子平均动能较小.C对:实线为氧气分子在100 ℃时的情形.D错:曲线给出的是分子数占总分子数的百分比.E错:速率出现在0~400 m/s区间内,100 ℃时氧气分子数占总分子数的百分比较小.]2.下列说法正确的是()【导学号:84370506】A.石墨和金刚石都是晶体,都是由碳元素组成的单质,但它们的原子排列方式不同B.晶体和非晶体在熔化过程中都吸收热量,温度不变C.液晶的光学性质随温度的变化而变化D.液晶的分子排列会因所加电压的变化而变化,由此引起光学性质的改变E.不是所有的物质都有液晶态ADE[石墨和金刚石都是晶体,都是由碳元素组成的单质,但它们的原子排列方式不同,选项A正确.晶体在熔化过程中吸收热量,温度不变;非晶体在熔化过程中吸收热量,温度升高,选项B错误.液晶的光学性质与温度的高低无关,其随所加电压的变化而变化,即液晶的分子排列会因所加电压的变化而变化,由此引起光学性质的改变,选项C错误,D 正确.不是所有的物质都有液晶态,选项E正确.]3.下列说法正确的是()A.在一定温度下,同种液体的饱和汽的分子数密度也会变化B.相对湿度是100%,表明在当时温度下,空气中水汽还没达到饱和状态C.处在液体表面层的分子与液体内部的分子相比有较大的势能D.空气的相对湿度越大,空气中水蒸气的压强越接近同一温度时水的饱和汽压E.露水总是出现在夜间和清晨,原因是气温的变化使空气里原来饱和的水蒸气液化CDE[饱和汽的分子数密度仅由温度决定,温度越高,饱和汽的分子数密度越大,故A错误;相对湿度是指空气中水蒸气的实际压强与同一温度下水的饱和汽压之比,相对湿度是100%,表明在当时的温度下,空气中的水蒸气已达到饱和状态,故B错误;液体表面层的分子间距离大于液体内部分子间的距离,液体内部分子间作用力接近于零,由于分子间的引力势能随分子间距增大而增大,故C正确;空气的相对湿度越大,空气中水蒸气的压强越接近同一温度下水的饱和汽压,故D正确;露水总是出现在夜间和清晨,是因为气温的变化使空气里原来饱和的水蒸气液化,故E正确.]4.下列说法正确的是()A.把一枚针轻放在水面上,它会浮在水面.这是由于水表面存在表面张力的缘故B.水在涂有油脂的玻璃板上能形成水珠,而在干净的玻璃板上却不能.这是因为油脂使水的表面张力增大的缘故C.在围绕地球飞行的宇宙飞船中,自由飘浮的水滴呈球形.这是表面张力作用的结果D.在毛细现象中,毛细管中的液面有的升高,有的降低,这与液体的种类和毛细管的材质有关E.当两薄玻璃板间夹有一层水膜时,在垂直于玻璃板的方向很难将玻璃板拉开.这是由于水膜具有表面张力的缘故ACD [水的表面张力托起针,A 正确;水在油脂上不浸润,在干净的玻璃上浸润,B 错误,C 、D 正确;在垂直于玻璃板方向很难将夹有水膜的玻璃板拉开是因为大气压的作用,E 错误.]1.理想气体状态方程与气体实验定律的关系2.两个重要的推论(1)查理定律的推论:Δp =p 1T 1ΔT (2)盖—吕萨克定律的推论:ΔV =V 1T 1ΔT [多维探究]考向1 气体实验定律的应用1.(2017·全国Ⅰ卷)如图13-2-3所示,容积均为V 的汽缸A 、B 下端有细管(容积可忽略)连通,阀门K 2位于细管的中部,A 、B 的顶部各有一阀门K 1、K 3;B 中有一可自由滑动的活塞(质量、体积均可忽略).初始时,三个阀门均打开,活塞在B 的底部;关闭K 2、K 3,通过K 1给汽缸充气,使A 中气体的压强达到大气压p 0的3倍后关闭K 1.已知室温为27 ℃,汽缸导热.图13-2-3(1)打开K 2,求稳定时活塞上方气体的体积和压强;(2)接着打开K 3,求稳定时活塞的位置;(3)再缓慢加热汽缸内气体使其温度升高20℃,求此时活塞下方气体的压强.[解析](1)设打开K 2后,稳定时活塞上方气体的压强为p 1,体积为V 1.依题意,被活塞分开的两部分气体都经历等温过程.由玻意耳定律得p 0V =p 1V 1① (3p 0)V =p 1(2V -V 1)②联立①②式得V 1=V 2③ p 1=2p 0. ④ (2)打开K 3后,由④式知,活塞必定上升.设在活塞下方气体与A 中气体的体积之和为V 2(V 2≤2V )时,活塞下气体压强为p 2.由玻意耳定律得(3p 0)V =p 2V 2⑤ 由⑤式得p 2=3V V 2p 0 ⑥由⑥式知,打开K 3后活塞上升直到B 的顶部为止;此时p 2为p ′2=32p 0.(3)设加热后活塞下方气体的压强为p 3,气体温度从T 1=300 K 升高到T 2=320 K 的等容过程中,由查理定律得p ′2T 1=p 3T 2⑦将有关数据代入⑦式得p 3=1.6p 0. ⑧ [答案](1)V 2 2p 0 (2)上升直到B 的顶部 (3)1.6 p 02.如图13-2-4所示,有一圆柱形汽缸,上部有固定挡板,汽缸内壁的高度是2L ,一个很薄且质量不计的活塞封闭一定质量的理想气体,开始时活塞处在离底部L 高处,外界大气压强为1.0×105 Pa ,温度为27 ℃,现对气体加热,求:当加热到427 ℃时,封闭气体的压强.【导学号:84370507】图13-2-4[解析] 设汽缸横截面积为S ,活塞恰上升到汽缸上部挡板处时,气体温度为T 2,气体做等压变化,则对于封闭气体,初状态:T 1=(27+273)K ,V 1=LS ,p 1=p 0;末状态:V 2=2LS ,p 2=p 0.由V 1T 1=V 2T 2,解得:T 2=600 K ,即t 2=327 ℃ 设当加热到427 ℃时气体的压强变为p 3,在此之前活塞已上升到汽缸上部挡板处,气体做等容变化,则对于封闭气体,初状态:T 2=600 K ,V 2=2LS ,p 2=1.0×105 Pa ;末状态:T 3=700 K ,V 3=2LS .由p3T3=p2T2,代入数据得:p3=1.17×105 Pa.[答案] 1.17×105 Pa(2016·全国Ⅱ卷)一氧气瓶的容积为0.08 m3,开始时瓶中氧气的压强为20个大气压.某实验室每天消耗1个大气压的氧气0.36 m3.当氧气瓶中的压强降低到2个大气压时,需重新充气.若氧气的温度保持不变,求这瓶氧气重新充气前可供该实验室使用多少天.[解析]设氧气开始时的压强为p1,体积为V1,压强变为p2(2个大气压)时,体积为V2.根据玻意耳定律得p1V1=p2V2 ①重新充气前,用去的氧气在p2压强下的体积为V3=V2-V1 ②设用去的氧气在p0(1个大气压)压强下的体积为V0则有p2V3=p0V0 ③设实验室每天用去的氧气在p0下的体积为ΔV,则氧气可用的天数为N=V0ΔV④联立①②③④式,并代入数据得N=4(天).⑤[答案]4天考向2理想气体状态方程的应用3.如图13-2-5所示,粗细均匀的弯曲玻璃管A、B两端开口,管内有一段水银柱,中管内水银面与管口A之间气体柱长为40 cm,气体温度为27 ℃.将左管竖直插入水银槽中,整个过程温度不变,稳定后右管内水银面和中管内水银面出现4 cm 的高度差.已知大气压强p 0=76 cmHg ,气体可视为理想气体.图13-2-5(1)求左管A 端插入水银槽的深度d ;(2)为使右管内水银面和中管内水银面再次相平,需使气体温度降为多少℃?[解析](1)插入水银槽后封闭气体发生等温变化,由玻意耳定律得p 1L 1S =p 2L 2S插入水银槽后封闭气体的长度为L 2=p 1L 1p 2=76×4076+4cm =38 cm 由题意知,中管水银面下降2 cm ,左管下端水银进入管中的长度为40 cm +2 cm -38 cm =4 cm ,管外水银面比管内高4 cm ,故左管A 端插入水银槽的深度d =4 cm +4 cm =8 cm.(2)由理想气体状态方程得:p 2L 2S T 2=p 3L 3S T 3当右管内水银面和中管内水银面再次相平时,封闭气柱的长度L 3=L 2-4 cm -2 cm =32 cm ,压强p 3=p 0=76 cm则气体温度降为T 3=p 3L 3T 2p 2L 2=76×32×(27+273)80×38K =240 K 即t 3=T 3-273 ℃=-33 ℃.[答案](1)8 cm (2)-33 ℃4.如图13-2-6所示,有两个不计质量的活塞M 、N 将两部分理想气体封闭在绝热汽缸内,温度均是27 ℃.M 活塞是导热的,N 活塞是绝热的,均可沿汽缸无摩擦地滑动,已知活塞的横截面积均为S =2 cm 2,初始时M 活塞相对于底部的高度为H =27 cm ,N 活塞相对于底部的高度为h =18 cm.现将一质量为m=400 g的小物体放在M活塞的上表面上,活塞下降.已知大气压强为p0=1.0×105 Pa.图13-2-6(1)求下部分气体的压强多大;(2)现通过加热丝对下部分气体进行缓慢加热,使下部分气体的温度变为127 ℃,求稳定后活塞M、N距离底部的高度.[解析](1)对两个活塞和重物作为整体进行受力分析得:pS=mg+p0S解得p=1.2×105 Pa.(2)对下部分气体进行分析,由理想气体状态方程可得:p0hS T1=ph2S T2得:h2=20 cm,故活塞N距离底部的距离为h2=20 cm对上部分气体进行分析,根据玻意耳定律可得:p0(H-h)S=pLS得:L=7.5 cm故此时活塞M距离底端的距离为H2=20+7.5=27.5 cm.[答案](1)1.2×105 Pa(2)27.5 cm20 cm(2017·贵州七校高三联考)如图所示,水平放置一个长方体的封闭汽缸,用无摩擦活塞将内部封闭气体分为完全相同的A、B两部分.初始时两部分气体压强均为p、热力学温度均为T.使A的温度升高ΔT而保持B部分气体温度不变.则A部分气体的压强增加量为多少?[解析]设温度升高后,A、B压强增加量都为Δp A部分气体升高温度后体积为V A由理想气体状态方程得:pVT=(p+Δp)V AT+ΔT对B部分气体,升高温度后体积为V B,由玻意耳定律得:pV=(p+Δp)V B两部分气体总体积不变:2V=V A+V B解得:Δp=pΔT 2T.[答案]pΔT 2T气体状态变化的图象问题一定质量气体状态变化图象对比特点之积越大的等温线,[题组通关]5.(多选)(2016·全国Ⅱ卷)一定量的理想气体从状态a开始,经历等温或等压过程ab、bc、cd、da回到原状态,其p-T图象如图13-2-7所示,其中对角线ac的延长线过原点O.下列判断正确的是()图13-2-7A.气体在a、c两状态的体积相等B.气体在状态a时的内能大于它在状态c时的内能C.在过程cd中气体向外界放出的热量大于外界对气体做的功D.在过程da中气体从外界吸收的热量小于气体对外界做的功E.在过程bc中外界对气体做的功等于在过程da中气体对外界做的功ABE[由ac的延长线过原点O知,直线Oca为一条等容线,气体在a、c两状态的体积相等,选项A正确;理想气体的内能由其温度决定,故在状态a时的内能大于在状态c时的内能,选项B正确;过程cd是等温变化,气体内能不变,由热力学第一定律知,气体对外放出的热量等于外界对气体做的功,选项C错误;过程da气体内能增大,从外界吸收的热量大于气体对外界做的功,选项D错误;由理想气体状态方程知:p a V a T a=p b V bT b=p c V cT c=p d V dT d=C,即p a V a=CT a,p b V b=CT b,p c V c=CT c,p d V d=CT d.设过程bc 中压强为p 0=p b =p c ,过程da 中压强为p ′0=p d =p a .由外界对气体做功W =p ·ΔV 知,过程bc 中外界对气体做的功W bc =p 0(V b -V c )=C (T b -T c ),过程da 中气体对外界做的功W da =p ′0(V a -V d )=C (T a -T d ),T a =T b ,T c =T d ,故W bc =W da ,选项E 正确(此选项也可用排除法直接判断更快捷).]6.图13-2-8为一定质量理想气体的压强p 与体积V 关系图象,它由状态A 经等容过程到状态B ,再经等压过程到状态C .设A 、B 、C 状态对应的温度分别为T A 、T B 、T C ,则T A ________T B (填“>”“<”或“=”),T B ________T C (填“>”“<”或“=”).【导学号:84370508】图13-2-8[解析] 根据理想气体状态方程pV T =C 可知:从A 到B ,体积不变,压强减小,故温度降低即T A >T B ;从B 到C ,压强不变,体积增大,故温度升高,即T B <T C .[答案] > <7.一定质量的理想气体经历了温度缓慢升高的变化,如图13-2-9所示,p -T 和V -T 图象各记录了其部分变化过程,试求:(1)温度600 K 时气体的压强;(2)在p -T 图象上将温度从400 K 升高到600 K 的变化过程补充完整.图13-2-9[解析](1)已知p 1=1.0×105 Pa ,V 1=2.5 m 3,T 1=400 K ,V 2=3 m 3,T 2=600 K ,由理想气体状态方程有p 1V 1T 1=p 2V 2T 2p 2=p 1V 1T 2T 1V 2=1.25×105 Pa 也可以从图象解,但要有必要的说明.(2)画出两段直线如图.[答案](1)1.25×105 Pa (2)见解析。