有关弹簧问题的专题复习[1]
- 格式:doc
- 大小:300.50 KB
- 文档页数:9
弹簧问题(动力学)知识升华一、弹簧的弹力1、弹簧弹力的大小弹簧弹力的大小由胡克定律给出,胡克定律的内容是:在弹性限度内,弹力的大小与弹簧的形变量成正比。
数学表达形式是:F=kx 其中k是一个比例系数,叫弹簧的劲度系数。
说明:①弹力是一个变力,其大小随着弹性形变的大小而变化,还与弹簧的劲度系数有关;②弹簧具有测量功能,利用在弹性限度内,弹簧的伸长(或压缩)跟外力成正比这一性质可制成弹簧秤。
2、弹簧劲度系数弹簧的力学性质用劲度系数描写,劲度系数的定义因弹簧形式的不同而不同,以下主要讨论螺旋式弹簧的劲度系数。
(1)定义:在弹性限度内,弹簧产生的弹力F(也可认为大小等于弹簧受到的外力)和弹簧的形变量(伸长量或者压缩量)x的比值,也就是胡克定律中的比例系数k。
(2)劲度系数的决定因素:劲度系数的大小由弹簧的尺寸和绕制弹簧的材料决定。
弹簧的直径越大、弹簧越长越密、绕制弹簧的金属丝越软越细时,劲度系数就越小,反之则越大。
如两根完全相同的弹簧串联起来,其劲度系数只是一根弹簧劲度系数的一半,这是因为弹簧的长度变大的缘故;若两根完全相同的弹簧并联起来,其劲度系数是一根弹簧劲度系数的两倍,这是相当于弹簧丝变粗所导致;二、轻质弹簧的一些特性轻质弹簧:所谓轻质弹簧就是不考虑弹簧本身的质量和重力的弹簧,是一个理想化的模型。
由于它不需要考虑自身的质量和重力对于运动的影响,因此运用这个模型能为分析解决问题提供很大的方便。
性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。
其伸长量等于弹簧任意位置受到的力和劲度系数的比值。
如图1和2中相同的轻弹簧,其端点受到相同大小的力时,无论弹簧是处于静止、匀速还是加速运动状态,各个弹簧的伸长量都是相同的。
性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间变化——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。
如在图1、2、3、4、中撤出任何一个力的瞬间,弹簧的长度不会变化,弹力的大小也不会变化;但是在图5中撤出力F的瞬时,弹簧恢复原长,弹力变为零。
高中物理弹簧问题分类全解析一、有关弹簧题目类型 1、平衡类问题 2、突变类问题3、简谐运动型弹簧问题4、功能关系型弹簧问题5、碰撞型弹簧问题6、综合类弹簧问题 二、分类解析 1、平衡类问题例1.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k 1B.m2g/k 2C.m1g/k 2D.m2g/k 2解析:我们把看成一个系统,当整个系统处于平衡状态时,整个系统受重力和弹力,即当上面木块离开弹簧时,受重力和弹力,则【例2】、14、如图所示,与水平面夹角为30°的固定斜面上有一质量m=1.0kg 的物体。
细绳的一端摩擦不计的定滑轮与固定的弹簧秤相连。
物体静止在斜面上,弹簧秤的示数为4.9N 。
关于物体受力的判断(取g=9.8m/s2),下列说法正确的是C A.斜面对物体的摩擦力大小为零B. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向上C. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向下D. 斜面对物体的摩擦力大小为4.9N ,方向垂直斜面向上练习1、(2010山东卷)17.如图所示,质量分别为1m 、2m 的两个物体通过轻弹簧连接,在力F 的作用下一起沿水平方向做匀速直线运动(1m 在地面,2m 在空中),力F 与水平方向成 角。
则1m 所受支持力N 和摩擦力f 正确的是ACA .12sin N m g m g F θ=+-B .12cos N m g m g F θ=+-C .cos f F θ=D .sin f F θ=2、在水平地面上放一个竖直轻弹簧,弹簧上端与一个质量为2.0kg 的木板相连。
若在木板上再作用一个竖直向下的力F 使木板缓慢向下移动0.1米,力F 作功2.5J,此时木板再次处于平衡,力F 的大小为50N ,如图所示,则木板下移0.1米的过程中,弹性势能增加了多少?解:由于木板压缩弹簧,木板克服弹力做了多少功,弹簧的弹性势能就增加了多少,即:(木板克服弹力做功,就是弹力对木块做负功),W 弹=-mgx -W F =-4.5J所以弹性势能增加4.5焦耳点评:弹力是变力,缓慢下移,F 也是变力,所以弹力功2、突变类问题例1、一个轻弹簧一端B 固定,另一端C 与细绳的一端共同拉住一个质量为m 的小球,绳的另一端A 也固定,如图所示,且AC 、BC 与竖直方向夹角分别为21θθ、、,求(1)烧断细绳瞬间,小球的加速度(2)在C处弹簧与小球脱开瞬间,小球的加速度解:(1)若烧断细绳的瞬间,小球的所受合力与原来AC 绳拉力TAC 方向等大、反向,即加速度a 1方向为AC 绳的反向,原来断绳前,把三个力画到一个三角形内部,由正弦定理知: mg/sin(180°-θ1-θ2)=T AC /sinθ2,解得T AC =mgsinθ2/sin(180°-θ1-θ2)=mgsinθ2/sin(θ1+θ2), 故由牛顿第二定律知:a 1=T AC /m=gsinθ2/sin(θ1+θ2) 或者: F AC ×cosθ1+F BC ×cosθ2=mg F AC ×sinθ1=F BC ×sinθ2 解之得F AC =mgsinθ2/sin(θ1+θ2)则瞬间加速度大小a 1=gsinθ2/sin(θ1+θ2),方向AC 延长线方向。
力学练习题弹簧振子的频率与振幅力学练习题:弹簧振子的频率与振幅弹簧振子是力学中常见的基本模型,它的频率与振幅之间存在一定的关系。
通过练习题的形式,我们将深入探讨弹簧振子的频率与振幅之间的关系,并通过计算来验证这一关系。
一、理论基础弹簧振子是由弹簧和质点组成,当质点在弹簧的作用下发生振动时,我们考虑弹簧的力学性质。
弹簧受到的力可以表示为:F = -kx其中,F为弹簧受到的力,k为弹簧的弹性系数,x为弹簧的伸长或压缩量。
根据胡克定律,弹簧的弹性系数k可以表达为:k = (F/x)其中,F为给定的力,x为弹簧的压缩或伸长量。
二、练习题1. 弹簧振子的频率与弹性系数k之间存在何种关系?根据振动的理论,弹簧振子的频率与弹性系数k之间的关系可以用如下公式表示:f = (1/2π) * √(k/m)其中,f为弹簧振子的频率,k为弹簧的弹性系数,m为质点的质量。
2. 请计算以下情况下弹簧振子的频率:(1)弹簧的弹性系数k为10 N/m,质点的质量为0.5 kg;(2)弹簧的弹性系数k为20 N/m,质点的质量为1 kg;(3)弹簧的弹性系数k为30 N/m,质点的质量为2 kg。
根据上述公式,我们可以依次计算出这三种情况下的频率:(1)f₁ = (1/2π) * √(10/0.5) = 1.13 Hz(2)f₂ = (1/2π) * √(20/1) = 2.26 Hz(3)f₃ = (1/2π) * √(30/2) = 2.68 Hz三、结论通过计算可以发现,弹簧振子的频率与弹性系数k之间存在正相关关系,即弹性系数k增大时,频率也会增大。
这是因为弹性系数越大,弹簧对质点的恢复力越大,振动的速度也会更快,从而导致频率的增大。
在实际应用中,弹簧振子的频率与振幅、质量等因素也有关系,但本练习题仅考虑了弹性系数k和质量之间的关系。
为了更全面地了解弹簧振子的特性,可以进一步研究振幅、阻尼等因素对频率的影响。
结语:通过这个练习题,我们深入探讨了弹簧振子的频率与振幅之间的关系,通过计算验证了频率与弹性系数k之间存在正相关关系。
专题强化1 实验:探究弹簧弹力与形变量的关系解题要点梳理:弹簧发生弹性形变时:弹力F 的大小跟弹簧伸长(或缩短)的长度 x 成正比,即 F = kx ,F 和弹簧的长度 l 是一次函数关系F = k l -k l 0基础巩固1.(2022·全国·高一期末)在“探究弹力和弹簧伸长的关系”实验中,弹簧弹力的大小为F ,弹簧的形变量(伸长量或压缩量)为x ,下列说法正确的是A .实验中k 的具体数值只能用逐个计算的方法求出来,而没有其他的方法B .如果没有测出弹簧原长,用弹簧长度L 代替x ,F -L 图线也是过原点的一条直线C .利用F -x 直线可求出k 值D .实验时要把所有点连到线上,才能探索得到真实规律【答案】C【详解】AC .根据胡克定律:F kx =-,可知,利用F -x 直线可求出k 值,A 错误,C 正确;B .用弹簧长度L 代替x ,则关系式为:0()F k L x =--,不过原点,B 错误;D .实验时,要尽量让更多的点落在一条直线上,不能落在直线上的尽量均匀分布在直线两侧,偏差太大的点应舍去,D 错误。
故选C .2.(2022·全国·高三课时练习)某同学在做研究弹簧的形变与外力的关系实验时,将一轻弹簧竖直悬挂让其自然下垂,测出其自然长度;然后在其下部施加外力F ,测出弹簧的总长度L ,改变外力F 的大小,测出几组数据,作出外力F 与弹簧总长度L 的关系图线如图所示。
(实验过程是在弹簧的弹性限度内进行的)由图可知该弹簧的自然长度L =_______cm ;该弹簧的劲度系数为k =______N/m 。
【答案】 10 50【详解】由图可知,弹簧没有收到拉力时,其长度为10cm ,故该弹簧的自然长度10cm L =。
由图可知,当受到10.0N F =的拉力时,弹簧的伸长量为30cm 10cm 20cm 0.2m L ∆=-==,则弹簧的劲度系数为10.0N 50N /m 0.2mF k L ===∆。
精心整理高中物理弹簧模型问题一、物理模型:轻弹簧是不计自身质量,能产生沿轴线的拉伸或压缩形变,故产生向内或向外的弹力。
二、模型力学特征:轻弹簧既可以发生拉伸形变,又可发生压缩形变,其弹力方向一定沿弹簧方向,弹簧两端弹力的大小相等,方向相反。
三、弹簧物理问题:1.弹簧平衡问题:抓住弹簧形变量、运动和力、促平衡、列方程。
2.弹簧模型应用牛顿第二定律的解题技巧问题:(1) 弹簧长度改变,弹力发生变化问题:要从牛顿第二定律入手先分析加速度,从而分析物体运动规律。
而物体的运动又导致弹力的变化,变化的规律又会影响新的运动,由此画出弹簧的几个特殊状态(原长、平衡位置、最大长度)尤其重要。
(2) 弹簧长度不变,弹力不变问题:当物体除受弹簧本身的弹力外,还受到其它外力时,当弹簧长度不发生变化时,弹簧的弹力是不变的,出就是形变量不变,抓住这一状态分析物体的另外问题。
(3) 弹簧中的临界问题:当弹簧的长度发生改变导致弹力发生变化的过程中,往往会出现临界问题:如“两物体分离”、“离开地面”、“恰好”、“刚好”……这类问题找出隐含条件是求解本类题型的关键。
3.弹簧双振子问题:它的构造是:一根弹簧两端各连接一个小球(物体),这样的装置称为“弹簧双振子”。
本模型它涉及到力和运动、动量和能量等问题。
本问题对过程分析尤为重要。
1.弹簧称水平放置、牵连物体弹簧示数确定【例1】物块1、2放在光滑水平面上用轻弹簧相连,如图1所示。
今对物块1、2分别施以相反的水平力F1、F2,且F1>F2,则:A .弹簧秤示数不可能为F1B .若撤去F1,则物体1的加速度一定减小C .若撤去F2,弹簧称的示数一定增大D .若撤去F2,弹簧称的示数一定减小即正确答案为A 、D【点评】对于轻弹簧处于加速状态时要运用整体和隔离分析,再用牛顿第二定律列方程推出表达式进行比较讨论得出答案。
若是平衡时弹簧产生的弹力和外力大小相等。
主要看能使弹簧发生形变的力就能分析出弹簧的弹力。
1.如图所示,重10 N 的滑块在倾角为30°的斜面上,从a 点由静止下滑,到b 点接触到一个轻弹簧.滑块压缩弹簧 到c 点开始弹回,返回b 点离开弹簧,最后又回到a 点,已 知ab =0.8 m ,bc =0.4 m ,那么在整个过程中 ( )A .滑块动能的最大值是6 JB .弹簧弹性势能的最大值是6 JC .从c 到b 弹簧的弹力对滑块做的功是6 JD .滑块和弹簧组成的系统整个过程机械能守恒 解析:滑块能回到原出发点,所以机械能守恒,D 正确;以c 点为参考点,则a 点的机械能为6 J ,c 点时的速度为0,重力势能也为0,所以弹性势能的最大值为6 J ,从c 到b 弹簧的弹力对滑块做的功等于弹性势能的减小量,故为6 J ,所以B 、C 正确.由a →c 时,因重力势能不能全部转变为动能,故A 错.答案:BCD2. 如图所示,水平面上的轻弹簧一端与物体相连,另一端固定在墙上P 点,已知物体的质量 为m =2.0 kg ,物体与水平面的动摩擦因数μ=0.4,弹簧的劲度系数k =200 N/m.现用力F 拉物体,使弹簧从处于自然状态的O 点由静止开始向左移动10 cm ,这时弹簧具有弹性势能E p =1.0 J ,物体处于静止状态,若取g =10 m/s 2,则撤去外力F 后 ( )A .物体向右滑动的距离可以达到12.5 cmB .物体向右滑动的距离一定小于12.5 cmC .物体回到O 点时速度最大D .物体到达最右端时动能为0,系统机械能不为0解析:物体向右滑动到O 点摩擦力做功W F =μmgs =0.4×2×10×0.1 J =0.8 J <E p ,故物体回到O 点后速度不等零 ,还要继续向右压缩弹簧,此时有E p =μmgx +E p ′且E p ′>0,故x =E p -E p ′μmg <E pμmg=12.5 cm ,A 错误,B 正确;物体到达最右端时动能为零,但弹性势能不为零,故系统机械能不为零,D 正确;由kx -μmg =ma ,可知当a =0,物体速度最大时,弹簧的伸长量x =μmg k>0,故C 错误.答案:BD3.如图所示,在倾角为30°的光滑斜面上,有一劲度系数为k 的轻质弹簧,其一端固定在固定挡板C 上,另一端连接一质量为m 的物体A.有一细绳通过定滑轮,细绳的一端系在物体A 上(细绳与斜面平行),另一端系有一细绳套,物体A 处于静止状态.当在细绳套上轻轻挂上一个质量为m 的物体B 后,物体A 将沿斜面向上运动,试求:(1)未挂物体B 时,弹簧的形变量;(2)物体A 的最大速度值.解析 (1)设未挂物体B 时,弹簧的压缩量为x ,则有:mg sin 30°=kx 所以x =mg2k.(2)当A 的速度最大时,设弹簧的伸长量为x ′,则有mg sin 30°+kx ′=mg 所以x ′=x =mg2k对A 、B 和弹簧组成的系统,从刚挂上B 到A 的速度最大的过程,由机械能守恒定律得:mg·2x -mg·2x sin 30°=12·2mv 2m 解得v m = mg 22k . 答案 (1)mg 2k (2) mg 22k4.如图所示,光滑水平面AB 与竖直面内的半圆形导轨在B 点相接,导轨半径为R .一个质量为m 的物体将弹簧压缩至A 点后由静止释放,在弹力作用下物体获得某一向右速度后脱离弹簧,当它经过B 点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半个圆周运动到达C 点.试求: (1)弹簧开始时的弹性势能. (2)物体从B 点运动至C 点克服阻力做的功.(3)物体离开C 点后落回水平面时的动能.解析:(1)物体在B 点时,由牛顿第二定律得:F N -mg =m v B 2R,又F N =7mg ,可得E k B =12m v B 2=3mgR在物体从A 点至B 点的过程中,根据机械能守恒定律,弹簧的弹性势能E p =E k B =3mgR .(2)物体到达C 点仅受重力mg ,根据牛顿第二定律有mg =m v C 2R E k C =12m v C 2=12mgR物体从B 点到C 点只有重力和阻力做功,根据动能定理有:W 阻-mg ·2R =E k C -E k B解得W 阻=-12mgR所以物体从B 点运动至C 点克服阻力做的功为W =12mgR .(3)物体离开轨道后做平抛运动,仅有重力做功,根据机械能守恒定律有:E k =E k C +mg ·2R =52mgR .答案:(1)3mgR (2)12mgR (3)52mgR5.为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上)【5题解答】固定时示数为F 1, 对小球F 1=mgsin θ ①整体下滑:(M+m )sin θ-μ(M+m)gcos θ=(M+m)a ② 下滑时,对小球:mgsin θ-F 2=ma ③ 由式①、式②、式③得 μ=12F F tan θ6. 如图是为了检验某种防护罩承受冲击能力的装置,M 为半径为1.0R m =、固定于竖直平面内的1/4光滑圆弧轨道,轨道上端切线水平,N 为待检验的固定曲面,该曲面在竖直面内的截面为半径r 的1/4圆弧,圆弧下端切线水平且圆心恰好位于M 轨道的上端点,M 的下端相切处置放竖直向上的弹簧枪,可发射速度不同的质量0.01m k g =的小钢珠,假设某次发射的钢珠沿轨道恰好能经过M 的上端点,水平飞出后落到N 的某一点上,取210/g m s =,求:(1)发射该钢珠前,弹簧的弹性势能p E 多大? (2)钢珠落到圆弧N上时的速度大小N v 是多少?(结果保留两位有效数字)【6题解答】(1)设钢珠在M 轨道最高点的速度为v ,在最高点,由题意2v mg mR= ① 2分从发射前到最高点,由机械能守恒定律得:212p E mgR mv =+② 2分(2)钢珠从最高点飞出后,做平抛运动x vt = ③ 1分212y gt =④ 1分 由几何关系222x y r += ⑤ 2分 从飞出M 到打在N 得圆弧面上,由机械能守恒定律:221122N mgy mv mv +=⑥ 2分联立①、③、④、⑤、⑥解出所求 5.0/N v m s =1分7.如图所示,质量为m 的滑块放在光滑的水平平台上,平台右端B 与水平传送带相接,传送带的运行速度为v 0,长为L .今将滑块缓慢向左压缩固定在平台上的轻弹簧,到达某处时突然释放,当滑块滑到传送带右端C 时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数为μ. 求:(1)试分析滑块在传送带上的运动情况;(2)若滑块离开弹簧时的速度大于传送带的速度,求释放滑块时弹簧具有的弹性势能; (3)若滑块离开弹簧时的速度大于传送带的速度,求滑块在传送带上滑行的整个过程中产生的热量.解析:(1)若滑块冲上传送带时的速度小于带速,则滑块由于受到向右的滑动摩擦力而做匀加速运动;若滑块冲上传送带时的速度大于带速,则滑块由于受到向左的滑动摩擦力而做匀减速运动.(2)设滑块冲上传送带时的速度为v ,由机械能守恒E p =12m v 2.设滑块在传送带上做匀减速运动的加速度大小为a ,由牛顿第二定律:μmg =ma .由运动学公式v 2-v 02=2aL 解得E p =12m v 02+μmgL .(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移s =v 0t ,v 0=v -at滑块相对传送带滑动的位移Δs =L -s 因相对滑动生成的热量Q =μmg ·Δs 解得Q =μmgL -m v 0(v 02+2μgL -v 0).答案:(1)见解析 (2)12m v 02+μmgL(3)μmgL-m v 0(v 02+2μgL -v 0)8.如图所示,两质量相等的物块A 、B 通过一轻质弹簧连接,B 足够长、放置在水平面上,所有接触面均光滑。
有关弹簧问题的专题复习纵观历年高考试题,和弹簧有关的物理试题占有相当的比重,高考命题者常以弹簧为载体设计出各类试题,这类试题涉及到静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能关系问题,几乎贯穿于整个力学知识体系,为了帮助同学们掌握这类试题的分析方法,同时也想借助于弹簧问题,将整个力学知识有机地结合起来,让同学们对整个力学知识体系有完整的认识,特将有关弹簧问题分类研究如下.对于弹簧,从受力的角度看,弹簧上的弹力是变力;从能量的角度看,弹簧是个储能元件;因此,关于弹簧的问题,能很好的考察学生的分析综合能力,备受高考命题专家的青睐。
如97全国高考的25题、2000年全国高考的22题、2003年江苏卷的20题、2004年广东卷的17题、2005年全国卷I 的24题等。
类型:1、静力学中的弹簧问题。
2、动力学中的弹簧问题。
3、与动量和能量有关的弹簧问题。
1、静力学中的弹簧问题(1)单体问题。
在水平地面上放一个竖直轻弹簧,弹簧上端与一个质量为2.0kg 的木板相连。
若在木板上再作用一个竖直向下的力F 使木板缓慢向下移动0.1米,力F 作功2.5J,此时木板再次处于平衡,力F 的大小为50N ,如图所示,则木板下移0.1米的过程中,弹性势能增加了多少?解:由于木板压缩弹簧,木板克服弹力做了多少功,弹簧的弹性势能就增加了多少 即: (木板克服弹力做功,就是弹力对木块做负功),依据动能定理: W 弹=-mgx-W F =-4.5J弹性势能增加4.5焦耳点评:弹力是变力,缓慢下移,F 也是变力,所以弹力功(2)连接体问题【例1】如图所示,在一粗糙水平上有两个质量分别为m 1和m 2的木块1和2,中间用一原长为 、劲度系数为k 的轻弹簧连结起来,木块与地面间的动摩擦因数为 ,现用一水平力向右拉木块2,当两木块一起匀速运动时两木块之间的距离是 ( A )(2001年湖北省卷)E W ∆=-弹弹0k F E mgx W W ∆=++=弹50J W Fx ≠=弹A .B . C. D.【例2】(2002年广东省高考题)如图所示,a 、b 、c 为三个物块,M 、N 为两个轻质弹簧,R 为跨过光滑定滑轮的轻绳,它们均处于平衡状态.则:( AD )A.有可能N 处于拉伸状态而M 处于压缩状态B.有可能N 处于压缩状态而M 处于拉伸状态C.有可能N 处于不伸不缩状态而M 处于拉伸状态D.有可能N 处于拉伸状态而M 处于不伸不缩状态【例3】(1999年全国高考题)如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A. B. C. D.2、动力学中的弹簧问题。
(1)瞬时加速度问题【例4】一个轻弹簧一端B 固定,另一端C 与细绳的一端共同拉住一个质量为m 的小球,绳的另一端A 也固定,如图所示,且AC 、BC 与竖直方向夹角分别为,则g m k l 1μ+g m k l 2μ+g m m k l )(21++μg m m m m k l )(2121++μ11k g m 12k g m 21k g m 22k g mA.烧断细绳瞬间,小球的加速度B.烧断细绳瞬间,小球的加速度C.在C处弹簧与小球脱开瞬间,小球的加速度D.在C处弹簧与小球脱开瞬间,小球的加速度练习:质量相同的小球A 和B 系在质量不计的弹簧两端,用细线悬挂起来,如图,在剪断绳子的瞬间,A 球的加速度为 ,B 球的加速度为 。
如果剪断弹簧呢?总结:剪断的瞬间,若弹簧两端有物体,则弹簧上的弹力不发生变化,若一端有物体,则弹簧上的弹力瞬间消失。
(2005年全国理综III 卷)如图所示,在倾角为的光滑斜面上有两个用轻质弹簧相连接的物块A 、B ,它们的质量分别为mA 、mB ,弹簧的劲度系数为k,C 为一固定挡板。
系统处一静止状态,现开始用一恒力F 沿斜面方向拉物块A 使之向上运动,求物块B 刚要离开C 时物块A 的加速度a 和从开始到此时物块A 的位移d ,重力加速度为g 。
解:令x 1表示未加F 时弹簧的压缩量,由胡克定律和牛顿定律可知 令x 2表示B 刚要离开C 时弹簧的伸长量, a 表示此时A 的加速度,由胡克定律和kx g m A =θsin牛顿定律可知:k x 2=mBgsinθ ②F -mA gsinθ-k x 2=mAa ③由②③式可得: ④ 由题意 d=x 1+x 2 ⑤ 由①②⑤式可得(2)连接体问题。
例:一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a <g)匀加速向下移动。
求经过多长时间木板开始与物体分离。
分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得:N=mg-kx-ma当N=0时,物体与平板分离,所以此时: 因为 ,所以总结:对于面接触的物体,在接触面间弹力变为零时,它们将要分离。
抓住相互接触物体分离的这一条件,就可顺利解答相关问题。
练习1:一弹簧秤的秤盘质量m 1=1.5kg ,盘内放一质量为m 2=10.5kg 的物体P ,弹簧质量不计,其劲度系数为k=800N/m ,系统处于静止状态,如图9所示。
现给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在最初0.2s 内F 是变化的,在0.2s 后是恒定的,求F 的最大值和最小值各是多少?(g=10m/s 2)A B A m g m m F a θsin )(+-=k g m m d B A θsin )(+=k a g m x )(-=221at x =ka a g m t )(2-=思考:1 何时分离时?2分离时物体是否处于平衡态。
弹簧是否处于原长?3.如何求从开始到分离的位移?4.盘对物体的支持力如何变化。
5、要求从开始到分离力F 做的功,需要知道哪些条件?如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。
物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,g =10m/s 2 ,求:(1)此过程中所加外力F 的最大值和最小值。
(2)此过程中外力F 所做的功。
解:(1)A 原来静止时:kx 1=mg ①当物体A 开始做匀加速运动时,拉力F 最小,设为F 1,对物体A 有:F 1+kx 1-mg =ma ②当物体B 刚要离开地面时,拉力F 最大,设为F 2,对物体A 有:F 2-kx 2-mg =ma ③对物体B 有:kx 2=mg ④ 对物体A 有:x 1+x 2= ⑤ 由①、④两式解得 a =3.75m/s 2 ,分别由②、③得F 1=45N ,F 2=285N(2)在力F 作用的0.4s 内,初末状态的弹性势能相等,由功能关系得:W F =mg (x 1+x 2)+ 49.5J2)(21at m 221at思考:若A 、B 的质量不相等,求此过程中外力F 所做的功,还需要知道哪些条件?练习2: A 、B 两木块叠放在竖直的轻弹簧上,如图3(a )所示。
已知木块A 、B 的质量,轻弹簧的劲度系数k=100N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以的加速度竖直向上作匀加速运动(g 取10m/s 2)(1)使木块A 竖直向上做匀加速运动的过程中,力F 的最小值和最大值各为多少?(2)若木块由静止开始做匀加速运动直到A 、B 分离的过程中,弹簧的弹性势能减小0.248J ,求力F 做的功。
3:与动量能量相关的弹簧问题。
例1:如图34,木块AB用轻弹簧连接,放在光滑的水平面上,A紧靠墙壁,在木块B上施加向左的水平力F,使弹簧压缩,当撤去外力后;A.A尚未离开墙壁前,弹簧和B的机械能守恒;B.A尚未离开墙壁前,系统的动量守恒;C.A离开墙壁后,系统动量守恒;D.A离开墙壁后,系统机械能守恒。
思考:若力F 压缩弹簧做的功为E ,m B =2m A求弹簧最大的弹性势能?例2:如图所示,小球从a 处由静止自由下落,到b 点时与弹簧接触,到c 点时弹簧被压缩到最短,若不计弹簧的质量和空气阻力,在小球由a→b→c 运动过程中( C E )A .小球的机械能守恒B.小球在b 点时的动能最大C .到C 点时小球重力势能的减少量等于弹簧弹性势能的增加量D.小球在C 点的加速度最大,大小为g 23EE.从a到c的过程,重力冲量的大小等于弹簧弹力冲量的大小。
拓展:一升降机在箱底装有若干个弹簧,设在某次事故中,升降机吊索在空中断裂,忽略摩擦力,则升降机在从弹簧下端触地后直到最低点的一段运动过程中( C D ) (A)升降机的速度不断减小(B)升降机的加速度不断变大(C)先是弹力做的负功小于重力做的正功,然后是弹力做的负功大于重力做的正功(D)到最低点时,升降机加速度的值一定大于重力加速度的值。
例3:如图所示,物体B和物体C用劲度系数为k的轻弹簧连接并竖直地静置于水平地面上,此时弹簧的势能为E。
这时一个物体A从物体B的正上方由静止释放,下落后与物体B碰撞,碰撞后A与B立刻一起向下运动,但A、B之间并不粘连。
已知物体A、B、C的质量均为M,重力加速度为g,忽略空气阻力。
求当物体A从距B多大的高度自由落下时,才能使物体C恰好离开水平地面?解:设物体A 从距B 的高度H 处自由落下,A 与B 碰撞前的速度为v 1,由机械能守恒定律得v 1= 设A 、B 碰撞后共同速度为v2,则由动量守恒定律得: Mv 1=2Mv 2,解得: v 2=当C 刚好离开地面时,由胡克定律得弹簧伸长量为x=Mg/k ,由于对称性,所以弹簧的弹性势能仍为E 。
当弹簧恢复原长时A 、B 分离,设此时A 、B 的速度为v3,则对A 、B 一起运动的过程中 由机械能守恒得:从A 、B 分离后到物体C 刚好离开地面的过程中,物体B 和弹簧组成的系统机械能守恒,即:联立以上方程解得:点评(1)“刚好”含义的理解。
(2)物理过程的分析。
(3)状态的选取。
(2005年全国理综II 卷)如图,质量为的物体A 经一轻质弹簧与下方地面上的质量为的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态。
一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩。
开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向。