2013-2014学年七年级数学下册 8.1 二元一次方程组学案
- 格式:doc
- 大小:76.50 KB
- 文档页数:3
课题:8.1 二元一次方程组【学习目标】1.知道二元一次方程、二元一次方程组的概念,会判断二元一次方程及二元一次方程组; 2.知道二元一次方程(组)的解的意义,并会检验一组数是不是某个二元一次方程(组)的解.【活动方案】情境引入:复习一元一次方程你能用以下方案解决——古老的“鸡兔同笼问题”吗?今有鸡兔同笼,上有9个头,下有32只脚,问鸡兔各有多少只? 方案一:算术方法方案二:列一元一次方程方案三:设有x 只鸡,y 只兔,依题意可得什么样的方程? 活动一:认识二元一次方程、二元一次方程组.1.阅读课本93P .在课本上画出..什么是二元一次方程、二元一次方程组,并在关键词下做记..号.. 2.请写出3个二元一次方程,1个二元一次方程组.3.下列各式:①y x +2; ②04=-y x ;③7=+t s ;④224x y +=;⑤35x y x z +=⎧⎨-=⎩;⑥⎪⎩⎪⎨⎧=-=+221453n m n m 其中是二元一次方程的有 ,是二元一次方程组的有 .(填序号)思考:判断二元一次方程、二元一次方程组的关键是什么?活动二:探索二元一次方程、二元一次方程组的解.1.(1)满足方程9=+y x 且符合实际意义......的x 、y 的值有哪些?请填入表中. xy(2)上表中哪对x 、y 的值还满足方程245x y -=?(3)二元一次方程组9245x y x y +=⎧⎨-=⎩的解为 .2.类比一元一次方程的解的意义,尝试说出二元一次方程的解及二元一次方程组的解的意义.3.请写出方程152=+y x 的其中两组解.4.下列数值①⎩⎨⎧==02y x ; ②⎩⎨⎧=-=02y x ;③⎩⎨⎧==40y x ;④⎪⎩⎪⎨⎧==211y x .其中是二元一次方程22=+y x 的解有 .(填序号)5.二元一次方程组⎩⎨⎧=+=-723134y x y x 的解是( )A.⎩⎨⎧=-=31y xB.⎩⎨⎧-=-=31y x C.⎩⎨⎧-==13y x D.⎩⎨⎧-=-=13y x思考:如何检验一组数值是二元一次方程或二元一次方程组的解?课堂小结:本节课学习了哪些内容?有哪些收获?【检测反馈】(总分50分)1.下列方程中,是二元一次方程的是( )A.532=-b aB.101=+xC.10222=+y x D.322=+x x2.下列方程组: ①⎩⎨⎧=-=+320y x y x ; ②235312x y x z +=⎧⎨-=⎩; ③2338x y xy -=⎧⎨=⎩; ④⎩⎨⎧-=+=+422b a b a .其中是二元一次方程组的有 .(填序号)3.下列数值①⎩⎨⎧==22y x ;②⎩⎨⎧==01y x ;③⎩⎨⎧=-=21y x ;④⎩⎨⎧==23y x .其中是二元一次方程22=-y x 的解有 ,是二元一次方程组⎩⎨⎧=+=-122y x y x 的解有 .4.请猜出二元一次方程组⎩⎨⎧=-=+210y x y x 的解.课题:§8.2消元---二元一次方程组的解法(第1课时)【学习目标】1.会用代入消元法解二元一次方程组;2.初步体会解二元一次方程组的基本思想――“消元”.【活动方案】活动一认识代入消元法,体会消元思想1.首先阅读课本P96-97例1.2.思考下列问题.篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?⑴在这个问题中,直接设两个未知数(设胜x场,负y场),得方程组22, 240. x yx y+=⎧⎨+=⎩如果只设一个未知数(设胜场x场),这个问题也可以用一元一次方程:____________________________来解.⑵观察上面的二元一次方程组和一元一次方程有什么关系?⑶解二元一次方程组的基本思想是什么?⑷通过小组讨论、合作与交流,你知道代入消元法的具体步骤吗?⑸你认为代入法解二元一次方程组的过程中需要注意的是什么?3.用代入法解方程组21, 54 2.x yx y-=⎧⎨-=-⎩思考:你能总结用代入法解方程的一般步骤吗?活动二用代入消元法解二元一次方程1.把下列方程写成用含x的式子表示y形式:①②①②⑴23;x y -= ⑵310.x y +-=2. 用代入法解下列方程组:⑴23,328;y x x y =-⎧⎨+=⎩ ⑵25,34 2.x y x y -=⎧⎨+=⎩完成后在小组内交流展示课堂小结:这节课你学到了哪些知识与方法?运用这些知识与方法过程中应注意什么?【检测反馈】1.解二元一次方程组的基本思想是_________,即将“二元一次方程组”转化为“一元一次方程”.1. 在二元一次方程组中,由一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做___________,简称_________ . 2. 已知3212x y +=,用含x 的式子表示y ,得y =_________________. 3. 用代入法解下列方程组: ⑴3,759;y x x y =+⎧⎨+=⎩ ⑵35,5215.s t s t -=⎧⎨+=⎩课题:§8.2消元---二元一次方程组的解法(第2课时)【学习目标】1.能熟练地用代入法解二元一次方程组.2.会列二元一次方程组解简单的应用题.【活动方案】活动一感受二元一次方程组的实际应用(先自学课本P97例2,然后独立完成)根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量比(按瓶计算)为2:5.某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?⑴问题中包含的两个条件是:⑵如果设这些消毒液应该分装x大瓶和y小瓶,可列方程组:⑶解这个方程组:⑷解方程组的过程可以用框图表示为:⑸思考解这个方程组时,可以先消去x吗?试试看.活动二列方程组解应用题1.有48支队520名运动员参加篮、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只参加一项比赛.篮、排球队各有多少支参赛?2.张翔从学校出发骑自行车去县城,中途因道路施工步行一段路,1.5小时后到达县城.他骑自行车的平均速度是15千米/时,步行的平均速度是5千米/时,路程全长20千米.他骑车与步行各用多少时间?独立完成后,在小组内交流课堂小结这节课你学到了什么?【检测反馈】1.用代入法解下列方程组:⑴4,42 1. x yx y-=⎧⎨+=-⎩⑵()()41312,2.23x y yx y--=--⎧⎪⎨+=⎪⎩2.某班去看演出,甲种票每张24元,乙种票每张18元.如果35名同学购票恰好用去750元,甲乙两种票各买了多少张?选做题:甲、乙两人同解方程组232ax bycx y+=⎧⎨-=-⎩,甲正确解得11xy=⎧⎨=-⎩,乙因抄错c,解得26xy=⎧⎨=-⎩,求a、b、c的值.课题:§8.2消元---二元一次方程组的解法(第3课时)【学习目标】1. 进一步认识消元思想,会用加减法解二元一次方程组.2. 培养观察、思考、归纳及解决问题的能力 【活动方案】活动一 认识加减消元法,体会消元思想 1. 用代入法解方程组22,240.x y x y +=⎧⎨+=⎩2.观察并思考:⑴这个方程组的两个方程中,y 的系数有什么关系?利用这种关系你能发现新的消元方法吗?⑵ 方程①-②与②-①都可以吗?哪一个更简便?3.联系上面的解法,怎样解方程组410 3.6,15108.x y x y +=⎧⎨-=⎩4.思考:通过以上探究,在什么情况下用加法?什么情况下用减法?活动二 用加减消元法解二元一次方程组① ②①②1.用加减法解方程组3416, 5633. x yx y+=⎧⎨-=⎩2.思考:(1)直接加减这两个方程能消元吗?(2)怎样才能使某个未知数的系数相反或相等?(3)求出这个方程组的解.(4)什么是加减消元法?用“加减法”解二元一次方程组的步骤是什么?小结:这节课你学到了什么知识?用加减法解二元一次方程组的步骤是什么?还有什么收获或经验?【检测反馈】1.已知二元一次方程组27,28.x yx y+=⎧⎨+=⎩则x y-的值是()A.1B.0C.-1D.2 2.用加减法解方程组⑴785, 74; x yx y+=-⎧⎨-=⎩⑵236,32 2.x yx y+=⎧⎨-=-⎩(3)29,321;x yx y+=⎧⎨-=-⎩(4)5225,3415.x yx y+=⎧⎨+=⎩①②①②课题:§8.2消元---二元一次方程组的解法(第4课时)【学习目标】1.进一步体会消元思想,会用加减法解二元一次方程组;2.能列二元一次方程组解简单的应用题.【活动方案】活动一感受二元一次方程组的实际应用(先自学书本P101例4,然后独立完成)2台大收割机和5台小收割机工作2小时收割小麦3.6公顷,3台大收割机和2台小收割机工作5小时收割小麦8公顷,1台大收割机和1台小收割机1小时各收割小麦多少公顷?⑴如果1台大收割机和1台小收割机1小时各收割小麦x公顷和y公顷,那么2台大收割机和5台小收割机工作1小时收割小麦_________________ 公顷,3台大收割机和2台小收割机工作1小时收割小麦___________________公顷.⑵根据⑴,进一步考虑两种情况下的工作量,你能列出方程组吗?⑶求出所列方程组的解,并写出答案(4)列二元一次方程组解应用题的基本步骤:活动二列二元一次方程组解简单的应用题(先独立完成,再小组展示)1.一条船顺流航行,每小时行20km;逆流航行,每小时行16km.求轮船在靜水中的速度与水的流速.2.运输360吨化肥,装载了6节火车皮与15辆汽车;运输440吨化肥,装载了8节火车皮与10辆汽车.每节火车皮与每辆汽车平均各装多少吨化肥?课堂小结:通过本节课的学习,你有哪些收获?【检测反馈】1.解方程组253, 4 3. x yx y-=-⎧⎨-+=-⎩2.甲乙二人相距6km,二人同时出发相向而行,1小时相遇;同时出发同向而行,甲3小时可追上乙.二人的平均速度各是多少?3.一种蜂王精有大小盒两种包装,3大盒4小盒共装108瓶,2大盒3小盒共装76瓶.大盒与小盒每盒各装多少瓶?课题8.2消元——二元一次方程组的解法(第5课时)【学习目标】1.进一步体会消元思想,熟练地解二元一次方程组;2.能根据方程组的未知数的系数特征,灵活运用代入法或加减法解方程组;3.体会整体思想,能选择合适的方法解题.【活动方案】活动一基础知识复习(自主完成,组内评价)1.解二元一次方程组的基本思想是_________,即将“二元一次方程组”转化为“一元一次方程”.2.在二元一次方程组中,由一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做___________,简称_________ .3.两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程.这种方法叫做_______________,简称___________.4.用适合的方法解方程组(1)(2)小组交流:方程组满足什么特征时,用代入法解较简便?方程组满足什么特征时,用加减法解较简便?活动二灵活运用代入法或加减法解方程组,体会整体思想(独立完成下列问题,然后组内交流,说说你的思路,看谁的方法简捷)1.已知27,28x yx y+=⎧⎨+=⎩那么x y-值是( )A.1 B.0 C.-1D.2 变式:上题中x y+=___________.2.解方程组⑴23(2)1,2 3.a a ba b-+=⎧⎨+=⎩课堂小结:通过本节课的学习,你有哪些收获?【检测反馈】1、解方程组(1)(2)342、列方程组解应用题今有鸡兔同笼,上有35个头,下有94只脚,问鸡兔各有多少只?3、已知方程组43,32 2.x yx y+=⎧⎨+=⎩则x -y=______课题:§8.3实际问题与二元一次方程组(第1课时)【学习目标】1.会借助二元一次方程组解决简单的实际问题,再次体会二元一次方程组与现实生活的联系和作用2.通过应用题学习进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性3.体会列方程组比列一元一次方程容易【活动方案】活动一再探二元一次方程组解决实际问题(先自学书本P105探究1,然后独立完成,列出方程组,得出问题的解答,然后再互相交流与评价)养牛场原有30只大牛和15只小牛,1天约用饲料675kg;一周后又购进12只大牛和5只小牛,这时1天约用饲料940kg.饲养员李大叔估计每只大牛1天约需饲料18~20kg,每只小牛1天约需饲料7~8kg.你能否通过计算检验他的估计?1. 思考:⑴题中有哪些已知量?哪些未知量?⑵解决问题需要知道什么?⑶题中等量关系有哪些?2. 完成解题过程:小组交流:用二元一次方程组解决实际问题的一般步骤活动二列方程组解应用题1.有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?课堂小结:通过本节课的学习,你有哪些收获?【检测反馈】1.鸡兔同笼,共有12个头,36只腿,则笼中有只鸡,只兔;2.甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数各是多少?若设甲数为x,乙数为y,依题意可列方程组3.小华买了10分与20分的邮票共16枚,花了2元5角,求10分与20分的邮票各买了多少枚?4.长18米的钢材,要锯成10段,而每段的长只能取“1米或2米”两种型号之一,小明估计2米的有3段,你们认为他估计的是否正确?为什么呢?那2米和1米的各应多少段?课题:§8.3实际问题与二元一次方程组(第2课时)【学习目标】1.学会探索事物间的数量关系,通过方程(组)这个数学模型解决简单的实际问题。
人教版七年级数学下册8.1《二元一次方程组》教案一. 教材分析《二元一次方程组》是人教版七年级数学下册第八章的第一节内容,主要介绍了二元一次方程组的概念、解法和应用。
本节内容是学生继学习一元一次方程之后,进一步研究二元一次方程,培养学生解决实际问题的能力,为后续学习更复杂的方程组打下基础。
二. 学情分析学生在之前的学习中已经掌握了一元一次方程的知识,具备了一定的数学思维能力和问题解决能力。
但七年级的学生在逻辑思维和抽象思维方面仍在发展过程中,因此,在教学过程中,需要教师引导学生逐步理解二元一次方程组的概念,并通过实际例子让学生感受方程组在解决实际问题中的作用。
三. 教学目标1.理解二元一次方程组的概念,掌握二元一次方程组的解法;2.能够运用二元一次方程组解决实际问题;3.培养学生的合作交流能力和抽象思维能力。
四. 教学重难点1.重点:二元一次方程组的概念,解法及应用;2.难点:二元一次方程组的解法,以及如何将实际问题转化为方程组问题。
五. 教学方法采用问题驱动法、合作交流法、案例教学法等,引导学生主动探究,合作解决问题,提高学生的数学思维能力和实际问题解决能力。
六. 教学准备1.准备相关案例和练习题;2.准备课件和教学素材;3.准备小组讨论的安排。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何用数学方法解决问题,从而引入二元一次方程组的概念。
2.呈现(10分钟)呈现二元一次方程组的定义和性质,引导学生理解并能够描述二元一次方程组。
3.操练(10分钟)通过一些简单的例子,让学生练习解二元一次方程组,引导学生掌握解题方法。
4.巩固(10分钟)让学生分组讨论,分析并解决一些实际问题,巩固所学知识。
5.拓展(10分钟)引导学生思考如何将实际问题转化为方程组问题,提高学生的问题解决能力。
6.小结(5分钟)对本节课的主要内容进行总结,让学生明确学习目标。
7.家庭作业(5分钟)布置一些相关的练习题,巩固所学知识。
教学设计定义2:把两个二元一次方程合在一起,就组成了一个二元一次方程组.探究活动:满足x +y=35的值有哪些? 教师启发: (1)若不考虑此方程与上面实际问题的联系,还可以取哪些值? (2)你能模仿一元一次方程解给二元一次方程的解下定义吗? (3)它与一元一次方程的解有什么区别?定义3:使二元一次方程两边相等的两个未知数的值,叫二元一次方程的解,记为目标导学二:二元一次方程组及其解的定义例2: 有下列方程组:①x +y =2;xy =1,②+y =1;1③;1④=7;y⑤x -y =1,x +π=3,其中二元一次方程组有( )A .1个B .2个C .3个D .4个解析:①方程组中第一个方程含未知数的项xy 的次数不是1;②方程组中第二个方程不是整式方程;③方程组中共有3个未知数.只有④⑤满足,其中⑤方程组中的π是常数.故选B.方法总结:识别一个方程组是否为二元一次方程组的方法:一看方程组中的方程是否都是整式方程;二看方程组中是不是只含两个未知数;三看含未知数的项的次数是不是都为1.例3:用库存化肥给麦田追肥,如果每亩施肥6公斤,就缺少200公斤,如果每亩施肥5公斤,就剩余300公斤,问有多少亩麦田?库存化肥有多少?分析:本题有两上未知数:麦田的亩数和库存化肥的数量。
相等关系:1、每亩施肥6公斤所需化肥量=库存化肥量+200公斤。
2、每亩施肥5公斤,所需化肥量=库存化肥量-300公斤 小组讨论,解答。
四、课堂总结我们学习二元一次方程和方程组,要结合一元一次方程来理解。
1、方程mx−2y=3x+4是关于x、y的二元一次方程,则m的值范围是( )A.m≠0 B.m≠−2 C.m≠3 D.m≠42、已知是方程3x-my=1的一个解,则m=__________。
3、已知方程,若x==6,则y=_____;若y=0,则x=_____;当x=____时,y=4.4、写出二元一次方程3x-5y=1的一个正整数解______.5、下列方程组中,是二元一次方程组的是()A、B、C、D、。
8.1 二元一次方程组 教案【学习目标】1.理解二元一次方程、二元一次方程组及它们的解的含义;2.会检验一组数是不是某个二元一次方程(组)的解.【要点梳理】要点一、二元一次方程含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:二元一次方程满足的三个条件:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1.(3)二元一次方程的左边和右边都必须是整式.要点二、二元一次方程的解一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 要点诠释:(1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来,如:2,5.x y =⎧⎨=⎩. (2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这个二元一次方程.要点三、二元一次方程组把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.要点诠释:组成方程组的两个方程不必同时含有两个未知数,例如⎩⎨⎧=-=+52013y x x 也是二元一次方程组.要点四、二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释:(1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成x a y b=⎧⎨=⎩的形式. (2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组2526x y x y +=⎧⎨+=⎩无解,而方程组1222x y x y +=-⎧⎨+=-⎩的解有无数个. 【典型例题】类型一、二元一次方程1.已知下列方程,其中是二元一次方程的有________.(1)2x-5=y ; (2)x-1=4; (3)xy =3; (4)x+y =6; (5)2x-4y =7; (6)102x +=;(7)251x y +=;(8)132x y +=;(9)280x y -=;(10)462x y +=. 【思路点拨】按二元一次方程满足的三个条件一一检验.【答案】(1)(4)(5)(8)(10)【解析】只有(1)(4)(5)(8)(10)满足二元一次方程的概念.(2)为一元一次方程,方程中只含有一个未知数;(3)中含未知数的项的次数为2;(6)只含有一个未知数;(7)不是整式方程;(9)中未知数x 的次数为2.【总结升华】判断一个方程是否为二元一次方程的依据是二元一次方程的定义,对于比较复杂的方程,可以先化简,再根据定义进行判断.举一反三:【变式】(2015春•桃园县校级期末)下列各方程中,是二元一次方程的是( )A .=y+5xB .3x+2y=2x+2yC .x=y 2+1D .【答案】D .类型二、二元一次方程的解2.(2016春•吴兴区期末)下列数组中,是二元一次方程x+y=7的解的是( )A .B .C .D .【思路点拨】二元一次方程x+y=7的解有无数个,所以此题应该用排除法确定答案,分别代入方程组,使方程左右相等的解才是方程组的解.【答案】B【解析】解:A 、把x=﹣2,y=5代入方程,左边=﹣2+5≠右边,所以不是方程的解;故本选项错误;B 、把x=3,y=4代入方程,左边=右边=7,所以是方程的解;故本选项正确;C 、把x=﹣1,y=7代入方程,左边=6≠右边,所以不是方程的解;故本选项错误;D 、把x=﹣2,y=﹣5代入方程,左边=﹣7≠右边,所以不是方程的解.故本选项错误. 故选B .【总结升华】考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.【高清课堂:二元一次方程组的概念409142 例2(2)】举一反三:【变式】若方程24ax y -=的一个解是21x y =⎧⎨=⎩,则a= . 【答案】33.已知二元一次方程3142x y +=. (1)用含有x 的代数式表示y ;(2)用含有y 的代数式表示x ;(3)用适当的数填空,使2_______x y =-⎧⎨=⎩是方程的解. 【思路点拨】用含一个未知数的代数式表示另一个未知数,就是把要表示的未知数当未知数,把其他的未知数当已知数,然后再将方程变形.【答案与解析】解:(1)将方程变形为3y =22x -,化y 的系数为1,得236x y =-. (2)将方程变形为232x y =-,化x 的系数为1,得46x y =-. (3)把x =-2代入236x y =-得, y =1. 【总结升华】用含x 的代数式表示y ,其实质表示为“y =含x 的代数式”的形式.在进行方程的变形过程中,有效地利用解一元一次方程的方法技巧很重要.举一反三:【变式】已知:2x +3y =7,用关于y 的代数式表示x ,用关于x 的代数式表示y .【答案】解:(1)2x =7-3y , 732y x -=;(2)3y =7-2x ,723x y -= 类型三、二元一次方程组及方程组的解 4.(2015春•道外区期末)下列各方程组中,属于二元一次方程组的是( )A .B .C .D .【答案】C .【解析】解:A 是二元二次方程组,故A 不是二元一次方程组;B 是三元一次方程组,故B 不是二元一次方程组;C 是二元一次方程组,故C 是二元一次方程组;D 不是整式方程,故D 不是二元一次方程组;【总结升华】本题考查了二元一次方程组,含有两个未知数,且每个未知数的次数都是1的方程式二元一次方程,两个二元一次方程组成的方程组.5.判断下列各组数是否是二元一次方程组4221x y x y +=⎧⎨+=-⎩①②的解.(1)35x y =⎧⎨=-⎩ (2)21x y =-⎧⎨=⎩【答案与解析】解:(1)把35x y =⎧⎨=-⎩代入方程①中,左边=2,右边=2,所以35x y =⎧⎨=-⎩是方程①的解.把x =3,y =-5代入方程②中,左边=3(5)2+-=-,右边=1-,左边≠右边,所以35x y =⎧⎨=-⎩不是方程②的解. 所以35x y =⎧⎨=-⎩不是方程组的解.(2)把21x y =-⎧⎨=⎩代入方程①中,左边=-6,右边=2,所以左边≠右边,所以21x y =-⎧⎨=⎩不是方程①的解,再把21x y =-⎧⎨=⎩代入方程②中,左边=x+y =-1,右边=-1,左边=右边,所以21x y =-⎧⎨=⎩是方程②的解,但由于它不是方程①的解,所以它也不是方程组的解.【总结升华】检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.举一反三:【变式】写出解为12x y =⎧⎨=-⎩的二元一次方程组. 【答案】 解:此题答案不唯一,可先任构造两个以12x y =⎧⎨=-⎩为解的二元一次方程,然后将它们用“{”联立即可,现举一例:∵ x =1,y =-2,∴ x+y =1-2=-1.2x-5y =2×1-5×(-2)=12.∴ 12512x y x y +=-⎧⎨-=⎩就是所求的一个二元一次方程组. 注:任选的两个方程,只要其对应系数不成比例,联立起来即为所求.。
人教版七年级数学下册教学设计8.1 第1课时《二元一次方程组》一. 教材分析《二元一次方程组》是人教版七年级数学下册的教学内容,本节课的主要内容是让学生掌握二元一次方程组的定义、解法和应用。
通过学习,学生能够解决实际问题,提高解决问题的能力。
教材通过丰富的例题和练习题,帮助学生巩固知识点,提高解题技巧。
二. 学情分析学生在学习本节课之前,已经掌握了整式、方程等基础知识,具备一定的逻辑思维能力和问题解决能力。
但部分学生对抽象的数学概念理解仍有困难,需要教师在教学中给予关注和引导。
同时,学生对于实际问题的解决方法还不够熟练,需要在教学中加强训练。
三. 教学目标1.知识与技能:理解二元一次方程组的定义,学会解二元一次方程组的方法,能够应用二元一次方程组解决实际问题。
2.过程与方法:通过自主学习、合作交流,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:二元一次方程组的定义、解法和应用。
2.难点:如何将实际问题转化为二元一次方程组,以及解二元一次方程组的方法。
五. 教学方法1.情境教学法:通过生活实例引入二元一次方程组,激发学生的学习兴趣。
2.自主学习法:引导学生自主探究二元一次方程组的解法,培养学生的自主学习能力。
3.合作交流法:学生进行小组讨论,共同解决问题,提高学生的团队合作能力。
4.实践操作法:让学生通过解决实际问题,巩固二元一次方程组的应用。
六. 教学准备1.教学课件:制作课件,展示二元一次方程组的相关知识点。
2.练习题:准备一些有关二元一次方程组的练习题,用于巩固所学知识。
3.教学道具:准备一些实物道具,帮助学生更好地理解二元一次方程组的概念。
七. 教学过程1.导入(5分钟)利用生活实例,如购物问题,引入二元一次方程组的概念,激发学生的学习兴趣。
2.呈现(10分钟)呈现二元一次方程组的定义和解法,引导学生自主学习,理解相关知识点。
二元一次方程组教学目标:1.认识二元一次方程和二元一次方程组.2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解. 教学重点:理解二元一次方程组的解的意义.教学难点:求二元一次方程的正整数解.(求二元一次方程的特殊解) 教学过程:(1.二元一次方程的概念)篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?思考:这个问题中包含了哪些必须同时满足的条件?设胜的场数是x ,负的场数是y ,你能用方程把这些条件表示出来吗?由问题知道,题中包含两个必须同时满足的条件:胜的场数+负的场数=总场数,胜场积分+负场积分=总积分. 这两个条件可以用方程x +y =222x +y =40 表示.上面两个方程中,每个方程都含有两个未知数(x 和y ),并且未知数的指数都是1,像这样的方程叫做二元一次方程.(练一练:请判断下列各方程中,哪些是二元一次方程. 1.2x+5y=10; 2.2x+y+z=3; 3.y=20; 4.x 2+2x+1=0; 5.5a+6b=5; 6.2x+3xy=6) (2.二元一次方程组) 把两个方程合在一起,写成 x +y =222x +y =40像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组. (3.二元一次方程组的解)探究:满足方程①,且符合问题的实际意义的x 、y 的值有哪些?把它们填入表中.上表中哪对、的值还满足方程②一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.例1 (1)方程(a +2)x +(b -1)y =3是二元一次方程,试求a 、b 的取值范围.(2)方程x ∣a ∣–1+(a -2)y =2是二元一次方程,试求a 的值.例2 若方程x 2m –1+5y 3n –2=7是二元一次方程.求m 、n 的值 例3 已知下列三对值:x =-6 x =10 x =10y =-9 y =-6 y =-1哪几对数值使方程21x -y =6的左、右两边的值相等? 哪几对数值是方程组 的解?21x -y =62x +31y =-11例4求二元一次方程3x+2y=19的正整数解. 课堂练习:教科书第94页练习作业布置:教科书第95页3、4、5题。
课题:8.1二元一次方程组
【学习目标】
1、使学生了解二元一次方程的概念,能把二元一次方程化为用一个未知数的代数式表示
另一个未知数的形式,能举例说明二元一次方程及其中的已知数和未知数;
2、使学生理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方
程组的解。
【学习重点】
1、二元一次方程(组)的含义;
2、用一个未知数表示另一个未知数。
【学习难点】检验一对数是否是某个二元一次方程(组)的解;
【自主学习】---二元一次方程概念
二元一次方程的概念
1.我们来看一个问题:
篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分。
某队为了争取较好名次想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?
思考:(P93)
以上问题包含了哪些必须同时满足的条件?设胜的场数是x ,负的场数是y ,你能用方程把这些条件表示出来吗?
______场数+______场数=总场数; ______积分+______积分=总积分,
这两个条件可以用方程 x +y=22,
2x +y=40 表示。
观察:这两个方程有什么特点?与一元一次方程有什么不同?
归纳:①定义___________________________________________________叫做二元一次方程
2.二元一次方程的左边和右边都应是整式
②二元一次方程的一般形式:ax + by + c = 0 (其中a ≠0、b ≠0 且a 、b 、c 为常数)
注意:1.要判断一个方程是不是二元一次方程,一般先要把它化成二元一次方程的一般
形式,再根据定义判断。
③二元一次方程的解:
使二元一次方程两边的值__________的两个未知数的_______叫做二元一次方程的解。
【合作探究】----什么是二元一次方程组和它的解
1. 已知x 、y 都是未知数,判别下列方程组是否为二元一次方程组?并说明理由。
①⎩⎨⎧=+=+75243y x y x ②⎩
⎨⎧=+=32y x xy ③⎩⎨⎧+==+z y y x 75 ④⎩
⎨⎧=+=823155y x y 2、把3(x+5)=5(y-1)+3化成ax+by=c 的形式为_____________。
3、方程3x +2y =6,有______个未知数,且未知数都是___次,因此这个方程是_____元_____次方程。
4、下列式子①3x+2y-1;②2(2-x)+3y+5=0;③3x-4y=z ;④x+xy=1;⑤y ²+3y=5x ;⑥4x-y=0;⑦
2x-3y+1=2x+5;⑧1x +1y
=7中;是二元一次方程的有_________(填序号) 5、若x ²m-1+5y 3n-2m
=7是二元一次方程,则m=______,n=_______。
65、方程mx −2y=3x+4是关于x 、y 的二元一次方程,则m 的值范围是( )
A .m≠0
B .m≠− 2
C .m≠3
D .m≠4 7、已知⎩
⎨⎧-==31y x 是方程3x-my=1的一个解,则m=__________。
8、已知方程14
y 3x =-,若x==6,则y=_____;若y=0,则x=_____;当x=____时,y=4. 9、已知下列三对数:⎩⎨⎧-==10y x ;⎩⎨⎧==03y x ;⎩
⎨⎧==16y x 满足方程x-3y=3的是_______________;满足方程3x-10y=8的是__________;方程组⎩⎨
⎧=-=-8y 10x 33y 3x 的解是________________。
【达标测评】
(一)、精心选一选
1.下列方程组中,不是二元一次方程组的是( )
A.123x y =⎧⎨+=⎩,. B.10x y x y +=⎧⎨-=⎩,. C.10x y xy +=⎧⎨=⎩,. D.21y x x y =⎧⎨-=⎩
,. 2.已知x y ,的值:①22x y =⎧⎨
=⎩,;②32x y =⎧⎨=⎩,;③32x y =-⎧⎨=-⎩,;④66x y =⎧⎨=⎩,.其中,是二元一次方程
24
x y -=的解的是( ) A.① B.② C.③ D.④
3.若方程628
k x y -=有一解32x y =-⎧⎨=⎩,则k 的值等于( ) A.B.16D.23
D. 4.已知一个二元一次方程组的解是12
x y =-⎧⎨=-⎩,则这个方程组是( )
A.32x y xy +=-⎧⎨=⎩,. B.321x y x y +=-⎧⎨-=⎩,.C.23x y y x =⎧⎨-=-⎩,. D.2513624x y x y ⎧-=⎪⎨⎪+=-⎩,.
(二)、细心填一填
1.买12支铅笔和5本练习本,其中铅笔每支x 元,练习本每本x 元,共需用4.9元.①列出关于x y ,的二元一次方程为_____;②若再买同样的铅笔6支和同样的练习本2本,价钱
是2.2元,列出关于x y ,的二元一次方程为_____;③若铅笔每支0.2元,则练习本每本_____元.
2.在二元一次方程234x y -=中,当5x =时,_____.
3.已知25x y =-⎧⎨=⎩,是二元一次方程
40
26107x y b +-=的一个解,则b =_____.
(三)、耐心做一做
1、已知二元一次方程2x-3y=-15.
⑴用含y 的式子表示x ;
⑵用含x 的式子表示y.
2、已知+-+134y x (y-3)2=0,求x+y 的值。
3、若⎩⎨⎧==b y a x 是方程2x+y=2
的解,求8a+4b-3的值。