因式分解进阶(一)
- 格式:docx
- 大小:35.14 KB
- 文档页数:1
《因式分解——完全平方公式》进阶练习一、选择题1.下列分解因式中,结果正确的是()A.x2﹣1=(x﹣1)2B.x2+2x﹣1=(x+1)2C.2x2﹣2=2(x+1)(x﹣1)D.x2﹣6x+9=x(x﹣6)+92. 下列能用完全平方公式因式分解的是()A.16x2+4x+1B.16x2-8x+1C.4x2+4x+4D.x2+2x+43.把a2b-2ab2+b3分解因式正确的是()A.b(a2-2ab+b2)B.a2b-b2(2a-y)C.b(a-b)2D.b(a+b)2二、填空题4.因式分解:a2-4a+4=____ ____.5. 因式分解:x3y-2x2y+xy=_______ _.6.分解因式:x2y﹣4xy+4y= ______ ___ .三、计算题7.求:分解因式的结果参考答案1.C2.B3.C4.(a-2)25.xy(x-1)²6.y(x-2)27.【解析】1. 【分析】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.熟练掌握因式分解的方法是解本题的关键.各项分解因式得到结果,即可做出判断.解:A.原式=(x+1)(x-1),错误;B.原式不能分解,错误;C.原式=2(x2-1)=2(x+1)(x-1),正确;D.原式=(x-3)2,错误.故选C.2. 【分析】考查用完全平方公式分解因式的相关知识;熟练掌握完全平方公式是解决本题的关键.找到符合a2±2ab+b2的形式的式子即可.【解答】解:A.若能用完全平方公式分解因式,中间那项应为8x,故错误;B.可分解为(4x-1)2,正确;C.若能用完全平方公式分解因式,中间那项应为8x或常数项为1,故错误;D.若能用完全平方公式分解因式,最后那项应为1,故错误.故选B.3. 解:原式=b(a2-2ab+b2)=b(a-b)2.故选C.原式分解因式得到结果,即可做出判断.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4. 【分析】本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握.根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.【解答】解:a2-4a+4=(a-2)2.故答案为 (a-2)2.5. 【分析】此题考查了多项式的因式分解.观察多项式的特点先利用提公因式法提取公因式xy,再用完全平方公式继续分解即可.【解答】解:x³y-2x²y+xy=xy(x²-2x+1)=xy(x-1)². 故答案为xy(x-1)².6. 【分析】本题考查了提公因式法,公式法分解因式,难点在于提取公因式后要进行二次分解因式,分解因式要彻底.先提取公因式y,再对余下的多项式利用完全平方公式继续分解.【解答】解:x2y-4xy+4=y(x2-4x+4)=y(x-2)².故答案为 y(x-2)2.7. 本题主要考查了利用完全平方公式进行分解因式。
人教版初高中知识衔接分解因式知识要点1.因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形.在分式运算、解方程及各种恒等变形中起着重要的作用.是一种重要的基本技能.2.因式分解的方法:提取公因式法,公式法(平方差公式、完全平方公式、立方和、立方差公式)、配方法,十字相乘法,分组分解法,拆、添项法,求根法,待定系数法.3.一般地,把一个多项式因式分解,可以按照下列步骤进行:(1) 如果多项式各项有公因式,那么先提取公因式;(2) 如果各项没有公因式,那么可以尝试运用公式来分解;(3) 如果用上述方法不能分解,那么可以尝试用分组或其它方法(如十字相乘法)来分解;(4) 分解因式,必须进行到每一个多项式因式都不能再分解为止.4.十字相乘法:2()x p q x pq +++型的因式分解, 这类式子在许多问题中经常出现,其特点是:(1) 二次项系数是1;(2) 常数项是两个数之积;(3) 一次项系数是常数项的两个因数之和.22()()()()()x p q x pq x px qx pq x x p q x p x p x q +++=+++=+++=++因此,2()()()x p q x pq x p x q +++=++一般二次三项式2ax bx c ++型的因式分解大家知道,2112212122112()()()a x c a x c a a x a c a c x c c ++=+++.反过来,就得到:2121221121122()()()a a x a c a c x c c a x c a x c +++=++我们发现,二次项系数a 分解成12a a ,常数项c 分解成12c c ,把1212,,,a a c c 写成1122a c a c ⨯,这里按斜线交叉相乘,再相加,就得到1221a c a c +,如果它正好等于2ax bx c ++的一次项系数b ,那么2ax bx c ++就可以分解成1122()()a x c a x c ++,其中11,a c 位于上一行,22,a c 位于下一行.这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法.。
第02讲_因式分解进阶知识图谱因式分解的高级方法知识精讲一.十字相乘法二.分组分解法分组分解法分解因式常用的思路有:十字相乘法 2(0)ax bx c a ++≠ 若a 1 c 2+a 2 c 1 =b ,则 21122()()ax bx c a x c a x c ++=++ 分解思路为“看两端,凑中间” 21232x x ++21232=(8)(4)x x x x ++++a 1a 2c 2c 1a 1c 2 + a 2c 1分组分解法(1)适用场景:不能直接运用提公因式法和公式法(2)方法:把这个多项式分成几组,对各组分别分解因式,然后再对整体作因式分解四项=二项+二项(按字母分组、按系数分组、符合公式的两项分组)四项=三项+一项(先完全平方公式后平方差公式)五项=三项+二项(完全平方公式)六项=三项+三项(完全平方公式)六项=二项+二项+二项(各组之间有公因式)六项=三项+二项+一项(完全平方公式)三.换元法四.拆、添项法三点剖析一.考点:1.十字相乘法;2.分组分解法;3.换元法;4.拆、添项二.重难点:十字相乘法;分组分解法;换元法;拆、添项.三.易错点:(1)正确的十字相乘必须满足以下条件:在上式中,竖向的两个数必须满足关系12a a a =,12c c c =;斜向的两个数必须满足关系1221a c a c b +=,分解思路为“看两端,凑中间.”(2)换元法换元分解因式后,一定要记得将原有的字母换回来,并最终对每一项都彻底因式分解.c 1c 2a 2a 1换元法将一个较复杂的代数式中的某一部分看作一个整体,用一个新字母替代它,简化运算过程设, 则原式易错点:换元分解因式后,一定要记得将原有的字母换回来。
并再次对每一项彻底的因式分解拆、添项(1)在多项式中添上两个符号相反的项,再使用分组分解法进行分解因式(2)将多项式中的某一项拆成两项或多项,再使用分组分解法十字相乘法例题1、 如果把多项式x 2﹣8x+m 分解因式得(x ﹣10)(x+n ),那么m+n=_____________. 【答案】 -18【解析】 ∵x 2﹣8x+m=(x ﹣10)(x+n ), ∴x 2﹣8x+m=x 2+(﹣10+n )x ﹣10n , ∴﹣10+n=﹣8,m=﹣10n , 解得:n=2,m=﹣20, m+n=﹣20+2=﹣18.例题2、 因式分解:﹣2x 2y+8xy ﹣6y=_______. 【答案】 ﹣2y (x ﹣1)(x ﹣3)【解析】 原式=﹣2y (x 2﹣4x+3)=﹣2y (x ﹣1)(x ﹣3)例题3、 甲、乙两个同学分解因式x 2+ax+b 时,甲看错了b ,分解结果为(x+2)(x+4);乙看错了a ,分解结果为(x+1)(x+9),则a=__,b=__. 【答案】 6;9【解析】 分解因式x 2+ax+b ,甲看错了b ,但a 是正确的, 他分解结果为(x+2)(x+4)=x 2+6x+8, ∴a=6,同理:乙看错了a ,分解结果为(x+1)(x+9)=x 2+10x+9, ∴b=9,例题4、 因式分解:221999199911999x x .【答案】 ()()199911999x x +- 【解析】 该题考查的是因式分解.十字相乘可得原式()()199911999x x =+- 例题5、 把下列多项式因式分解 (1)22273x xy y -+(2)22675x xy y --【答案】 (1)(3)(2)x y x y --(2)(2)(35)x y x y +-【解析】 (1)22273(3)(2)x xy y x y x y -+=--(2)22675(2)(35)x xy y x y x y --=+- 例题6、 把下列多项式因式分解 (1)2532x x -- (2)2568x x +- (3)26525x x -- (4)26113x x -+【答案】 (1)(52)(1)x x +- (2)(54)(2)x x -+(3)(25)(35)x x -+(4)(23)(31)x x --【解析】 利用十字相乘法进行因式分解可得(1)2532(52)(1)x x x x --=+- (2)2568(54)(2)x x x x +-=-+ (3)26525(25)(35)x x x x --=-+ (4)26113(23)(31)x x x x -+=-- 例题7、 分解因式:2214425x y xy +- 【答案】 ()212x -【解析】 略例题8、 仔细阅读下面例题,解答问题:例题:已知二次三项式x 2-4x +m 有一个因式是(x +3),求另一个因式以及m 的值. 解:设另一个因式为(x +n ),得 x 2-4x +m =(x +3)(x +n )则x 2-4x +m =x 2+(n +3)x +3n ∴343n m n +=-⎧⎨=⎩.解得:n =-7,m =-21 ∴另一个因式为(x -7),m 的值为-21 问题:仿照以上方法解答下面问题:已知二次三项式2x 2+3x -k 有一个因式是(2x -5),求另一个因式以及k 的值. 【答案】 另一个因式为(x +4),k =20 【解析】 设另一个因式为(x +a ),得2x 2+3x -k =(2x -5)(x +a ) 则2x 2+3x -k =2x 2+(2a -5)x -5a ∴2535a a k -=⎧⎨-=-⎩解得:a =4,k =20故另一个因式为(x +4),k 的值为20. 随练1、 如果x 2-px +q =(x +1)(x -3),那么p 等于( ) A.-2 B.2 C.-3 D.3【答案】 B【解析】 已知等式整理得:x 2-px +q =(x +1)(x -3)=x 2-2x -3, 可得-p =-2,q =3, 解得:p =2.随练2、 分解因式:22268x y x y -++- 【答案】 (4)(2)x y x y -++-【解析】 ()()22222682169x y x y x x y y -++-=++--+()()()()22131313x y x y x y =+--=++-+-+ 随练3、 阅读下列材料,并解答相应问题:对于二次三项式x 2+2ax+a 2这样的完全平方式,可以用公式法将它分解成(x+a )2的形式,但是,对于一般的二次三项式,就不能直接应用完全平方公式了,我们可以在二次三项式中先加上一项,使其配成完全平方式,再减去这项,使整个式子的值不变,于是有:x 2+2ax ﹣3a 2=x 2+2ax+a 2﹣a 2﹣3a 2=(x+a )2﹣(2a )2=(x+3a )(x ﹣a ) (1)像上面这样把二次三项式分解因式的数学方法是 ; A .提公因式法 B .十字相乘法 C .配方法 D .公式法 (2)这种方法的关键是 ;(3)用上述方法把m 2﹣6m+8分解因式. 【答案】 (1)B ;(2)利用完全平方公式及平方差公式变形 (3)(m ﹣2)(m ﹣4)【解析】 (1)像上面这样把二次三项式分解因式的数学方法是十字相乘法; (2)这种方法的关键是利用完全平方公式及平方差公式变形; (3)原式=m 2﹣6m+9﹣1=(m ﹣3)2﹣1=(m ﹣3+1)(m ﹣3﹣1)=(m ﹣2)(m ﹣4), 故答案为:(1)B ;(2)利用完全平方公式及平方差公式变形 随练4、 把下列多项式因式分解 (1)2232x xy y ++ (2)2276x xy y -+ (3)22421x xy y --(4)22215x xy y +-【答案】 (1)()(2)x y x y ++(2)()(6)x y x y --(3)(3)(7)x y x y +-(4)(3)(5)x y x y -+【解析】 (1)()()22322x xy y x y x y ++=++(2)2276()(6)x xy y x y x y -+=-- (3)22421(3)(7)x xy y x y x y --=+-(4)22215(3)(5)x xy y x y x y +-=-+ 随练5、 把下列多项式因式分解 (1)2383x x +- (2)2352x x -+ (3)42627x x -- (4)2236a b a ab +--【答案】 (1)(31)(3)x x -+(2)(32)(1)x x --(3)2(3)(3)(3)x x x -++(4)(2)(13)a b a +-【解析】 (1)2383(31)(3)x x x x +-=-+ (2)2352(32)(1)x x x x -+=--(3)()()()()()4222262793333x x x x x x x --=-+=+-+ (4)()()()()2236232213a b a ab a b a a b a b a +--=+-+=+- 随练6、 把下列多项式因式分解 (1)2273x x -+ (2)2675x x -- (3)4268x x ++(4)2()4()3a b a b +-++【答案】 (1)(3)(21)x x --(2)(21)(35)x x +-(3)22(2)(4)x x ++(4)(1)(3)a b a b +-+- 【解析】 (1)利用十字相乘法进行因式分解得(1)2273(3)(21)x x x x -+=-- (2)2675(21)(35)x x x x --=+- (3)422268(2)(4)x x x x ++=++(4)2()4()3(1)(3)a b a b a b a b +-++=+-+-分组分解法例题1、 已知:a 2+b 2+c 2-ab -ac -bc =0,则a 、b 、c 的大小关系为________. 【答案】 a =b =c【解析】 ∵a 2+b 2+c 2-ab -bc -ac =0, ∵2a 2+2b 2+2c 2-2ab -2bc -2ac =0,a 2+b 2-2ab +b 2+c 2-2bc +a 2+c 2-2ac =0, 即(a -b )2+(b -c )2+(c -a )2=0, ∵a -b =0,b -c =0,c -a =0, ∵a =b =c .例题2、 已知a=998,b=997,c=996,则a 2﹣ab ﹣ac+bc=______________. 【答案】 2【解析】 原式=a (a ﹣b )﹣c (a ﹣b ) =(a ﹣b )(a ﹣c ) =(998﹣997)(998﹣996) =1×2 =2,例题3、 分解因式a 2﹣b 2﹣2b ﹣1=__________. 【答案】 (a+b+1)(a ﹣b ﹣1). 【解析】 a 2﹣b 2﹣2b ﹣1 =a 2﹣(b 2+2b+1) =a 2﹣(b+1)2 =(a+b+1)(a ﹣b ﹣1).例题4、 把下列多项式因式分解 (1)224484a b a b ab +-+-(2)222xy xz y yz z --+-【答案】 (1)(2)(24)a b a b ---(2)()()y z x y z --+【解析】 (1)()()()()()()2222244844448242224a b a b ab a ab b a b a b a b a b a b +-+-=-+--=---=---(2)()()()()2222xy xz y yz z x y z y z y z x y z --+-=---=--+例题5、 仔细阅读下列解题过程:若a 2+2ab +2b 2-6b +9=0,求a 、b 的值. 解:∵a 2+2ab +2b 2-6b +9=0 ∴a 2+2ab +b 2+b 2-6b +9=0 ∴(a +b )2+(b -3)2=0 ∴a +b =0,b -3=0 ∴a =-3,b =3根据以上解题过程,试探究下列问题:(1)已知x 2-2xy +2y 2-2y +1=0,求x +2y 的值; (2)已知a 2+5b 2-4ab -2b +1=0,求a 、b 的值;(3)若m =n +4,mn +t 2-8t +20=0,求n 2m -t 的值. 【答案】 (1)3 (2)a =2;b =1 (3)1【解析】 (1)∵x 2-2xy +2y 2-2y +1=0 ∴x 2-2xy +y 2+y 2-2y +1=0 ∴(x -y )2+(y -1)2=0 ∴x -y =0,y -1=0, ∴x =1,y =1, ∴x +2y =3;(2)∵a 2+5b 2-4ab -2b +1=0 ∴a 2+4b 2-4ab +b 2-2b +1=0 ∴(a -2b )2+(b -1)2=0 ∴a -2b =0,b -1=0 ∴a =2,b =1; (3)∵m =n +4,∴n (n +4)+t 2-8t +20=0 ∴n 2+4n +4+t 2-8t +16=0 ∴(n +2)2+(t -4)2=0 ∴n +2=0,t -4=0 ∴n =-2,t =4 ∴m =n +4=2∴n 2m -t =(-2)0=1.例题6、 阅读下列文字与例题:将一个多项式分组后,可提公因式或运用公式继续分解的方法称作分组分解. 例如:以下两个式子的分解因式的方法就称为分组分解法.(1)am+an+bm+bn=(am+bm )+(an+bn )=m (a+b )+n (a+b )=(a+b )(m+n ); (2)x 2﹣y 2﹣2y ﹣1=x 2﹣(y 2+2y+1)=x 2﹣(y+1)2=(x+y+1)(x+y ﹣1) 试用上述方法分解因式: (1)a 2+2ab+b 2+ac+bc (2)4a 2﹣x 2+4xy ﹣4y 2. 【答案】 (1)(a+b )(a+b+c )(2)(2a+x ﹣2y )(2a ﹣x+2y )【解析】 (1)原式=(a 2+2ab+b 2)+(ac+bc )=(a+b )2+c (a+b )=(a+b )(a+b+c ); (2)原式=4a 2﹣(x 2﹣4xy+4y 2)=4a 2﹣(x ﹣2y )2=(2a+x ﹣2y )(2a ﹣x+2y ). 例题7、 把下列多项式因式分解 (1)251539a m am abm bm -+-(2)432x x x x +++(3)432433x x x x ++++ (4)22ax bx bx ax a b -+-+-(5)2223(1)()22x x xy y x y xy +-+++(6)222x x y xy x y y -+-+-【答案】 (1)()()353m a a b -+;(2)()()211x x x ++;(3)()()2213xx x +++;(4)()()21a b x x --+;(5)()222(1)x x xy y +++;(6)()()21y x x y --+【解析】 (1)()()()()2515395333353a m am abm bm m a a b a m a a b -+-=-+-=-+⎡⎤⎣⎦ (2)()()()()432321111x x x x x x x x x x x +++=+++=++ (3)()()()43243222243333313x x x x x x x x x xx x ++++=+++++=+++(4)()()()()22221ax bx bx ax a b x a b x a b a b a b x x -+-+-=---+-=--+(5)()()2223222222(1)()22(1)2(1)x x xy y x y xy x x xy y xy x x xy y +-+++=+-++=+++ (6)()()()()()222221111x x y xy x y y x y x y y y y x x y -+-+-=---+-=--+ 随练1、 分解因式:y+y 2+xy+xy 2=______. 【答案】 y (1+y )(1+x )【解析】 先进行分组,再用提公因式法进行因式分解,即可解答. 解:y+y 2+xy+xy 2=(y+y 2)+(xy+xy 2) =y (1+y )+xy (1+y ) =(1+y )(y+xy ) =y (1+y )(1+x ).随练2、 分解因式:3232x x y y +-- 【答案】 22()()x y x x xy y y -++-+【解析】 原式33222222()()()()()()()()x y x y x y x xy y x y x y x y x x xy y y =-+-=-++++-=-++-+ 随练3、 分解因式:43221x x x x ++++ 【答案】 22(1)(1)x x x +++【解析】 原式432222222()(1)(1)(1)(1)(1)x x x x x x x x x x x x x =+++++=+++++=+++ 随练4、 把下列多项式因式分解 (1)2214497x xy y x y -++- (2)222(2)123(3)m n mn n m +--- 【答案】 (1)(7)(71)x y x y --+ (2)(23)(23)m n m n mn --+【解析】 (1)()()()()2221449777771x xy y x y x y x y x y x y -++-=-+-=--+ (2)()()2222222(2)123(3)234129m n mn n m m n mn m mn n +---=-+-+()()()()223232323mn m n m n m n mn m n =-+-=-+-随练5、 把下列多项式因式分解(1)2222x x y xy x y y -+-+- (2)222ax by cx ay bx cy ++--- (3)222221a b c c ab +---- (4)222494126x y z xy yz xz ++--+ 【答案】 (1)()(1)(1)x y y x ---(2)()(2)a b c x y -+-(3)(1)(1)a b c a b c -++---(4)2(23)x y z -+ 【解析】 (1)()()()22222222x x y xy x y y x y x y xy x y -+-+-=-----()()()()()()()11x y x y xy x y x y x y x y y =+-----=----⎡⎤⎣⎦()()()11x y y x =---(2)()()222222ax by cx ay bx cy ax bx cx by ay cy ++---=-++--()()()()22x a b c y a b c a b c x y =-+--+=-+-(3)()()()()222222222212211a b c c ab a ab b c c a b c +----=-+-++=--+(1)(1)a b c a b c =-++--- (4)()222249412623x y z xy yz xz x y z ++--+=-+随练6、 把下列多项式因式分解 (1)222xy xz y yz z --+- (2)222222x y xz z a ay --+-- (3)22(3)(34)a b b a --- (4)2(1)1x x x ----【答案】 (1)()()y z x y z --+(2)()()x z a y x z a y -++---(3)(2)(32)a b a -+(4)2(1)(1)x x -+ 【解析】 (1)()()()()2222xy xz y yz z x y z y z y z x y z --+-=---=--+ (2)()()()()22222222222222x y xz z a ay x xz z y ay a x z y a --+--=-+-++=--+ ()()x z a y x z a y =-++---(3)()()2222(3)(34)62346342a b b a a b ab a a ab a b ---=--+=-+-()()()()3222232a a b a b a b a =-+-=-+(4)()()()()()()2233222(1)1111111x x x x x x x x x x x x x x ----=-++-=-+-=-+-=-+ 随练7、 把下列多项式因式分解 (1)23442x x x -+- (2)24263a ab a b +++ (3)2244a b a b -+- (4)22944a ab b ---(5)2221693025m a ab b -+-(6)22194m n mn -++(7)224252036x y xy +--【答案】 (1)()()()2212x x x x --+-+(2)(23)(2)a a b ++(3)()(4)a b a b -++(4)(32)(32)a b a b ++--(5)(435)(435)m a b m a b +--+ (6)11(3)(3)22m n m n +++-(7)(256)(256)x y x y -+-- 【解析】 (1)()()()()()()2234222242422212x x x x x x x x x x x xx -+-=--=+--+=--+-+(2)()()()()242632232223a ab a b a a b a b a b a +++=+++=++ (3)()()()()()224444a b a b a b a b a b a b a b -+-=+-+-=-++(4)()()()222944923232a ab b a b a b a b ---=-+=++--(5)()()()2222216930251635435435m a ab b m a b m a b m a b -+-=--=+--+ (6)222111199334222m n mn m n m n m n ⎛⎫⎛⎫⎛⎫-++=+-=+++- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ (7)()()()22=256256256x y x y x y --=-+--换元法例题1、 若实数a ,b 满足(2a +2b )(2a +2b -2)-8=0,则a +b =________. 【答案】 -1或2【解析】 设a +b =x ,则由原方程,得 2x (2x -2)-8=0,整理,得4x 2-4x -8=0,即x 2-x -2=0, 分解得:(x +1)(x -2)=0, 解得:x 1=-1,x 2=2.则a +b 的值是-1或2.例题2、 分解因式:22()(32349)x x x x -+--+ 【答案】 223()1x x -- 【解析】 22222223234()()(9326329())3(1)x x x x x x x x x x -+--+=-+--++=-- 例题3、 分解因式:(1)2(3)5(3)14p p ---- (2)()()224341256xx x x -+--+【答案】 (1)(10)(1)p p --(2)2(1)(5)(44)x x x x +---【解析】 (1)()()()()()()2235314353143732p p p p p p ----=----=---+()()101p p =-- (2)()()()()22222434125649420x x x x x x x x -+--+=---+()()()()()22244455144x x x x x x x x =----=-+--例题4、 分解因式:(1)2(3)5(3)14p p ----(2)()()224341256x x x x -+--+(3)22(815)(87)15x x x x +++++(4)22(1)(2)12x x x x ++++- 【答案】 (1)(10)(1)p p --(2)2(1)(5)(2)x x x +--(3)2(2)(6)(810)x x x x ++++(4)2(1)(2)(5)x x x x -+++ 【解析】 (1)()()()()()()2235314353143732p p p p p p ----=----=---+()()101p p =--(2)()()()()22222434125649420x x x x x x x x -+--+=---+()()()()()22244455144x x x x x x x x =----=-+--(3)()()()()2222281587158228120x x x x x x x x +++++=++++()()()()()22281081226810x x x x x x x x =++++=++++(4)()()()()222221212310x x x x x x x x ++++-=+++-()()()()()22252215x x x x x x x x =+++-=+-++随练1、 已知实数x ,y 满足(x 2+y 2)(x 2+y 2-12)=45,求x 2+y 2的值. 【答案】 15【解析】 设x 2+y 2=a ,则a (a -12)=45, a 2-12a -45=0, (a -15)(a +3)=0, a 1=15,a 2=-3, ∵x 2+y 2=a≥0, ∴x 2+y 2=15.随练2、 (2013初二上期中人民大学附属中学)因式分解:222618680x xx x【答案】 ()()()224410x x x x ++++. 【解析】 该题考查的是因式分解. 令26x x a +=,则原式21880a a =++ ()()810a a =++()()2268610x x x x =++++()()()224410x x x x =++++随练3、 因式分解:222618680x xx x【答案】 ()()()224410x x x x ++++.【解析】 该题考查的是因式分解. 令26x x a +=, 则原式21880a a =++ ()()810a a =++()()2268610x x x x =++++ ()()()224410x x x x =++++ 随练4、 分解因式:(1)22(815)(87)15x x x x +++++ (2)22(1)(2)12x x x x ++++-【答案】 (1)2(2)(6)(810)x x x x ++++(2)2(1)(2)(5)x x x x -+++ 【解析】 (1)()()()()2222281587158228120x x x x x x x x +++++=++++()()()()()22281081226810x x x x x x x x =++++=++++(2)()()()()222221212310x x x x x x x x ++++-=+++-()()()()()22252215x x x x x x x x =+++-=+-++拆、添项例题1、 分解因式441x +【答案】 22(221)(221)x x x x ++-+ 【解析】()()()()224422222414414212212212x x x x x x x x x x +=++-=+-=+++-例题2、 分解因式:42471x x -+ 【答案】 22(71)(71)x x x x ++-+【解析】 ()()()()22424222224712149171717x x x x x x x x x x x -+=++-=+-=+++-例题3、 分解因式:841x x ++【答案】 2242(1)(1)(1)x x x x x x ++-+-+【解析】 原式844424424221(1)(1)(1)x x x x x x x x x =++-=+-=++-+2242(1)(1)(1)x x x x x x =++-+-+例题4、 分解因式:32265x x x +-- 【答案】 (1)(3)(2)x x x ++-【解析】 3232226566(1)(3)(2)x x x x x x x x x x x +--=+++--=++-例题5、 分解因式)()()(222y x z x z y z y x -+-+- 【答案】 ))()((z x y x z y ---【解析】 22222222()()()=()()()=()()()x y z y z x z x y x y z z x y x y z z y y z x y x z -+-+--+-+----随练1、 分解因式:343a a -+【答案】2(1)(3)a a a -+- 【解析】 332224333(1)(3)a a a a a a a a a a -+=-+--+=-+-随练2、 分解因式:224414x y x y -++【答案】 2222(4)(4)x y xy x y xy +++-【解析】 ()()22224442242222142164x y x y x x y y x y x y xy -++=++-=+-()()222244x y xy x y xy =+++-随练3、 分解因式:4414x y +【答案】 222211()()22x y xy x y xy +++- 【解析】 ()224442242222111442x y x x y y x y x y xy ⎛⎫+=++-=+- ⎪⎝⎭22221122x y xy x y xy ⎛⎫⎛⎫=+++- ⎪⎪⎝⎭⎝⎭随练4、 分解因式:4231x x -+【答案】22(1)(1)x x x x +--- 【解析】 拆项法:原式=422222[()(1)](1)(1)x x x x x x x x ----=+--- 随练5、 分解因式:4224a ab b ++【答案】 2222()()a ab b a ab b ++-+【解析】 添项法:原式=2422422a a b b a b ++-随练6、 分解因式:432234232a a b a b ab b ++++【答案】222()a ab b ++ 【解析】 43223443222234232222a a b a b ab b a a b a b a b ab b ++++=+++++()()4224222222a a b b ab a b a b =+++++()()()22222222222a b ab a b a b a b ab =++++=++随练7、 分解因式:(1)()()22ax by bx ay ++-(2)()(2)(1)(1)x y x y xy xy xy +++++-【答案】 (1)2222()()a b x y ++(2)(1)(1)(1)x y x y xy ++++-【解析】 (1)()()222222222222ax by bx ay a x abxy b y b x abxy a y ++-=+++-+()()()()2222222222x a b y a b a b x y =+++=++(2)()()()()211x y x y xy xy xy +++++-()()()()222211x y xy x y xy x y xy =++++-=++-()()()()()11111x y xy x y xy x y x y xy =+++++-=++++-拓展1、 因式分解 (1)3x ﹣12x 2 (2)x 2﹣9x ﹣10(3)x 2﹣2xz+z 2﹣4y 2(4)25(m+n )2﹣4(m ﹣n )2. 【答案】 (1)3x (1﹣4x )(2)(x ﹣10)(x+1)(3)(x ﹣z+2y )(x ﹣z ﹣2y )(4)(7m+3n )(3m+7n ) 【解析】 (1)原式=3x (1﹣4x ); (2)原式=(x ﹣10)(x+1);(3)原式=(x ﹣z )2﹣4y 2=(x ﹣z+2y )(x ﹣z ﹣2y );(4)原式=[5(m+n )+2(m ﹣n )][5(m+n )﹣2(m ﹣n )] =(7m+3n )(3m+7n ). 2、 因式分解 ①3p 2﹣6pq ②2x 2+8x+8③a 2(x ﹣y )+16(y ﹣x ) ④x 2﹣2x ﹣15.【答案】 ①3p (p ﹣2q ), ②2(x+2)2 ③(x ﹣y )(a+4)(a ﹣4) ④ (x ﹣5)(x+3)【解析】 ①3p 2﹣6pq=3p (p ﹣2q );②2x 2+8x+8=2(x 2+4x+4)=2(x+2)2; ③a 2(x ﹣y )+16(y ﹣x ) =(x ﹣y )(a 2﹣16) =(x ﹣y )(a+4)(a ﹣4); ④x 2﹣2x ﹣15=(x ﹣5)(x+3). 3、 因式分解:3232x x x ++. 【答案】 ()()12x x x ++【解析】 该题考查的是因式分解.把一个多项式化为几个最简整式的积的形式,这种变形叫做因式分解,也叫做分解因式. 3232x x x ++()232x x x =++()()12x x x =++4、 分解因式:22672x xy y -+ 【答案】 (3x -y )(x -2y ) 【解析】 (3x -y )(x -2y )5、 把下列多项式因式分解 (1)22568x xy y +- (2)2232x xy y -+ (3)2263x x +-(4)2815x x -+【答案】 (1)(2)(54)x y x y +-(2)()(2)x y x y --(3)(9)(7)x x +-(4)(3)(5)x x -- 【解析】 (1)22568(2)(54)x xy y x y x y +-=+-(2)()()22322x xy y x y x y -+=-- (3)()()226397x x x x +-=+-(4)()()281535x x x x -+=--6、 分解因式:x 3﹣5x 2y ﹣24xy 2= . 【答案】 x (x+3y )(x ﹣8y ) 【解析】 x 3﹣5x 2y ﹣24xy 2 =x (x 2﹣5xy ﹣24y 2) =x (x+3y )(x ﹣8y ) 故答案为:x (x+3y )(x ﹣8y ).7、 分解因式:2212x x y ---+ 【答案】 (1)(1)y x y x ++--【解析】 原式2222(12)(1)(1)(1)y x x y x y x y x =-++=-+=++--8、 把22222222448a b c d a c b d abcd +--+因式分解. 【答案】 (22)(22)ab cd ac bd ab cd ac bd ++-+-+【解析】 ()()22222222222222224484444a b c d a c b d abcd a b abcd c d a c abcd b d +--+=++--+ ()()2222(22)(22)ab cd ac bd ab cd ac bd ab cd ac bd =+--=++-+-+9、 分解因式:3254222x x x x x --++- 【答案】 42(2)(1)x x x -+-【解析】 原式32542442(2)(2)(2)(2)(2)(2)(2)(1)x x x x x x x x x x x x x =---+-=---+-=-+- 10、 把下列多项式因式分解(1)224484a b a b ab +-+-(2)4322221a a a a ++++【答案】 (1)(2)(24)a b a b ---(2)22(1)(1)a a ++【解析】 (1)()()222244844448a b a b ab a ab b a b +-+-=-+--()()2242a b a b =---()()224a b a b =---(2)()()()()243242222221212111a a a a a a a a a a ++++=++++=++11、 把下列多项式因式分解(1)22ax bx bx ax a b -+-+-(2)432433x x x x ++++(3)2222424a b c d ab cd +--++(4)2269261x xy y x y ++--+ 【答案】 (1)()()21a b x x --+;(2)()()2213x x x +++;(3)(2)(2)a b c d a b c d ++-+-+;(4)2(31)x y +-【解析】 (1)()()()()22221ax bx bx ax a b x a b x a b a b a b x x -+-+-=---+-=--+ (2)()()()43243222243333313x x x x x x x x x x x x ++++=+++++=+++ (3)()()()()222222424222a b c d ab cd a b c d a b c d a b c d +--++=+--=++-+-+(4)()()()222269261323131x xy y x y x y x y x y ++--+=+-++=+- 12、 把下列多项式因式分解(1)242363ax bx x ay by y -+-+- (2)224484a b a b ab +-+- (3)5432221x x x x x +--++(4)228166249x xy y x y -++-+ 【答案】 (1)(21)(23)a b x y -+-(2)(2)(24)a b a b ---(3)32(1)(1)x x +-(4)2(43)x y -+ 【解析】 (1)()()()()2423632213212123ax bx x ay by y x a b y a b a b x y -+-+-=-+--+=-+-(2)()()()()()()2222244844448242224a b a b ab a ab b a b a b a b a b a b +-+-=-+--=---=---(3)()()()()()2543242232221121111(1)(1)x x x x x x x x x x x x x x +--++=+-+++=+-=+-(4)()()()22228166249464943x xy y x y x y x y x y -++-+=-+-+=-+13、 把下列多项式因式分解 (1)1xy x y --+ (2)325153x x x --+ (3)27321x y xy x -+- (4)(1)(2)6x x x --- (5)222(1)()ab x x a b +++(6)215430bm bn am an -+-(7)233a a ab b --+【答案】 (1)()()11y x --;(2)()()2351x x --;(3)()()37x x y -+;(4)()()232x x -+;(5)()()ax b bx a ++;(6)()()2215b a m n +-;(7)()()3a b a -- 【解析】 (1)()()()()()()111111xy x y xy x y x y y y x --+=---=---=-- (2)()()()()()()32322251535153533351x x x x x x x x x x x --+=---=---=-- (3)()()()()()()227321721373337x y xy x x x xy y x x y x x x y -+-=-+-=-+-=-+(4)()()()()()()323222(1)(2)632632632332x x x x x x x x x x x x x x ---=-+-=-+-=-+-=-+ (5)()()()()()()222222(1)()ab x x a b abx b x a x ab bx ax b a ax b ax b bx a +++=+++=+++=++ (6)()()215430241530bm bn am an bm am bn an -+-=+-+ ()()()()221522215m b a n b a b a m n =+-+=+-(7)()()()()()()22333333a a ab b a ab a b a a b a b a b a --+=---=---=--14、 把下列多项式因式分解(1)2c abcd ac bd -+-(2)5432222a a a a a +++++ (3)54ax ax ax a -+-(4)2ax ay a bx by ab -++-+ (5)2293x x y y ---(6)2222x y z yz --+【答案】 (1)(1)(1)ac bd +-(2)23(1)(2)a a a +++(3)4(1)(1)a x x -+ (4)()()x y a a b -++(5)(3)(31)x y x y +--(6)()()x y z x y z +--+【解析】 (1)()()()()21c abcd ac bd c bd ac c bd c bd ac -+-=-+-=-+ (2)()()()()54323222322212112a a a a a a a a a a a a a +++++=+++++=+++ (3)()()()()54441111ax ax ax a ax x a x a x x -+-=-+-=-+(4)()()()()()2ax ay a bx by ab x a b y a b a a b a b x y a -++-+=+-+++=+-+(5)()()()()()()()22229393333331x x y y x y x y x y x y x y x y x y ---=--+=+--+=+-- (6)()()()()2222222222x y z yz x y yz z x y z x y z x y z --+=--+=--=+--+ 15、 若m =4n +3,则m 2-8mn +16n 2的值是________. 【答案】 9【解析】 ∵m =4n +3, ∴m -4n =3,则原式=(m -4n )2=32=9.16、 分解因式:()()x x x x 2232349-+--+【答案】 ()2231x x --【解析】 2222222(32)(34)9(32)6(32)9(31)x x x x x x x x x x -+--+=-+--++=--17、 因式分解:()()222618680x x x x ++++【答案】 ()()()224610x x x x ++++.【解析】 令26x x a +=,则原式21880a a =++()()810a a =++()()2268610x x x x =++++()()()224610x x x x =++++18、 分解因式41)42)(52(22++---x x x x 【答案】 ()()()21322x x x x +--+ 【解析】 本题考查的是因式分解. 设22y x x =-,上式()()5414y y =-++, 整理得:上式26y y =--十字相乘法得:上式()()32y y =-+.把22y x x =-代入得:()()222322x x x x ---+十字相乘法得:上式()()()21322x x xx =+--+19、 因式分解: (1)222618680x xx x(2)()()x x x x 2232349-+--+【答案】 (1)()()()224610x x x x ++++;(2)()2231x x --【解析】 (1)令26x x a +=,则原式21880a a =++()()810a a =++()()2268610x x x x =++++=()()()224610x x x x ++++(2)2222222(32)(34)9(32)6(32)9(31)x x x x x x x x x x -+--+=-+--++=--20、 分解因式:(1)224414x y x y -++(2)841x x ++【答案】 2222(4)(4)x y xy x y xy +++-;2242(1)(1)(1)x x x x x x ++-+-+ 【解析】 (1)()()22224442242222142164x y x y x x y y x y x y xy -++=++-=+-()()222244x y xy x y xy =+++-(2)848442242121(1)(1)(1)x x x x x x x x x x x ++=++-=++-+-+21、 分解因式:464x +【答案】22(84)(84)x x x x +++- 【解析】()()()()22442222264166416848484x x x x x x x x x x +=++-=+-=+++-22、 分解因式:3234x x +-【答案】 2(1)(2)x x --【解析】 323222344444(1)(2)x x x x x x x x x +-=-+-+-=--23、 分解因式:12631x x -+ 【答案】 6363(1)(1)x x x x -+++【解析】()()()()2212612666363633121111x x x x x x x x x x x -+=-+-=--=-+++24、 分解因式:444222222222a b c a b b c c a ---+++ 【答案】 ()()()()c a b c a b a b c a b c -+--++++- 【解析】 444222222222a b c a b b c c a ---+++ 22444222222222222222222222242224()(2)(2)()()()()a b a b c b c c a a b a b a b c a b a b c a b a b c c a b c a b a b c a b c =---++-=-+-=++---+=-+--++++-25、 分解因式:3)5)(3(22-----x x x x 【答案】 (1)(2)(2)(3)x x x x ++-- 【解析】22222(3)(5)3(3)2(3)3(1)(2)(2)(3)x x x x x x x x x x x x -----=------=++-- 26、 分解因式2222(48)3(48)2x x x x x x ++++++【答案】 ()()()22458x x x x ++++【解析】()()()()22222248348248482x x x x x x x x x x x x ++++++=++++++()()()22458x x x x =++++。
因式分解知识点归纳因式分解是代数中的重要概念和技巧,它在解方程、求根、化简表达式等方面都有广泛的应用。
以下是关于因式分解的知识点归纳:一、基本概念1.因式:在乘法中,参加运算的每个数或字母或含有字母的式子,称为因式。
2.因式分解:把一个多项式写成若干个因式相乘的形式,称为因式分解。
3.因数:若一个数a能够整除另一个数b,那么称a是b的因数,b 是a的倍数。
二、因式分解的原则1.分解的因式中只能有素数,即不能再分解。
2.同一因式在分解式中只能出现一次,不允许出现多个相同的因式。
三、因式分解的方法1.公因式法:把多项式中的公因式提出来,然后将剩余部分进行因式分解。
2.提取因式法:将多项式中的因式提取出来,然后将剩余部分进行因式分解。
3.平方差公式:对于两个完全平方差的多项式,可以利用平方差公式进行因式分解。
4.分组分解法:将多项式中的项进行分组,然后利用求和公式或平方差公式进行因式分解。
5.完全平方公式:对于一个完全平方的多项式,可以利用完全平方公式进行因式分解。
四、常用的因式分解公式1.两个平方差的因式分解公式:a²-b²=(a+b)(a-b);a² + 2ab+ b² = (a + b)²;a² - 2ab + b² = (a - b)²。
2.完全平方公式:a² + 2ab + b² = (a + b)²;a² - 2ab + b² = (a - b)²。
3.一次式的因式分解公式:ax + bx = x(a + b);ax - bx = x(a - b);ax + ay = a(x + y);ax - ay = a(x - y)。
五、案例分析1.因式分解:将多项式因式分解为两个一次因式的乘积。
例如:x²-3x-10=(x-5)(x+2)。
2.提取公因式:将多项式中的公因式提取出来。
第一讲因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一:它被广泛地应用于初等数学之中:是我们解决许多数学问题的有力工具.因式分解方法灵活:技巧性强:学习这些方法与技巧:不仅是掌握因式分解内容所必需的:而且对于培养学生的解题技能:发展学生的思维能力:都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上:对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中:我们学过若干个乘法公式:现将其反向使用:即为因式分解中常用的公式:例如:(1)a2-b2=(a+b)(a-b):(2)a2±2ab+b2=(a±b)2:(3)a3+b3=(a+b)(a2-ab+b2):(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2:(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca):(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数:(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1):其中n为偶数:(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1):其中n为奇数.运用公式法分解因式时:要根据多项式的特点:根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4:(2)x3-8y3-z3-6xyz:(3)a2+b2+c2-2bc+2ca-2ab:(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)=-2x n-1y n[(x2n)2-2x2n y2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形:直接使用公式(5):解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性:现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式:本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式:用它可以推出很多有用的结论:例如:我们将公式(6)变形为a3+b3+c3-3abc显然:当a+b+c=0时:则a3+b3+c3=3abc:当a+b+c>0时:则a3+b3+c3-3abc ≥0:即a3+b3+c3≥3abc:而且:当且仅当a=b=c时:等号成立.如果令x=a3≥0:y=b3≥0:z=c3≥0:则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项:从最高次项x15开始:x的次数顺次递减至0:由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1):所以说明在本题的分解过程中:用到先乘以(x-1):再除以(x-1)的技巧:这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时:整理、化简常将几个同类项合并为一项:或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时:需要恢复那些被合并或相互抵消的项:即把多项式中的某一项拆成两项或多项:或者在多项式中添上两个仅符合相反的项:前者称为拆项:后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多:这里只介绍运用拆项、添项法分解的几种解法:注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出:用拆项、添项的方法分解因式时:要拆哪些项:添什么项并无一定之规:主要的是要依靠对题目特点的观察:灵活变换:因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3:(2)(m2-1)(n2-1)+4mn:(3)(x+1)4+(x2-1)2+(x-1)4:(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目:由于分解后的因式结构较复杂:所以不易想到添加+ab-ab:而且添加项后分成的三项组又无公因式:而是先将前两组分解:再与第三组结合:找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在:同学们需多做练习:积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体:并用一个新的字母替代这个整体来运算:从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开:是关于x的四次多项式:分解因式较困难.我们不妨将x2+x看作一个整体:并用字母y来替代:于是原题转化为关于y 的二次三项式的因式分解问题了.解设x2+x=y:则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体:比如今x2+x+1=u:一样可以得到同样的结果:有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式:然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2:则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y:则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知:用换元法分解因式时:不必将原式中的元都用新元代换:根据题目需要:引入必要的新元:原式中的变元和新变元可以一起变形:换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体:但并没有设立新元来代替它:即熟练使用换元法后:并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母:且当互换这两个字母的位置时:多项式保持不变:这样的多项式叫作二元对称式.对于较难分解的二元对称式:经常令u=x+y:v=xy:用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u:xy=v:则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.练习一1.分解因式:(2)x10+x5-2:(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4:(2)x4-11x2y2+y2:(3)x3+9x2+26x+24:(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1:(2)x4+7x3+14x2+7x+1:(3)(x+y)3+2xy(1-x-y)-1:(4)(x+3)(x2-1)(x+5)-20.。
初中数学因式分解常用七大解题方法,分类讲解+例题解析,收藏初中数学|因式分解常用七大解题方法,分类讲解+例题解析,收藏 -一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a-b) = a2-b2 ---------a2-b2=(a+b)(a-b);(2) (a±b)2 = a2±2ab+b2 ———a2±2ab+b2=(a±b)2;(3) (a+b)(a2-ab+b2) =a3+b3------ a3+b3=(a+b)(a2-ab+b2);(4) (a-b)(a2+ab+b2) = a3-b3 ------a3-b3=(a-b)(a2+ab+b2).下面再补充两个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);三、分组分解法(一)分组后能直接提公因式比如,从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
(二)分组后能直接运用公式分组后能直接运用公式,主要是通过对题目当中各因式的观察,进行分组后,能够进行提公因式分解,直到分解的最后能够变成几个多项式或单项式与多项式的乘积为止。
综合练习:四、十字相乘法.十字相乘法是因式分解当中比较难的一种分解方式。
在运用过程当中,对同学们的思维提出了更高的要求,等大家都熟练了这种方法以后,其实对于因式分解是非常简单的,而且比较方便。
对于十字相乘法,我们分为四种类型。
给大家做详细的讲解。
针对每一种方法都有经典的例题解析,通过例题解析的方式让大家明白因式分解时该如何操作,遵循怎样的分解步骤,才能比较顺利的解决和掌握十字相乘法。
因式分解的常用方法第一部分:方法介绍 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a-b) = a 2-b 2 ---------a 2-b 2=(a+b)(a-b);(2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);&(4) (a-b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a-b)(a 2+ab+b 2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a bc ,,是ABC ∆的三边,且222a b c ab bc ca ++=++, 则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.;(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
因式分解 基础知识 总结一、 因式分解的意义1. 定义:把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
2. 因式分解与整式乘法的区别、联系:区别:整式乘法是把几个整式相乘,化成一个多项式;因式分解是把一个多项式化成几个因式的积的形式。
联系:因式分解与整式乘法是互逆的过程。
3.公因式及其结构:公因式:一个多项式的各项都含有的因式叫做这个多项式的公因式。
公因式的结构:多项式的公因式由系数和字母部分两部分组成,系数取各项系数的最大公因数,字母取各项都含有的字母,指数取相同字母的最低次幂。
可简记为:“系数大,字母同,指数低”。
二、 因式分解的方法(一) 提公因式法1.定义:如果一个多项式的各项含有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种变形叫做提公因式法。
2.步骤:(1)确定公因式,(2)提公因式并确定另一个因式,原多项式除以公因式所得商就是另一个因式。
3.常用的恒等变形:223344();()();()();()()......y x x y y x x y y x x y y x x y -=---=--=---=-(二)运用公式法1.定义:如果把乘法公式反过来用,就可以把某些多项式分解因式,这种分解因式的方法叫做运用公式法。
2.因式分解公式:(1)平方差公式:22()()a b a b a b -=+-(2)完全平方公式:2222222()2()a ab b a b a ab b a b ++=+-+=-3. 2()()()x a b x ab x a x b +++=++三、因式分解的一般步骤:可以概括为“一提,二套,三分组,四检查”:“一提”:如果多项式的各项有公因式,那么先提公因式。
“二套”:如果多项式的各项没有公因式,那么可尝试套用公式法分解。
“三分组”:对于四项以上的多项式(在没有公因式后),应考虑用分组分解法。
“四检查”:检查每个因式是否还能继续分解因式,因式分解必须进行到每一个因式都不能再分解为止。
因式分解—待定系数法、换元法、添项拆项法引言因式分解是初中数学中的一个重要知识点,也是解决代数式化简、解方程等问题的基础方法。
在因式分解中,待定系数法、换元法和添项拆项法是常用的三种方法。
本文将分别介绍这三种方法的基本思想、操作步骤和应用场景。
一、待定系数法1. 基本思想待定系数法是一种通过猜测待定系数的方法来进行因式分解的技巧。
在待定系数法中,我们假设因式分解的结果中存在未知系数,并通过代数运算和方程求解的方法确定这些未知系数的值,从而完成因式分解过程。
2. 操作步骤待定系数法的操作步骤如下:1.根据给定的代数式,猜测待定系数的形式,通常选择简单的常数作为待定系数;2.将猜测出的待定系数带入原代数式中,得到待定系数的方程组;3.解方程组,确定待定系数的值;4.将确定的待定系数带入原代数式中进行验证;5.若验证正确,将原代数式分解为因式的乘积,其中包含待定系数。
3. 应用场景待定系数法常用于分解小数项的平方差式、三项立方差式等情况。
通过猜测待定系数的形式,可以简化复杂的因式分解过程,并在解题过程中培养学生的逻辑思维和方程求解能力。
二、换元法1. 基本思想换元法是一种通过引入新的变量来进行因式分解的方法。
通过适当选择新的变量,可以将原代数式转化为较简单的形式,从而便于因式分解。
2. 操作步骤换元法的操作步骤如下:1.分析原代数式的结构和特点,选取适当的新变量;2.对原代数式进行变量替换,将原代数式转化为新变量的代数式;3.对新的代数式进行因式分解;4.将因式分解的结果转化回原变量,得到最终的因式分解形式。
3. 应用场景换元法常用于分解含有平方根、分数等特殊形式的代数式。
通过适当的变量替换,可以将原代数式转化为一次方程、二次方程等常见形式,从而简化因式分解的过程。
三、添项拆项法1. 基本思想添项拆项法是一种通过添加、拆分代数式中的项来进行因式分解的方法。
通过适当添加一些项,并进行合并和拆分,可以将原代数式转化为更简单的形式,从而便于因式分解。