专题25平面向量的基本定理及其坐标表示单元测试 Word版 含答案
- 格式:doc
- 大小:226.00 KB
- 文档页数:6
6.3 平面向量的基本定理及坐标表示(精练)【题组一 向量基底的选择】1.(2021·全国·高一课时练习)下列说法错误的是( )A .一条直线上的所有向量均可以用与其共线的某个非零向量表示B .平面内的所有向量均可以用此平面内的任意两个向量表示C .平面上向量的基底不唯一D .平面内的任意向量在给定基底下的分解式唯一【答案】B【解析】由共线向量的性质可知选项A 正确;根据平面向量基本定理可知:平面内的所有向量均可以用此平面内的任意两个不共线的向量表示,所以选项B 不正确;根据平面向量基本定理可知中:选项C 、D 都正确,故选:B2.(2021·浙江·宁波咸祥中学高一期中)(多选)下列两个向量,不能作为基底向量的是( )A .12(0,0),(1,2)e e ==B .12(2,1),(1,2)e e =-=C .12(1,2),(1,2)e e =--=D .12(1,1),(1,2)e e ==【答案】AC【解析】A 选项,零向量和任意向量平行,所以12,e e 不能作为基底.B 选项,12,e e 不平行,可以作为基底.C 选项,12e e =-,所以12,e e 平行,不能作为基底.D 选项,12,e e 不平行,可以作为基底.故选:AC3.(2021·福建省德化第一中学高一月考)(多选)下列各组向量中,可以作为基底的是( )A .12(0,0),(1,2)e e ==-B .12(1,2),(5,7)e e =-=C .12(3,5),(6,10)e e ==D .1213(2,3),,24e e ⎛⎫==- ⎪⎝⎭ 【答案】BD【解析】A .由于10e =,因为零向量与任意向量共线,因此12,e e 共线,不能作基底,B .因为1725-⨯≠⨯,所以两向量不共线,可以作基底,C .因为212e e =,所以两向量共线,不能作基底,D .因为312342⎛⎫⨯≠⨯- ⎪⎝⎭,所以两向量不共线,可以作基底, 故选:BD.4.(2021·湖北孝感·高一期中)(多选)在下列各组向量中,不能作为基底的是( )A .()1e 0,0→=,()2e 1,2→=-B .()1e 1,2→=-,()2e 5,7→=C .()1e 3,5→=,()2e 6,10→=D .()1e 2,3→=-,()2e 3,2→= 【答案】AC【解析】对A ,1e →∥2e →,不能作为基底;对B ,17250-⨯-⨯≠,1e →与2e →不平行,可以作为基底;对C ,21e 2e →→=,1e →∥2e →,不能作为基底;对D ,22+330⨯⨯≠,1e →与2e →不平行,可以作为基底.故选:AC.5.(2021·全国·高一课时练习)已知1e 与2e 不共线,12122,a e e b e e λ=+=+,且a 与b 是一组基,则实数λ的取值范围是___________. 【答案】11,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭ 【解析】因为1e 与2e 不共线,12122,a e e b e e λ=+=+,若a 与b 共线,则a b μ=,即()12122a e e e e μλ=+=+, 所以12λμμ=⎧⎨=⎩,解得122λμ⎧=⎪⎨⎪=⎩, 因为a 与b 是一组基底,所以若a 与b 不共线,所以实数λ的取值范围是11,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭,故答案为:11,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭【题组二 向量的基本定理】1.(2021·广东·汕头市潮南区陈店实验学校高一月考)已知△ABC 的边BC 上有一点D 满足3BD DC =,则AD 可表示为( )A .1344AD AB AC =+ B .3144AD AB AC =+ C .2133AD AB AC =+ D .1233AD AB AC =+ 【答案】A【解析】由3BD DC =,可得3()AD AB AC AD -=-,整理可得43AD AB AC =+, 所以1344AD AB AC =+, 故选:A2.(2021·四川·成都外国语学校高一月考(文))我国东汉末数学家赵夾在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.在“赵爽弦图”中,若BC a =,BA b =,3BE EF =,则BF =( )A .1292525a b +B .16122525a b + C .4355a b + D .3455a b + 【答案】B【解析】因为此图是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,且BC a =,BA b =,3BE EF =, 所以34BF BC CF BC EA =+=+3()4BC EB BA =++ 33()44BC BF BA =+-+ 93164BC BF BA =-+, 解得16122525BF BC BA =+,即16122525BF a b =+, 故选:B3.(2021·陕西·西安电子科技大学附中高一月考)平面内有三个向量,,OA OB OC ,其中OAOB ,的夹角为120,,OA OC 的夹角为30,且32,,2OA OB ==23OC =,(R)OC OA OB λμλμ=+∈,则( ) A .42λμ==,B .322λμ==,C .423λμ==, D .3423λμ==, 【答案】C 【解析】如图所示:过点C 作//CD OB ,交直线OA 于点D ,因为OAOB ,的夹角为120,,OA OC 的夹角为30,所以90OCD =∠,在Rt OCD △中,tan 30232DC OC ===,24sin 30OD ==, 由OC OA OB OD DC λμ=+=+, 可得OD OA λ=,DC OB μ= 所以OD OA λ=,DC OB μ=,所以42λ=,322μ=,所以42,3λμ==. 故选:C.4.(2021·全国·高一课时练习)若1(3,0)e =,2(0,1)e =-,12a e e =-,(1,)b x y =-,且a b =,则实数x ,y 的值分别是( )A .1x =,4y =B .2x =,1y =-C .4x =,1y =D .1x =-,2y =【答案】C 【解析】由题意,12(3,1)a e e =-=,又a b =13411x x y y -==⎧⎧∴⎨⎨==⎩⎩故选:C5.(2021·江苏南京·高一期末)在Rt ABC 中,90BAC ∠=︒,1AB =,2AC =,D 是ABC 内一点,且45DAB ∠=︒设(,)AD AB AC R λμλμ=+∈,则( )A .20λμ+=B .20λμ-=C .2λμ=D .2μλ= 【答案】B【解析】如图,以A 为原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系则B 点的坐标为(1,0),C 点的坐标为(0,2)∵∠DAB =45°,所以设D 点的坐标为(m , m )(m ≠0)(,)(1,0)(0,2)(,2)AD m m AB AC λμλμλμ==+=+=则λ=m ,且μ=12m , ∴2λμ=,即20λμ-= 故选:B6.(2021·山西临汾·高一期末)在ABC 中,已知AB AC ⊥,2AB =,3AC =,D 是ABC 内一点,且45DAB ∠=,若(),AD AB AC λμλμ=+∈R ,则λμ=( ) A .32B .23C .34D .43 【答案】A 【解析】以A 为原点,以AB 所在的直线为x 轴,AC 所在的直线为y 轴建立平面直角坐标系,则()2,0B 、()0,3C ,由于45DAB ∠=,可设(),D m m ,因为AD AB AC λμ=+,所以()()(),2,00,3m m λμ=+,所以23m λμ==, 因此,32λμ=. 故选:A.7.(2021·安徽宣城·高一期中)如图,在长方形ABCD 中,2AB AD =,点M 在线段BD 上运动,若AM x AB y AC =+,则2x y +=( )A .1B .32C .2D .43【答案】A 【解析】解:由题可得,设22AB AD ==,因为ABCD 是长方形,所以以点A 为坐标原点,AB 方向为x 轴正方向,AD 方向为y 轴正方向建立平面直角坐标系,则()2,0B 、()0,1D ,则()()2,0,2,1AB AC ==,()2,1BD =-,因为AM x AB y AC =+,所以()22,AM x y y =+,所以()()()222,222,,0y B A x y y x y M B AM =+==-+++-,因为点M 在BD 上运动,所以有//BM BD ,所以()12222x y y ⨯+-=-,整理得21x y +=,故选:A.8(2021·上海·高一课时练习)已知点G 为△ABC 的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且AM =x AB ,AN =y AC ,求11x y+的值为________. 【答案】3 【解析】根据条件:11,==AC AN AB AM y x,如图设D 为BC 的中点,则1122AD AB AC =+ 因为G 是ABC ∆的重心,211333AG AD AB AC ==+, 1133AG AM AN x y∴=+, 又M ,G ,N 三点共线,11=133x y ∴+,即113x y+=. 故答案为:3.9.(2021·黑龙江·大庆中学高一月考)如图,经过OAB 的重心G 的直线与,OA OB 分别交于点P ,Q ,设,OP mOA OQ nOB →→→→==,,m n R ∈,则11n m+的值为________.【答案】3【解析】设,OA a OB b →→→→==,由题意知211()()323OG OA OB a b →→→→→=⨯+=+, 11,33PQ OQ OP n b m a PG OG OP m a b →→→→→→→→→→⎛⎫=-=-=-=-+ ⎪⎝⎭, 由P ,G ,Q 三点共线,得存在实数λ使得PQ PG λ→→=, 即1133n b m a m a b λλ→→→→⎛⎫-=-+ ⎪⎝⎭, 从而1,31,3m m n λλ⎧⎛⎫-=- ⎪⎪⎪⎝⎭⎨⎪=⎪⎩消去λ,得113n m +=. 故答案为:310.(2021·河北大名·高一期中)已知平面内三个向量()7,5a =,()3,4b =-,()1,2c =.(1)求23a b c -+; (2)求满足a mb nc =-的实数m ,n ;(3)若()()//ka c b c -+,求实数k .【答案】(2)943,1010m n =-=-;(3)526k =. 【解析】(1)∵()()()()237,523,431,216,3a b c -+=--+=,∴22316a b c -+=+=(2)由a mb nc =-得()()7,53,42m n m n =---,∴3,42 5.7m m n n ⎧⎨-=--=⎩解得9,1043.10m n ⎧=-⎪⎪⎨⎪=-⎪⎩(3)()71,52ka c k k -=--,()2,6b c +=-.∵()()//ka c b c -+,∴()()6712520k k -+-=,解得526k =. 11.(2021·福建·莆田第七中学高一期中)已知两向量()2,0a =,()3,2b =.(1)当k 为何值时,ka b -与2a b +共线?(2)若23AB a b =+,BC a mb =+且A ,B ,C 三点共线,求m 的值.【答案】(1)12k =-;(2)32m =. 【解析】(1)()()()2,03,223,2ka b k k -=-=--,()()()22,06,48,4a b +=+=.当ka b -与2a b +共线时,()()423280k ---⨯=, 解得12k =-. (2)由已知可得()()()234,09,613,6AB a b =+=+=,()()()2,03,232,2BC a mb m m m m =+=+=+. 因为A ,B ,C 三点共线,所以//AB BC ,所以()266320m m -+=.解得32m =. 12.(2021·安徽宿州·高一期中)已知(1,0)a =-,(2,1)b =--.(1)当k 为何值时,ka b -与2a b +平行.(2)若23AB a b =+,BC a mb =+且A ,B ,C 三点共线,求m 的值.【答案】(1)12k =-;(2)32m =. 【解析】(1)(1,0)(2,1)(2,1)ka b k k -=----=-,2(1,0)2(2,1)(5,2)a b +=-+--=--.因为ka b -与2a b +共线,所以2(2)(5)10k ----⨯=,解得12k =-. (2)因为A ,B ,C 三点共线,所以()AB BC R λλ=∈,即23()a b a mb λ+=+,又因为a 与b 不共线,a 与b 可作为平面内所有向量的一组基底,所以23m λλ=⎧⎨=⎩, 解得32m =.【题组三 线性运算的坐标表示】1.(2021·天津红桥·高一学业考试)若向量(1,2),(1,1)a b ==-,则a b +的坐标为( )A .(2,3)B .(0,3)C .(0,1)D .(3,5)【答案】B【解析】解:因为(1,2),(1,1)a b ==-,所以()()()1,21,10,3a b +=+-=故选:B2.(2021·山东邹城·高一期中)已知向量()1,0a =,()2,4b =,则a b +=( )A B .5 C .7 D .25【答案】B【解析】根据题意,向量()1,0a =,()2,4b =,则()3,4a b +=,故9165a b +=+.故选:B .3.(2021·全国·高一专题练习)已知向量(1,1)a =,()2,2b x x =+,若a ,b 共线,则实数x 的值为( )A .-1B .2C .1或-2D .-1或2【答案】D【解析】因为向量(1,1)a =,()2,2b x x =+,且a ,b 共线,所以22x x =+,解得1x =-或2x =,故选:D4.(2021·全国·高一单元测试)已知(2,1cos )a θ=--,11cos ,4b θ⎛⎫=+- ⎪⎝⎭,且//a b ,则锐角θ等于( )A .45°B .30°C .60°D .30°或60°【答案】A【解析】因为//a b ,所以()()()121cos 1cos 04θθ⎛⎫-⨯---+= ⎪⎝⎭,得211cos 02θ-+=,即21cos 2θ=,因为θ为锐角,所以cos θ=45θ=.故选:A5.(2021·云南省永善县第一中学高一月考)已知点()2,2,1A ,()1,4,3B ,()4,,C x y 三点共线,则x y -=( )A .0B .1C .1-D .2-【答案】B【解析】因为A ,B ,C 三点共线,所以可设AB AC λ=,因为(1,2,2)AB =-,()2,2,1AC x y =--,所以()()122221x y λλλ⎧-=⎪=-⎨⎪=-⎩,解得1223x y λ⎧=-⎪⎪=-⎨⎪=-⎪⎩, 所以1x y -=.故选:B.6.(2021·广东·佛山市超盈实验中学高一月考)(多选)已知()1,3a =,()2,1b =-,下列计算正确的是( )A .()1,4a b +=-B .()3,2a b -=C .()1,2b a -=D .()1,2a b --=【答案】AB【解析】因为()1,3a =,()2,1b =-,所以()1,4a b +=-,故A 正确; ()3,2a b -=,故B 正确;()3,2b a -=--,故C 错误;()1,4a b --=-,故D 错误.故选:AB.7.(2021·湖南·永州市第一中学高一期中)(多选)已知向量()1,2a =-,()1,b m =-,则( )A .若a 与b 垂直,则1m =-B .若//a b ,则2m =C .若1m =,则13a b -=D .若2m =-,则a 与b 的夹角为60︒ 【答案】BC【解析】A :a 与b 垂直,则120m --=,可得12m =-,故错误; B ://a b ,则20m -=,可得2m =,故正确;C :1m =有()1,1b =-,则(2,3)a b -=-,可得13a b -=,故正确;D :2m =-时,有()1,2b =--,所以33cos ,5||||5a b a b a b ⋅<>===⨯,即a 与b 的夹角不为60︒,故错误. 故选:BC8.(2021·全国·高一课时练习)(多选)已知(4,2),(,2)AB AC k ==-,若ABC 为直角三角形,则k 可取的值是( )A .1B .2C .4D .6 【答案】AD【解析】因为()()4,2,,2AB AC k ==-,所以()4,4BC k =--,当A ∠为直角时,0AB AC ⋅=,所以440k -=,所以1k =,当B 为直角时,0AB BC ⋅=,所以4240k -=,所以6k =,当C ∠为直角时,0AC BC ⋅=,所以2480k k -+=,此时无解,故选:AD.9.(2021·河北·正定中学高一月考)(多选)已知向量(2,1)a =,(3,1)b =-,则( )A .()a b a +⊥B .|2|6a b +=C .向量a 在向量b 上的投影向量是62(,)55-D .是向量a 的单位向量 【答案】AD【解析】对于A ,()1,2a b +=-,则()220a b a +⋅=-+=,所以()a b a +⊥,故A 正确;对于B ,()24,3a b +=-,则|2|5a b +=,故B 错误;对于C ,向量a 在向量b 上的投影向量为531cos ,,1022b a b b b a a b b b b ⋅-⎛⎫⋅⋅=⋅==- ⎪⎝⎭, 故C 错误;对于D ,因为向量的模等于1,120-=,所以向量与向量a 共线,故是向量a 的单位向量,故D 正确. 故选:AD. 10.(2021·全国·高一课时练习)已知平面向量a =(2,1),b =(m ,2),且a ∥b ,则3a +2b =_______.【答案】(14,7)【解析】因为向量a =(2,1),b =(m ,2),且//a b ,所以1·m-2×2=0,解得m=4.所以b =(4,2).故3a +2b =(6,3)+(8,4)=(14,7).故答案为:(14,7)11.(2021·全国·高一课时练习)已知向量a =(m ,3),b =(2,﹣1),若向量//a b ,则实数m 为____.【答案】6-【解析】∵//a b ,∴﹣m ﹣6=0,∴6m =-.故答案为:6-.12.(2021·全国·高一课时练习)已知(2,4)A -,(2,3)B -,(3,)C y ,若A ,B ,C 三点共线,则y =___________. 【答案】234- 【解析】解:(2,4)A -,(2,3)B -,(3,)C y ,则()4,7AB =-,()5,3BC y =-,若A ,B ,C 三点共线,则向量AB 与向量BC 共线,则有()4335y --=,解得:234y =-. 故答案为:234-. 13.(2021·全国·高一课时练习)已知向量(2,4)a =-,(1,3)b =-,若2a b +与a kb -+平行,则k =___________. 【答案】-2【解析】因为向量(2,4)a =-,(1,3)b =-,所以()202a b +=-,,()2,43a kb k k -+=+--, 又因为2a b +与a kb -+平行,所以()220k -+=,解得2k =-,故答案为:-2【题组四 数量积的坐标表示】1.(2021·全国·高一单元测试)已知矩形ABCD 中,AB =3,AD =4,E 为AB 上的点,且BE =2EA ,F 为BC 的中点,则AF DE ⋅=( )A .﹣2B .﹣5C .﹣6D .﹣8【答案】B【解析】以点B 为坐标原点,BC 所在直线为x 轴,BA 所在直线为y 轴,距离如图所示的直角坐标系, 则()0,0B ,()0,3A ,()4,3D ,()0,2E ,()2,0F , ()2,3AF =-,()4,1DE =--,则()()()24315AF DE ⋅=⨯-+-⨯-=-.故选:B .2.(2021·吉林·延边二中高一期中)在ABC 中, AB AC AB AC +=-, 4, 2AB AC ==,, E F 为线段BC 的三等分点,则AE AF ⋅=( )A .109 B .4 C .409D .569 【答案】C【解析】ABC 中,|AB AC +|=|AB AC -|,∴2AB +2AB ⋅22AC AC AB +=-2AB ⋅2AC AC +, ∴AB ⋅AC =0,∴AB ⊥AC ,建立如图所示的平面直角坐标系,由E ,F 为BC 边的三等分点,则A (0,0),B (0,4),C (2,0),E (23,83),F (43,43), ∴AE =(23,83),AF =(43,43), ∴AE 2433AF ⋅=⨯+3398440⨯=.故选:C3.(2021·福建省宁化第一中学高一月考)在菱形ABCD 中,120ABC ∠=︒,AC =102BM CB →→→+=,DC DN λ→→=,若29AM AN →→⋅=,则λ=( )A .18B .17C .16D .15【答案】D 【解析】作出图形,建立如图所示的平面直角坐标系,设(,)N x y ,因为120,1,AC ABC BO =∠=∴= 因为102BM CB →→→+=,所以12BM BC →→=,即M 是BC 的中点,所以1(),(0,1),2A M D C -所以1),(,1)2AM DC DN x y λλ→→→====+,由题知0λ≠.故1511),429,.5N AM AN λλλ→→-∴⋅=+=∴= 故选:D4.(2021·广东·东莞市新世纪英才学校高一月考)(多选)已知向量 (2,1)a =,(cos ,sin )(0)b θθθπ=,则下列命题正确的是( )A .若a b ⊥,则tan θ=B .若b 在a 上的投影向量为,则向量a 与b 的夹角为23πC .存在θ,使得a b a b +=+D .a b ⋅【答案】BCD【解析】对A ,若a b ⊥,则2cos sin 0a b θθ⋅+==,则tan θ=A 错误;对B ,若b 在a 上的投影向量为,3a =,且||1b =, ,co 3s 6a b a b a a ∴>⋅=-⋅<,则1cos 2a b 〈〉=-,,2π,3a b ∴〈〉=,故B 正确; 对C ,若2()2a b a b a b =+⋅22++,222(||||)||||2||||a b a b a b +=++,若|||||a b a b =+|+,则||||cos ||||a b a b a b a b ⋅⋅〈〉=,=,即cos ,1a b 〈〉=,故0a,b <>=︒,|||||a b a b =+|+,故C 正确;对D ,2cos sin a b θθ⋅+==)θϕ+,因为0πθ≤≤,π02ϕ<<,则当π2θϕ+=时,a b ⋅故D 正确.故选:BCD.5.(2021·上海·高一课时练习)已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB 在CD 方向上的投影为___________.【解析】()()2,1,5,5AB CD ==,所以向量AB 在CD 方向上的投影为2AB CDCD ⋅==.6(2021·上海·高一课时练习)设a =(2,x ),b =(-4,5),若a 与b 的夹角θ为钝角,则x 的取值范围是___________.【答案】85x <且 【解析】∵θ为钝角,∴0a b ⋅<且两向量不共线,即850a b x ⋅=-+<,解得85x <, 当//a b 时,1040x +=,解得52x =-, 又因,a b 不共线,所以52x ≠-, 所以x 的取值范围是85x <且52x ≠-.故答案为:85x <且52x ≠-.7.(2021·北京·大峪中学高一期中)如图,在矩形ABCD 中,2AB =,BC E 为BC 的中点,点F 在边CD 上,若1AB AF ⋅=,则AE AF ⋅的值是___________.【答案】2【解析】如图,以A 为坐标原点建立平面直角坐标系,则(0,0)A ,(2,0)B ,(C ,2,2E ⎛ ⎝⎭,(F x ;∴(2,0)AB =,(,AF x =,AE ⎛= ⎝⎭; ∴1212AB AF x x ⋅==⇒=, ∴21112AE AF x ⋅=+=+=.故答案为:2.8.(2021·河北张家口·高一期末)在ABC 中,1AC =,2BC =,60ACB ∠=︒,点P 是线段BC 上一动点,则PA PC ⋅的最小值是______.【答案】116- 【解析】在ABC 中,由余弦定理得AB =ABC 是直角三角形,以点A 为坐标原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系,设点P 坐标为(,)a b ,B ,(0,1)C ,(,)PA a b =--,(,1)PC a b =--,直线BC 对应一次函数为1y =,所以1b =,)a b =-,222222(1))]473PA PC a b b a b b b b b b b ⋅=--=-+=--+=-+,[0,1]b ∈,对称轴7[0,1]8b =∈,当78b =时, PA PC ⋅取得最小值116-. 故答案为:116- 9.(2021·山西·平遥县第二中学校高一月考)向量()1,3a =-,()4,2b =-且a b λ+与a 垂直,则λ=___________.【答案】1-【解析】由题意,向量()1,3a =-,()4,2b =-,可得10,10a a b =⋅=,因为a b λ+与a 垂直,可得2()10100a b a a a b λλλ+⋅=+⋅=⨯+=,解得1λ=-.故答案为:1-.10.(2021·上海·高一课时练习)已知a =(1,2),b =(1,λ),分别确定实数λ的取值范围,使得:(1)a 与b 的夹角为直角;(2)a 与b 的夹角为钝角;(3)a 与b 的夹角为锐角. 【答案】(1)λ=-12;(2)1(,)2-∞-;(3)(,)122-∪(2,+∞). 【解析】设a 与b 的夹角为θ,则a b ⋅=(1,2)·(1,λ)=1+2λ.(1)因为a 与b 的夹角为直角,所以cos 0θ=,所以0a b ⋅=,所以1+2λ=0,所以λ=-12.(2)因为a 与b 的夹角为钝角,所以cos 0θ<且cos 1θ≠-,所以0a b ⋅<且a 与b 不反向.由0a b ⋅<得1+2λ<0,故λ<-12,由a 与b 共线得λ=2,故a 与b 不可能反向.所以λ的取值范围为1(,)2-∞-.(3)因为a 与b 的夹角为锐角,所以cos 0θ>,且cos 1θ≠,所以a b ⋅>0且a 与b 不同向. 由a b ⋅>0,得λ>-12,由a 与b 同向得λ=2.所以λ的取值范围为(,)122-∪(2,+∞). 11.(2021·江西·九江一中高一期中)在ABC 中,底边BC 上的中线2AD =,若动点P 满足()22sin cos BP BA BD R θθθ=⋅+⋅∈.(1)求()PB PC AP +⋅的最大值;(2)若=AB AC =PB PC ⋅的范围.【答案】(1)2;(2)[1,3]-.【解析】∵()22sin cos BP BA BD R θθθ=⋅+⋅∈,22sin cos 1θθ+= ∴A 、P 、D 三点共线又∵[]22sin ,cos 0,1θθ∈,∴P 在线段AD 上.∵D 为BC 中点,设PD x =,则2AP x =-,[]0,2x ∈,∴()PB PC AP +⋅=2PD AP ⋅=()22x x -=224x x -+=()2212x --+, ∴()PB PC AP +⋅的最大值为2(2)如图,以D 为原点,BC 为x 轴,AD 为y 轴,建立坐标系,∵=AB AC =,2AD =,∴()()1,0,1,0B C -,设()0,P y 02y ,则()()1,,1,PB y PC y =--=-∴PB PC ⋅=21y -+,∵02y ≤≤,∴[]1,3PB PC ⋅∈-12.(2021·江苏省丹阳高级中学高一月考)已知()1,1a =--,()0,1b =.在①()()//ta b a tb ++;②()()ta b a tb +⊥+;③ta b a tb +=+这三个条件中任选一个,补充在下面问题中,并解答问题.(1)若________,求实数t 的值;(2)若向量(),c x y =,且()1c ya x b =-+-,求c .【答案】(1)选①:1t =±,选②:t =1t =±;【解析】因为()()1,1,0,1a b =--=,所以()()()1,10,1,1ta b t t t +=--+=--,()()()1,10,11,1a tb t t +=--+=--,选①:(1)因为()()//ta b a tb ++,所以()()11t t t --=--;即21t =,解得1t =±;(2)()()()()()10,1,,1,c ya x y y b x y x y x y +=-+-=-=-+=,所以1x y y x y =⎧⎨=-+⎩,可得11x y =⎧⎨=⎩,所以()1,1c =,所以2211c =+= 选②:(1)因为()()ta b a tb +⊥+,所以()()110t t t +--=;即2310t t -+=,解得:t = (2)()()()()()10,1,,1,c ya x y y b x y x y x y +=-+-=-=-+=,所以1x y y x y =⎧⎨=-+⎩,可得11x y =⎧⎨=⎩,所以()1,1c =,所以2211c =+= 选③:(1)因为ta b a tb +=+,=即21t =,解得:1t =±;(2)()()()()()10,1,,1,c ya x y y b x y x y x y +=-+-=-=-+=,所以1x y y x y =⎧⎨=-+⎩,可得11x y =⎧⎨=⎩,所以()1,1c =,所以2211c =+=13.(2021·河南·高一期末)已知向量()2,1a =.(1)若向量()11b =-,,且ma b -与2a b -垂直,求实数m 的值; (2)若向量()2,c λ=-,且c 与a 的夹角为钝角,求2c a -的取值范围.【答案】(1)57-;(2)(3)5,⎡⎣+∞.【解析】(1)因为()21,1ma b m m -=+-,()24,1a b -=-,结合ma b -与2a b -垂直,得到()()42110m m +--=,解得57m =-,所以实数m 的值为57-. (2)因为c 与a 的夹角为钝角,所以()2240a c λλ⋅=⨯-+=-<,4λ<. 又当1λ=-时,//c a ,所以4λ<且1λ≠-. 因为()26,2c a λ-=--,所以()226c a -=-由于当4λ<且1λ≠-时,[)223636,45()(45,)λ-+∈+∞.所以2c a -的取值范围为(3)5,⎡⎣+∞.【题组五 向量与三角函数的综合运用】1.(2021·全国·高三专题练习)已知向量ππ2sin ,sin 44a x x ⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎭,πsin ,sin 4b x m x ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.(1)若0m =,试研究函数()π3π,84f x a b x ⎛⎫⎡⎤=⋅∈ ⎪⎢⎥⎣⎦⎝⎭在区间上的单调性;(2)若tan 2x =,且//a b ,试求m 的值.【答案】(1)π3π,88x ⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递增,3π3π,84x ⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递减;(2) 2m =.【解析】(1)当0m =时,()()2πsin sin sin cos sin sin cos 4f x x x x x x x x x ⎛⎫=+=+=+ ⎪⎝⎭1cos 2sin 2π122242x x x -⎛⎫=+=-+ ⎪⎝⎭,由π3π,84x ⎡⎤∈⎢⎥⎣⎦,得π5π20,44x ⎡⎤-∈⎢⎥⎣⎦.当ππ20,42x ⎡⎤-∈⎢⎥⎣⎦,即π3π,88x ⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递增;当ππ5π2,424x ⎡⎤-∈⎢⎥⎣⎦,即3π3π,84x ⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递减.(2)由//a b πππsin sin sin sin 444x x x x ⎛⎫⎛⎫⎛⎫+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由tan 2x =,可得πsin 04x ⎛⎫+≠ ⎪⎝⎭(若πsin 04x ⎛⎫+= ⎪⎝⎭,则ππ4x k =-(k Z ∈),此时tan 1x =-,与条件矛盾).πsin sin 4x x ⎛⎫-= ⎪⎝⎭,即()sin cos sin m x x x -=,两边同除以cos x ,可得()tan 1tan 2m x x -==,∴2m =.2.(2021·江苏·金陵中学高一期中)设向量(3cos ,sin ),(sin ,3cos ),(cos ,3sin )a b c ααββββ===-. (1)若a 与b c -垂直,求tan()αβ+的值; (2)求||b c -的最小值.【答案】(1)tan()1αβ+=;.【解析】(1)因为a 与b c -垂直,所以()0a b c ⋅-=,即0a b a c ⋅-⋅=, 所以()()3cos sin cos sin 3cos cos sin sin 0αββααββα+--=, 所以()()3sin 3cos 0βααβ+-+=,所以tan()1αβ+=; (2)因为()sin cos ,3cos 3sin b c ββββ-=-+ ()()()2222||sin cos 3cos 3sin b c b cββββ-=-=-++1016sin cos 108sin 2βββ=+=+, 所以当222k k Z πβπ=-+∈,,即4k k Z πβπ=-+∈,时2||b c -取最小值2,所以||b c -.3.(2021·江苏铜山·高一期中)已知向量(2sin ,sin cos )a θθθ+=,(cos ,2)m b θ-=,函数()f a b θ=⋅, (1)当0m =时,求函数π6f ⎛⎫⎪⎝⎭的值;(2)若不等式4()23sin cos f m θθθ+>-+对所有π02 ,θ⎡⎤∈⎢⎥⎣⎦恒成立.求实数m 的范围.【答案】(1)1+;(2)(,-∞ 【解析】(1)因为向量(2sin ,sin cos )a θθθ+=,(cos ,2)m b θ-=, ()()()()()2sin cos 2sin cos sin 22sin cos f a b m m θθθθθθθθ=⋅=+-+=+-+,当0m =时, ()()()2sin cos 2sin cos sin 22sin cos f a b θθθθθθθθ=⋅=++=++,ππππ1sin 2sin cos 2163662f ⎛⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭; (2)不等式4()23sin cos f m θθθ+>-+对所有π02 ,θ⎡⎤∈⎢⎥⎣⎦恒成立, 即()()4sin 22sin cos 230sin cos m m θθθθθ+-++-+>+对所有π02 ,θ⎡⎤∈⎢⎥⎣⎦恒成立,令πsin cos 4t θθθ⎛⎫=+=+ ⎪⎝⎭,可得21sin 2t θ=+,所以2sin 21t θ=-,因为π02 ,θ⎡⎤∈⎢⎥⎣⎦,所以ππ3π444,θ⎡⎤+∈⎢⎥⎣⎦,()πsin 14,θ⎤+∈⎥⎣⎦,所以π4t θ⎛⎫⎡=+∈ ⎪⎣⎝⎭所以()2412230t m t m t -+-+-+>对于t ⎡∈⎣恒成立, 即()24222t t m t t+++>+对于t ⎡∈⎣恒成立, 因为20t +>,所以24222t t t m t +++<+对于t ⎡∈⎣恒成立, 令()24222t t t g t t +++=+,t ⎡∈⎣,只需()min m g t <, 因为()()2422222222t t t t t t t t t t t ++++++==+≥++当且仅当2t t=即t ()g t取得最小值所以m <所以实数m的范围为(,-∞.4.(2021·江苏宜兴·高一期中)已知向量a =(2cos α,2sin α),b =(6cos β,6sin β),且()a b a ⋅-=2. (1)求向量a 与b 的夹角;(2)若33ta b -=,求实数t 的值. 【答案】(1)3π;(2)32. 【解析】(1)由a =(2cos α,2sin α),b =(6cos β,6sin β),得24cos 2a =,36cos 6b ==,又()2a b a ⋅-=,∴22a b a ⋅-=,则2226a b ⋅=+=, 设向量a 与b 的夹角为θ,则cos θ=61262a b a b⋅==⨯, 又θ∈[0,π],∴3πθ=;(2)由33ta b -=,得2()27ta b -=, 即222227t a ta b b -⋅+=, ∴4t 2﹣12t +36=27, ∴4t 2﹣12t +9=0,解得t =32. 5.(2021·河北安平中学高一期末)在①255a b -=,②8()5+⋅=a b b ,③a b ⊥,三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.已知向量(cos ,sin )a αα=,(cos ,sin )b ββ=, ,若02πα<<,02πβ-<<,且5sin 13β=-,求sin α. 【答案】答案见解析.【解析】因为(cos ,sin )a αα=,(cos ,sin )b ββ=,所以||||1a b ==, 选择方案①:因为255a b -=,所以24()5-=a b ,即22425+-⋅=b a b a , 所以35a b ⋅=,因为(cos ,sin )a αα=,(cos ,sin )b ββ=,所以3cos cos sin sin 5αβαβ⋅=+=a b ,即3cos()5αβ-=, 因为02πα<<,02πβ-<<,所以0αβπ<-<.所以4sin()5αβ-=,因为02πβ-<<,5sin 13β=-,所以12cos 13β==,所以4123533sin sin[()]sin()cos cos()sin =51351365ααββαββαββ⎛⎫=-+=-+-=⨯+⨯- ⎪⎝⎭.选择方案②: 因为8()5+⋅=a b b ,所以285⋅+=a b b ,所以35a b ⋅=, 因为(cos ,sin )a αα=,(cos ,sin )b ββ=, 所以3cos cos sin sin 5αβαβ⋅=+=a b ,即3cos()5αβ-=, 因为02πα<<,02πβ-<<,所以0αβπ<-<,所以4sin()5αβ-=,因为02πβ-<<,5sin 13β=-,所以12cos 13β==,所以4123533sin sin[()]sin()cos cos()sin =51351365ααββαββαββ⎛⎫=-+=-+-=⨯+⨯- ⎪⎝⎭.选择方案③:因为(cos ,sin )a αα=,(cos ,sin )b ββ=,且a b ⊥, 所以cos cos sin sin 0αβαβ⋅=+=a b ,即cos()0αβ-=, 因为02πα<<,02πβ-<<,所以0αβπ<-<,所以2παβ-=,因为02πβ-<<,5sin 13β=-,所以12cos 13β==,所以12sin sin cos 213παββ⎛⎫=+== ⎪⎝⎭.6.(2021·重庆复旦中学高一期中)在ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且tan 21tan A cB b+=. (1)求角A ;(2)若()0,1m =-,()2cos ,2cos 2Cn B =,试求m n +的取值范围.【答案】(1)3π;(2)54⎫⎪⎪⎝⎭. 【解析】(1)tan 2sin cos 2sin 11tan sin cos sin A c A B CB b B A B+=⇒+=, 即sin cos sin cos 2sin sin cos sin B A A B CB A B +=,()sin 2sin sin cos sin A BC B A B +∴=,1cos 2A ∴=.0πA <<,3A π∴=. (2)()2cos ,2cos1cos ,cos 2C m n B B C ⎛⎫+=-= ⎪⎝⎭, 2222221cos cos cos cos 1sin 2326m n B C B B B ππ⎛⎫⎛⎫∴+=+=+-=-- ⎪ ⎪⎝⎭⎝⎭,3A π=,23π∴+=B C , 20,3B π⎛⎫∴∈ ⎪⎝⎭,从而72666B πππ-<-<,∴当sin 216B π⎛⎫-= ⎪⎝⎭,即3B π=时,m n +取得最小值,1sin 262B π⎛⎫-=- ⎪⎝⎭,时,m n +取得最大值54,故2524m n ⎛⎫+∈ ⎪ ⎪⎝⎭.。
学案26 平面向量的基本定理及坐标表示导学目标: 1.了解平面向量的基本定理及其意义.2.掌握平面向量的正交分解及其坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.自主梳理1.平面向量基本定理定理:如果e 1,e 2是同一平面内的两个________向量,那么对于这一平面内的任意向量a ,__________一对实数λ1,λ2,使a =______________.我们把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组________. 2.夹角(1)已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ叫做向量a 与b 的________.(2)向量夹角θ的范围是________,a 与b 同向时,夹角θ=____;a 与b 反向时,夹角θ=____.(3)如果向量a 与b 的夹角是________,我们说a 与b 垂直,记作________. 3.把一个向量分解为两个____________的向量,叫做把向量正交分解.4.在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,对于平面内的一个向量a ,有且只有一对实数x ,y 使a =x i +y j ,我们把有序数对______叫做向量a 的________,记作a =________,其中x 叫a 在________上的坐标,y 叫a 在________上的坐标.5.平面向量的坐标运算 (1)已知向量a =(x 1,y 1),b =(x 2,y 2)和实数λ,那么a +b =________________________,a -b =________________________,λa =________________.(2)已知A (11x y ,),B (22x y ,),则AB →=OB →-OA →=(x 2,y 2)-(x 1,y 1)=(x 2-x 1,y 2-y 1),即一个向量的坐标等于表示此向量的有向线段的__________的坐标减去__________的坐标.6.若a =(x 1,y 1),b =(x 2,y 2) (b ≠0),则a ∥b 的充要条件是________________________. 7.(1)P 1(x 1,y 1),P 2(x 2,y 2),则P 1P 2的中点P 的坐标为________________________________.(2)P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3),则△P 1P 2P 3的重心P 的坐标为_______________. 自我检测1.(2010·福建)若向量a =(x,3)(x ∈R ),则“x =4”是“|a |=5”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件2.设a =⎝ ⎛⎭⎪⎫32,sin α,b =⎝⎛⎭⎪⎫cos α,13,且a∥b ,则锐角α为 ( )A .30°B .45°C .60°D .75°3.(2011·马鞍山模拟)已知向量a =(6,-4),b (0,2),OC →=c =a +λb ,若C 点在函数y =sinπ12x 的图象上,则实数λ等于( )A.52B.32 C .-52 D .-324.(2010·陕西)已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________.5.(2009·安徽)给定两个长度为1的平面向量OA →和OB →,它们的夹角为120°.如图所示,点C 在以O 为圆心的圆弧»AB 上变动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是______.探究点一 平面向量基本定理的应用例1 如图所示,在△OAB 中,OC →=14OA →,OD →=12OB →,AD 与BC 交于点M ,设OA →=a ,OB →=b ,以a 、b 为基底表示OM →.变式迁移1 (2011·厦门模拟)如图,平面内有三个向量OA →、OB →、OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ、μ∈R ),则λ+μ的值为________.探究点二 平面向量的坐标运算例2 已知A (-2,4),B (3,-1),C (-3,-4),且CM →=3CA →,CN →=2CB →,试求点M ,N 和MN →的坐标.变式迁移2 已知点A (1,-2),若向量|AB →与a =(2,3)同向,|AB →|=213,则点B 的坐标为________.探究点三 在向量平行下求参数问题例3 (2011·嘉兴模拟)已知平面内三个向量:a =(3,2),b =(-1,2),c =(4,1).(1)求满足a =m b +n c 的实数m 、n ; (2)若(a +k c )∥(2b -a ),求实数k .变式迁移3 (2009·江西)已知向量a =(3,1),b =(1,3),c =(k,7),若(a -c )∥b ,则k =________.1.在解决具体问题时,合理地选择基底会给解题带来方便.在解有关三角形的问题时,可以不去特意选择两个基本向量,而可以用三边所在的三个向量,最后可以根据需要任意留下两个即可,这样思考问题要简单得多.2.平面直角坐标系中,以原点为起点的向量OA →=a ,点A 的位置被a 所唯一确定,此时a 的坐标与点A 的坐标都是(x ,y ).向量的坐标表示和以坐标原点为起点的向量是一一对应的,即向量(x ,y )垐垐垎噲垐垐一一对应向量OA →垐垐垎噲垐垐一一对应点A (x ,y ).要把点的坐标与向量的坐标区分开,相等的向量坐标是相同的,但起点、终点的坐标可以不同,也不能认为向量的坐标是终点的坐标,如A (1,2),B (3,4),则AB →=(2,2).(满分:75分)一、选择题(每小题5分,共25分)1.已知a,b 是不共线的向量,若AB →=λ1a +b ,AC →=a +λ2b , (λ1,λ2∈R ),则A 、B 、C 三点共线的充要条件为 ( )A .λ1=λ2=-1B .λ1=λ2=1C .λ1λ2-1=0D .λ1λ2+1=02.如图所示,平面内的两条相交直线OP 1和OP 2将该平面分割成四个部分Ⅰ、Ⅱ、Ⅲ、Ⅳ(不包括边界).若OP →=aOP 1→+bOP 2→,且点P 落在第Ⅲ部分,则实数a ,b 满足 ( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <03.(2011·湛江月考)设两个向量a =(λ+2,λ2-cos 2α)和b =⎝ ⎛⎭⎪⎫m ,m2+sin α,其中λ、m 、α为实数.若a =2b ,则λm的取值范围是 ( )A .[-6,1]B .[4,8]C .(-∞,1]D .[-1,6] 4.设0≤θ≤2π时,已知两个向量OP 1→=(cos θ,sin θ),OP 2→=(2+sin θ,2-cosθ),则向量P 1P 2→长度的最大值是 ( )A. 2B. 3 C .3 2 D .2 35.在平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则BD →等于( ) A .(-2,-4) B .(-3,-5) C .(3,5) D .(2,4) 题号 1 2 3 4 5 答案 二、填空题(每小题4分,共12分)6.(2011·烟台模拟)如图所示,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为______.7.在平面直角坐标系xOy 中,四边形ABCD 的边AB ∥DC ,AD ∥BC .已知A (-2,0),B (6,8),C (8,6),则D 点的坐标为________.8.(2009·天津)在四边形ABCD 中,AB →=DC →=(1,1),1|BA →|·BA →+1|BC →|·BC →=3|BD →|·BD →,则四边形ABCD 的面积为________.三、解答题(共38分)9.(12分)已知A 、B 、C 三点的坐标分别为(-1,0)、(3,-1)、(1,2),并且AE →=13AC →,BF →=13BC →.求证:EF →∥AB →.10.(12分)(2011·宣城模拟)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,已知向量m =(a ,b ),向量n =(cos A ,cos B ),向量p =(22sin B +C 2,2sin A ),若m ∥n ,p 2=9,求证:△ABC 为等边三角形.11.(14分)如图,在边长为1的正△ABC 中,E ,F 分别是边AB ,AC 上的点,若AE →=mAB →,AF →=nAC →,m ,n ∈(0,1).设EF 的中点为M ,BC 的中点为N .(1)若A ,M ,N 三点共线,求证:m =n ;(2)若m +n=1,求MN u u u u r的最小值.答案 自主梳理1.不共线 有且只有 λ1e 1+λ2e 2 基底 2.(1)夹角(2)[0,π] 0 π (3)π2a ⊥b3.互相垂直4.(x ,y ) 坐标 (x ,y ) x 轴 y 轴5.(1)(x 1+x 2,y 1+y 2) (x 1-x 2,y 1-y 2) (λx 1,λy 1) (2)终点 始点6.x 1y 2-x 2y 1=0 7.(1)⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22(2)⎝ ⎛⎭⎪⎫x 1+x 2+x 33,y 1+y 2+y 33自我检测1.A [由x =4知|a |=42+32=5;由|a |=x 2+32=5,得x =4或x =-4.故“x =4”是“|a |=5”的充分而不必要条件.]2.B [∵a ∥b ,∴32×13-sin αcos α=0,∴sin 2α=1,2α=90°,α=45°.]3.A [c =a +λb =(6,-4+2λ),代入y =sin π12x 得,-4+2λ=sin π2=1,解得λ=52.]4.-1解析 a +b =(1,m -1),由(a +b )∥c , 得1×2-(m -1)×(-1)=0,所以m =-1. 5.2解析 建立如图所示的坐标系,则A (1,0),B (cos 120°,sin 120°),即B (-12,32).设AOC ∠=α,则OA →= (cos α,sin α). ∵OC →=xOA →+yOB →=(x,0)+⎝ ⎛⎭⎪⎫-y2,32y =(cos α,sin α).∴⎩⎪⎨⎪⎧x -y2=cos α,32y =sin α.∴⎩⎪⎨⎪⎧x =sin α3+cos α,y =2sin α3,∴x +y =3sin α+cos α=2sin(α+30°).∵0°≤α≤120°,∴30°≤α+30°≤150°. ∴x +y 有最大值2,当α=60°时取最大值. 课堂活动区例1 解题导引 本题利用方程的思想,设OM →=ma +nb ,通过建立关于m 、n 的方程求解,同时注意体会应用向量法解决平面几何问题的方法.解 设OM →=m a +n b (m ,n ∈R ), 则AM →=OM →-OA →=(m -1)a +n b ,AD →=OD →-OA →=12b -a =-a +12b .因为A ,M ,D 三点共线,所以m -1-1=n12,即m +2n =1.而CM →=OM →-OC →=⎝ ⎛⎭⎪⎫m -14a +n b ,CB →=OB →-OC →=b -14a =-14a +b ,因为C ,M ,B 三点共线,所以m -14-14=n1,即4m +n =1.由⎩⎪⎨⎪⎧m +2n =1,4m +n =1, 解得⎩⎪⎨⎪⎧m =17,n =37.所以OM →=17a +37b .变式迁移1 6解析 如右图,OC →=OD →+OE →=λOA →+μOB →在△OCD 中,∠COD =30°,∠OCD =∠COB =90°,可求|OD →|=4,同理可求|OE →|=2, ∴λ=4,μ=2,λ+μ=6.例2 解 ∵A (-2,4),B (3,-1),C (-3,-4), ∴CA →=(1,8),CB →=(6,3). ∴CM →=3CA →=(3,24), CN →=2CB →=(12,6).设M (x ,y ),则CM →=(x +3,y +4)=(3,24), ∴⎩⎪⎨⎪⎧x +3=3,y +4=24,∴⎩⎪⎨⎪⎧x =0,y =20.∴M (0,20).同理可得N (9,2),因此MN →=(9,-18).∴所求M (0,20),N (9,2),MN →=(9,-18). 变式迁移2 (5,4)解析 ∵向量AB →与a 同向,∴设AB →=(2t,3t ) (t >0). 由|AB →|=213,∴4t 2+9t 2=4×13.∴t 2=4.∵t >0,∴t =2.∴AB →=(4,6).设B 为(x ,y ),∴⎩⎪⎨⎪⎧x -1=4,y +2=6. ∴⎩⎪⎨⎪⎧x =5,y =4.例3 解 (1)∵a =m b +n c ,m ,n ∈R ,∴(3,2)=m (-1,2)+n (4,1)=(-m +4n,2m +n ).∴⎩⎪⎨⎪⎧-m +4n =3,2m +n =2, 解之得⎩⎪⎨⎪⎧m =59,n =89.(2)∵(a +k c )∥(2b -a ),且a +k c =(3+4k,2+k ),2b -a =(-5,2), ∴(3+4k )×2-(-5)×(2+k )=0,∴k =-1613.变式迁移3 5解析 ∵a -c =(3,1)-(k,7)=(3-k ,-6),且(a -c )∥b ,∴3-k 1=-63,∴k =5.课后练习区1.C [∵A 、B 、C 三点共线⇔AB →与AC →共线⇔AB →=kAC →⇔⎩⎪⎨⎪⎧λ1=k ,kλ2=1,∴λ1λ2-1=0.]2.B [由于点P 落在第Ⅲ部分,且OP →=aOP 1→+bOP 2→,则根据实数与向量的积的定义及平行四边形法则知a >0,b <0.]3.A [∵2b =(2m ,m +2sin α),∴λ+2=2m ,λ2-cos 2α=m +2sin α,∴(2m -2)2-m =cos 2α+2sin α,即4m 2-9m +4=1-sin 2α+2sin α.又∵-2≤1-sin 2α+2sin α≤2,∴-2≤4m 2-9m +4≤2,解得14≤m ≤2,∴12≤1m ≤4.又∵λ=2m -2, ∴λm =2-2m ,∴-6≤2-2m≤1.]6.2解析 方法一 若M 与B 重合,N 与C 重合,则m +n =2.方法二 ∵2AO →=AB →+AC →=mAM →+nAN →, AO →=m 2AM →=m 2AM →.∵O 、M 、N 共线,∴m 2+n2=1.∴m +n =2. 7.(0,-2)解析 设D 点的坐标为(x ,y ),由题意知BC→=AD→,即(2,-2)=(x +2,y ),所以x =0,y =-2,∴D (0,-2). 8. 3S =|AB →|=|BC→|sin 60°=2×2×32= 3. 9.证明 设E 、F 两点的坐标分别为(x 1,y 1)、(x 2,y 2),则依题意,得AC→=(2,2),BC→=(-2,3),AB →=(4,-1).∴A E→=13AC →=⎝ ⎛⎭⎪⎫23,23,BF→=13BC →=⎝ ⎛⎭⎪⎫-23,1.∴A E→=(x 1,y 1)-(-1,0)=⎝ ⎛⎭⎪⎫23,23,BF→=(x 2,y 2)-(3,-1)=⎝ ⎛⎭⎪⎫-23,1.…………………………………………………(4分)∴(x 1,y 1)=⎝ ⎛⎭⎪⎫23,23+(-1,0) =⎝ ⎛⎭⎪⎫-13,23, (x 2,y 2)=⎝ ⎛⎭⎪⎫-23,1+(3,-1)=⎝ ⎛⎭⎪⎫73,0. ∴EF→=(x 2,y 2)-(x 1,y 1)=⎝ ⎛⎭⎪⎫83,-23.…………………………………………………(8分)又∵AB →=(4,-1),∴4×⎝ ⎛⎭⎪⎫-23-(-1)×83=0, ∴EF→∥AB →.……………………………………………………………………………(12分)10.证明 ∵m ∥n ,∴a cos B =b cos A . 由正弦定理,得sin A cos B =sin B cos A , 即sin(A -B )=0.∵A 、B 为三角形的内角, ∴-π<A -B <π.∴A =B .……………………………………………………………………………………(5分)∵p 2=9,∴8sin2B +C2+4sin 2A =9.∴4[1-cos(B +C )]+4(1-cos 2A )=9.∴4cos 2A -4cos A +1=0,解得cos A =12.……………………………………………………………………………(10分)又∵0<A <π,∴A =π3.∴△ABC 为等边三角形.………………………………………………………………(12分)11.解 (1)由A ,M ,N 三点共线,得A M→∥A N→,设A M→=λAN →(λ∈R ),即12(AE →+A F→)=12λ(AB →+AC →),所以m AB →+nAC →=λ(AB →+AC →),所以m =n .…………………………………………(5分)(2)因为MN →=AN →-AM →=12(AB →-AC →)=12(AE →-AF →)=12 (1-m )AB → +12(1-n )AC →,……………………………………………………………………………………………(8分)又m +n =1,所以MN →=12 (1-m )AB →+12mAC →,所以|MN →|2=14(1-m )2AB →2+14m 2AC →2+12(1-m )mAB →·AC →………………………………(10分)=14(1-m )2+14m 2+14(1-m )m =14(m -12)2+316. 故当m =12时,|MN →|min =34.……………………………………………………………(14分)。
高三数学平面向量基本定理及坐标表示试题答案及解析1.已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆上的点到焦点距离的最大值为.(1)求椭圆的标准方程;(2)若过点的直线与椭圆交于不同的两点,且,求实数的取值范围.【答案】(1)(2)【解析】(1)设所求的椭圆方程为:由题意:所求椭圆方程为:.(2)若过点的斜率不存在,则.若过点的直线斜率为,即:时,直线的方程为由因为和椭圆交于不同两点所以,所以①设由已知,则②③将③代入②得:整理得:所以代入①式得,解得.所以或.综上可得,实数的取值范围为:.2.(2013•湖北)已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),则向量在方向上的投影为()A.B.C.D.【答案】A【解析】,,则向量方向上的投影为:•cos<>=•===,故选A.3.如图,在正方形ABCD中,E为AB的中点,P为以A为圆心,AB为半径的圆弧上的任意一点,设向量.【答案】【解析】以为原点,以所在直线为轴,建立平面直角坐标系.设正方形的边长为,则设 .又向量所以,∴,∴,∴.由题意得∴当时,同时,时,取最小值为.【考点】平面向量的坐标运算,三角函数的性质.4.如图,在直角梯形ABCD中,AB//CD,AB=2,AD=DC=1,P是线段BC上一动点,Q是线段DC上一动点,,则的取值范围是.【答案】【解析】解:建立平面直角坐标系如图所示,则因为,所以所以,, 所以, 故答案应填.【考点】1、平面向量基本定理;2、向量的坐标表示;3、向量的数量积;4、一元二次函数的最值.5. 如图,△ABC 中,D 为BC 的中点,G 为AD 的中点,过点G 任作一直线MN 分别交AB 、AC 于M 、N 两点.若=x ,=y ,求的值.【答案】4 【解析】设=a ,=b ,则=x a ,=y b ,== (+)= (a +b ).∴=-= (a +b )-x a =a +b ,=-=y b -x a =-x a +y b . ∵与共线,∴存在实数λ,使=λ.∴a +b =λ(-x a +y b )=-λx a +λy b .∵a 与b 不共线,∴消去λ,得=4.6. 已知点O (0,0),A 0(0,1),A n (6,7),点A 1,A 2,…,A n -1(n ∈N ,n ≥2)是线段A 0A n 的n 等分点,则| ++…+OA n -1+|等于( ) A .5n B .10n C .5(n +1) D .10(n +1)【答案】C【解析】取n =2,,则++=(0,1)+(3,4)+(6,7)=(9,12),所以| ++|==15,把n =2代入选项中,只有5(n +1)=15,故排除A 、B 、D ,选C.7. 已知向量a=(cosθ,sinθ),b=(,-1),则|2a-b|的最大值为( ) A .4 B .4 C .16D .8【答案】B【解析】∵2a-b=(2cosθ-,2sinθ+1), ∴|2a-b|===故最大值为4.8. 已知向量a=(1,-2),b=(m,4),且a ∥b,那么2a-b=( )A.(4,0)B.(0,4)C.(4,-8)D.(-4,8)【答案】C【解析】由a∥b,得4=-2m,∴m=-2,∴b=(-2,4),∴2a-b=2(1,-2)-(-2,4)=(4,-8).9.已知向量a=(cosα,-2),b=(sinα,1)且a∥b,则tan(α-)等于()A.3B.-3C.D.-【答案】B【解析】选B.∵a=(cosα,-2), b=(sinα,1)且a∥b,∴=(经分析知cosα≠0),∴tanα=-.∴tan(α-)===-3,故选B.【方法技巧】解决向量与三角函数的综合题的方法向量与三角函数的结合是近几年高考中出现较多的题目,解答此类题目的关键是根据条件将所给的向量问题转化为三角问题,然后借助三角恒等变换再根据三角求值、三角函数的性质、解三角形的问题来解决.10.已知向量a=(3,1),b=,若a+λb与a垂直,则λ等于________.【答案】4【解析】根据向量线性运算、数量积运算建立方程求解.由条件可得a+λb=,所以(a+λb)⊥a⇒3(3-λ)+1+λ=0⇒λ=4.11.设向量,,若满足,则( )A.B.C.D.【答案】D【解析】因为,所以, ,解得:,故选D.【考点】向量共线的条件.12.在所在的平面内,点满足,,且对于任意实数,恒有,则()A.B.C.D.【答案】C【解析】过点作,交于,是边上任意一点,设在的左侧,如图,则是在上的投影,即,即在上的投影,,令,,,,故需要,,即,为的中点,又是边上的高,是等腰三角形,故有,选C.【考点】共线向量,向量的数量积.13.已知向量,若,则的最小值为.【答案】4【解析】,所以.【考点】1、向量的平行关系;2、向量的模;3、重要不等式14.已知向量,向量,且,则的值是()A.B.C.D.【答案】C.【解析】,,即得.【考点】向量的坐标运算.15.已知点,,则与共线的单位向量为()A.或B.C.或D.【答案】C【解析】因为点,,所以,,与共线的单位向量为.【考点】向量共线.16.已知向量,,若,则实数等于.【答案】.【解析】,两边平方得,则有,化简得,即,解得.【考点】平面向量的模、平面向量的坐标运算17.在中,已知,且,则( )A.B.C.D.【答案】A【解析】因为,,所以,,,故选A。
专题02 平面向量基本定理及坐标表示(专题测试)【基础题】1. (2020·广东东莞市·高一期末)已知向量()2,3a =,(),6b m =,且a b ⊥,则m =( ) A .4- B .4C .9-D .9【答案】C【分析】根据向量的数量积的运算公式和向量的垂直条件,列出方程,即可求解. 【详解】由题意,向量(2,3)a =,(),6b m =,因为a b ⊥,可得2362180a b m m ⋅=⨯+⨯=+=,解得9m =-. 故选:C.【点睛】本题主要考查了平面向量的数量积的坐标运算,以及向量的垂直条件的应用,其中解答中熟记向量的数量积的计算公式是解答的关键,着重考查计算能力.2. (2020·广东揭阳市·高一期中)已知(1,1)AB =-,(0,1)C ,若2CD AB =,则点D 的坐标为 A .(2,3)- B .(2,3)-C .(2,1)-D .(2,1)-【答案】D【分析】设出D 的坐标,代入2CD AB =,计算出D 点的坐标.【详解】设(),D x y ,则(),1CD x y =-,()22,2AB =-,根据2CD AB =得()(),12,2x y -=-,即212x y =⎧⎨-=-⎩,解得()2,1D -,故选D. 【点睛】本小题主要考查向量的减法和数乘计算,考查两个向量相等的坐标表示,属于基础题.3.(2020·广东汕头市·高二期末)如图所示,已知在ABC 中,D 是边AB 上的中点,则CD =( )A .12BC BA -B .12BC BA -+ C .12BC BA --D .12BC BA + 【答案】B【分析】利用向量减法和数乘运算求得正确结论. 【详解】1122CD BD BC BA BC BC BA =-=-=-+.故选:B 4. (2019·广东深圳市·福田外国语高中高三一模(文))向量(1,2)a =,(2,)b k =-,若a 与b 共线,则|3|a b +=( )A B .C .D .5【答案】A【分析】通过向量共线求出k ,然后求解|3|a b +即可. 【详解】向量(1,2)a =,(2,)b k =-,a 与b 共线, ∴4k =-,即3(1,2)a b +=,∴2312a b +=+=故选:A .【点睛】本题考查向量的共线,向量的模的求法,属于基础题.5.(2020·东莞市光明中学高二月考)已知向量()3,2a =,(),4b x =且//a b ,则x 的值是( ) A .6- B .83C .6D .83-【答案】C【分析】根据平面向量共线的坐标表示可得出关于实数x 的等式,由此可解得实数x 的值. 【详解】向量()3,2a =,(),4b x =且//a b ,212x ∴=,解得6x =.故选:C.【点睛】本题考查平面向量共线的坐标表示,属基础题.6.(2020·汕头市澄海中学高二期中)已知向量()2,1a =-,()5,4b =-,(),c x y =,若()a b c +⊥,则x 、y 可以是( )A .1x =,1y =B .0x =,1y =C .1x =,0y =D .1x =,1y =- 【答案】A【分析】根据()0a b c +⋅=可得x y =.【详解】因为()a b c +⊥,所以()()()3,3,330a b c x y x y +⋅=-⋅=-+=,即x y =,故选:A. 【点睛】本题考查了平面向量垂直的坐标表示,考查了平面向量线性运算的坐标表示,属于基础题. 7.(2020·广东深圳市·高一期末)设向量(,1)a x x =+,(1,2)b =,且a b ⊥,则x =( ). A .23-B .23C .1-3D .13【答案】A【分析】由a b ⊥得0a b ⋅=,建立方程求解即可. 【详解】a b ⊥,()210a b x x ∴⋅=++=,解得23x =-.故选:A. 【点睛】本题考查向量垂直的坐标表示,属于基础题.8.(2012·广东湛江市·)已知向量()3,4a =,()sin ,cos b αα=,且//a b ,则tan α=( ) A .34B .34-C .43D .43-【答案】A【分析】根据向量共线的坐标表示以及同角公式可得结果. 【详解】因为//a b ,所以3cos 4sin 0αα-=,所以3tan 4α=.故选:A. 【点睛】本题考查了向量共线的坐标表示,考查了同角公式,属于基础题.9.(2020·广州市·广东实验中学高三月考(文))已知向量()(),,1,2a x y b ==-,且()1,3a b +=,则2a b -等于( ) A .1 B .3C .4D .5【答案】D【分析】先根据已知求出x,y 的值,再求出2a b -的坐标和2a b -的值.【详解】由向量()(),,1,2a x y b ==-,且()1,3a b +=,则()(1,2)1,3a b x y +=-+=,解得2,1x y ==,所以()()2,1,1,2a b ==-,所以2(2,1)2(1,2)(4,3)a b -=--=-,所以224(5a b -=+=,故答案为D【点睛】本题主要考查向量的坐标运算和向量的模的计算,意在考查学生对这些知识的掌握水平和分析推理能力.10.(多选题)(2020·廉江市第三中学高二月考)如果平面向量(2,0)a=,(1,1)b =,那么下列结论中正确的是( ) A .2a b = B .22a b ⋅=C .()-⊥a b bD .//a b【答案】AC【分析】根据题中条件,由向量模的坐标表示,数量积的坐标表示,以及向量共线的坐标表示,逐项判定,即可得出结果. 【详解】由平面向量(2,0)a=,(1,1)b =知:在A 中,2=a ,2b =,∴=2a b ,故A 正确;在B 中,2a b,故B 错误;在C 中,(1,1)a b -=-,∴()110a b b -⋅=-=,∴()-⊥a b b ,故C 正确; 在D 中,∵2011≠,∴a 与b 不平行,故D 错误. 故选:A C .【点睛】本题主要考查向量数量积的坐标运算,考查向量共线的坐标表示等,属于基础题型.【提升题】11.(2021·广东高三其他模拟)在90A ∠=︒的等腰直角ABC 中,E 为AB 的中点,F 为BC 的中点,BC AF CE λμ=+,则λ=( )A .23-B .32-C .43-D .1-【答案】A【分析】以A 为原点建立直角坐标系,设直角边长为2,写出各点坐标,计算可得λ的值. 【详解】以A 为原点建立直角坐标系,设()2,0B ,()0,2C ,则()1,1F ,()1,0E ,则()2,2BC =-,()()()1,11,2,2AF CE λμλμλμλμ+=+-=+-,所以222λμλμ+=-⎧⎨-=⎩,所以23λ=-.故选:A12.(2020·广东高三月考)已知菱形ABCD 的边长为2,60A ∠=︒,点P 满足1()2AP AB AC =+,则PA PD ⋅=( )A .0B .3C .3D .92【答案】C【分析】如图,以菱形ABCD 的对角线AC 方向为x 轴方向,DB 方向为y 轴方向建立平面直角坐标系,由1()2AP AB AC =+,可知P 点为线段BC 的中点,由60A ∠=︒,菱形ABCD 的边长为2,可求出,,P A D 的坐标,从而可求出PA PD ⋅的值【详解】以菱形ABCD 的对角线AC 方向为x 轴方向,DB 方向为y 轴方向建立平面直角坐标系, 根据1()2AP AB AC =+,可知P 点为线段BC 的中点,又因为60A ∠=︒,所以2AB BC CD DA BD =====,易求得31,22P ⎛⎫ ⎪⎝⎭,(3,0)A -,(0,1)D -,331,22PA ⎛⎫=-- ⎪ ⎪⎝⎭,33,22PD ⎛⎫=-- ⎪ ⎪⎝⎭,所以,3PA PD ⋅=, 故选:C .13. (2020·广东汕尾市·高一月考)已知向量()1,2a =,()2,b t =.若a b ⊥,则t =______,此时a 与a b +的夹角为______. 【答案】1-π4【分析】利用向量垂直的坐标表示列方程,解方程求得t 的值.利用夹角公式,求得a 与a b +的夹角的余弦值,进而求得a 与a b +的夹角.【详解】由于a b ⊥,所以()()1,22,220t t ⋅=+=,解得1t =-, 所以()()2,1,3,1b a b =-+=. 设a 与a b +的夹角为θ,则()()()22221,23,152cos 25101231a a ba a bθ⋅+⋅====⋅⋅++⋅+. 由于[]0,θπ∈,所以4πθ=.故答案为:1-;π4【点睛】本小题主要考查向量数量积的坐标运算,考查向量垂直的坐标表示,考查向量夹角的计算,属于中档题.14(2021·全国高三其他模拟)地砖是一种地面装饰材料,也叫地板砖,用黏土烧制而成质坚、耐压、耐磨、防潮.地板砖品种非常多,图案也多种多样.如图是某公司大厅的地板砖铺设方式,地板砖有正方形与正三角形两种形状,且它们的边长都相同,若OA a =,OB b =,则AF =( )A .5122a b -- B .33232a b ⎛⎫-+- ⎪ ⎪⎝⎭C .3323a b ⎛--+ ⎝⎭ D .3323a b ⎛-+- ⎝⎭ 【答案】D【分析】以AB 的中点M 为坐标原点建立平面直角坐标系,根据平面向量的坐标运算公式,结合平面向量基本定理进行求解即可.【详解】以AB 的中点M 为坐标原点建立平面直角坐标系,设2AB =,则(3O ,()1,0A -,()10B ,,(1,223F +,所以(1,3OA =--,(1,3OB =-,(2,2AF =+.设AF OA OB λμ=+,则22λμ-+=⎧⎪-=+233λμ⎧=--⎪⎪⎨⎪=-⎪⎩,所以33233AF OA OB ⎛⎫=-+- ⎪ ⎪⎝⎭,即3323AF a b b ⎛⎫=-+- ⎪ ⎪⎝⎭,故选:D 【点睛】用一组基底表示平面向量往往利用平面向量的坐标表示公式以及平面向量运算的坐标表示公式进行求解.15.(2020·广东高一期末)已知向量(1,2cos ),3sin ,0,23π⎛⎫⎛⎫⎛⎫==∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎭a x b x x . (1)若//a b ,求tan2x 的值;(2)若f (x )=a •b,则函数f (x )的值域. 【答案】(1(2) 【分析】(1)利用向量共线的坐标表示可得cos 02x x -=,根据二倍角的正弦公式可得1sin 22x =,根据x 的范围可得26x π=,进一步可得tan 23x =;(2)利用平面向量的数量积的坐标表示与两角和的正弦公式可得())4fx x π=+,再根据x 的范围,结合正弦函数的图象可得结果.【详解】(1)因为//a b ,所以cos 02x x -=,所以1sin 22x =,因为03x π<<,所以2023x π<<,所以26x π=,所以tan 2tan6x π==. (2)()f x a b =⋅=2cos x x x x+=+)4x π=+, 因为03x π<<,所以74412x πππ<+<,所以2sin()(,1]42x π+∈,所以()(3,6]f x ∈. 【点睛】本题考查了平面向量共线的坐标表示,考查了二倍角的正弦公式,考查了平面向量数量积的坐标表示,考查了两角和的正弦公式,考查了利用正弦函数的图象求值域,属于中档题.【拓展题】(选用)16.(2020·山西太原市·高三期末(理))赵爽是我国古代数学家大约在公元222年,他为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成)类比“赵爽弦图”,可构造如图所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,设AD AB AC λμ=+,若2DF AF =,则可以推出λμ+=_________.【答案】1213【分析】利用建系的方法,假设1AF =,根据120ADB ∠=,利用余弦定理可得AB 长度,然后计算cos ,sin DAB DAB ∠∠,可得点D 坐标,最后根据点,B C 坐标,可得结果.【详解】设1AF =,则3,1AD BD AF ===如图由题可知:120ADB ∠=,由2222cos AB AD BD AD BD ADB =+-⋅⋅∠所以AB =AC AB ==所以),22BC ⎛⎫⎪ ⎪⎝⎭,()0,0A又sin sin sin 26BD AB BAD BAD ADB =⇒∠=∠∠所以cos BAD ∠==所以()cos ,sin D AD AD BAD BAD ∠∠即D ⎝⎭所以()2113339,13,026,26ADAB ⎛⎫==⎪ ⎪⎝⎭13,22AC ⎛=⎝⎭又ADAB AC λμ=+所以913313μλμμ⎧==⎪⎪⇒⎨⎪==⎪⎩ 所以1213λμ+=故答案为:1213【点睛】本题考查考查向量的坐标线性表示,关键在于建系,充分使用条件,考验分析能力,属难题.。
5.2 平面向量的坐标运算一、平面向量的坐标运算 1.向量坐标的求法(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标. (2)设A (x 1,y 1),B (x 2,y 2),则AB =(x 2-x 1,y 2-y 1). 2.向量加法、减法、数乘向量及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 2+x 1,y 2+y 1),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1), |a |a +b 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0. 4.向量的夹角已知两个非零向量a 和b ,作OA =a ,OB =b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角.如果向量a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b .考向一 坐标运算【例1】(1)已知点M (5,-6)和向量a =(1,-2),若MN →=-3a ,则点N 的坐标为.(2)已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,a =m b +n c (m ,n ∈R ),则m +n = 【答案】(1)(2,0) (2)-2【解析】(1) 设N (x ,y ),则(x -5,y +6)=(-3,6),∴x =2,y =0. (2)由已知得a =(5,-5),b =(-6,-3),c =(1,8).∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.∴m +n =-2.【举一反三】1.设OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a+2b的最小值是( )A .2B .4C .6D .8【答案】 D【解析】 由题意可得,OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0),所以AB →=OB →-OA →=(a -1,1),AC →=OC →-OA →=(-b -1,2).又∵A ,B ,C 三点共线,∴AB →∥AC →,即(a -1)×2-1×(-b -1)=0,∴2a +b =1,又∵a >0,b >0,∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (2a +b )=4+⎝ ⎛⎭⎪⎫b a +4a b ≥4+4=8,当且仅当b a =4a b时,取“=”.故选D.2.已知点P (-1,2),线段PQ 的中点M 的坐标为(1,-1).若向量PQ →与向量a =(λ,1)共线,则λ=________. 【答案】 -23【解析】 点P (-1,2),线段PQ 的中点M 的坐标为(1,-1), ∴向量PQ →=2PM →=2(1+1,-1-2)=(4,-6).又PQ →与向量a =(λ,1)共线,∴4×1+6λ=0,即λ=-23.3.已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于( )A.⎝ ⎛⎭⎪⎫1,83 B.⎝ ⎛⎭⎪⎫-133,83 C.⎝⎛⎭⎪⎫133,43D.⎝ ⎛⎭⎪⎫-133,-43【解析】 由已知3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4).所以c =⎝ ⎛⎭⎪⎫-133,-43.考向二 平面向量在几何中 的运用【例2】已知△ABC 的三个顶点的坐标为A (0,1),B (1,0),C (0,-2),O 为坐标原点,动点M 满足|CM →|=1,则|OA →+OB →+OM →|的最大值是( )A.2+1B.7+1C.2-1D.7-1 【答案】 A【解析】 设点M 的坐标是(x ,y ),∵C (0,-2),且|CM →|=1,∴x 2+(y +2)2=1,则x 2+(y +2)2=1, 即动点M 的轨迹是以C 为圆心、1为半径的圆, ∵A (0,1),B (1,0),∴OA →+OB →+OM →=(x +1,y +1),则|OA →+OB →+OM →|=(x +1)2+(y +1)2,几何意义表示:点M (x ,y )与点N (-1,-1)之间的距离,即圆C 上的点与点N (-1,-1)的距离,∵点N (-1,-1)在圆C 外部,∴|OA →+OB →+OM →|的最大值是|NC |+1=(0+1)2+(-2+1)2+1=2+1.故选A. 【举一反三】1.在平面直角坐标系中,为坐标原点,直线与圆相交于两点,.若点在圆上,则实数( )A .B .C .D .O :10l x ky -+=22:4C x y +=, A B OM OA OB =+M C k =2-1-01考向三 向量中的坐标【例3】给定两个长度为1的平面向量,OA OB ,它们的夹角为120.如图1所示,点C 在以O 为圆心的圆弧AB 上变动.若,OC xOA yOB =+其中,x y R ∈,则x y +的最大值是______. 【答案】2【解析】解法1( 考虑特值法) 当C 与A 重合时,10,OC OA OB =⨯+⨯1x y +=,当C 与B 重合时,01,OC OA OB =⨯+⨯1x y +=, 当C 从AB 的端点向圆弧内部运动时,1x y +>, 于是猜想当C 是AB 的中点时,x y +取到最大值.当C 是AB 的中点时,由平面几何知识OACB 是菱形, ∴,OC OA OB =+∴11 2.x y +=+= 猜想x y +的最大值是2.解法二(考虑坐标法)建立如图3,所示的平面直角坐标系,设AOC α∠=,则1(1,0),((cos ,sin )2A B C αα-.于是OC xOA yOB =+可化为:1(cos ,sin )(1,0)(,22x y αα=+-,∴1cos ,2sin .x y y αα⎧=-⎪⎪⎨⎪=⎪⎩(1)解法2 函数法求最值由方程组(1)得:cos ,.x y ααα⎧=+⎪⎪⎨⎪=⎪⎩∴cos 2sin(30)x y ααα+=+=+,又0120α≤≤, ∴当30α=时,max () 2.x y += 解法3 不等式法求最值由方程组(1)得:222221sin cos ()3x y xy x y xy αα=+=+-=+-,∴211()33xy x y =+-, 由0,0x y >>,及x y +≥2()4x y xy +≥, ∴2()4x y +≤,∴2x y +≤,当且仅当1x y ==时取等号. ∴max () 2.x y +=思考方向三 考虑向量的数量积的运算 解法4 两边点乘同一个向量∵,OC xOA yOB =+∴,.OC OA xOA OA yOB OA OC OB xOA OB yOB OB ⎧⋅=⋅+⋅⎪⎨⋅=⋅+⋅⎪⎩ 设AOC α∠=,则 120BOC α∠=-,又||||||1OC OA OB ===,∴1cos ,21cos(120).2x y x y αα⎧=-⎪⎪⎨⎪-=-+⎪⎩∴2[cos cos(120)]2sin(30)x y ααα+=+-=+, ∴当30α=时,max () 2.x y += 解法5 两边平方法∵,OC xOA yOB =+∴22(),OC xOA yOB =+∴2221()3x y xy x y xy =+-=+-222()()()344x y x y x y ++≥+-⋅=, ∴2x y +≤,当且仅当1x y ==时取等号, ∴max () 2.x y +=思考方向四 考虑平行四边形法则过C 作CM ∥OB 交OA 于M ,作CN ∥OA 交OB 于N ,则OM CN 是平行四边形,由向量加法的平行四边形法则得:OC OM ON =+,在OMC ∆中,设AOC α∠=,则 120BOC α∠=-, 且||,||.OM x MC y == 解法6 利用正弦定理sin sin sin OM MC OCOCM COM OMC==∠∠∠, 1sin(60)sin sin 60x y αα==+,由等比性值得:1sin(60)sin sin 60x y αα+=++,∴2sin(30)x y α+=+,∴当30α=时,max () 2.x y += 解法7 利用余弦定理222||||||2||||cos60,OC OM MC OM MC =+-⋅∴2221()3x y xy x y xy =+-=+-222()()()344x y x y x y ++≥+-⋅=,∴2x y +≤,当且仅当1x y ==时取等号, ∴max () 2.x y += 【举一反三】1.如图,已知平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=2 3.若OC →=λOA →+μOB →(λ,μ∈R ),求λ+μ的值.【答案】6【解析】 方法一 如图,作平行四边形OB 1CA 1,则OC →=OB 1→+OA 1→,因为OA →与OB →的夹角为120°,OA →与OC →的夹角为30°, 所以∠B 1OC =90°.在Rt △OB 1C 中,∠OCB 1=30°,|OC →|=23, 所以|OB 1→|=2,|B 1C →|=4,所以|OA 1→|=|B 1C →|=4, 所以OC →=4OA →+2OB →,所以λ=4,μ=2,所以λ+μ=6.方法二 以O 为原点,建立如图所示的平面直角坐标系,则A (1,0),B ⎝ ⎛⎭⎪⎫-12,32,C (3,3).由OC →=λOA →+μOB →,得⎩⎪⎨⎪⎧3=λ-12μ,3=32μ,解得⎩⎪⎨⎪⎧λ=4,μ=2.所以λ+μ=6.2.如图,四边形ABCD 是正方形,延长CD 至E ,使得DE =CD ,若点P 为CD 的中点,且AP →=λAB →+μAE →,则λ+μ=.【答案】 52【解析】 由题意,设正方形的边长为1,建立平面直角坐标系如图,则B (1,0),E (-1,1), ∴AB →=(1,0),AE →=(-1,1), ∵AP →=λAB →+μAE →=(λ-μ,μ), 又∵P 为CD 的中点,∴AP →=⎝ ⎛⎭⎪⎫12,1,∴⎩⎪⎨⎪⎧λ-μ=12,μ=1,∴λ=32,μ=1,∴λ+μ=52.1.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________. 【答案】 (-3,-5)【解析】 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1),∴BD →=AD →-AB →=BC →-AB →=(-3,-5).2.已知向量a =(3,1),b =(0,-1),c =(k ,3),若a -2b 与c 共线,则k =________. 【答案】 1【解析】 ∵a -2b =(3,3),且a -2b ∥c ,∴3×3-3k =0,解得k =1.3.线段AB 的端点为A (x,5),B (-2,y ),直线AB 上的点C (1,1),使|AC →|=2|BC →|,则x +y =. 【答案】 -2或6【解析】 由已知得AC →=(1-x ,-4),2BC →=2(3,1-y ).由|AC →|=2|BC →|,可得AC →=±2BC →,则当AC →=2BC →时,有⎩⎪⎨⎪⎧1-x =6,-4=2-2y ,解得⎩⎪⎨⎪⎧x =-5,y =3,此时x +y =-2;当AC →=-2BC →时,有⎩⎪⎨⎪⎧1-x =-6,-4=-2+2y ,解得⎩⎪⎨⎪⎧x =7,y =-1,此时x +y =6.综上可知,x +y =-2或6.4. 已知O 为坐标原点,点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为. 【答案】 (3,3)【解析】 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ).又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34,所以OP →=34OB →=(3,3),所以点P 的坐标为(3,3).方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线,所以(x -4)×6-y ×(-2)=0,解得x =y =3,所以点P 的坐标为(3,3).5.已知向量a =⎝ ⎛⎭⎪⎫8,x 2,b =(x,1),其中x >0,若(a -2b )∥(2a +b ),则x =.【答案】 4【解析】 ∵向量a =⎝ ⎛⎭⎪⎫8,x 2,b =(x,1),∴a -2b =⎝ ⎛⎭⎪⎫8-2x ,x2-2,2a +b =(16+x ,x +1),∵(a -2b )∥(2a +b ),∴(8-2x )(x +1)-(16+x )⎝ ⎛⎭⎪⎫x2-2=0,即-52x 2+40=0,又∵x >0,∴x =4.6.在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为. 【答案】 3【解析】 建立如图所示的平面直角坐标系,则C 点坐标为(2,1).设BD 与圆C 切于点E ,连结CE ,则CE ⊥BD . ∵CD =1,BC =2, ∴BD =12+22=5,EC =BC ·CD BD =25=255,即圆C 的半径为255,∴P 点的轨迹方程为(x -2)2+(y -1)2=45.设P (x 0,y 0),则⎩⎪⎨⎪⎧x 0=2+255cos θ,y 0=1+255sin θ(θ为参数),而AP →=(x 0,y 0),AB →=(0,1),AD →=(2,0).∵AP →=λAB →+μAD →=λ(0,1)+μ(2,0)=(2μ,λ), ∴μ=12x 0=1+55cos θ,λ=y 0=1+255sin θ.两式相加,得λ+μ=1+255sin θ+1+55cos θ=2+sin(θ+φ)≤3⎝ ⎛⎭⎪⎫其中sin φ=55,cos φ=255, 当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.7.在直角梯形ABCD 中,AB ⊥AD ,DC ∥AB ,AD =DC =2,AB =4,E ,F 分别为AB ,BC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DEM 上变动(如图所示).若AP →=λED →+μAF →,其中λ,μ∈R ,则2λ-μ的取值范围是.【答案】 ⎣⎢⎡⎦⎥⎤-22,12 【解析】 建立如图所示的平面直角坐标系,则A (0,0),E (2,0),D (0,2),F (3,1),P (cos α,sin α)⎝⎛⎭⎪⎫-π2≤α≤π2,即AP →=(cos α,sin α),ED →=(-2,2),AF →=(3,1). ∵AP →=λED →+μAF →,∴(cos α,sin α)=λ(-2,2)+μ(3,1), ∴cos α=-2λ+3μ,sin α=2λ+μ,∴λ=18(3sin α-cos α),μ=14(cos α+sin α),∴2λ-μ=12sin α-12cos α=22sin ⎝ ⎛⎭⎪⎫α-π4.∵-π2≤α≤π2,∴-3π4≤α-π4≤π4.∴-22≤22sin ⎝⎛⎭⎪⎫α-π4≤12.8.如图,在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1,圆心在线段CD (含端点)上运动,P 是圆Q 上及内部的动点,设向量AP →=mAB →+nAF →(m ,n 为实数),求m +n 的最大值.【答案】5【解析】如图所示,①设点O 为正六边形的中心, 则AO →=AB →+AF →.当动圆Q 的圆心经过点C 时,与边BC 交于点P ,点P 为边BC 的中点.连结OP , 则AP →=AO →+OP →, ∵OP →与FB →共线,∴存在实数t ,使得OP →=tFB →, 则AP →=AO →+tFB →=AB →+AF →+t (AB →-AF →) =(1+t )AB →+(1-t )AF →,∴此时m +n =1+t +1-t =2,取得最小值.②当动圆Q 的圆心经过点D 时,取AD 的延长线与圆Q 的交点为P ,则AP →=52AO →=52()AB →+AF →=52AB →+52AF →,此时m +n =5,为最大值.9.在△ABC 中,AB =3,AC =2,∠BAC =60°,点P 是△ABC 内一点(含边界),若AP →=23AB →+λAC →,则|AP →|的最大值为________. 【答案】2133【解析】 以A 为原点,以AB 所在的直线为x 轴,建立如图所示的坐标系,∵AB =3,AC =2,∠BAC =60°, ∴A (0,0),B (3,0),C (1,3),设点P 为(x ,y ),0≤x ≤3,0≤y ≤3, ∵AP →=23AB →+λAC →,∴(x ,y )=23(3,0)+λ(1,3)=(2+λ,3λ),∴⎩⎨⎧x =2+λ,y =3λ,∴y =3(x -2),① 直线BC 的方程为y =-32(x -3),② 联立①②,解得⎩⎪⎨⎪⎧x =73,y =33,此时|AP →|最大,∴|AP →|=499+13=2133. 10.已知三角形ABC 中,AB =AC ,BC =4,∠BAC =120°,BE →=3EC →,若点P 是BC 边上的动点,则AP →·AE →的取值范围是________.【答案】 ⎣⎢⎡⎦⎥⎤-23,103 【解析】 因为AB =AC ,BC =4,∠BAC =120°,所以∠ABC =30°,AB =433.因为BE →=3EC →,所以BE →=34BC →.设BP →=tBC →,则0≤t ≤1,所以AP →=AB →+BP →=AB →+tBC →,又AE →=AB →+BE →=AB →+34BC →,所以AP →·AE →=(AB →+tBC →)·⎝⎛⎭⎪⎫AB →+34BC →=AB →2+tBC →·AB →+34BC →·AB →+34tBC →2=163+t ×4×433cos150°+34×4×433cos150°+34t ×42=4t -23, 因为0≤t ≤1,所以-23≤4t -23≤103,即AP →·AE →的取值范围是⎣⎢⎡⎦⎥⎤-23,103.11在矩形ABCD 中,AB =5,BC =3,P 为矩形内一点,且AP =52,若AP →=λAB →+μAD →(λ,μ∈R ),则5λ+3μ的最大值为______. 【答案】102【解析】 建立如图所示的平面直角坐标系,设P (x ,y ),B (5,0),C (5,3),D (0,3).∵AP =52,∴x 2+y 2=54. 点P 满足的约束条件为 ⎩⎪⎨⎪⎧0≤x ≤5,0≤y ≤3,x 2+y 2=54,∵AP →=λAB →+μAD →(λ,μ∈R ), ∴(x ,y )=λ(5,0)+μ(0,3),∴⎩⎨⎧x =5λ,y =3μ,∴x +y =5λ+3μ.∵x +y ≤2(x 2+y 2)=2×54=102, 当且仅当x =y 时取等号, ∴5λ+3μ的最大值为102. 12.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.【答案】 (-1,0)【解析】 由题意得,OC →=kOD →(k <0), 又|k |=|OC →||OD →|<1,∴-1<k <0.又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →, ∴mOA →+nOB →=k λOA →+k (1-λ)OB →, ∴m =k λ,n =k (1-λ), ∴m +n =k ,从而m +n ∈(-1,0).。
平面向量的基本定理及坐标表示1.设是平面内所有向量的一组基底,则下面四组向量中,不能作为基底的是( ) A BC D2.已知向量a,b ,且AB =a+2b 5BC ,=-a +6b 7CD ,=a-2b,则一定共线的三点是( )A.A 、B 、DB.A 、B 、CC.B 、C 、DD.A 、C 、D3.已知平行四边形ABCD 中DA ,=a DC ,=b ,其对角线交点为O,则OB 等于( ) A.12a +bB.a 12+bC.12(a +b )D.a +b4.已知OA =a OB ,=b ,C 为AB 上距A 较近的一个三等分点,D 为CB 上距C 较近的一个三等分点,则用a ,b 表示OD 的表达式为( ) A.4+59a b B +7169a b . C. +32a b D. +43a b5.已知P 是△ABC 所在平面内的一点,若CB PA PB λ=+,其中λ∈R ,则点P 一定在( )A.△ABC 的内部B.AC 边所在的直线上C.AB 边所在的直线上D.BC 边所在的直线上 6.在△ABC 中AB ,=c AC ,=b ,若点D 满足2BD DC =,则AD 等于( ) A.23b 13+ c B.53c 23-b C.23b 13- c D.13b 23+c7.在△ABC 中,设AB =m AC ,=n ,D 、E 是边BC 上的三等分点,即BD=DE=EC,则AD = AE ,= .8.设为内一点,且满足,则为的( )A 外心B 内心C 重心D 垂心9.已知△ABC 中,点D 在BC 边上,且CD =4DB ,CD =r AB +s AC ,则3r+s 的值为 .12,e e 1212e e e e +-和1221326e e e e --和4122122e e e e ++和212e e e +和O ABC ∆0AO BO CO ++=O ABC ∆10.计算下列各题:(1)3(3a -b )+4(b -2a );14(2)[(a +2b )+3a 13(6-a -12b )];(3)()(λμ+a +b )()(λμ--a -b ).11.已知M 是△ABC 的重心,设MA =a MB ,=b ,用a 、b 表示AC 、BC .12.已知a ,b 是两个不共线的非零向量,若a 与b 起点相同,则实数t 为何值时,a ,t b 13(,a +b )三向量的终点共线?13.(1)在△ABC 中,D 为BC 边上的中点. 求证:12()AD AB AC =+. (2)求证:G 为△ABC 重心,O 为平面内不同于G 的任意一点,则13()OG OA OB OC =++.平面向量的基本定理及坐标表示1.B 2. A 3. C 4.A 5.B 6. A 7. 23m n AD += 23n m AE += 8. C 9. 8510. (1) a +b (2)32a b +(3) 22b a λμ+ 11. 2AC a b =-- 82C a b =--12. 解:由已知,存在唯一实数λ,使a -t b [λ=a 13(-a +b )],化简得23(1)λ-a =3()t λ-b .由于a ,b 不共线,故 233100t λλ-=,⎧⎨-=,⎩ 解得 3212t λ=,⎧⎨=,⎩ 即12t =时,三向量的终点共线. 13.(1)证法一:AD AB BD AD AC CD =+,=+, 又D 为中点,∴BD CD +=0.∴2AD AB AC =+,即12()AD AB AC =+. 证法二:延长AD 至E,使DE=AD.∵BD=DC,∴四边形ABEC 为平行四边形.∴AE AB AC =+.又AE AD DE AD DE =+,=, ∴12()AD AB AC =+. (2)证明:∵OG OB BG =+,OG OA AG OG OC CG =+,=+,又∵G为△ABC的重心,∴AG CG++=0.∴OG OG OG OA OB OC ++=++,即13()OG OA OB OC=++.。
平⾯向量(附例题_习题及答案)向量的线性运算⼀.教学⽬标1.理解向量的概念;2.掌握向量的线性运算;3.理解向量线性运算的⼏何意义、向量共线的含义、平⾏向量基本定理;4.理解平⾯向量基本定理,掌握平⾯向量的正交分解及其坐标表⽰、平⾯向量的坐标运算;5.理解⽤坐标表⽰平⾯向量的共线条件。
⼆.知识清单1.向量基本概念(1)向量的定义:既有⼜有称为向量;(2)向量的⼤⼩(或称模):有向线段的表⽰向量的⼤⼩;(3)零向量与单位向量:叫做零向量,叫做单位向量;(4)共线向量与相等向量:叫做共线向量(或平⾏向量),叫做相等向量。
2.向量的线性运算(1)向量的加法a.向量加法的三⾓形法则、平⾏四边形法则和多边形法则。
b.向量加法满⾜的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c).(2)向量的减法a.定义:a-b=a+(-b),即减去⼀个向量相当于加上这个向量的相反向量。
⼀个向量等于终点位置向量减始点位置向量,即AB=OB-OA。
b.三⾓形法则:“共始点,连终点,指向被减”。
(3)数乘向量a.定义:⼀般地,实数λ和向量a的乘积是⼀个向量,记作λa.b.数乘向量满⾜的运算律:(λ+µ)a=λ(µa)=λ(a+b)=3.向量共线的条件与轴上向量坐标运算(1)向量共线的条件平⾏向量基本定理:如果,则;反之,如果,且,则⼀定存在,使。
(2)轴上向量的坐标运算4. 向量的分解与向量的坐标运算(1)平⾯向量基本定理如果是⼀平⾯内的的向量,那么该平⾯内的任⼀向量a,存在,使。
(2)平⾯向量的正交分解定义:把⼀个向量分解为,叫做把向量正交分解。
(3)向量的坐标表⽰在平⾯直⾓坐标系中,分别取与x轴、y轴⽅向相同的两个_______作为基底。
对于平⾯内的任⼀个向量,由平⾯向量基本定理可知,有且只有⼀对实数x,y使得____________,这样,平⾯内的任⼀向量a都可由__________唯⼀确定,我们把有序数对________叫做向量的坐标,记作___________此式叫做向量的坐标表⽰,其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标。
考向24 平面向量的基本定理及坐标表示【2022·全国·高考真题(文)】已知向量(2,1)(2,4)a b ==-,,则a b -( ) A .2 B .3 C .4 D .5【2021·全国·高考真题(理)】已知向量()()3,1,1,0,a b c a kb ===+.若a c ⊥,则k =________.1.应用平面向量基本定理的关键点(1)平面向量基本定理中的基底必须是两个不共线的向量.(2)选定基底后,通过向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示出来.(3)强调几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相似等.2.用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用平面向量基本定理将条件和结论表示成该基底的线性组合,再进行向量的运算.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便,另外,要熟练运用线段中点的向量表达式.3.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系. 4.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.向量共线(平行)的坐标表示1.利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为a λ(λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入a λ即可得到所求的向量.2.利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,则利用“若11(),a x y =,22(),b x y =,则a b ∥的充要条件是1221x y x y =”解题比较方便.3.三点共线问题.A ,B ,C 三点共线等价于AB 与AC 共线.4.利用向量共线的坐标运算求三角函数值:利用向量共线的坐标运算转化为三角方程,再利用三角恒等变换求解.1.平面向量基本定理和性质 (1)共线向量基本定理如果()a b R λλ=∈,则//a b ;反之,如果//a b 且0b ≠,则一定存在唯一的实数λ,使a b λ=.(口诀:数乘即得平行,平行必有数乘).(2)平面向量基本定理如果1e 和2e 是同一个平面内的两个不共线向量,那么对于该平面内的任一向量a ,都存在唯一的一对实数12,λλ,使得1122a e e λλ=+,我们把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记为{}12,e e ,1122e e λλ+叫做向量a 关于基底{}12,e e 的分解式.注意:由平面向量基本定理可知:只要向量1e 与2e 不共线,平面内的任一向量a 都可以分解成形如1122a e e λλ=+的形式,并且这样的分解是唯一的.1122e e λλ+叫做1e ,2e 的一个线性组合.平面向量基本定理又叫平面向量分解定理,是平面向量正交分解的理论依据,也是向量的坐标表示的基础.推论1:若11223142a e e e e λλλλ=+=+,则1324,λλλλ==. 推论2:若11220a e e λλ=+=,则120λλ==. (3)线段定比分点的向量表达式如图所示,在ABC △中,若点D 是边BC 上的点,且BD DC λ=(1λ≠-),则向量1AB ACAD λλ+=+.在向量线性表示(运算)有关的问题中,若能熟练利用此结论,往往能有“化腐朽为神奇”之功效,建议熟练掌握.(4)三点共线定理平面内三点A ,B ,C 共线的充要条件是:存在实数,λμ,使OC OA OB λμ=+,其中1λμ+=,O 为平面内一点.此定理在向量问题中经常用到,应熟练掌握.A 、B 、C 三点共线⇔存在唯一的实数λ,使得AC AB λ=; ⇔存在唯一的实数λ,使得OC OA AB λ=+; ⇔存在唯一的实数λ,使得(1)OC OA OB λλ=-+; ⇔存在1λμ+=,使得OC OA OB λμ=+.(5)中线向量定理如图所示,在ABC △中,若点D 是边BC 的中点,则中线向量1(2AD AB =+)AC ,反之亦正确.2.平面向量的坐标表示及坐标运算 (1)平面向量的坐标表示.在平面直角坐标中,分别取与x 轴,y 轴正半轴方向相同的两个单位向量,i j 作为基底,那么由平面向量基本定理可知,对于平面内的一个向量a ,有且只有一对实数,x y 使a xi yj =+,我们把有序实数对(,)x y 叫做向量a 的坐标,记作(,)a x y =.(2)向量的坐标表示和以坐标原点为起点的向量是一一对应的,即有 向量(,)x y 一一对应向量OA一一对应点(,)A x y .(3)设11(,)a x y =,22(,)b x y =,则1212(,)a b x x y y +=++,1212(,)a b x x y y -=--,即两个向量的和与差的坐标分别等于这两个向量相应坐标的和与差.若(,)a x y =,λ为实数,则(,)a x y λλλ=,即实数与向量的积的坐标,等于用该实数乘原来向量的相应坐标.(4)设11(,)A x y ,22(,)B x y ,则AB OB OA =-=12(,x x -12)y y -,即一个向量的坐标等于该向量的有向线段的终点的坐标减去始点坐标.DACBDACB3.平面向量的直角坐标运算①已知点11()A x y ,,22()B x y ,,则2121()AB x x y y =--,,222121||()()AB x x y y =-+- ②已知11(,)a x y =,22(,)b x y =,则a b ±1212()x x y y =±±,,11(,)a x y λλλ=, =a b ⋅1212x x y y +,2211||a x y =+.a b ∥⇔12210x y x y -=,a b ⊥⇔12120x x y y +=1.(2022·青海·海东市第一中学模拟预测(理))已知在ABC 中, 3AD BD =-,CD CE λ=,23AE AB AC μ=+,则μ=( ) A .14B .12C .34D .12.(2022·上海静安·二模)设(,)a x y =,(,)b m n =,且a ,b 均为非零向量,则“x ym n=”是“a b ∥”的( )条件 A .充分非必要B .必要非充分C .充要D .既非充分又非必要3.(2022·上海闵行·二模)已知、、A B C 是平面内不共线的三点,点O 满足20,OA OB OC λλ++=为实常数,现有下述两个命题:(1)当3λ≠-时,满足条件的点O 存在且是唯一的;(2)当3λ=-时,满足条件的点O 不存在.则说法正确的一项是( ) A .命题(1)和(2)均为真命题B .命题(1)为真命题,命题(2)为假命题C .命题(1)和(2)均为假命题D .命题(1)为假命题,命题(2)为真命题4.(2022·全国·高三专题练习)在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n ==,,则CB =( ) A .32m n -B .23m n -+C .32m n +D .23m n +5.(2022·全国·模拟预测)在平行四边形ABCD 中,设CB a =,CD b =,E 为AD 的中点,CE 与BD 交于F ,则AF =( )A .23a b+-B .23a b+-C .23a b--D .23a b--6.(2022·河南·平顶山市第一高级中学模拟预测(文))如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2EO AE =,则EB ( )A .1566AB AD -B .1566AB AD +C .5166AB AD -D .5166AB AD +1.(2022·云南师大附中模拟预测(理))已知向量()2,2a t =,()2,5b t =---,若向量a 与向量a b +的夹角为钝角,则t 的取值范围为( ) A .()3,1- B .()()3,11,1--- C .()1,3-D .111,,322⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭2.(2022·江西·上饶市第一中学模拟预测(文))已知向量()1,2a =,(),1=-b m ,若a b ∥,则⋅=a b ( )A .32-B .32C .52-D .523.(2022·山东烟台·三模)如图,边长为2的等边三角形的外接圆为圆O ,P 为圆O 上任一点,若AP xAB y AC =+,则22x y +的最大值为( )A .83B .2C .43D .14.(2022·全国·高三专题练习)△ABC 的三内角A 、B 、C 所对边的长分别是a 、b 、c ,设向量()()p a c b q b a c a =+=--,,,,若p q ∥,则角C 的大小为( ) A .π6B .π3C .π2D .2π35.(2022·四川·绵阳中学实验学校模拟预测(文))已知O 为坐标原点,122PP PP =-,若()11,2P 、()22,1P -,则与OP 共线的单位向量为( )A .()3,4-B .()3,4-或()3,4-C .34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭D .34,55⎛⎫- ⎪⎝⎭6.(2022·浙江省江山中学模拟预测)在ABC 中,E ,F 分别为,AC BC 的中点,点D 是线段AF (不含端点)内的任意一点,AD mAB nAE =+,则( ) A .(0,1)m ∈B .(0,2)n ∈C .2n m =D .1m n +=7.(2022·吉林长春·模拟预测(理))互相垂直且有公共原点的两条数轴构成平面直角坐标系,但如果平面坐标系中两条坐标轴不垂直,则这样的坐标系称为“斜坐标系”.如图,在斜坐标系中,过点P 作两坐标轴的平行线,其在x 轴和y 轴上的截距a ,b 分别作为点P 的x 坐标和y 坐标,记(),P a b ,则在x 轴正方向和y 轴正方向的夹角为θ的斜坐标系中,下列选项错误的是( )A .当60θ=︒时()1,2A 与()3,4B 距离为23B .点()1,2A 关于原点的对称点为()1,2A '--C .向量11,ax y 与22,bx y 平行的充要条件是1221y x y x =D .点()1,2A 到直线10x y +-=28.(2022·河南郑州·三模(理))在ABC 中,D 是BC 上一点,2BD DC =,M 是线段AD上一点,14BM tBA BC =+,则t =( )A .12B .23C .34D .589.(多选题)(2022·广东·深圳市光明区高级中学模拟预测)在ABC 中,D 为BC 中点,且2AE ED =,则( )A .2136CE CA CB =+B .1133CE CA CB =+C .CE ∥()CA CB +D .CE ⊥()CA CB -10.(多选题)(2022·湖南·长沙一中模拟预测)已知(cos ,sin )a αα=,(cos ,sin )b ββ=,其中,[0,2π)αβ∈,则以下结论正确的是( )A .若//a b ,则αβ=B .若a b ⊥,则π||2αβ-=或3π2 C .若12a b ⋅=-,则||1a b +=D .若a b a -=,则3()2a ab ⋅+=11.(多选题)(2022·江苏·模拟预测)已知向量(3,2)a =-,(2,1)b =,(,1)c λ=-,R λ∈,则( )A .若(2)a b c +⊥,则4λ=B .若a tb c =+,则6t λ+=-C .a b μ+的最小值为75D .若向量a b +与向量2b c +的夹角为锐角,则λ的取值范围是(,1)-∞-12.(多选题)(2022·全国·模拟预测)已知向量()2,3a m →=-,(),1b m →=,则下列说法正确的是( ) A .若a b →→∥,则12m =B .若a b →→⊥,则3m =C .2a b →→+的最小值为7D .若13m -<<,则a →与b →的夹角为钝角13.(多选题)(2022·全国·模拟预测)在边长为2正六边形ABCDEF 中,G 是线段AB 上一点,AG AB λ=,则下列说法正确的有( )A .若12λ=,则122EG AB AF =--B .若向量CD 在向量AB 上的投影向量是AB μ,则12μ=C .若P 为正六边形ABCDEF 内一点(包含端点),则AP AB ⋅的取值范围是[]2,6-D .若1CG CE ⋅=,则λ的值为2314.(2022·全国·模拟预测(文))在ABC 中,M 为AB 的中点,N 为线段CM 上一点(异于端点),AN xAB yAC =+,则11x y+的最小值为______.15.(2022·湖南·模拟预测)在三角形ABC 中,点D 在边BC 上,若2BD DC =,AD AB AC λμ=+(),λμ∈R ,则λμ-=______.16.(2022·浙江·模拟预测)在平行四边形ABCD 中,12,cos 2AB BAD =∠=,E 、F 是边BC ,CD 上的点,12BE BC =,23CF CD =,若8AE BF ⋅=,则平行四边形的面积为_________.17.(2022·江西·模拟预测(理))在ABC 中,1AB =,2AC =,60BAC ∠=︒,P 是ABC 的外接圆上的一点,若AP mAB =+nAC ,则m n +的最小值是________18.(2022·湖南岳阳·三模)设点P 在以A 为圆心,半径为1的圆弧BC 上运动(包含B ,C 两个端点),∠BAC =23π,且AP xAB y AC =+,x +y 的取值范围为________.19.(2022·上海徐汇·二模)在ABC 中,已知1AB =,2AC =,120A ∠=︒,若点P 是ABC 所在平面上一点,且满足AP AB AC λ=+,1BP CP ⋅=-,则实数λ的值为______________.20.(2022·江苏·阜宁县东沟中学模拟预测)已知0θπ<<,向量2sin ,2cos 2a θθ⎛⎫= ⎪⎝⎭,()1,sin θ=b ,且a b ∥,则θ=______________.1.(2022·全国·高考真题(文))已知向量(2,1)(2,4)a b ==-,,则a b -( )A .2B .3C .4D .52.(2020·全国·高考真题(文))已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .2a b +B .2a b +C .2a b -D .2a b -3.(2019·全国·高考真题(文))已知向量()()2332a b ==,,,,则|–|a b = A .2 B .2 C .52D .504.(2021·全国·高考真题(理))已知向量()()3,1,1,0,a b c a kb ===+.若a c ⊥,则k =________.5.(2021·全国·高考真题(文))已知向量()()2,5,,4a b λ==,若//a b ,则λ=_________. 6.(2021·全国·高考真题(文))若向量,a b 满足3,5,1a a b a b =-=⋅=,则b =_________. 7.(2021·全国·高考真题(理))已知向量()()1,3,3,4a b ==,若()a b b λ-⊥,则λ=__________.8.(2020·江苏·高考真题)在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是________.9.(2020·全国·高考真题(理))设,a b 为单位向量,且||1a b +=,则||a b -=______________. 10.(2020·全国·高考真题(文))设向量(1,1),(1,24)a b m m =-=+-,若a b ⊥,则m =______________.11.(2020·全国·高考真题(理))已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.12.(2019·北京·高考真题(文))已知向量a =(-4,3),b =(6,m ),且a b ⊥,则m =__________.。
专题25 平面向量的基本定理及其坐标表示
1.已知点A (1,3),B (4,-1),则与向量AB →
同方向的单位向量为( ) A.⎝ ⎛⎭⎪⎫3
5
,-45
B.⎝ ⎛⎭⎪⎫4
5
,-35
C.⎝ ⎛⎭⎪⎫-35,45
D.⎝ ⎛⎭
⎪⎫-45,35
答案 A
2.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →
=(1,5),则BC →
等于( ) A.(-2,7) B.(-6,21) C.(2,-7)
D.(6,-21)
解析 AQ →=PQ →-PA →
=(-3,2), ∵Q 是AC 的中点,
∴AC →=2AQ →=(-6,4),PC →=PA →+AC →
=(-2,7), ∵BP →=2PC →,∴BC →=3PC →
=(-6,21). 答案 B
3.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ等于( ) A.14
B.12
C.1
D.2
解析 ∵a +λb =(1+λ,2),c =(3,4), 且(a +λb )∥c ,∴1+λ3=2
4,
∴λ=1
2,故选B.
答案 B
4.已知向量a =(-1,2),b =(3,m ),m ∈R ,则“m =-6”是“a ∥(a +b )”的( )
A.充分必要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
解析 由题意得a +b =(2,2+m ),由a ∥(a +b ),得-1×(2+m )=2×2,所以m =-6,则“m =-6”是“a ∥(a +b )”的充要条件,故选A. 答案 A
5.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC →=2AE →,则向量EM →
=( ) A.12AC →+13AB →
B.12AC →+16AB →
C.16AC →+12
AB →
D.16AC →+32
AB → 解析 如图,∵EC →=2AE →,
∴EM →=EC →+CM →=23
AC →
+
12CB →=23AC →+12(AB →-AC →)=12AB →+16AC →. 答案 C
6.如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2 PA →
,则( )
A.x =23,y =13
B.x =13,y =2
3
C.x =14,y =34
D.x =34,y =14
答案 A
7.已知a =(3,1),若将向量-2a 绕坐标原点逆时针旋转120°得到向量b ,则b 的坐标为( ) A.(0,4)
B.(23,-2)
C.(-23,2)
D.(2,-23)
解析 ∵a =(3,1),∴-2a =(-23,-2),易知向量-2a 与x 轴正半轴的夹角α=150°(如图).向量-2a 绕坐标原点逆时针旋转120°得到向量b ,在第四象限,与x 轴正半轴的夹角β=30°,∴b =(23,-2),故选B.
答案 B
8.若三点A (2,2),B (a ,0),C (0,b )(ab ≠0)共线,则1a +1
b
的值为________.
解析 AB →=(a -2,-2),AC →
=(-2,b -2),依题意,有(a -2)(b -2)-4=0,即ab -2a -2b =0,所以1a +1b =1
2.
答案 12
9.已知A (-3,0),B (0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →
+
OB →
,则实数λ的值为________________.
答案 1
10.向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λ
μ=
________.
解析 以向量a 和b 的交点为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),
则A (1,-1),B (6,2),C (5,-1),∴a =AO →=(-1,1),b =OB →=(6,2),c =BC →
=(-1,-3).
∵c =λa +μb ,∴(-1,-3)=λ(-1,1)+μ(6,2), 即-λ+6μ=-1,λ+2μ=-3, 解得λ=-2,μ=-12,∴λ
μ=4.
答案 4
11.已知O (0,0),A (1,2),B (4,5)及OP →=OA →+tAB →
,试问: (1)t 为何值时,P 在x 轴上?在y 轴上?在第三象限?
(2)四边形OABP 能否成为平行四边形,若能,求出相应的t 值;若不能,请说明理由. 解 (1)∵OA →=(1,2),AB →
=(3,3), ∴OP →=OA →+tAB →
=(1+3t ,2+3t ).
若点P 在x 轴上,则2+3t =0,解得t =-2
3;
若点P 在y 轴上,则1+3t =0,解得t =-1
3
;
若点P 在第三象限,则⎩⎪⎨⎪⎧1+3t <0,2+3t <0.
解得t <-2
3.
(2)若四边形OABP 为平行四边形,则OP →=AB →
,
∴⎩⎪⎨⎪⎧1+3t =3,2+3t =3.
∵该方程组无解,∴四边形OABP 不能成为平行四边形. 12.如图,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM →=c ,AN →
=d ,试用c ,
d 表示AB →,AD →
.
∴AB →=23(2d -c ),AD →=2
3
(2c -d ).
法二 设AB →=a ,AD →
=b .因M ,N 分别为CD ,BC 的中点, 所以BN →=12b ,DM →=12
a ,
因而⎩⎪⎨⎪⎧c =b +12a ,d =a +12b ⇒⎩⎪⎨⎪⎧a =2
3(2d -c ),b =2
3(2c -d ),
即AB →=23(2d -c ),AD →=2
3
(2c -d ).
13.如图,已知点A (1,0),B (0,2),C (-1,-2),求以A ,B ,C 为顶点的平行四边形的第四个顶点D 的坐标.
解 如图所示,以A ,B ,C 为顶点的平行四边形可以有三种情况:;ADBC ;
ABDC .设D 的坐标为(x ,y ),。