新人教版高中数学1.4.1正弦函数、余弦函数的图象(2)教案必修四
- 格式:doc
- 大小:217.50 KB
- 文档页数:3
探究一、 利用单位圆中的正弦线作正弦函数的图象
【过渡】
1)通过实验,我们对正弦函数和余弦函数的图象有了直观印象,怎样画出精确图象呢?画函数的图象,最基本的方法是?(描点法),基本步骤是?(列表,描点,连线)。
2)如果我们利用描点法画y=sinx ,x ∈[0,2π]的图象,首先列表,需要对x 进行取值,同学们思考:在x ∈[0,2π]上,x 取那些值具有代表性,从而能较准确的作出图象? 活动:师生互动,解决问题。
3)x 值取好了,相对应x 的y 值就确定了。
比如,x=3,相对应的y 就
是sin 3
,即
是无理数,不易描出点的精确位置,我们在哪里能找
到?
23
(我总结我提高)
的图象扩展到整个定义域的?。
1.4.1《正弦函数余弦函数的图像》教案篇一:正弦函数余弦函数的图像一、教学目标1. 知识与能力能够正确理解正弦函数和余弦函数的定义,并能够绘制它们的图像。
2. 过程与方法学会利用函数的性质和特点绘制函数的图像。
3. 情感态度价值观通过绘制正弦函数和余弦函数的图像,培养学生对数学的兴趣,提高他们的数学解决问题的能力。
二、教学重难点1. 教学重点正弦函数和余弦函数的定义,以及它们的图像特点。
2. 教学难点学生可能对正弦函数和余弦函数的周期性特点理解困难,需要适当的引导和解释。
三、教学过程1. 导入通过展示一张正弦函数和余弦函数的图像,并向学生提问:“这是什么图像?它们有什么特点?”引导学生思考,激发他们的兴趣。
3. 练习让学生通过例题练习,掌握正弦函数和余弦函数的图像特点。
指导学生如何根据函数的性质绘制出函数的图像。
4. 拓展让学生利用计算机绘制正弦函数和余弦函数的图像,并与手绘的图像进行比较,加深对函数图像的理解。
6. 反思让学生总结本节课的学习收获和问题,激发他们对数学学习的兴趣。
四、教学资源1. PPT课件2. 正弦函数和余弦函数的图像3. 计算机绘图软件五、教学评价1. 提问通过提问考察学生对正弦函数和余弦函数的理解程度。
2. 练习布置练习题,检验学生对函数图像的掌握情况。
3. 课堂表现评价学生在课堂上的表现,包括学习态度和参与程度。
六、教学反思1. 教学方法在本节课的教学过程中,需要充分引导学生自主学习,培养他们的解决问题的能力。
2. 教学内容应该注重对正弦函数和余弦函数图像特点的深入讲解,让学生掌握绘制函数图像的方法。
七、教学改进在后续的教学中,可以增加案例分析和实际应用的讲解,让学生更好地理解正弦函数和余弦函数的图像特点。
注重对学生自主学习和实践能力的培养。
1.4.1正弦函数、余弦函数的图像与性质【教学分析】1.学习过指数函数和对数函数;2.学习过周期函数的定义;3.学习过正弦函数、余弦函数上的图像。
【教学目标】一、知识目标:1.正弦函数的性质;2.余弦函数的性质;二、能力目标:1.能够利用函数图像研究正弦函数、余弦函数的性质;2.会求简单函数的单调区间;三、德育目标:渗透数形结合思想和类比学习的方法。
【教学重点】正弦函数、余弦函数的性质【教学难点】正弦函数、余弦函数的性质的理解与简单应用【教学方法】通过引导学生观察正弦函数、余弦函数的图像,从而发现正弦函数、余弦函数的性质,加深对性质的理解。
(启发诱导式)【教学过程】一、复习导入1.我们是从哪个角度入手来研究指数函数和对数函数的?2.正弦、余弦函数的图像在上是什么样的?二、讲授新课[]π2,0[]π2,01.正弦函数的图像和性质(由教师讲解)通过展示出正弦函数在内的图像,利用函数图像探究函数的性质:(1)定义域:正弦函数的定义域是实数集R(2)值域从图像上可以看到正弦曲线在这个范围内,所以正弦函数的值域是(3)单调性结合正弦函数的周期性和函数图像,研究函数单调性,即:(4)最值观察正弦函数图像,可以容易发现正弦函数的图像与虚线的交点,都是函数的最值点,可以得出结论:(5)奇偶性正弦函数的图像关于原点对称,所以正弦函数的奇函数。
(6)周期性正弦函数的图像呈周期性变化,函数最小正周期为2。
2.余弦函数的图像和性质(由学生分组讨论,得出结论)通过展示出余弦函数的图像,由学生类比正弦函数的图像及性质进行讨论,探究余弦函数的性质:(1)定义域:余弦函数的定义域是实数集R(2)值域从图像上可以看到余弦曲线在这个范围内,所以余弦函数的值域是(3)单调性结合余弦函数的周期性和函数图像,研究函数单调性,即:(4)最值观察余弦函数图像,可以容易发现余弦函数的图像与虚线的交点,都是函数的最值点,可以得出结论:[]ππ2,2-[]1,1-[]1,1-π[]1,1-[]1,1-上是增函数;在)(22,22Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ上是减函数;在)(232,22Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ1,22max =∈+=y Z k k x 时,当ππ1,22min -=∈-=y Z k k x 时,当ππ[]上是增函数;在)(2,2Z k k k ∈-πππ[]上是减函数;在)(2,2Z k k k ∈+πππ1,2max =∈=y Z k k x 时,当π1,2min -=∈+=y Z k k x 时,当ππ(5)奇偶性余弦函数的图像关于y 轴对称,所以余弦函数的偶函数。
2019-2020年高中数学1.4.1正弦函数、余弦函数的图象教案新人教A版必修4一.教材的地位与作用《正弦函数、余弦函数的图象》是高中数学(人民教育出版社A版)必修四第一章《三角函数》第1.4.1节《三角函数的图像与性质》的内容。
本节课是在学生已经学习了任意三角函数的定义,三角函数线,三角函数的诱导公式等知识基础上进行学习的,主要是对正弦函数和余弦函数的图象进行系统的研究。
作为函数,它是已学过的指数函数与对数函数的后继内容,也是后面学习三角函数的性质的重要基础依据,为今后学习正弦型函数y=Asin (ωx+φ)的图象及运用数形结合思想研究正、余弦函数的性质打下坚实的知识基础。
因此,本节课的内容是至关重要的,它对知识的掌握起到了承上启下的作用。
二.学情分析高一学生对函数概念的理解本身就是难点,再加上与三角有关的知识,就要求学生有较高的理解和综合的能力。
在作图方面,学生在初中已经学习过三步作图法(列表,描点、连线)——“描点作图”法,对于函数y=sinx,当x取值时,y的值大都是近似值,加之作图上的误差,很难认识新函数y=sinx的图象的真实面貌。
基于上述情况,预测学生对于本节课的内容,会有以下的一些困难:1.概念的引出,把三角与函数两个概念结合起来,正确理解正弦函数和余弦函数。
2.利用单位圆的正弦线作出正弦函数在上的图象。
3.正确掌握五点法的作图步骤与要求。
4.按照正弦函数的作图方法,学生自己解决画正、余弦函数图像的一些方法。
在教学活动中,通过教师提出疑问,引导学生主动观察、主动思考、主动探究、讨论交流;在积极的双边活动中解决疑难,获得知识;整个过程贯穿“疑问”——“思索”——“发现”——“解惑”四个坏节,注重学生思维的持续性和发展性,促进学生数学思维的形成,提高学生的综合素质。
三.方法分析根据上述教材分析,贯彻启发性教学原则,体现以教师为主导,学生为主体的教学思想,深化教学改革,确定本课主要的教法为:1. 讨论式教学:通过学生对图形的观察,让学生分组讨论、交流、总结,并发表意见,说出正弦、余弦函数图象的特征,归纳作函数图象的步骤方法以及图象之间的变化与联系。
1.4.1《正弦函数余弦函数的图像》教案教学目标:1. 了解正弦函数和余弦函数的定义及其基本特性;2. 能够绘制正弦函数和余弦函数的图像;3. 掌握正弦函数和余弦函数的周期、振幅和相位差的概念。
教学准备:1. 教材:数学课本、教学PPT;2. 板书工具:黑板、彩色粉笔;3. 工具:计算器;4. 图表工具:纸张、铅笔。
教学过程:一、导入(5分钟)在黑板上写下正弦函数和余弦函数的定义,并询问学生对这两个函数的了解程度,以激发学生的学习兴趣。
二、正弦函数的图像(15分钟)1. 根据正弦函数的定义,将角度从0度到360度以10度为间隔进行计算,并用表格的形式呈现。
2. 按照表格中的数值,绘制正弦函数的图像,并让学生找出图像的一些特点。
3. 引导学生理解正弦函数的周期、振幅和相位差的概念,并将其在图像中标注出来。
四、练习(15分钟)1. 让学生自己计算并绘制正弦函数和余弦函数的图像,巩固所学的知识。
2. 出示几个问题,让学生用图像来解决,例如求正弦函数和余弦函数的最大值、最小值等。
五、拓展(15分钟)1. 介绍正弦函数和余弦函数在实际生活中的应用,例如天空中的周期性变化、声波的振动等。
2. 进一步拓展,介绍正弦函数和余弦函数的积分和导数,以及它们在物理方程中的应用。
六、总结(5分钟)让学生回顾和总结本节课所学的内容,强化对正弦函数和余弦函数的理解。
教学反思:本节课通过表格和图像的形式,帮助学生理解了正弦函数和余弦函数的定义及其基本特性。
通过练习和拓展,激发了学生对这两个函数的兴趣和思考能力。
通过引导学生理解一些重要概念,如周期、振幅和相位差,培养了学生的抽象思维能力。
但是在教学过程中,需要注意适当引导学生思考,增强学生的主动性和参与度。
1.4.1正弦、余弦函数的图象教学目的:(1)利用单位圆中的三角函数线作出R x x y ∈=,sin 的图象,明确图象的形状; (2)根据关系)2sin(cos π+=x x ,作出R x x y ∈=,cos 的图象;(3)用“五点法”作出正弦函数、余弦函数的简图,并利用图象解决一些有关问题; 教学重点:用单位圆中的正弦线作正弦函数的图象; 教学难点:作余弦函数的图象。
教学过程: 一、复习引入:1、正、余弦函数定义:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离r (02222>+=+=y x y x r )则比值r y叫做α的正弦 记作: r y =αsin 比值rx叫做α的余弦 记作: rx =αcos 2、正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x ,y),过P 作x 轴的垂线,垂足为M ,则有MP r y ==αsin ,OM rx==αcos 向线段MP 叫做角α的正弦线,有向线段OM 叫做角α的余弦线.二、讲解新课:1、用单位圆中的正弦线、余弦线作正弦函数、余弦函数的图象(几何法):为了作三角函数的图象,三角函数的自变量要用弧度制来度量,使自变量与函数值都为实数.在一般情况下,两个坐标轴上所取的单位长度应该相同,否则所作曲线的形状各不相同,从而影响初学者对曲线形状的正确认识.(1)函数y=sinx 的图象第一步:在直角坐标系的x 轴上任取一点1O ,以1O 为圆心作单位圆,从这个圆与x 轴的交点A 起把圆分成n(这里n=12)等份.把x 轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x 值—弧度制下角与实数的对应).第二步:在单位圆中画出对应于角6,0π,3π,2π,…,2π的正弦线正弦线(等价于“列表” ).把角x 的正弦线向右平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点” ).第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx ,x ∈[0,2π]的图象.根据终边相同的同名三角函数值相等,把上述图象沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx ,x ∈R 的图象.把角x ()x R ∈的正弦线平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点的轨迹就是正弦函数y=sinx 的图象.(2)余弦函数y=cosx 的图象探究1:你能根据诱导公式,以正弦函数图象为基础,通过适当的图形变换得到余弦函数的图象?根据诱导公式cos sin()2x x π=+,可以把正弦函数y=sinx 的图象向左平移2π单位即得余弦函数y=cosx 的图象.正弦函数y=sinx 的图象和余弦函数y=cosx 的图象分别叫做正弦曲线和余弦曲线. 思考:在作正弦函数的图象时,应抓住哪些关键点? 2.用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (π,0) (23π,-1) (2π,0)余弦函数y=cosx x ∈[0,2π]的五个点关键是哪几个?(0,1) (2π,0) (π,-1) (23π,0) (2π,1)只要这五个点描出后,图象的形状就基本确定了.因此在精确度不太高时,常采用五点法作正弦函数和余弦函数的简图,要求熟练掌握. 优点是方便,缺点是精确度不高,熟练后尚可以 3、例1 作下列函数的简图(1)y=1+sinx ,x ∈[0,2π], (2)y=-COSx探究1. 如何利用y=sinx ,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到 (1)y =1+sinx ,x∈〔0,2π〕的图象;(2)y=sin(x- π/3)的图象? 小结:函数值加减,图像上下移动;自变量加减,图像左右移动。
⼈教版⾼中数学必修四1.4.1《正弦函数、余弦函数的图像》教学设计正、余弦函数图象的教案⼀、教学内容与任务分析本节课是《普通⾼中课程标准实验教科书》⼈民教育出版社A版必修四第⼀章第四节1.4.1正弦函数、余弦函数的图象。
本节课的教学是以任意⾓的三⾓函数、三⾓函数的诱导公式、三⾓函数线等相关知识为基础展开学习的,是学习正弦型函数 y=Asin (ωx+φ)+B和余弦型函数y=Acos (ωx+φ)+B图象的前提和基础,为学⽣运⽤数形结合思想研究正、余弦函数的性质打下坚实的基础。
⼆、学⽣情况分析学⽣已经学习了任意三⾓函数的定义、三⾓函数的诱导公式、三⾓函数线,并且学习⽤“三⾓函数线”解决本可以⽤“三⾓函数图像”解决的⼀些实际问题,毕竟⽅法相对复杂,⽽正余弦函数图像的学习将为解决这类问题提供更加便捷、合理、有效的办法。
同时,学⽣对三⾓函数图像的形状、产⽣原因、变换、实际应⽤都不清楚,本课的学习也将有助于帮助学⽣对此有初步的了解,为后⾯学习三⾓函数的性质提供保障。
三、教学重难点教学重点:正弦余弦函数图象的“五点作图”法及其正弦曲线、余弦曲线的基本特征。
教学难点:正弦余弦函数图象的三种画法:⼏何画法、五点作图、图像变换,及两种曲线的基本特点。
教学⽬标1.知识与能⼒⽬标了解⽤正弦线画正弦函数的图象,理解⽤平移法作余弦函数的图象。
掌握正弦函数、余弦函数的图象及特征;利⽤图象变换作图的⽅法,体会图象间的联系;掌握“五点法”画正弦函数、余弦函数的简图。
2.情感与价值⽬标养成寻找、观察数学知识之间的内在联系的意识;激发数学的学习兴趣;体会数学的应⽤价值。
四、教学过程⼀、复习引⼊遇到⼀个新的函数,我们很容易想到的就是画函数图象,那怎么画正弦函数、余弦函数的图象呢?我们先来做⼀个简弦运动的实验,这就是某个简弦函数的图象,通过实验是不是对正弦函数余弦函数的图象有了直观印象呢【设计意图】通过动⼿实验,体会数学与其他的联系,激发学习兴趣。
1.4.1正弦函数、余弦函数的图象教学目的:1、用单位圆中的正弦线画出正弦函数的图象;2、用五点法作正弦函数和余弦函数的简图;3、正弦函数图象与余弦函数图象的变换关系。
教学重点、难点重点:会用单位圆中的三角函数线画出正弦函数的图像,并在此基础上由诱导公式画出余弦函数的图像难点:用单位圆中的正弦线作正弦函数的图象教学过程:一、复习引入:正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x ,y),过P 作x 轴的垂线,垂足为M ,则有 MP r y ==αsin ,OM r x ==αcos向线段MP 叫做角α的正弦线,有向线段OM 叫做角α的余弦线.二、讲授新课:1、正弦函数图象的几何作法采用弧度制, x 、y 均为实数,步骤如下:(1)在 x 轴上任取一点 O 1 ,以 O l 为圆心作单位圆;(2)从这个圆与 x 轴交点 A 起把圆分成 12 等份;(3)过圆上各点作x 轴的垂线,可得对应于0、6π、3π、、2π的正弦线;(4)相应的再把 x 轴上从原点 O 开始,把这0~2π这段分成 12 等份;(5)把角的正弦线平移,使正弦线的起点与 x 轴上对应的点重合;(6)用光滑曲线把这些正弦线的终点连结起来。
2、五点法作图描点法在要求不太高的情况下,可用五点法作出,y sin x,x [0,2]=∈π的图象上有五 点起决定作用,它们是 描出这五点后,其图象的形状基本上就确定了。
3(0,0),(,1),(,0),(,1),(2,0)22πππ-π因此,在精确度要求不太高时,我们常常先描出这五个点,然后用平滑的曲线将它们连接起来,就得到在相应区间内正弦函数的简图,这种方法叫做五点法。
注意:(1)描点法所取的各点的纵坐标都是查三角函数表得到的数值,不易描出对应点的精确位置,因此作出的图象不够精确。
(2)几何法作图较为精确,但画图时较繁。
(3)五点法是我们画三角函数图象的基本方法,要切实掌握好。
(4)作图象时,函数自变量要用弧度制,这样自变量与函数值均为实数,因此在 x 轴、 y 轴上可以统一单位,作出的图象正规,便于应用。