步进电机细分控制原理及仿真分析
- 格式:pdf
- 大小:581.57 KB
- 文档页数:13
步进电机细分原理步进电机是一种特殊的电机,它可以根据输入的脉冲信号来精确控制位置和速度。
步进电机的细分原理是指通过将每个步进脉冲信号细分成更小的微步脉冲信号,从而提高步进电机的分辨率和运动平滑性。
在本文中,我们将深入探讨步进电机的细分原理及其应用。
步进电机的细分原理基于电机控制器对输入的脉冲信号进行处理。
一般来说,步进电机的每个步进角度对应一个脉冲信号,通过改变脉冲信号的频率和顺序可以控制电机的转动速度和方向。
然而,传统的步进电机控制方式存在分辨率较低、运动不平滑等问题。
为了解决这些问题,人们提出了细分原理,即将每个步进脉冲信号进一步细分成多个微步脉冲信号,从而使步进电机的角度分辨率得到提高,运动更加平滑。
细分原理的实现离不开现代步进电机控制器的高级功能。
通过控制器内部的电子线圈驱动器和细分逻辑电路,可以将输入的脉冲信号细分成更小的微步脉冲信号,实现对步进电机的精细控制。
细分原理的核心在于将每个步进角度再次细分成多个微步角度,这样可以使步进电机的角度分辨率大大提高,从而提高电机的定位精度和运动平滑性。
细分原理在实际应用中具有重要意义。
首先,细分原理可以提高步进电机的定位精度和运动平滑性,适用于对运动精度要求较高的场合,如数控机床、精密仪器等。
其次,细分原理可以降低步进电机的共振噪音和振动,改善电机的运动品质,提高设备的工作稳定性和可靠性。
另外,细分原理还可以扩大步进电机的速度范围,提高电机的运动性能,满足不同应用场合的需求。
总的来说,步进电机的细分原理是通过将每个步进脉冲信号细分成更小的微步脉冲信号,从而提高电机的分辨率和运动平滑性。
细分原理的实现离不开现代步进电机控制器的高级功能,它在提高步进电机的定位精度、改善运动品质、提高工作稳定性等方面具有重要意义。
在未来的发展中,细分原理将继续发挥重要作用,推动步进电机技术的进步和应用领域的拓展。
步进电机细分原理
步进电机细分原理是通过将步进电机的每一步细分为更小的步数,以提高步进电机的精度和平滑性。
细分步进电机的方法有很多种,其中一种常用的方法是电子细分。
电子细分是通过改变电流的形式或频率来实现细分效果。
具体来说,当电流经过细分驱动器时,驱动器会根据细分的要求将电流细分为更小的步数,并按照指定的步序依次通电给步进电机的各相,从而实现步进电机的细分控制。
在电子细分中,常用的方法包括全流模式细分和半流模式细分。
全流模式细分是将每一步细分为两个小步,即电流依次由A
相到AB相再到B相,再由B相到BC相再到C相,依此循环。
这样可以提高步进电机的抗负载能力和静态扭矩,但精度相对较低。
半流模式细分是将每一步细分为四个小步,即电流分别经过A相、AB相、B相、BC相、C相和CA相,依此循环。
这样可以提高步进电机的精度和平滑性,但抗负载能力和静态扭矩相对较低。
除了电子细分,还有一些其他方法用于步进电机的细分控制。
例如,可以通过增加步进电机的极对数来实现细分效果,即增加步进电机的电磁线圈数量,从而提高步进电机的分辨率。
此外,还可以通过使用微步驱动器来实现步进电机的细分控制,微步驱动器能够将每一步细分为更小的微步数,从而进一步提高步进电机的精度。
综上所述,步进电机细分原理是通过改变电流的形式或频率,
将每一步细分为更小的步数,以提高步进电机的精度和平滑性。
在实际应用中,可以根据具体需求选择不同的细分方法和控制器,以实现最佳的细分效果。
步进电机驱动器及细分控制原理引言:步进电机是一种将电脉冲信号转化为机械转动的电动机。
步进电机驱动器是一种用于控制步进电机旋转的设备。
步进电机可以通过控制驱动器提供的电流和脉冲信号来精确地控制旋转角度和速度。
本文将介绍步进电机驱动器的工作原理以及细分控制的原理。
一、步进电机驱动器的工作原理:1.输入电流转换:驱动器将输入的电流信号转换为电压信号。
电流信号通常由控制器产生,通过选择合适的电阻来控制输入电流的大小。
2.逻辑控制:驱动器还会接收来自控制器的脉冲信号。
这些脉冲信号会相互间隔地改变驱动器输出的电压,从而驱动步进电机旋转。
脉冲信号的频率和脉冲数量会影响步进电机的转速和旋转角度。
3.输出电压控制:驱动器会根据输入的电流和脉冲信号控制输出的电压,使其适应步进电机的工作要求。
输出电压的频率和脉冲数有助于控制步进电机旋转的速度和角度。
二、细分控制原理:细分控制是指通过控制驱动器输出的电压脉冲信号来实现更精确的步进电机控制。
细分控制可以将步进电机的每个脉冲细分成更小的步进角度,从而提高步进电机的转动分辨率。
1.脉冲信号细分:通过改变驱动器的输出脉冲信号频率和脉冲数来实现脉冲信号的细分。
例如,如果驱动器输入100个脉冲,但只输出50个脉冲给步进电机,那么每个输入的脉冲就会分为两个输出脉冲,步进电机的旋转角度将更精确。
2.电流细分:通过改变驱动器输出的电流大小来实现电流的细分。
通常情况下,驱动器的输出电流会根据步进电机的转动需要进行控制。
细分控制可以使驱动器能够实现更精确的电流控制,进而控制步进电机的转动精度。
3.微步细分:微步细分是一种更高级的细分控制方法,通过改变驱动器输出的电压波形进行微步细分。
微步细分将步进电机的每个步进角度再次细分为更小的角度,进一步提高了步进电机的转动分辨率和平滑性。
总结:步进电机驱动器是通过将控制器产生的电流和脉冲信号转换为驱动步进电机的电压信号的设备。
细分控制是通过改变驱动器输出的电流和脉冲信号来实现更精确的步进电机控制。
步进电机驱动器及细分控制原理步进电机驱动器原理:步进电机必须有驱动器和控制器才能正常工作。
驱动器的作用是对控制脉冲进行环形分配、功率放大,使步进电机绕组按一定顺序通电。
以两相步进电机为例,当给驱动器一个脉冲信号和一个正方向信号时,驱动器经过环形分配器和功率放大后,给电机绕组通电的顺序为AABB A A B B,其四个状态周而复始进行变化,电机顺时针转动;若方向信号变为负时,通电时序就变为AA B BA A BB,电机就逆时针转动。
随着电子技术的发展,功率放大电路由单电压电路、高低压电路发展到现在的斩波电路。
其基本原理是:在电机绕组回路中,串联一个电流检测回路,当绕组电流降低到某一下限值时,电流检测回路发出信号,控制高压开关管导通,让高压再次作用在绕组上,使绕组电流重新上升;当电流回升到上限值时,高压电源又自动断开。
重复上述过程,使绕组电流的平均值恒定,电流波形的波顶维持在预定数值上,解决了高低压电路在低频段工作时电流下凹的问题,使电机在低频段力矩增大。
步进电机一定时,供给驱动器的电压值对电机性能影响较大,电压越高,步进电机转速越高、加速度越大;在驱动器上一般设有相电流调节开关,相电流设的越大,步进电机转速越高、力距越大。
细分控制原理:在步进电机步距角不能满足使用要求时,可采用细分驱动器来驱动步进电机。
细分驱动器的原理是通过改变A,B相电流的大小,以改变合成磁场的夹角,从而可将一个步距角细分为多步。
定子A转子SNB B BSNA A(a)(b)AS NB B N S BS NA(c)(d)图3.2步进电机细分原理图仍以二相步进电机为例,当A、B相绕组同时通电时,转子将停在A、B相磁极中间,如图3.2。
若通电方向顺序按AA AABB BB BB AA AA AA BB BB BB AA,8个状态周而复始进行变化,电机顺时针转动;电机每转动一步,为45度,8个脉冲电机转一周。
与图2.1相比,它的步距角小了一半。
步进电机的细分原理
步进电机的细分原理是指将步进电机的每个步进角度再进行更加精细的划分,以增加电机的精度和平滑性。
细分原理的基本思想是通过改变电机的驱动信号来控制电机的步进角度。
步进电机通常由一个转子和一个定子组成,定子上带有一组绕组,而转子则带有一组磁极。
根据步进电机的类型不同,转子上的磁极数量可能是奇数或偶数。
在正常情况下,步进电机的每一步进角度是固定的,例如对于一个普通的四相步进电机,每一步进角度是90度。
然而,通过细分原理,可以将每个步进角度再次划分为更小的角度。
这样做的关键在于电机驱动的控制信号。
通常情况下,步进电机的驱动信号是一个脉冲信号,每个脉冲触发电机转动一小步。
通过改变脉冲信号的频率和宽度,可以改变电机的步进角度和速度。
细分的原理是通过在每个步进角度中插入更多的脉冲信号来实现。
例如,将每个步进角度细分为两个小步进角度,那么在原先一个步进角度内,就会插入一个额外的脉冲信号。
这样做的结果是电机转动更加平滑,步进角度更加精细。
细分原理的另一个关键技术是微步驱动技术。
微步驱动技术利用了步进电机绕组的特性,通过改变绕组的相位差来实现步进角度的细分。
这样做的好处是可以在不增加电机绕组的情况下,实现步进角度的细分。
总的来说,步进电机的细分原理通过改变驱动信号的频率、宽度和相位差来实现步进角度的细分。
这样做可以提高电机的精度和平滑性,适用于一些对步进角度要求较高的应用,例如打印机、数控机床等。
步进电机细分工作原理
步进电机细分工作原理是指通过控制电流波形,使步进电机在每个步进角度上分为更小的微步,从而实现更精确的控制。
步进电机是一种将电信号转换为机械运动的装置,它由一个固定的磁场与一个可旋转的磁场之间的相互作用驱动。
当电流通过驱动器中的细分电路时,细分电路会将输入的电流信号进行分析并转换为根据所设定的细分级数产生相应的电流波形。
细分电路中通常采用Pulse Width Modulation(PWM)技术,即通过调节电流信号的占空比来控制电机的驱动电流。
通过改变电流的大小和方向,可以实现步进电机的连续旋转或停止。
在细分过程中,输入的电流信号被切割成很多个小步进,通过不断改变电流的大小和方向,可以使步进电机在任意位置停下或继续旋转,从而实现更高的定位精度。
细分级数的选择对步进电机的运动精度和平滑度有重要影响。
通常情况下,细分级数越高,步进电机的旋转角度越小,运动精度和平滑度越高。
然而,细分级数越高,所需的计算和控制效率也会越低,因此需要在控制系统设计中进行权衡。
两相混合式步进电机细分控制两相混合式步进电机细分控制是一种常用的步进电机控制技术,可以实现高精度和高速度的运动控制。
本文将介绍两相混合式步进电机的工作原理、细分控制技术以及在实际应用中的一些注意事项。
首先,我们来了解一下两相混合式步进电机的工作原理。
两相混合式步进电机由两个相位的线圈组成,每个相位有两个线圈。
当电流通过线圈时,会产生磁场,这个磁场会与电机中的永磁体相互作用,从而产生力矩,推动电机转动。
通过交替激励两个相位的线圈,可以控制电机的转动方向和步长。
在细分控制中,我们需要将一个完整的步进角度细分为更小的角度,以提高步进电机的精度和平滑性。
常见的细分控制技术有全步进、半步进和微步进。
全步进是最基本的细分控制技术,将一个完整的步进角度等分为若干个小角度。
例如,将一个360度的步进角度等分为200个小角度,每个小角度为1.8度。
全步进可以实现较高的转动精度,但在低速运动时容易产生共振和震动。
半步进是在全步进的基础上进行细分的一种技术。
它将一个完整的步进角度等分为更小的角度,并在每个小角度中交替激励两个相位的线圈。
例如,将一个360度的步进角度等分为400个小角度,每个小角度为0.9度。
半步进可以提高步进电机的转动平滑性和精度,但在高速运动时容易失步。
微步进是最高级别的细分控制技术,可以将一个完整的步进角度细分为更小的角度,并通过改变线圈电流的大小和方向来控制电机的转动。
微步进可以实现非常高的转动精度和平滑性,但同时也增加了系统复杂性和成本。
在实际应用中,我们需要根据具体需求选择合适的细分控制技术。
如果对转动精度要求较高,可以选择全步进或半步进;如果对转动平滑性要求较高,可以选择半步进或微步进。
同时,还需要注意以下几点:1. 选择合适的驱动器和控制器:不同的细分控制技术需要相应的驱动器和控制器来实现。
因此,在选择步进电机系统时,需要考虑其兼容性和可靠性。
2. 控制参数调整:在使用细分控制技术时,需要根据具体情况调整控制参数,如脉冲频率、加速度和减速度等。
步进电机细分控制原理及仿真分析引言:步进电机是一种将电能转换为机械能的装置,它具有定位精度高、启动扭矩大、体积小等优点,广泛应用于工业自动化领域。
在一些特定场合,需要对步进电机进行细分控制,以提高其运动精度和平滑性。
本文将介绍步进电机细分控制的原理,并通过仿真分析验证其效果。
一、步进电机基本原理:步进电机是一种工作在离散回转模式下的执行元件,它通过电流的阶跃变化来实现角度的离散改变。
一般步进电机由两相及以上的线圈组成,线圈由直流电源供电,通过驱动电流改变线圈中的磁场,使得转子发生步进运动。
步进电机可以精确控制每一步的角度,具有良好的定位性能。
二、步进电机细分控制原理:传统的步进电机控制方式是通过改变驱动电流的方向和大小来控制转子的转动。
而在细分控制中,我们将一个步进角(通常为1.8度)细分为更小的角度,以提高运动的精度。
细分控制的原理可以通过脉冲信号来实现,通过控制脉冲信号的频率和脉冲数来控制步进电机的运动。
三、细分控制方式:常见的步进电机细分控制方式有两种,一种是全步进细分控制,即将一个步进角细分为多个小角度步进;另一种是半步进细分控制,即将一个步进角细分为相邻两个小角度步进之间的中间角度。
这两种方式各有优劣,在实际应用中可以根据要求进行选择。
四、细分控制的仿真分析:为了验证步进电机细分控制的效果,我们可以通过仿真软件进行仿真分析。
以下是具体的仿真步骤:1.创建仿真模型:在仿真软件中,根据步进电机的参数创建电机模型,并设置驱动电流和控制脉冲的参数。
2.编写控制算法:根据细分控制的原理,编写相应的控制算法。
算法中需要考虑脉冲信号的频率和脉冲数的设置,以及步进电机的特性。
3.运行仿真模型:通过运行仿真模型,观察步进电机的运动情况。
可以通过绘制转子角度随时间的变化曲线,来评估细分控制的效果。
4.优化参数:根据仿真结果,评估细分控制的效果,并进行参数优化。
可以尝试不同的细分控制方式和参数设置,以达到理想的控制效果。
步进电机细分控制原理时间:2011-11-24 来源:作者:关键字:步进电机控制原理步进电机控制已经蕴含了细分的原理。
电机内部磁场每旋转一个圆周, 步进电机前进一整个步距角。
若四相步进电机按A→B→C →D→A 的顺序轮流通电, 即整步工作, 磁场分四拍旋转, 每次电流换向, 步进电机将前进整步距角的1/4。
而按A→AB→B→BC→C→CD →D→DA→A 的顺序轮流通电, 即半步工作, 每次电流换向, 步进电机将前进整步距角的1/8。
但是, 如果半步工作状态下每拍前进的角度超过控制精度要求, 则需要对步距角进行更进一步的细分。
我们知道, 电磁力的大小跟绕组通电电流的大小是相关的。
当通电相的电流不马上到达峰值, 而断电相的电流也不立即降为零时, 电机内部磁场为上两相电流共同合成, 而产生的磁场合力, 会使转子有一个新的平衡位置, 这个新的平衡位置在原步距角的范围内。
也就是说, 如果绕组电流的波形不再是一个近似方波, 而是分成N 个阶梯的近似阶梯波, 则电流每升或者降一个阶梯时, 转子转动一小步。
当转子按照这个规律转过N 小步时, 实际相当于它转过一个步距角。
这种将一个步距角分成若干小步的驱动方法, 称为细分驱动。
如图3: T1 是一个高频开关管。
T2 管的发射极接一个电流取样小电阻R。
比较器一端接给定电压uc, 另一端接R 上的压降。
控制脉冲ui 为低电平时, T1 和T2 均截止。
当ui 为高电平时, T1 和T2 均导通, 电源向电机供电。
由于绕组电感的作用, R 上电压逐渐升高, 当超过给定电压uc, 比较器输出低电平, 与门因此输出低电平, T1 截止, 电源被切断, 绕组电感放电。
当取样电阻上的电压小于给定电压时, 比较器又输出高电平, 与门输出高电平, T1 又导通, 电源又开始向绕组供电, 这样反复循环, 直到ui 又为低电平。
因此: T2 每导通一次, T1 导通多次, 绕组的电流波形为锯齿形, 如图4 所示, 在T2 导通的时间里电源是脉冲式供电( 图4 中ua 波形) , 所以提高了电源效率, 而且还能有效抑制共振。
步进电机驱动细分原理
步进电机驱动细分原理是通过改变电流波形来实现对步进电机精细控制的一种方法。
在传统的双极性驱动方式中,每一相都只有两种状态:激活和不激活。
而细分驱动则将每一相的激活状态进行进一步细分,使得电流具有更多个离散的状态。
细分驱动的基本原理是通过改变驱动器输出的电流波形来实现对步进电机转子位置的微调。
具体来说,细分驱动使用一种特殊的电流控制技术,将总电流周期性地细分成多个小的电流脉冲。
通过改变电流脉冲的大小和时序,可以在每一个基本步进角度上进行更细致的位置控制。
通常,在步进电机驱动器中使用的细分驱动方式有全步进和半步进两种。
全步进是最基本的细分方式,在一个完整的电流周期内将电流波形分为两个相等的部分,每个部分激活的时间持续一个基本步进角度。
而半步进则是在全步进的基础上,对激活时间进行了进一步细分,使得每个部分激活的时间只有全步进时间的一半,从而实现了更精细的位置控制。
细分驱动的实现离不开现代步进电机驱动器中的电流控制电路。
这些电路通常包括高性能的电流感应器、精确的分流器和多级放大器等。
通过这些电路的协同作用,细分驱动器可以在每个细分步进角度上产生相应大小和时序的电流脉冲,实现对步进电机位置的微调控制。
总而言之,步进电机驱动细分原理是通过改变电流波形来实现
对步进电机位置的微调。
通过细分驱动方式,可以获得更精细的步进角度控制,提高步进电机的定位精度和运动平滑性。
步进电机控制
双相四线步进电机
0.9度步进电机,定子8槽,转子为永磁体。
两端N、S极各100齿错开。
步进电机简要理论
A 相磁通链:
ΦA = ΦMAX ×cos(N t θm ) ΦMAX 为磁通链最大值;为转子变位角。
转矩为磁通链对于角度的导数和电流值的乘积。
单相转矩:
T A = -K T ×i ×sin(N t θm ) = -K T ×i ×sin θe
对AB 相电流分别为i ×cos α, i ×sin α 因为各齿相邻,最终计算得合转矩为:
K T ×i ×cos (α-θe )。
对α-θe 趋于0,合力矩为i ×K T 。
近似恒定值。
A N B
A S
B
--S
N
N
N N S S
S
S
定子
转子
A
N
B
A
S
B --S
N
N
N
N
S
S S
S 定子转子
A N
B
A S B
--S
N
N N N
S S S
定子
转子
N
A
N
B
A
S
B --S
N
N
N
N
S
S
S
定子转子
N
S
轮流对AB 相通电,电机转子定向转动。
步进电机脉冲控制原理
传统的步进电机脉冲控制是用一对相位差90度的方波来驱动步进电机的A 、B 相线圈电流,以达到定向转动的目的。
以A 相线圈通电超前B 相90度时,方向为正。
当线圈B 相超前A 相90度通电时,电机反方向转。
控制两相线圈导通脉冲的相位就能控制步进电机的转向。
每1/4周期电机行进一个步进角0.9度。
通过控制脉冲的频率就可以控制电机的转速。
A
B
A
B
10.9
步进电机细分控制原理
细分控制方法是通过精确控制步进电机的A、B相电流,分别按照正余弦曲线变化。
这样产生的合力矩大小恒定,径向分力极小。
将1个步进角(即0.9度)分成128个微步,通过控制两相电流,可以停到其中任一个微步的位置上。
图2为正向时A、B相线圈的电流波形示意图。
以X点为例,A、B相分别通以电流Ixa、Ixb时,两相线圈合力使转子可以稳定停在X点上。
由于电机不是跳跃转动,相对传统控制方案,只需要较小的转矩就可以实现不丢步启动。
因为要精确控制两相线圈的电流,而且电流需要换向,即存在正负两种电流,所以硬件电路设计和控制算法都比较复杂。
步进电机控制原理
A3988电机驱动芯片内部
框图
1) PHASE1/2/3/4分别
控制1/2/3/4线圈电流的
方向。
2) VREF1/2/3/4分别控
制1/2/3/4线圈电流的大
小。
3) VREF1/2为一对,分
别用正余弦(半波)驱
动。
PHASE1/2在相应
VREF1/2波形的过0点切
换。
步进电机仿真模型
1)电机:使用6.8mH,内阻为2.7欧。
R+L简化模型。
2)驱动波形:以转台最高转速450度/秒为参照,考虑0.9度步进电机和1:4的机械变比,可以使用50V/500Hz交流电源,经全桥整流再分压得到一对近似的正余弦(半波)。
并且产生同步的相位信号。
3)电机驱动芯片:按A3988的模块框图及行为描述进行简要的电路模型建立。
为减小仿真运算量,并简化电路,全部使用快衰减方式。
电流关断时间通过RC设置为与A3988一致的30us。
4)反馈回路:反馈电阻取1欧。
为简化电路,省略反馈1/3分压。
步进电机仿真波形
上边蓝色为参考电平;黄色为
反馈电压;紫色和绿色为电感等效
串阻两端电压;红色正弦曲线是串
阻两端电压差,反应出电机内实际
电流。
电机速度较低时,线圈电流上
升速度和下降速度都能跟上参考电
平变化。
电机运行平稳。
但需要注意当参考电平接近0
时,有一小段范围电机里的电流为
0,会导致极低速高细分时电机的短
暂停顿,感觉不连贯。
可以增大反馈电平(对应增加
电流或反馈电阻,但受效率及其它
问题约束);也可以进行正余弦校
正,可以起到更好的效果。
步进电机仿真分析
电机速度较高时,线圈
电流上升速度明显滞后于参
考电平信号,导致电流变形。
电流上升期间回馈电压
一直小于参考电压,所以对
应的一对MOS管一直导通。
减
小线圈电阻值或加大电压会
有改善。
电流下降期间需预防参
考电压降到0点时电流无法降
到0的情况。
否则会导致电流
未减到0而开始换向,会产生
较大噪声。
可以使用快衰减
或适当增大线圈电阻。
也可
对波形进行校正。
步进电机仿真模型
步进电机仿真分析
低速情况下,电机电流变化率要求较低,电流变化能及时随参考电平信号变化,即电流是标准的正余弦形式。
这样转矩大小基本恒定,电机运行平稳,噪音低。
通过李沙育波形可以间接反应出正余弦和转矩情况。
图形较圆,表示电机转矩大小恒定。
步进电机仿真分析
高速情况下,电机电流变化率要求较高,电流变化不能及时随参考电平信号变化,即电流是失真的正余弦形式。
这样转矩大小发生规律变化,电机运行出现抖动现象,噪音增大。
通过李沙育波形可以看出正余弦和转矩情况,该情况下会出现较大周期性噪声并影响结构寿命。
应尽可能避免这种情况发生在机械结构的共振点。
•电机控制看似简单,但涉及到极广泛的学科理论。
电、磁、场、材料、结构、力学、数学、甚至半导体特性……想深入的进行理解并达到很好的应用效果需要大量的知识积累和大量的实验分析。
让电机转起来很容易,但让电机转好却是很有难度的。
而且往往随着应用场合的不同,关注点和控制方式也有很大差异。
•通过自建模型结合仿真可以对电机控制有比较好的理解。
•因为接触电机控制时间不长,精力有限,还没来得及深入。
理解有误的地方还希望能邮件指正或在个人网页留言。
•最近比较忙,这份笔记只列出一些简要的知识点和图,适合有一些理论基础和实践经验的人看。
等过段时间稍轻闲一点的话会整理一份详细些的步进电机控制的资料,到时候会在个人网页里面发布。
结束语。