总体分布的卡方检验
- 格式:ppt
- 大小:1.33 MB
- 文档页数:28
2X 检验或卡方检验和校正卡方检验的计算私立广厦学校 郭捷思在教育学量的研究中,各种各样的统计方法已经被广泛的应用,特别是由于统计软件(如:SPSS )的不断成熟,给教育研究者提供了多种量的研究方法。
但是,这并不是无论什么量的研究都要通过统计软件来实现,也不是所有量的研究一定要运用统计软件才能快捷,简便的实现。
本文将教给大家几种简便的方法来实现卡方检验。
2X 检验(chi-square test )或称卡方检验方法可以根据样本数据,推断总体分布与期望分布或某一理论分布是否存在显著差异,是一种吻合性检验,通常适于对有多项分类值的总体分布的分析。
它的零假设是样本来自的总体分布与期望分布或某一理论分布无显著差异。
根据卡方检验基本思想的理论依据,对变量总体分布的检验就可以从对各个观察频数的分析入手。
为检验实际分布与理论分布(期望分布)之间是否存在显著差异,可采用卡方检验统计量。
典型的卡方统计量是pearson 卡方,其基本公式为:∑=-=ki o i e i o i f f f X 12)( 式中k 为子集个数,o f 为观察频数,e f 为期望频数,2X 服从k —1个自由度的卡方分布。
如果2X 值较大,则说明观测频数分布与期望频数分布差距较大;反之,如果2X 值较小,则说明观测频数分布与期望频数分布较接近。
我们将通过代入数据运算这条公式,计算出2X统计量的观测值,并依据卡方分布表计算观测值对应的概率p值。
下面,将通过几个实际例子来探究如何进行卡方检验。
一、四格表资料的卡方检验例1:某学校分别运用传统教学和多媒体教学在两个平行班的数学课上进行试验,目的为了检测两种教学方法对学生的成绩影响是否有差异。
本实验把学生的成绩划分为优秀人数(80分以上)和非优秀人数。
表1:两种教学方法学生成绩优秀率的比较表内这四个数据(斜体)是整个表中的基本资料,其余数据均由此推算出来;这四格资料表就专称四格表(fourfold table),或称2行2列表(2×2 contingency table)从该资料算出的;两种教学的优秀率分别为40%和68.6%,两者的差别可能是抽样误差所致,亦可能是两种教学效果确有所不同。
统计学常⽤概念:T检验、F检验、卡⽅检验、P值、⾃由度1,T检验和F检验的由来⼀般⽽⾔,为了确定从样本(sample)统计结果推论⾄总体时所犯错的概率,我们会利⽤统计学家所开发的⼀些统计⽅法,进⾏统计检定。
通过把所得到的统计检定值,与统计学家建⽴了⼀些随机变量的概率分布(probability distribution)进⾏⽐较,我们可以知道在多少%的机会下会得到⽬前的结果。
倘若经⽐较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信⼼的说,这不是巧合,是具有统计学上的意义的(⽤统计学的话讲,就是能够拒绝虚⽆假设null hypothesis,Ho)。
相反,若⽐较后发现,出现的机率很⾼,并不罕见;那我们便不能很有信⼼的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现⽬前样本这结果的机率。
2,统计学意义(P值或sig值)结果的统计学意义是结果真实程度(能够代表总体)的⼀种估计⽅法。
专业上,p值为结果可信程度的⼀个递减指标,p值越⼤,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。
p值是将观察结果认为有效即具有总体代表性的犯错概率。
如p=0.05提⽰样本中变量关联有5%的可能是由于偶然性造成的。
即假设总体中任意变量间均⽆关联,我们重复类似实验,会发现约20个实验中有⼀个实验,我们所研究的变量关联将等于或强于我们的实验结果。
(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效⼒有关。
)在许多研究领域,0.05的p值通常被认为是可接受错误的边界⽔平。
3,T检验和F检验⾄於具体要检定的内容,须看你是在做哪⼀个统计程序。
举⼀个例⼦,⽐如,你要检验两独⽴样本均数差异是否能推论⾄总体,⽽⾏的t检验。
SPSS 中非参数检验之一:总体分布的卡方(Chi-square )检验在得到一批样本数据后,在得到一批样本数据后,人们往往希望从中得到样本所来自的总体的分布形人们往往希望从中得到样本所来自的总体的分布形态是否和某种特定分布相拟合。
这可以通过绘制样本数据直方图的方法来进行粗略的判断。
略的判断。
如果需要进行比较准确的判断,如果需要进行比较准确的判断,如果需要进行比较准确的判断,则需要使用非参数检验的方法。
则需要使用非参数检验的方法。
则需要使用非参数检验的方法。
其中其中总体分布的卡方检验(也记为χ2检验)就是一种比较好的方法。
检验)就是一种比较好的方法。
一、定义总体分布的卡方检验适用于配合度检验,是根据样本数据的实际频数推断总体分布与期望分布或理论分布是否有显著差异。
它的零假设H0:样本来自的总体分布形态和期望分布或某一理论分布没有显著差异。
总体分布的卡方检验的原理是:如果从一个随机变量尤中随机抽取若干个观察样本,这些观察样本落在X 的k 个互不相交的子集中的观察频数服从一个多项分布,这个多项分布当k 趋于无穷时,就近似服从X 的总体分布。
的总体分布。
因此,假设样本来自的总体服从某个期望分布或理论分布集的实际观察频数同时获得样本数据各子集的实际观察频数,并依据下面的公式计算统计量Q ()21ki i i iO E Q E =-=å其中,Oi 表示观察频数;Ei 表示期望频数或理论频数。
可见Q 值越大,表示观察频数和理论频数越不接近;Q 值越小,说明观察频数和理论频数越接近。
SPSS 将自动计算Q 统计量,由于Q 统计量服从K-1个自由度的X 平方分布,因此SPSS 将根据X 平方分布表给出Q 统计量所对应的相伴概率值。
统计量所对应的相伴概率值。
如果相伴概率小于或等于用户的显著性水平,则应拒绝零假设H0,认为样本来自的总体分布形态与期望分布或理论分布存在显著差异;如果相伴概率值大于显著性水平,则不能拒绝零假设HO ,认为样本来自的总体分布形态与期望分布或理论分布不存在显著差异。
1多重比较常用的方法是()。
Bartlettχ²检验法Levene-F检验LSD-t检验Kruskal-Wallis检验C2有限总体的概率抽样方案已确定时,下列选项中属于随机变量的是()。
样本容量样本估计量估计量方差总体参数B3广告调查实质上是指市场调查所涵盖的()。
与服务承诺密切相关的内容与广告策划密切相关的内容与产品设计密切相关的内容与营销战略密切相关的内容B4若随机变量,且σ未知,从中随机抽取样本,并经计算得到其均值为,则由估计μ的置信度为95%的置信区间时,置信区间的宽度()。
是确定的是随机的无法确定的是人为规定的B5问卷选项中的“性别:1. □男2。
□女”属于哪一种测量尺度。
()定类尺度等距尺度顺序尺度比率尺度A6“1=小于2000元,2=2000~4000元,3=4000~6000元,4=6000元以上”,这种编码方法属于( )。
表意式文字编码法顺序编码法分组编码法信息组码编码法B7下列哪种信息来源属于竞争情报的内部来源( )。
顾客订货单行业出版物专家和顾问供应商C8在纯随机重复抽样条件下,如果将样本单位数扩大为原来的4倍,则抽样平均误差().缩小1半扩大2倍扩大4倍缩小1倍A9方差分析中的原假设是关于所研究因素的()。
各水平之间的相关关系是否密切各水平总体方差是否相等各水平的理论均值是否相等同一水平内部数量差异是否显著C10抽样调查的最终目的是()。
抽样误差的最合理化样本客观性概率的可计算性用样本指标推断总体相应指标D11在搜集资料时,应搜集哪一种尺度之数据,才能使用四则运算加以分析?( )等距尺度顺序尺度定类尺度比率尺度A12按规定,凡通过()能取得统计数据的,不得制发全面定期统计报表对基层进调查。
行政记录、典型调查、重点调查抽样调查、重点调查、行政记录普查、重点调查、行政记录普查、抽样调查、行政记录B13总体的变异性是指( )。
总体单位之间在某一标志表现上有差异总体单位之间有差异总体随时间变化而变化总体之间有差异A14先将总体中各单位按一定的标志排队,然后每隔一定的距离抽取一个单位构成样本此种方法为()。
统计学常⽤概念:T检验、F检验、卡⽅检验、P值、⾃由度1,T检验和F检验的由来⼀般⽽⾔,为了确定从样本(sample)统计结果推论⾄总体时所犯错的概率,我们会利⽤统计学家所开发的⼀些统计⽅法,进⾏统计检定。
通过把所得到的统计检定值,与统计学家建⽴了⼀些随机变量的概率分布(probability distribution)进⾏⽐较,我们可以知道在多少%的机会下会得到⽬前的结果。
倘若经⽐较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信⼼的说,这不是巧合,是具有统计学上的意义的(⽤统计学的话讲,就是能够拒绝虚⽆假设null hypothesis,Ho)。
相反,若⽐较后发现,出现的机率很⾼,并不罕见;那我们便不能很有信⼼的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现⽬前样本这结果的机率。
2,统计学意义(P值或sig值)结果的统计学意义是结果真实程度(能够代表总体)的⼀种估计⽅法。
专业上,p值为结果可信程度的⼀个递减指标,p值越⼤,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。
p值是将观察结果认为有效即具有总体代表性的犯错概率。
如p=0.05提⽰样本中变量关联有5%的可能是由于偶然性造成的。
即假设总体中任意变量间均⽆关联,我们重复类似实验,会发现约20个实验中有⼀个实验,我们所研究的变量关联将等于或强于我们的实验结果。
(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效⼒有关。
)在许多研究领域,0.05的p值通常被认为是可接受错误的边界⽔平。
3,T检验和F检验⾄於具体要检定的内容,须看你是在做哪⼀个统计程序。
举⼀个例⼦,⽐如,你要检验两独⽴样本均数差异是否能推论⾄总体,⽽⾏的t检验。
方检验的这点,你千万不能忽视哦!方检验方检验有两种用途:1、拟合优度检验(goodness offit test ):用卡方统计量进行统计学检验,依据总体分布状况,计算出分类变量中各类别的期望频数,与分布的观察频数进行对比,判断期望频数与观察频数是否有显著差异,从而达到对分类变量的分布进行分析的目的。
2、拟合优度检验是对一个分类变量的检验,有时我们会遇到两个分类变量的问题(也就是列联表数据,横标目和纵标目各代表一个分类变量),看这两个分类变量是否存在联系。
现在,来个题考考大家!双向无序列联表资料什么时候能用卡方检验,什么时候要用精确概率法?传统的统计教材中般认为:对双向无序的RxC 列联表资料进行卡方检验中,当样本量小,存在单元格的理论频数(又叫期望计数)小于5 ,或这样的单元格数超过总单元格数的20% ,才需要选用精确概率法。
其实,这种说法已经过时了。
John H. McDonald 在Handbook of BiologicalStatistics (3rd ed.)一书中对卡方检验的适用条件进行了新的阐述。
完全颠覆了我的以往思路。
现总结归纳如下、只要样本量小于1000 的列联表资料,都应该使用精确概率法。
因为,1000 以下样本量的精确概率法在Excel 、SAS 、SPSS 等软件中都可以轻松实现。
、当样本量比1000 大很多时,即使在大型计算机上的强大软件(例如SAS )做精确概率法的运算都可能存在困难,所以对于样本量大于1000 时,应该使用卡方检验。
如果自由度只有1 ,可以使用Yates 连续性校正(但是对于如此大的样本量,Yates 连续性校正对P 值在准确性上的改进是微不足道。
)、为了便于操作,McDonald 将其经验法则建立在总样本量的基础上,而不是最小的期望计数;如果一个或多个期望计数是非常小(个位数),即使总样本量大于1000 ,也应该使用精确概率法,只是但愿你的计算机能够处理这样的运算量。
医学统计方法之卡方检验卡方检验,又称卡方分布检验(Chi-Square Test),是一种常用的统计方法,用于检验两个或多个分类变量之间是否存在显著差异。
本文将详细介绍卡方检验的原理、应用范围以及具体的步骤。
一、原理:卡方检验的原理是基于卡方分布的性质。
卡方分布是指具有自由度的正态分布的平方和,记为χ^2(k),其中k为自由度。
在卡方检验中,我们将观察到的频数与理论预期频数进行比较,从而判断两个或多个分类变量之间的差异是否显著。
二、应用范围:卡方检验广泛应用于医学研究中的数据分析,尤其是在对两个或多个分类变量之间的关联进行检验时。
常见的应用场景包括但不限于以下几种:1.检验观察频数与理论预期频数之间的差异,以判断观察结果是否与理论预期相符。
2.检验两个或多个分类变量之间的关联性,以确定它们之间是否存在显著的相关性。
3.比较两个或多个群体在一个或多个分类变量上的分布差异,从而判断它们之间是否存在显著差异。
三、步骤:卡方检验的主要步骤包括以下几个:1. 建立假设:首先需要明确检验的假设。
在卡方检验中,通常有两种假设:“原假设”(null hypothesis,H0)和“备择假设”(alternative hypothesis,H1)。
原假设通常表示没有差异或关联,备择假设则表示存在差异或关联。
2.计算期望频数:根据原假设,计算出理论预期频数。
理论预期频数是基于既定的分布假设和样本总体的参数计算得出的。
3.计算卡方值:将观察频数与理论预期频数进行比较,计算出卡方值。
卡方值是观察频数与理论预期频数之间的差异的平方和。
4.确定自由度:根据检验问题的具体情况确定自由度。
在卡方检验中,自由度通常由分类变量的水平数目决定。
5.查表找出p值:根据卡方分布表,找出相应自由度下的临界值。
将计算得到的卡方值与临界值进行比较,确定其显著性水平。
p值是指在原假设成立的前提下,观察到的差异大于或等于当前差异的概率。
6.做出判断:根据p值与显著性水平的比较,做出判断是否拒绝原假设。
一、卡方检验的统计量及构造基本原理卡方检验是一种用于检验分类变量之间是否存在相关性的统计方法。
在进行卡方检验时,我们需要计算一个统计量——卡方统计量,然后根据该统计量的数值来进行相关性的判定。
接下来,我将详细介绍卡方检验的统计量及其构造基本原理,让你对这一统计方法有更深入的理解。
1. 卡方统计量的构造基本原理卡方统计量的构造基本原理基于观察值与期望值之间的差异来进行。
在进行卡方检验时,我们首先需要得到观察频数,即实际发生的事件在各个类别下的频数。
我们还需要计算期望频数,即在假设无关的情况下,每个类别下事件发生的期望频数。
我们利用观察频数与期望频数之间的差异进行计算,最终得到卡方统计量。
2. 卡方统计量的计算公式卡方统计量的计算公式如下:χ² = Σ((O-E)²/E)其中,χ²代表卡方统计量,O代表观察频数,E代表期望频数,Σ代表求和的意思。
通过将观察频数与期望频数的差异进行平方,并且将结果除以期望频数,最终得到卡方统计量。
3. 卡方统计量的意义及应用卡方统计量的数值越大,代表观察频数与期望频数之间的差异越大,从而可以说明分类变量之间存在着显著的相关性。
在实际应用中,卡方检验常常用于医学、社会学、市场调查等领域,来检验不同类别变量之间的相关性,或者用于检验观察数据与期望数据之间的拟合程度。
4. 个人观点和理解个人认为,卡方检验的统计量是一种非常重要且常用的统计方法,它能够帮助我们判断分类变量之间是否存在相关性,并且可以量化相关性的程度。
通过计算卡方统计量,我们能够更加客观地分析数据,并作出科学的决策。
对于卡方统计量的理解和应用,需要结合具体的实际问题进行分析,才能得出准确的结论。
二、总结与回顾通过本文的介绍,我详细解释了卡方检验的统计量及其构造基本原理,包括卡方统计量的计算公式、意义及应用,以及个人观点和理解。
希望这些内容能够帮助你更加全面、深刻和灵活地理解卡方检验这一统计方法。
卡方拟和检验的编程实现摘要针对一些总体分布的检验不能用现成的软件实现这一问题,本文论述了怎样应用matlab实现总体分布的检验,这里我们以正态分布为例,这里我们选用了总体分布的卡方检验,卡方检验是在总体分布未知的情况下,根据来自总体的样本,检验关于总体分布的假设的一种检验方法。
关键词:分布的检验 matlab 总体样本。
使用卡方检验分布时在总体X 的分布未知时,根据来自总体的样本,检验关于总体分布的假设的一种检验方法.使用卡方检验对总体分布进行检验时,我们先提出原假设:H0:总体X的分布函数为F(x)然后根据样本的经验分布和所假设的理论分布之间的吻合程度来决定是否接受原假设. 这种检验通常称作拟合优度检验,它是一种非参数检验.在用卡方检验假设H0时,若在H0下分布类型已知,但其参数未知,这时需要先用极大似然估计法估计参数,然后作检验.分布拟合的卡方检验的基本原理和步骤如下:1.将总体X的取值范围分成k个互不重迭的小区间,记作A1, A2, …,Ak .2. 把落入第i 个小区间Ai 的样本值的个数记作fi , 称为实测频数. 所有实测频数之和f1+ f2+ …+ fk 等于样本容量n.3. 根据所假设的理论分布,可以算出总体X 的值落入每个Ai 的概率pi,于是npi 就是落入Ai 的样本值的理论频数.皮尔逊引进如下统计量表示经验分布与理论分布之间的差异:卡方统计量2χ=∑=-rk kk k np np n 12)(用上述原理检验是否服从分布: 以下为一个筛子投掷四十次的数据:14 4 6 3 45 2 46 3 4 4 2 3 6 3 1 3 4 4 5223331512245551325程序如下: 输入数据:运行结果:。
卡方检验及其应用一、卡方检验概述:卡方检验主要应用于计数数据的分析,对于总体的分布不作任何假设,因此它属于非参数检验法中的一种。
它由统计学家皮尔逊推导。
理论证明,实际观察次数(f o )与理论次数(f e ),又称期望次数)之差的平方再除以理论次数所得的统计量,近似服从卡方分布,可表示为:)(n f f f ee 2202~)(χχ∑-= 这是卡方检验的原始公式,其中当f e 越大,近似效果越好。
显然f o 与f e 相差越大,卡方值就越大;f o 与f e 相差越小,卡方值就越小;因此它能够用来表示f o 与f e 相差的程度。
根据这个公式,可认为卡方检验的一般问题是要检验名义型变量的实际观测次数和理论次数分布之间是否存在显著差异。
一般用卡方检验方法进行统计检验时,要求样本容量不宜太小,理论次数≥5,否则需要进行校正。
如果个别单元格的理论次数小于5,处理方法有以下四种:1、单元格合并法;2、增加样本数;3、去除样本法;4、使用校正公式。
当某一期望次数小于5时,应该利用校正公式计算卡方值。
公式为:∑--=ee f f f 202)5.0(χ二、卡方检验的统计原理:• 卡方检验所检测的是样本观察次数﹙或百分比﹚与理论或总体次数﹙或百分比﹚的差异性。
• 理论或总体的分布状况,可用统计的期望值(理论值)来体现。
• 卡方的统计原理,是取观察值与期望值相比较。
卡方值越大,代表统计量与理论值的差异越大,一旦卡方值大于某一个临界值,即可获得显著的统计结论。
三、卡方检验的主要应用: 1、独立性检验独立性检验主要用于两个或两个以上因素多项分类的计数资料分析,也就是研究两类变量之间的关联性和依存性问题。
如果两变量无关联即相互独立,说明对于其中一个变量而言,另一变量多项分类次数上的变化是在无差范围之内;如果两变量有关联即不独立,说明二者之间有交互作用存在。
独立性检验一般采用列联表的形式记录观察数据, 列联表是由两个以上的变量进行交叉分类的频数分布表,是用于提供基本调查结果的最常用形式,可以清楚地表示定类变量之间是否相互关联。
卡方检验校正公式条件
卡方检验是一种统计检验方法,可以用来检验两个分类变量之间是否存在显著性差异。
在使用卡方检验时,通常要满足以下条件:
1.样本大小要足够大。
卡方检验的检验统计量的分布是近似
的,所以样本越大,检验的结果越可信。
一般来说,每个小格子(行或列)的观测数都应大于等于5。
2.原假设为独立性假设。
卡方检验是基于独立性假设的,即
两个分类变量之间没有相互影响。
3.样本来自同一总体。
卡方检验是假设样本是从同一总体中
抽取的,所以样本必须是独立的。
4.检验的变量必须是分类变量。
卡方检验只适用于分类变量,
不能用于连续变量。
5.对于二项分布卡方检验,样本大小不能太小。
卡方检验的
检验统计量是近似二项分布的,所以样本大小不能太小。
一般来说,样本大小应大于等于20。
如果数据不满足上述条件,则可能需要使用卡方检验的校正公式进行调整,才能得出可靠的结果。