低频函数信号发生器的设计
- 格式:doc
- 大小:149.00 KB
- 文档页数:6
基于DDS的基本原理设计的低频信号发生器基于DDS(Direct Digital Synthesis,直接数字合成)的低频信号发生器是一种高精度、灵活性高的信号发生器,可以产生各种低频信号。
本文将从DDS的基本原理、低频信号发生器的设计和实现等方面展开论述。
一、DDS的基本原理DDS是一种通过数字计算产生连续、离散或混合信号的方法。
它将频率和相位信息编码为数字信号,通过数字计算来生成输出信号。
DDS的基本原理如下:1.预存储波形数据:DDS使用查表法将波形数据存储在一个固定的存储器中,例如RAM或ROM中。
每个存储地址对应一个波形振幅值。
2.相位累加器:DDS通过一个相位累加器来产生实时的相位信息。
相位累加器是一个计数器,每个时钟周期增加一个固定的值,该值称为相位增量。
相位累加器产生的相位信息表示了所需输出的信号的相位。
3.数字到模拟转换:相位累加器输出的相位信息经过数字到模拟转换,即将相位信息转换为模拟信号。
这一步可以通过查表法,将相位信息作为地址,从查表的波形存储器中读取波形振幅值,然后通过D/A转换器将波形振幅值转换为模拟信号。
二、低频信号发生器的设计1.频率控制:低频信号发生器需要具备广泛的频率覆盖范围,并能够精确地调节频率。
为了实现这一点,可以使用一个可编程的数字控制单元,比如微控制器或FPGA来控制DDS的相位增量。
通过改变相位增量的大小,可以控制DDS的输出频率。
2.模拟输出滤波:DDS输出的信号是由一串数字零、一和正负极性组成的脉冲串,需要通过模拟输出滤波器进行滤波,以获取平滑的模拟输出信号。
滤波器可以选择低通滤波器或带通滤波器,以滤除高频噪声和杂散成分。
3.波形选择:DDS可以通过选择合适的波形数据来生成多种形状的输出波形,包括正弦、方波、锯齿波等。
在波形存储器中存储不同的波形数据,并通过用户界面或外部接口控制波形的选择。
三、低频信号发生器的实现低频信号发生器的实现可以采用数字电路、模拟电路或数字电路与模拟电路的组合。
实验报告课程名称:电子系统综合设计指导老师:周箭成绩:实验名称:低频函数信号发生器(预习报告)实验类型:同组学生姓名:一、课题名称低频函数信号发生器设计二、性能指标(1)同时输出三种波形:方波,三角波,正弦波;(2)频率范围:10Hz~10KHz;(3)频率稳定性:;(4)频率控制方式:①改变RC时间常数;②改变控制电压V1实现压控频率,常用于自控方式,即F=f(V1),(V1=1~10V);③分为10Hz~100Hz,100Hz~1KHz,1KHz~10KHz三段控制。
(5)波形精度:方波上升下降沿均小于2μs,三角波线性度δ/Vom<1%,正弦波失真度;(6)输出方式:a)做电压源输出时输出电压幅度连续可调,最大输出电压不小于20V负载RL =100Ω~1KΩ时,输出电压相对变化率ΔVO/VO<1%b)做电流源输出时输出电流幅度连续可调,最大输出电流不小于200mA负载RL =0Ω~90Ω时,输出电流相对变化率ΔIO/IO<1%c)做功率源输出时最大输出功率大于1W(RL =50Ω,VO>7V有效值)具有输出过载保护功能三、方案设计根据实验任务的要求,对信号产生部分,一般可采用多种实现方案:如模拟电路实现方案、数字电路实现方案、模数结合的实现方案等。
数字电路的实现方案一般可事先在存储器里存储好函数信号波形,再用D/A转换器进行逐点恢复。
这种方案的波形精度主要取决于函数信号波形的存储点数、D/A转换器的转换速度、以及整个电路的时序处理等。
其信号频率的高低,是通过改变D/A转换器输入数字量的速率来实现的。
数字电路的实现方案在信号频率较低时,具有较好的波形质量。
随着信号频率的提高,需要提高数字量输入的速率,或减少波形点数。
波形点数的减少,将直接影响函数信号波形的质量,而数字量输入速率的提高也是有限的。
因此,该方案比较适合低频信号,而较难产生高频(如>1MHz)信号。
模数结合的实现方案一般是用模拟电路产生函数信号波形,而用数字方式改变信号的频率和幅度。
51单片机设计多功能低频函数信号发生器应用89S52单片机和DAC0832进展低频函数信号发生器的设计。
本设计能产生正弦波、锯齿波、三角波和方波。
这里着重介绍正弦波和锯齿波的生成原理。
ADC0832的介绍:DAC0832是8分辨率的D/A转换集成芯片。
与微处理器完全兼容。
这个DA芯片以其价格低廉、接口简单、转换控制容易等优点,在单片机应用系统中得到广泛的应用。
D/A转换器由8位输入锁存器、8位DAC存放器、8位D/A转换电路及转换控制电路构成。
D0~D7:八位数据输入端ILE:数据允许锁存信号/CS:输入存放器选择信号/WR1:输入存放器选择信号/XFER:数据传送信号/WR2:DAC存放器的写通选择信号Vref:基准电源输入端Rfb:反响信号输入端Iout1: 电流输出1Iout2: 电流输出2Vcc: 电源输入端AGND: 模拟地DGND: 数字地DAC0832构造:D0~D7:8位数据输入线,TTL电平,有效时间应大于90ns(否那么锁存器的数据会出错);ILE:数据锁存允许控制信号输入线,高电平有效;CS:片选信号输入线〔选通数据锁存器〕,低电平有效;WR1:数据锁存器写选通输入线,负脉冲〔脉宽应大于500ns〕有效。
由ILE、CS、WR1的逻辑组合产生LE1,当LE1为高电平时,数据锁存器状态随输入数据线变换,LE1的负跳变时将输入数据锁存;XFER:数据传输控制信号输入线,低电平有效,负脉冲〔脉宽应大于500ns〕有效;WR2:DAC存放器选通输入线,负脉冲〔脉宽应大于500ns〕有效。
由WR1、XFER的逻辑组合产生LE2,当LE2为高电平时,DAC存放器的输出随存放器的输入而变化,LE2的负跳变时将数据锁存器的内容打入DAC存放器并开始D/A转换。
IOUT1:电流输出端1,其值随DAC存放器的内容线性变化;IOUT2:电流输出端2,其值与IOUT1值之和为一常数;Rfb:反响信号输入线,改变Rfb端外接电阻值可调整转换满量程精度;Vcc:电源输入端,Vcc的范围为+5V~+15V;VREF:基准电压输入线,VREF的范围为-10V~+10V;AGND:模拟信号地DGND:数字信号地DAC0832的工作方式:根据对DAC0832的数据锁存器和DAC存放器的不同的控制方式,DAC0832有三种工作方式:直通方式、单缓冲方式和双缓冲方式。
低频三相函数信号发生器制作方案一提到低频三相函数信号发生器,脑海中瞬间涌现出电路图、元件选择、调试过程等一系列关键词。
咱们就围绕这个主题,详细梳理一下整个制作方案。
要明确低频三相函数信号发生器的功能和用途。
它主要用于产生低频三相正弦波信号,广泛应用于电力系统、自动控制、信号处理等领域。
那么,如何制作一款性能稳定、精度高的低频三相函数信号发生器呢?1.设计思路(1)稳定性:确保输出信号的稳定性,降低噪声干扰;(2)精度:提高输出信号的精度,满足实际应用需求;(3)可扩展性:预留一定的扩展空间,方便后续升级和功能拓展。
2.电路设计(1)信号源设计内部集成振荡器、缓冲放大器和稳压电路,简化电路设计;可产生正弦波、三角波和矩形波等多种波形;频率范围宽,可满足低频信号的需求。
(2)分频电路设计为了得到三相信号,我们需要对信号源输出的单相信号进行分频。
这里采用CD4060分频器,将信号源的输出频率分频为1/3,得到三相信号的初始频率。
(3)滤波电路设计滤波电路的作用是消除信号中的噪声和杂波,提高输出信号的纯净度。
我们采用二阶低通滤波器,截止频率设置为所需信号频率的5倍,确保信号在截止频率附近的失真最小。
(4)放大电路设计放大电路用于放大滤波后的信号,使其达到所需的幅值。
这里采用运算放大器组成的非倒数放大电路,根据实际需求调整放大倍数。
3.元件选择(1)ICL8038:集成函数发生器IC,用于产生低频信号;(2)CD4060:分频器,用于得到三相信号的初始频率;(3)运放:用于滤波和放大电路;(4)电阻、电容、二极管、三极管等:用于搭建滤波、放大和稳压电路。
4.调试与测试(1)检查电路连接,确保无短路、断路现象;(2)接通电源,观察信号源输出波形是否正常;(3)调整分频器CD4060的时钟频率,观察三相信号输出是否稳定;(4)调整滤波电路参数,观察滤波效果;(5)调整放大电路参数,观察输出信号幅值是否达到预期;(6)进行长时间运行测试,观察信号稳定性。
低频函数信号发生器设计一、引言低频信号在电子工程中有着广泛的应用。
低频信号可以用于音频放大器、振荡电路、传感器等各种电子设备中。
而低频信号发生器则是产生低频信号的一种电子设备。
本文将介绍低频函数信号发生器的设计。
二、低频函数信号发生器的原理1.时钟电路:时钟电路是低频函数信号发生器中的一个重要组成部分。
时钟电路负责提供一个稳定的时钟信号,用于产生低频信号。
可以使用晶体振荡器或RC振荡器作为时钟电路的基础。
2.可调电压控制振荡器:可调电压控制振荡器是低频函数信号发生器中的核心组成部分。
它能够通过改变电压来控制输出频率。
根据不同的需要,可以设计不同的电压控制振荡器,如正弦波振荡器、方波振荡器等。
3.高精度电压参考电路:高精度电压参考电路是为了保证低频函数信号发生器的输出信号精度。
一般来说,高精度电压参考电路采用稳压二极管电路或者基准电压源电路。
4.滤波电路:滤波电路负责将振荡器输出的波形进行滤波,减少噪音和杂散信号。
常用的滤波电路有RC滤波电路、LC滤波电路等。
5.调幅电路:调幅电路可以用于调整低频信号的幅度,以满足不同应用的需求。
常见的调幅电路有放大器电路、差分电路等。
三、低频函数信号发生器的设计步骤1.确定输出信号的频率范围和精度要求。
根据不同的应用需求,确定低频函数信号发生器的频率范围和精度要求,以此确定时钟电路和可调电压控制振荡器的设计参数。
2.设计时钟电路。
根据频率范围和精度要求,设计稳定的时钟电路。
可以选择晶体振荡器或RC振荡器,根据具体情况进行电路设计。
3.设计可调电压控制振荡器。
根据频率范围和精度要求,设计可调电压控制振荡器。
可以采用不同的电压控制振荡器电路,如正弦波振荡器、方波振荡器等。
4.设计高精度电压参考电路。
根据设计要求,选择合适的高精度电压参考电路。
常见的稳压二极管电路和基准电压源电路可以用于高精度电压参考电路的设计。
5.设计滤波电路。
选择合适的滤波电路来滤除振荡器输出的噪音和杂散信号。
低频信号发生器的设计与实现1.设计任务设计一个低频信号发生器可输出方波、矩形波、三角波、锯齿波、正玄波,1K~3KHZ,幅度30mV~1V 。
矩形波占空比可调,锯齿波上升沿、下降沿可调。
2.方案选择1.RC 文氏电桥振荡器产生正弦波经比较器产生方波和矩形波经积分器产生三角波和锯齿波。
特点:廉价,元器件较多,振荡频率不易调整,故障率高。
2.用比较器和积分器产生矩形波和三角波,用三角波——产生正弦波。
特点:廉价,元器件多,故障率高。
3.用石晶晶体构成正弦波发生器,用比较器积分器产生其他波。
特点:频率稳定度高,但频率不易调整。
4.用集成函数发生器特点: 故障率低,易调整,成本高。
3.方案确定虽然8038成本高,但可考虑到集成电路发展方向,尽可能选4方案4..参数设计1.V+,V-设计由8038说明书V+、V-在,选15~5±±V15±2.选取、B A R R 由说明书得、在1uA~1mA 之间A IB I =10V 5V<<10V\mA R V V uA A 1)(1<-<-++V R V 所以取=5.1KΩA R 3.C 的选取:,Vc 在、之间变化,)(31-+-=-V V V V B A A V B V ⎰=t C C dt I C V 01 a.充电时,,,则A C I I =3201==t I C V A C 充t I C t A==320 b.放电时,,。
A B C I I I -=2)2(320A B I I C t -=放211(320t A B A I I I C t T -+=+=放充 当输出方波时,,, 则,f=1/T ,放充t =t B A I I =)(340R A V V CR T -=+ 计算得PFC 31022⨯= 4.电位器(8脚)选取10kΩ,电阻(8脚)选取10kΩ。
5.RL=100kΩ5.测试结果1.可产生正弦波、矩形波、三角波三种波形,占空比、频率可调2.信号发生器频率调节范围1K~2900HZ ,但没达到3000HZ.3幅度可调范围10mV~10V 不失真。
基于DDS的基本原理设计的低频信号发生器低频信号发生器是一种能够产生低频电信号的设备,广泛应用于电子、通信、声学等领域的实验、测试和调试中。
在设计低频信号发生器时,基于DDS(Direct Digital Synthesis,直接数字合成)的原理,可以有效地生成稳定、精确的低频信号。
DDS基本原理:DDS是一种采用数字技术直接产生波形信号的技术,其基本原理是利用数字计算机和其它逻辑电路将高稳定度的时钟信号分频,通过DAC(数字模拟转换器)输出相应的模拟信号。
具体步骤如下:1.频率和相位累加器:DDS中的关键元件是频率和相位累加器。
频率累加器根据输入的控制字频率,以固定的速度递增或递减,并产生一个周期范围内的数字相位输出。
相位累加器则将相位信息输出给DAC。
2.正弦波表:DDS中会预先存储一个周期范围内的正弦波表。
相位输出经过插值之后,会得到一个数值,然后该数值通过正弦波表查表,得到该相位上的正弦波取样值。
3.插值滤波器:DDS通常采用插值滤波器对正弦波表输出进行低通滤波,以去除高频噪声成分。
1.选择合适的时钟源和DDS芯片:首先需要选择一个高稳定度的时钟源,如TCXO(温度补偿型晶体振荡器)。
然后选择合适的DDS芯片,如AD9850或AD9833,这些芯片已经有成熟的设计方案和丰富的技术资料。
2.建立控制电路:根据DDS芯片的规格书和应用电路设计指南,使用微控制器或PLC实现控制电路。
该电路应能够控制频率、相位和幅度等参数,并能与外部设备进行交互。
3.数字信号处理:在设计中,需要进行一系列的数字信号处理,包括频率累加器和相位累加器的递增或递减实现,正弦波表查表的插值运算,以及插值滤波器的设计和滤波处理等。
4.输出电路设计:输出电路应采用高精度DAC进行数字模拟转换,并根据设计要求进行滤波和放大等处理,以产生稳定、精确的低频信号。
5.整体系统测试与调试:完成设计后,需要对整个系统进行全面测试和调试,包括频率范围测试、频率精度测试、稳定度测试、波形畸变测试等。
低频信号发生器设计报告一.设计要求(一)设计题目要求1.分析电路的功能并设计电路的单元电路2.查找图中相应元件的参数,找出国内外对应元件的型号3.用EWB或Multisim软件进行电路仿真,打印仿真原理图和仿真结果4.用A3图纸绘出系统电路原理图(二)其他要求1.必须独立完成设计课题2.合理选用元器件3.要求有目录、参考资料、结语4.论文页数不少于20页二.设计的作用、目的(一)设计的作用低频信号发生器是电子测量中不可缺少的设备之一。
完成一个低频信号发生器的设计,可以达到对模拟电路知识较全面的运用和掌握。
(二)设计的目的电子电路设计及制作课程设计是电子技术基础课程的实践性教学环节,通过该教学环节,要求达到以下目的:1.进一步掌握模拟电子技术的理论知识,培养工程设计能力和综合分析问题、解决问题的能力;2.基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力;3.熟悉并学会选用电子元器件,为以后从事生产和科研工作打下一定的基础。
信 号 输 出 电 路三.设计的具体实现(一)系统概述根据课题任务,所要设计的低频信号发生器由三大部分组成:⑴正弦信号发生部分⑵信号输出部分⑶稳幅部分其中由正弦信号发生部分的电路产生所需要的正弦信号,由输出电路将信号放大后进行输出,再由稳幅电路部分从输出的信号采样反馈回信号发生部分进行稳幅。
1.正弦信号发生部分可以有以下实现方案:⑴以晶体管(晶体管(transistor )是一种固体半导体器件,可以用于检波、整流、放大、开关、稳压、信号调制和许多其它功能。
开关速度可以非常快)为核心元件,加RC (文氏桥或移相式)或变压器反LC (馈式、电感三点式、电容三点式、晶振等)选频网络以及稳幅电路等构成的分立元件正弦波振荡电路。
这种电路的优点是简单、廉价,但由于采用分立元件,稳定性较差,元件较多时调节也较麻烦。
正 弦 信 号 发 生 电 路 稳 幅 电 路⑵以集成运放为核心元件,加RC (文氏桥或移相式)或LC (变压器反馈式、电感三点式、电容三点式、晶振等)选频网络以及稳幅电路等构成的正弦波振荡电路。
信息职业技术学院毕业设计说明书(论文)设计(论文)题目:低频函数信号发生器的设计专业: 通信技术班级: 通技06-2 学号:姓名:指导教师:二ΟΟ八年十二月三十日四川信息职业技术学院毕业设计(论文)任务书目录摘要 0第1章方案设计 (1)设计任务 (1)方案选择 (1)第2章电路设计 (3)方波—三角波产生电路 (3)比较器电路原理 (3)积分电路原理 (4)参数计算与元件选择 (7)三角波—正弦波转换电路 (8)差分放大器电路原理 (8)参数计算与元件选择 (9)第3章电路安装与调试技术 (11)方波—三角波发生器的装调 (11)三角波—正弦波变换电路的装调 (11)结论 (12)致谢 (13)参考文献 (14)附录三角波—方波—正弦波函数发生器 (15)摘要在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都需要有信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其它仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。
信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。
信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。
本设计是信号发生器的设计,主要由比较器、积分器、差分放大器构成,它能产生频率范围为1Hz~10Hz,10Hz~100Hz的各种波形,其中方波Vp-p≤24V;三角波Vp-p=8V;正弦波Vp-p>1V;波形特性:方波tr<30μs;三角波非线性失真系数 <2%;正弦波非线性失真γ<5%。
关键词方波;正弦波;三角波;函数发生器第1章方案设计设计任务在无线电通信、测量、自动控制等技术领域中广泛应用着各种类型的信号发生器,最常用的有正弦波信号发生器、方波信号发生器、三角波发生器。
随着集成技术的发展,集成电路在波形发生器电路中已被广泛采用,并且已制造出了能同时产生正弦波、方波、三角波专用集成电路。
低频信号发生器的方案
概述:采用A T89C51单片机和DAC0832芯片,直接连接键盘和显示。
该种方案主要对A T89C51单片机的各个I/O口充分利用. P1口是连接键盘以及接显示电路,P2口连接DAC0832输出波形.这样总体来说,能对单片机各个接口都利用上,而不在多用其它芯片,从而减小了系统的成本.也对按照系统便携式低频信号发生器的要求所完成.占用空间小,使用芯片少,低功耗。
模块结构划分
本次设计所研究的就是对所需要的某种波形输出对应的数字信号,在通过D/A转换器和单片机部分的转换输出一组连续变化的0~5V的电压脉冲值。
在设计时分块来做,按波形设定、D/A转换、51单片机连接、键盘控制四个模块的设计。
最后通过联调仿真,完成相应功能。
具体设计模块如图
模块介绍:
1.波形设定:对任意波形的手动设定
2.D/A转换:主要选用DAC0832来把数字信号转换为模拟信号,
在送入单片机进行处理。
3.单片机部分:最小系统
4.键盘:用按键来控制输出波形的种类和数值的输入 硬件电路的设计 基本原理
低频信号发生器系统主要由CPU 、D/A 转换电路、电流
/
电压转换电路、按键和显示电路、电源等电路组成。
其工作原理为当按下第一个按键就会分别出现方波、三角波、正弦波。
D/A 转换电路的设计
DAC0832是CMOS 工艺制造的8位D/A 转换器,属于8位电流输出型D/A 转换器,转换时间为1us ,片内带输入数字锁存器。
DAC0832
与单片机接成数据直接写入方式,当单片机把一个数据写入DAC寄存器时,DAC0832的输出模拟电压信号随之对应变化。
利用D/A转换器可以产生各种波形,如方波、三角波、正弦波、锯齿波等以及它们组合产生的复合波形和不规则波形。
1.DAC0832主要性能:
◆输入的数字量为8位;
◆采用CMOS工艺,所有引脚的逻辑电平与TTL兼容;
◆数据输入可以采用双缓冲、单缓冲和直通方式;
◆转换时间:1us;
◆精度:1LSB;
◆分辨率:8位;
◆单一电源:5—15V,功耗20mw;
◆参考电压:-10—+10V;
DAC0832内部结构资料:芯片内有两级输入寄存器,使DAC0832具备双缓冲、单缓冲和直通三种输入方式,以便适于各种电路的需要(如要求多路D/A异步输入、同步转换等)。
D/A转换结果采用电流形式输出。
要是需要相应的模拟信号,可通过一个高输入阻抗的线性运算放大器实现这个供功能。
运放的反馈电阻可通过RFB端引用片内固有电阻,还可以外接。
该片逻辑输入满足TTL电压电平范围,可直接与TTL电路或微机电路相接,下面是芯片电路原理图3-20
图3-20 DAC0832电路原理图
如图3-20所示,待转换的8位数字量由芯片的8位数据输入线D0~D7输入,经DAC0832转换后,通过2个电流输出端IOUT1
和IOUT2输出,IOUT1是逻辑电平为"1"的各位输出电流之和,IOUT2是逻辑电平为"0"的各位输出电流之和。
另外,ILE、、、
和是控制转换的控制信号。
DAC0832由8位输入寄存器、8位DAC寄存器和8位D/A转换电路组成。
输入寄存器和DAC寄存器作为双缓冲,因为在CPU 数据线直接接到DAC0832的输入端时,数据在输入端保持的时间仅仅是在CPU执行输出指令的瞬间内,输入寄存器可用于保存此瞬间出现的数据。
有时,微机控制系统要求同时输出多个模拟量参数,此时对应于每一种参数需要一片DAC0832,每片DAC0832的转换时间相同,就可采用DAC寄存器对CPU分时输入到输入寄存器的各参数在同一时刻开始锁存,进而同时产生各模拟信号。
控制信号ILE、、用来控制输入寄存器。
当ILE为高电平,
为低电平,为负脉冲时,在LE产生正脉冲;其中LE为高电平时,输入寄存器的状态随数据输入线状态变化,LE的负跳变将输入数据线上的信息存入输入寄存器。
控制信号和用来控制8位A/D转换器。
当为低电平,输入负脉冲时,则在LE产生正脉冲;其中LE为高电平时,DAC寄存器的输入与输出的状态一致,LE负跳变,输入寄存器内容存入DAC寄存器。
DAC0832的数据输出方式在微机应用系统中,通常使用的是电压信号,而DAC0832输出的是电流信号,这就需要由运算放大器组成的电路实现转换。
其中有输出电压各自极性固定的单位性输出和在随动系统中输出电压有正负极性的双极性输出两种输出方式。
3. DAC 0832同CPU的连接
微处理器与DAC0832之间可以不加锁存器,而是利用DAC0832内部锁存器,将CPU
通过数据总线直接向DAC0832输出的停留时间很短的数据保存,直至转换结束。
DAC0832同CPU的接口如图3-21所示.DAC0832作为微处理器的一个端口,用地址92H的选通作为和的控制信号,微处理器的写信号直接来控制和。
图3-21 DAC0832和CPU连接电路。