第9章假设检验习题解答
- 格式:pdf
- 大小:359.70 KB
- 文档页数:16
第9章习题参考答案
9.1
解:(1)长度Y(厘米)与重量X(克)之间的散点图如下所示:
由Y与X的散点图可以大致推测长度Y关于重量X是线性相关,且二者呈正相关关系。
(2)首先,先分别求出平均重量和平均长度:
;;
其次,计算回归参数,其计算表如下:
表1:回归方程参数的计算表
(X-(Y-
最后,根据公式(9.6)计算相应的回归参数:
;
所以,Y关于X的一元线性回归方程为:
9.5
解:总变差,回归平方和,残差平方和的计算如下:
表2:总变差,回归平方和,残差平方和的计算表
∴残差平方和:;
回归平方和:
9.6
解:由表2得:
判定系数
又∵习题9.1的散点图显示Y与X是呈正相关关系
∴相关系数
显著性检验:
(1)回归方程的显著性检验:
原假设H0:该回归方程不显著;备择假设H1:该回归方程显著
计算F统计量:
∵在α=0.05的显著性水平下,有4454.79>F0.05(1,4)=7.71
∴拒绝原假设,认为该回归方程式显著的。
(2)回归参数的假设检验:
原假设H0:备择假设H1:
计算t统计量:;
[其中] ∵在α=0.05的显著性水平下,有15.98>t0.05(4)=2.776
∴拒绝原假设,即认为自变量X对因变量Y有显著性影响。
(3)相关关系的显著性检验:
原假设H0:ρ=0;备择假设H1:ρ
计算t统计量:;
∵在α=0.05的显著性水平下,有66.64> t0.05(4)=2.776
∴拒绝原假设,认为总体相关系数不为0。
第七章 假设检验与方差分析 习题答案一、名词解释用规范性的语言解释统计学中的名词。
1. 假设检验:对总体分布或参数做出某种假设,然后再依据抽取的样本信息,对假设是否正确做出统计判断,即是否拒绝这种假设。
2. 原假设:又叫零假设或无效假设,是待检验的假设,表示为 H 0,总是含有等号。
3. 备择假设:是零假设的对立,表示为 H 1,总是含有不等号。
4. 单侧检验:备择假设符号为大于或小于时的假设检验。
5. 显著性水平:原假设为真时,拒绝原假设的概率。
6. 方差分析:是检验多个总体均值是否相等的一种统计分析方法。
二、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。
1. 在任何情况下,假设检验中的两类错误都不可能同时降低。
( × ) 样本量一定时2. 对于两样本的均值检验问题,若方差均未知,则方差分析和t 检验均可使用,且两者检验结果一致。
( √ )3. 方差分析中,组间离差平方和总是大于组内离差平方和。
( × )不一定4. 在假设检验中,如果在显著性水平0.05下拒绝了00:μμ≤H ,则在同一水平一定可以拒绝假设00:μμ=H 。
( × )不一定5. 为检验k 个总体均值是否显著不同,也可以用t 检验,且与方差分析相比,犯第一类错误的概率不变。
( × )会增加6. 方差分析中,若拒绝了零假设,则认为各个总体均值均有显著性差异。
( × ) 不完全相等六、简答题根据题意,用简明扼要的语言回答问题。
1. 假设检验与统计估计有何区别与联系?【答题要点】假设检验是在给定显著性水平下,计算出拒绝域,并根据样本统计量信息来做出是否拒绝零假设的决策;区间估计是利用样本信息来推断总体参数的一个可能范围。
区间估计结果可以用于假设检验,但假设检验不能用作区间估计。
2. 双侧检验与单侧检验有什么区别?【答题要点】双侧检验的零假设为等号,备择假设为不等号,得到的拒绝域为双侧的;单侧检验的备择假设或者是大于,或者是小于,其拒绝域为单侧区间。
1。
假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。
解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。
采用t 分布的检验统计量n x t /0σμ-=。
查出α=0。
05和0。
01两个水平下的临界值(d f=n-1=15)为2.131和2。
947。
667.116/60800820=-=t .因为t 〈2。
131<2.947,所以在两个水平下都接受原假设。
2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。
n=100可近似采用正态分布的检验统计量nx z /0σμ-=.查出α=0.01水平下的反查正态概率表得到临界值2。
32到2。
34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。
计算统计量值3100/5001000010150=-=z 。
因为z =3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。
3。
设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600。
假设检验练习题一、判断题1、大多数的统计调查研究的都是样本而不是整个总体。
2、零假设和研究假设是相互对立的关系。
3、当我们拒绝了一个真的零假设时,所犯错误为第二类错误。
4、我们可以通过减少α来降低β错误。
5、如果α=.05,当我们拒绝H0时我们就有5%的可能犯错误。
6、如果α=.05,则当我们接受H0时,我们就有95%的可能犯错误。
7、如果取α=.01,我们拒绝了H0,则取α=.05时,我们仍然可以拒绝H0。
8、如果取α=.01,我们接受了H0,则取α=.05时,我们仍然可以接受H0。
9、如果H0为假,采用单侧检验比双侧检验更容易得到拒绝H0的结论。
10、即使我们更多地利用样本,还是有必要对一个给定总体的所有个体进行研究。
二、选择题1、总体是:A、很难被穷尽研究;B、可以通过样本进行估计;C、通常是假设性的;D、可能是无限的;E、以上都对。
2、如果要研究100个选民在预选时的投票结果表明,我们的主要兴趣应该是:A、推断他们将会把票投给谁B、推断所有选民的投票情况;C、估计什么样的个人会投票;D、以上都是;E、以上都不是。
3、如果我们从一个已知的总体中抽取大量的样本,我们将毫不惊讶地得到:A、样本统计结果值之间有差异;B、样本统计结果分布在一个中心值附近;C、许多样本平均数不等于总体平均数;D、以上都可能;E、以上都不可能。
4、对零假设的拒绝通常是:A、直接的;B、间接的;C、建立对研究假设的拒绝的基础上;D、建立在对研究假设的直接证明上;E、以上都不对。
5、研究者考察了生字密度高低两种条件下各30名学生阅读成绩的情况,得到两种条件下两组被试的成绩分别为:78±10和84±8,从中你可以得到:A、两种条件下学生成绩的差异非常显著;B、因为84≠78,所以两种条件下学生成绩差异非常显著;C、因为84>78,所以生字密度低的条件下学生成绩非常显著地高于生字密度高的条件下学生的成绩;D、以上都对;E、以上都不对。
1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。
解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。
采用t 分布的检验统计量nx t /0σμ-=。
查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为2.131和2.947。
667.116/60800820=-=t 。
因为t <2.131<2.947,所以在两个水平下都接受原假设。
2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。
n=100可近似采用正态分布的检验统计量nx z /0σμ-=。
查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。
计算统计量值3100/5001000010150=-=z 。
因为z=3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。
3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600.4.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量3.33 1.96Z ===>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响.5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。
第九章 假设检验(练习及习题标准答案) 一、单项选择题1.当总体服从正态分布,但总体方差未知小样本的情况下,0100:;:μμμμ〈≥H H ,则0H 的拒绝域为( ) A.)1(-≤n t t α B. )1(--≤n t t α C. )1(--〉n t t α D. )1(/2--≤n t t α 2.在假设检验中,原假设0H ,备选假设1H ,则称( )为犯第二类错误。
A.0H 为真,不拒绝1H B. 0H 为真,拒绝1H C. 0H 不真,不拒绝0H D. 0H 不真,拒绝0H 3.假设检验是对未知总体某个特征提出某种假设,而验证假设是否成立的资料是( )。
A.样本资料B.总体全部资料C.重点资料D.典型资料4.下列对总体特征值θ的假设,哪一种写法是正确的?( )。
A. 0100:;:θθθθ〈≥H HB. 0100:;:θθθθ≤≥H HC.0100:;:θθθθ〈≤H HD.0100:;:θθθθ≥=H H 5. 一家食品生产企业声称,它们生产的某种食品的合格率在95%以上。
为检验这一说法是否属实,某食品安全检测部门打算抽取部分食品进行检验,该检验的原假设和备择假设为( )A. %95:%;95:10〉≤ππH HB. %95:%;95:10≠=ππH HC. %95:%;95:10〈≥ππH HD. %95:%;95:10≥〉ππH H6.对于非正态总体,使用统计量/x z s n =估计总体均值的条件是( )A .小样本B .总体方差已知C .总体方差未知D .大样本7.在假设检验中,原假设和备选假设( )A .都有可能成立B .都有可能不成立C .只有一个成立而且必有一个成立D .原假设一定成立,备选假设不一定成立8.一种零件的标准长度5cm ,要检验某天生产的零件是否符合标准要求,建立的原假设和备选假设就为( )A .0:5H μ=,1:5H μ≠ B .0:5H μ≠,1:5H μ>C .0:5H μ≤,1:5H μ>D .0:5H μ≥,1:5H μ< 9.若检验的假设为00:H μμ≥,10:H μμ<,则拒绝域为( ) A .z z α> B .z z α<- C ./2z z α<-或/2z z α<- D .z z α>或z z α<-10.一家汽车生产企业在广告中宣称“该公司的汽车可以保证在2年或24000公里内无事故”,但该汽车的一个经销商认为保证“2年”这一项是不必要的,因为汽车车主在2年内行驶的平均里程不超过24000公里。
假设检验习题答案 Prepared on 22 November 20201.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显着性水平=与=,分别检验这批产品的平均重量是否是800克。
解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。
采用t 分布的检验统计量n x t /0σμ-=。
查出α=和两个水平下的临界值(df=n-1=15)为和。
334.116/60800820=-=t 。
因为t <<,所以在两个水平下都接受原假设。
2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显着增加(=解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显着增加,应该使用右侧检验)。
n=100可近似采用正态分布的检验统计量nx z /0σμ-=。
查出α=水平下的反查正态概率表得到临界值到之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显着性水平应先乘以2,再查到对应的临界值)。
计算统计量值3100/5001000010150=-=z 。
因为z=3>(>,所以拒绝原假设,无故障时间有显着增加。
3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。
问在5%的显着水平下,能否认为这批产品的指标的期望值μ为1600解: 01:1600, :1600,H H μμ=≠标准差σ已知,当0.05,α=26,n =96.1579.02/1==-z z α,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600.4.某电器零件的平均电阻一直保持在Ω,改变加工工艺后,测得100个零件的平均电阻为Ω,如改变工艺前后电阻的标准差保持在Ω,问新工艺对此零件的电阻有无显着影响(α=解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=, 当0.05,α=96.1579.02/1==-z z α100,n =由检验统计量 3.33 1.96Z ===>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显着影响.5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。