高精度轴承关键部件精密超精密加工技术
- 格式:ppt
- 大小:7.01 MB
- 文档页数:32
超精密加工技术结课作业摘要超精密加工技术是现代机械制造业中先进制造技术最主要的发展方向,已经成为在全球市场竞争中取胜的关键技术,体现了一个国家的综合国力。
超精密加工技术已直接影响到一个国家尖端科技和国防工业的发展,发展国防航空工业,研发高端精密仪器设备等都需要具有超精密加工技术的制造设备。
同时超精密加工技术也代表了现代制造技术的前沿,是发展未来先进制造技术的基础,因此,发展超精密加工技术受到了世界各国的高度重视。
目前,超精密加工技术的发展趋势是:高精度、高效率、高稳定性、高自动化。
随着时代的发展,现在超精密加工技术日趋成熟,主要分为超精密切削、超精密磨削、超精密特种加工等。
虽然超精密加工迄今尚无确切的定义,但是它仍然在向更高的层次发展。
我相信在人类的创新思维以及先进制造模式的促进下,超精密技术必定会得到不断的完善。
关键词:先进制造技术超精密加工加工精度加工类型发展趋势1概述通常,按加工精度划分,机械加工技术可分为一般加工、精密加工、超精密加工三种,随着时代的发展和社会的进步,先进制造技术不断革新,超精密加工技术的发展已是社会所趋。
超精密加工技术,在现代机械制造业中占据着重要地位,在提高机械产品的性能、质量,提高其稳定性和可靠性,提高生产效率等方面发挥着至关重要的作用。
超精密加工是一个十分广泛的加工领域,它包括了所有能使零件的形状、位置和尺寸精度达到微米和亚微米范围的机械加工方法,一般主要指加工精度为0.1µm,表面粗糙度小于Ra0.01µm的加工方法,同时目前超精密加工也正在向纳米级加工技术发展。
目前,超精密加工的核心技术主要掌握在西方发达国家手中,在超精密加工技术领域处于领先地位的国家主要是美国、英国和日本。
美国是开始超精密加工技术研究最早的国家,也是迄今在超精密加工仍处于领先地位的国家。
英国的克兰菲尔德精密工程研究所在超精密加工方面的研究成果也是享誉全球,是当今世界上超精密工程的研究中心之一。
1、通常将加工精度在0.1-1um、加工表面粗糙度R在0.02-0.1um之间的加工方法称为精密加工。
而将加工精度高于0.1um、加工表面粗糙度R小于0.01um的加工方法称为超精密加工。
2、提高加工精度的原因:提高制造精度后可提高产品的性能和质量,提高其稳定性和可靠性;促进产品的小型化;增强零件的互换性,提高装配生产率,并促进自动化装配。
3、精密和超精密加工目前包含三个领域:超精密切削;精密和超精密磨削研磨‘精密特种加工。
4、金刚石刀具的超精密切削加工技术,主要应用于两个方面:单件的大型超精密零件的切削加工和大量生产的中小型零件的超精密切削加工技术。
5、金刚石刀具有两个比较重要的问题:晶面的选择;切削刃钝圆半径。
6、超稳定环境条件主要是指恒温、防振、超净和恒湿五个方面的条件。
7、我国应开展超精密加工技术基础的研究,其主要内容包括以下四个方面:1)超精密切削、磨削的基本理论和工艺。
2)超精密设备的关键技术、精度、动特性和热稳定性。
3)超精密加工的精度检测、在线检测和误差补偿。
4)超精密加工的环境条件。
5)超精密加工的材料。
8、超精密切削实际选择的切削速度,经常是根据所使用的超精密机床的动特性和切削系统的动特性选取,即选择振动最小的转速。
9、超精密切削实际能达到的最小切削厚度和金刚石刀具的锋锐度、使用的超精密机床的性能状态、切削时的环境等都直接有关。
10、为实现超精密切削,刀具应具有如下性能:1)极高的硬度、极高的耐磨性和极高的弹性模量,以保证刀具有很长的寿命和很高的尺寸耐用度。
2)切削刃钝圆能磨得极其锋锐,切削刃钝圆半径r值极小,能实现超薄切削厚度。
3)切削刃无缺陷,切削时刃形将复印在加工表面上,能得到超光滑的镜面。
4)和工件材料的抗粘结性好、化学亲和性小、摩擦因素低,能得到极好的加工表面完整性。
11、SPDT——金刚石刀具切削和超精密切削。
12、晶体受到定向的机械力作用时,可以沿平行于某个平面平整地劈开的现象称为解理现象。
精密和超精密加工技术现状和发展趋势1.引言国际上在超精密加工技术方面处于领先地位的国家有美国、德国和日本发达国家中,美国、日本、德国等在高技术领域(如国防工业、集成电路、信息技术产业等)之所以一直领先,与这些国家高度重视和发展精密、超精密制造技术有极其重要的关系。
由于加工技术水平的发展,精密和超精密加工划分的界限逐渐向前推移,但在具体数值上没有确切的定义。
被加工零件的尺寸精度在 1.0~0.1μm,表面粗糙度Ra在0.1~0.03μm之间的加工方法称为精密加工。
超精密加工当前是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展超精密加工技术主要包括:超精密加工的机理,超精密加工的设备制造技术,超精密加工工具及刃磨技术,超精密测量技术和误差补偿技术,超精密加工工作环境条件。
2.发展现状美国是开展研究最早的国家,也是迄今处于世界领先地位的国家。
早在50年代末,由于航天等尖端技术发展的需要,美国首先发展了金刚石刀具的超精密切削技术,并发展了相应的空气轴承主轴的超精密机床,用于加工激光核聚变反射镜、战术导弹及载人飞船用球面、非球面大型零件。
20世纪80年代后期,美国通过能源部“激光核聚变项目”和陆、海、空三军“先进制造技术开发计划”,对超精密金刚石切削机床的开发研究,投入了巨额资金和大量人力,实现了大型零件的微英寸超精密加工。
如美国劳伦斯利弗莫尔国家实验室已经研制出一台大型光学金刚石车床(Large Op tics Diam ond Turn ing Machine, LODTM ), 是一台最大加工直径为1.63m的立式车床,定位精度可达28nm,借助在线误差补偿能力,它已实现了距离超过1m而直线度误差只有±25nm 的加工。
在美国能源部支持下,LLI实验室和Y-12工厂合作,与1983年成功地研制出大型超精密金刚石车床(DTM—3型)。
超精密加工机床的关键部件技术哈尔滨工业大学盖玉先董申1 引言超精密加工机床的研制开发始于20世纪60年代。
当时在美国因开发激光核聚变实验装置和红外线实验装置需要大型金属反射镜,因而急需开发制作反射镜的超精密加工技术。
以单点金刚石车刀镜面切削铝合金和无氧铜的超精密加工机床应运而生。
1980年美国在世界上首次开发了三坐标控制的M-18AG非球面加工机床,它标志着亚微米级超精密加工机床技术的成熟。
日本的超精密加工机床的研制开发滞后于美国20年。
从1981~1982年首先开发的是多棱体反射镜加工机床,随后是磁头微细加工机床、磁盘端面车床,近来则是以非球面加工机床和短波长X线反射镜面加工机床为主。
德国、荷兰以及中国台湾的超精密加工机床技术也都处于世界先进水平。
我国的超精密加工机床的研制开发工作虽起步比较晚,但经过广大精密工程研究人员的不懈努力,已取得了可喜的成绩。
哈尔滨工业大学精密工程研究所研制开发的HCM-Ⅰ超精密加工机床,主要技术指标达到了国际水平。
国外部分超精密加工机床和HCM-Ⅰ超精密加工机床的性能指标如表1所示。
本文主要论述超精密加工机床的关键部件技术。
2 主轴系统超精密加工机床的主轴在加工过程中直接支持工件或刀具的运动,故主轴的回转精度直接影响到工件的加工精度。
因此可以说主轴是超精密加工机床中最重要的一个部件,通过机床主轴的精度和特性可以评价机床本身的精度。
目前研制开发的超精密加工机床的主轴中精度最高的是静压空气轴承主轴(磁悬浮轴承主轴也越来越受到人们的重视,其精度在迅速得到提高)。
空气轴承主轴具有良好的振摆回转精度。
主轴振摆回转精度是除去轴的圆度误差和加工粗糙度影响之外的轴心线振摆,即非重复径向振摆,属于静态精度。
目前高精度空气轴承主轴回转精度可达0.05μm,最高可达0.03μm,由于轴承中支承回转轴的压力膜的均化作用,空气轴承主轴能够得到高于轴承零件本身的精度。
例如主轴的回转精度大约可以达到轴和轴套等轴承部件圆度的1/15~1/20。
1.精密和超精密加工目前包括三个领域:超精密切削,精密和超精密磨削研磨,精密特种加工。
2.金刚石刀具有两个比较重要的问题:一是晶面的选择,再就是金刚石刀具的研磨质量----切削刃钝圆半径r n 。
3.最近出现的隧道扫描显微镜的分辨率为0.01nm,是目前世界上精度最高的测量仪,可用于测量金属和半导体零件表面的原子分布的形貌。
最新的研究证实,在扫描隧道显微镜下可移动原子,实现精密工程的最终目标----原子级精密加工。
4.用金刚石刀具进行超精密切削,用于加工铝合金、无氧铜、黄铜、非电解镍等有色金属和某些非金属材料。
5.超精密切削时,切削速度并不受刀具寿命的制约,这点和普通的切削规律不同的。
6.超精密切削实际是根据所使用的超精密机床的动特性和切削系统的动特性选取,即选择振动最小的转速。
7.超精切削时,积屑瘤高时切削力大,积屑瘤小时切削力小,和普通切削切钢时的规律正好相反。
8.超精密切削时,加工表面粗超度是直接和积屑瘤的高度有关,即积屑瘤高度大,表面粗糙度大;积屑瘤小时加工表面粗糙度艺小。
9.使用切削液后,已消除了积屑瘤对加工表面粗糙度的影响,这是切削速度已和加工表面粗糙的无关,这种情况和普通切削时切刚的规律不同。
10.超精密切削加工表面层的残留应力,也是表面质量的重要标志。
它不仅影响材料的疲劳强度和耐磨性,而且影响加工零件的长期尺寸稳定性。
11.超精密切削实际能达到的最小切削厚度和金刚石刀具的锋锐度、使用的超精密机床的性能状态、切削时的环境条件等都直接有关。
12.实验结果是在两把刀都比较锋锐的情况下获得的。
可以看到No1车刀(前后为(100)晶面)和No2车刀(为(110)晶面)的加工表面粗糙度相差不多。
13.用(100)晶面的No1车刀切出的表面层残余应力小于用(110)晶面的No2车刀所切出的,特别是切向残余应力。
14.(简答)从金刚石的物理性能看,它有甚高的硬度、较高的热导率、和有色金属间摩擦因数低、开始氧化的温度较高,这些都是超精密切削刀具所要求的。
超精密加工技术----发展及对策超精密加工技术,是现代机械制造业最主要的发展方向之一。
在提高机电产品的性能、质量和发展高新技术中起着至关重要的作用,并且已成为在国际竞争中取得成功的关键技术。
超精密加工是指亚微米级(尺寸误差为0.3~0.03μm,表面粗糙度为Ra0.03~0.005μm)和纳米级(精度误差为0.03μm,表面粗糙度小于Ra0.005μm)精度的加工。
实现这些加工所采取的工艺方法和技术措施,则称为超精加工技术。
加之测量技术、环境保障和材料等问题,人们把这种技术总称为超精工程。
超精密加工主要包括三个领域:1、超精密切削加工如金刚石刀具的超精密切削,可加工各种镜面。
它已成功地解决了用于激光核聚变系统和天体望远镜的大型抛物面镜的加工。
2、超精密磨削和研磨加工如高密度硬磁盘的涂层表面加工和大规模集成电路基片的加工。
3、超精密特种加工如大规模集成电路芯片上的图形是用电子束、离子束刻蚀的方法加工,线宽可达0.1μm。
如用扫描隧道电子显微镜(STM)加工,线宽可达2~5nm。
国外概况美国是最早研制开发超精密加工技术的国家。
早在1962年,美国就开发出以单点金刚石车刀镜面切削铝合金和无氧铜的超精密半球车床,其主轴回转精度为0.125μm,加工直径为φ100mm的半球,尺寸精度为±0.6μm,粗糙度为Ra0.025μm。
1984年又研制成功大型光学金刚石车床,可加工重1350kg,φ1625mm的大型零件,工件的圆度和平面度达0.025μm,表面粗糙度为Ra0.042μm。
在该机床上采用多项新技术,如多光路激光测量反馈控制,用静电电容测微仪测量工件变形,32位机的CNC系统,用摩擦式驱动进给和热交换器控制温度等。
美国利用自己已有的成熟单元技术,只用两周的时间便组装成了一台小型的超精密加工车床(BODTM型),用刀尖半径为5~10nm的单晶金刚石刀具,实现切削厚度为1nm (纳米)的加工。
尽管如此,最近美国政府还是继续把微米级和纳米级的加工技术作为国家的关键技术之一,这足以说明美国对这一技术的重视。