化工原理板式塔
- 格式:ppt
- 大小:3.68 MB
- 文档页数:55
《化工原理》电子教案板式塔及其工艺设计计算教案章节:一、板式塔的概述教学目标:1. 理解板式塔的定义及其在化工过程中的作用。
2. 掌握板式塔的分类和基本结构。
教学内容:1. 板式塔的定义及作用2. 板式塔的分类a) 固定床板式塔b) 流动床板式塔c) 喷射塔3. 板式塔的基本结构a) 塔体b) 塔板c) 塔内件教学方法:1. 采用讲授法,介绍板式塔的基本概念、分类和结构。
2. 利用图片和示意图,展示板式塔的内部结构和工作原理。
3. 通过案例分析,使学生了解板式塔在化工过程中的应用。
教学评估:1. 课堂问答,检查学生对板式塔概念的理解。
2. 绘制板式塔的结构示意图,检查学生对板式塔结构的掌握。
教案章节:二、板式塔的工艺设计计算教学目标:1. 掌握板式塔的工艺设计计算方法。
2. 能够根据实际情况选择合适的板式塔。
教学内容:1. 板式塔的工艺设计计算方法a) 计算塔内件尺寸b) 计算塔内流体流动参数c) 计算塔的传质效率2. 板式塔的选择依据a) 塔内压力降b) 塔内液气比c) 塔的分离效果教学方法:1. 讲解板式塔工艺设计计算的基本方法。
2. 利用实例,演示板式塔工艺设计计算的步骤。
3. 分析不同板式塔的优缺点,引导学生根据实际情况选择合适的塔型。
教学评估:1. 课堂问答,检查学生对板式塔工艺设计计算方法的理解。
2. 设计实际案例,让学生运用板式塔工艺设计计算方法进行计算。
教案章节:三、固定床板式塔的设计计算教学目标:1. 掌握固定床板式塔的设计计算方法。
2. 能够进行固定床板式塔的工艺设计。
教学内容:1. 固定床板式塔的设计计算方法a) 计算塔内件尺寸b) 计算塔内流体流动参数c) 计算塔的传质效率2. 固定床板式塔的工艺设计a) 确定塔板类型b) 计算塔板间距c) 计算塔内压力降教学方法:1. 讲解固定床板式塔的设计计算方法。
2. 利用实例,演示固定床板式塔的设计计算步骤。
3. 分析不同塔板类型的优缺点,引导学生选择合适的塔板类型。
化⼯原理板式塔设计⽬录第⼀章板式精馏塔的设计1.1概述 (1)1.2板式精馏塔的设计原则与步骤 (1)1.3理论塔板数的确定 (3)1.4塔板效率和实际塔板数 (7)1.5板式精馏塔的结构设计 (8)1.6 板式精馏塔⾼度及其辅助设备 (27)1.7 板式精馏塔的计算机设计 (31)第⼆章板式精馏塔设计举例2.1苯-甲苯板式精馏塔设计 (33)2.2⼄醇—⽔板式精馏塔设计 (47)2.3 甲醇—⽔板式精馏塔设计 (66)第三章塔设备的机械计算3.1 塔体及裙座的强度计算 (86)3.2 塔盘板及其⽀撑梁的强度、挠度计算 (104)3.3 塔盘技术条件 (105)3.4 塔盘⽀撑件的尺⼨公差 (109)附录 (111)第⼀章板式精馏塔的设计1.1概述蒸馏是利⽤液体混合物中各组分挥发度的不同并借助于多次部分汽化和部分冷凝达到轻重组分分离的⽅法。
蒸馏操作在化⼯、⽯油化⼯、轻⼯等⼯业⽣产中中占有重要的地位。
为此,掌握⽓液相平衡关系,熟悉各种塔型的操作特性,对选择、设计和分析分离过程中的各种参数是⾮常重要的。
蒸馏过程按操作⽅式可分为间歇蒸馏和连续蒸馏。
间歇蒸馏是⼀种不稳态操作,主要应⽤于批量⽣产或某些有特殊要求的场合;连续蒸馏为稳态的连续过程,是化⼯⽣产常⽤的⽅法。
蒸馏过程按蒸馏⽅式可分为简单蒸馏、平衡蒸馏、精馏和特殊精馏等。
简单蒸馏是⼀种单级蒸馏操作,常以间歇⽅式进⾏。
平衡蒸馏⼜称闪蒸,也是⼀种单级蒸馏操作,常以连续⽅式进⾏。
简单蒸馏和平衡蒸馏⼀般⽤于较易分离的体系或分离要求不⾼的体系。
对于较难分离的体系可采⽤精馏,⽤普通精馏不能分离体系则可采⽤特殊精馏。
特殊精馏是在物系中加⼊第三组分,改变被分离组分的活度系数,增⼤组分间的相对挥发度,达到有效分离的⽬的。
特殊精馏有萃取精馏、恒沸精馏和盐溶精馏等。
精馏过程按操作压强可分为常压精馏、加压精馏和减压精馏。
⼀般说来,当总压强增⼤时,平衡时⽓相浓度与液相浓度接近,对分离不利,但对在常压下为⽓态的混合物,可采⽤加压精馏;沸点⾼⼜是热敏性的混合液,可采⽤减压精馏。
10.1 复习笔记一、板式塔1.概述(1)板式塔的功能①在每块塔板上气液两相必须保持密切而充分的接触,为传质过程提供足够大而且不断更新的相际接触表面,减小传质阻力;②在塔内应尽量使气液两相呈逆流流动,以提供最大的传质推动力。
板式塔的设计意图是,在塔内造成一个对传质过程最有利的理想流动条件,即在总体上使两相呈逆流流动,而在每一块塔板上两相呈均匀的错流接触。
(2)筛孔塔板的构造①塔板上的气体通道——筛孔为保证气液两相在塔板上能够充分接触并在总体上实现两相逆流。
塔板上均匀地开有一定数量的供气体自下而上流动的通道。
图10-1 板式塔结构简图筛孔塔板的气体通道最为简单,它是在塔板上均匀地冲出或钻出许多圆形小孔供气体上升之用。
这些圆形小孔称为筛孔。
上升的气体经筛孔分散后穿过板上液层,造成两相间的密切接触与传质。
筛孔的直径通常是3~8mm,但直径为12~25mm的大孔径筛板也应用得相当普遍。
②溢流堰为保证气液两相在塔板上有足够的接触表面,塔板上必须贮有一定量的液体。
为此,在塔板的出口端设有溢流堰。
③降液管作为液体自上层塔板流至下层塔板的通道,每块塔板通常附有一个降液管。
图10-2 筛板塔的构造在塔板上的流动更为均匀,当采用圆形溢流管时,仍需设置平直溢流堰。
同理,在圆形降液管的出口附近也应设置堰板,称为入口堰。
2.筛板上的气液接触状态实验观察发现,气体通过筛孔的速度不同,两相在塔板上的接触状态亦不同。
如图10-3所示,气液两相在塔板上的接触情况可大致分为三种状态。
图10-3 塔板上的气液接触状态(1)鼓泡接触状态当孔速很低时,通过筛孔的气流断裂成气泡在板上液层中浮升,塔板上两相呈鼓泡接触状态。
(2)泡沫接触状态随着孔速的增加,气泡数量急剧增加,气泡表面连成一片并且不断发生合并与破裂。
此时,板上液体大部分是以液膜的形式存在于气泡之间,仅在靠近塔板表面处才能看到少许清液。
这种接触状况称为泡沫接触状态。
在泡沫接触状态,液体仍为连续相,而气体仍为分散相。