开关电源的并联运行及其数字均流技术
- 格式:pdf
- 大小:278.95 KB
- 文档页数:4
并联开关电源的均流方法[5篇]第一篇:并联开关电源的均流方法并联开关电源的均流方法大量电子设备,特别是计算机、通讯、空间站等的广泛应用,要求组建一个大功率、安全可靠、不间断供电的电源系统。
如果采用单台电源供电,该变换器势必处理巨大的功率、电应力大,给功率器件的选择、开关频率和功率密度的提供带来困难。
并且一旦单台电源发生故障,则导致整个系统崩溃。
采用多个电源模块运行,来提高大功率输出是电源技术发展的一个方向。
并联系统中每个模块处理较少功率,解决了上述单台电源遇到的问题。
在大功率DC/DC开关电源中,为了获得更大的功率,特别是为了得到大电流时,经常采用N个单元并联的方法。
多个单元并联具有高可靠性,并能实现电路模块标准化等优点。
然而在并联中遇到的主要问题就是电流不均,特别在加重负载时,会引起较为严重的后果。
普通的均流方法是采取独立的PWM控制器的各个模块,通过电流采样反馈到PWM控制器的引脚FB或者引脚COMP,即反馈运放的输入或者输出脚来凋节输出电压,从而达到均流的目的。
显然,电流采样是一个关键问题:用电阻采样,损耗比较大,电流放大后畸变比较大;用电流传感器成本高;用电流互感器采样不是很方便,州时会使电流失真。
一、一种新的电流采样方法如前所述,在均流系统中一些传统的电流采样力法都或多或少有些缺点。
而本文提出的这种新的电流采样力法,既简单方便,又没有损耗。
下面以图l所示的Buck电路为例,说明这种新的电流检测方法的原理和应用。
电流检测电路由一个简单的RC网络组成,没流过L的电流为iL,流过C的电流为ic,L两端的电压为vL,输出电压为vo上电压为vc,则有vL+iLR1+vo.=vc+icR(1)对式(1)在一个开关周期求平均值得式中:VL是电感上的电压在一个开关周期的平均值,显然VL=O;Vo为输出电压平均值;IL电感电流平均值,等于负载电流ILoad;Ic是电容在一个开关周期内充放电电流的平均值,显然Ic=0;R1为电感的等效串联电阻(ESR)。
开关电源并联的均流技术詹新生1,2(1.湖北工业大学,湖北武汉 430068; 2.徐州工业职业技术学院,江苏徐州 221140)[摘 要]采用多个电源模块并联运行来提供大功率输出是电源技术发展的一个方向,均流技术是实现大功率电源和冗余电源关键。
本文主要讨论了常见开关电源均流技术的原理和方法。
[关键词]开关电源;均流 中图分类号:TP303+13文献标识码:C1 引 言采用多个电源模块并联运行来提供大功率输出是电源技术发展的一个方向。
并联运行的各模块特性不一致,可能使电压调整率小的模块承担较大的电流甚至过载,热应力大;外特性较差的模块运行于轻载其至是空载。
其结果必然使电源可靠性降低,寿命减小。
因此需要实现均流措施,来保证模块间电流应力和热应力的均匀分配,防止单个模块运行在电流极限值状态[1]。
2 开关电源并联均流的方法211 输出阻抗法(下垂法、斜率法)其实质是利用电流反馈调整各模块的输出阻抗或直接改变模块单元的输出电阻,使外特性斜率趋于一致,以达到并联模块接近均流的目的。
这种方法是一种简单的大致均流的方法,精度比较低。
图1为输出阻抗法均流原理图,左图为并联开关电源外特性V o =f (I o ),右图中的R 为开关电源的输出阻抗。
图1 输出阻抗法均流原理图 由上图可知,当负载电流为I L =I O1+I O2时,负载电压为V o ,按两个模块的外特性倾斜率分配负载电流,斜率不相等,电流分配也不等;当负载电流增大到I L ′=I O1′+I O2′时,负载电压为V o ′。
可知,模块1外特性斜率小,分配电流的增长比外特性斜率大的模块2增长大。
如果能设法将模块1的外特性斜率调整得接近模块2,则可使这两个模块的电流分配均匀。
只要调整图1中的输出阻抗R ,使各个模块的外特性基本一致即可。
电阻R 不宜选的太大,以减少损耗。
这种方法是最简单的实现均流的方法,在小电流时电流的分配特性较差,大电流时较好。
缺第29卷 第3期2009年 6月农业与技术Agriculture&T echnology V ol.29 N o.3Jun.2009・136 ・点是:电压调整率下降,为了均流,每个模块必须分别调整;对于不同额定功率的模块难以实现均流。
开关电源并联均流技术
1 引言
在实际应用中,往往由于一台直流稳定电源的输出参数(如电压、电流、功率)不能满足要求,而满足这种参数要求的直流稳定电源,存在重新开发、设计、生产的过程,势必加大电源的成本、延长交货时间、影响工程进度。
因此在实用中往往采用模块化的构造方法,采用一定规格系列的模块式电源,按照一定的串联或并联方式,分别达到输出电压、输出电流、输出功率扩展的目的。
但是电源输出参数的扩展,仅仅通过简单的串、并联方式还不能完全保证整个扩展后的电源系统稳定可靠的工作。
不论电源模块是扩压还是扩流,均存在一个“均压”、“均流”的问题,而解决方法的不同,对整个电源扩展系统的稳定性、可靠性都有很大的影响。
由于目前稳定电源输出扩流应用较多,本文仅讨论开关电源并联均流技术。
均流的主要任务是:
(1)当负载变化时,每台电源的输出电压变化相同。
(2)使每台电源的输出电流按功率份额均摊。
2 提高系统可靠性方法
(1)在电源并联扩流过程中,为了提高系统工作稳定性,可采用N+m冗余的方法。
其中m表示冗余份数,m值越大,系统工作可靠性越高,但是系统成本也相应增加。
(2)采用均流技术保证系统正常工作。
在电源并联扩流中,应用较为广泛的办法是自动均流技术。
它通过取样、电子控制调节环路来保证整个系统的输出电流按每个单元的输出能力均摊,以达到既充分发挥每个单元的输出能。
开关电源并联系统的均流技术①谢勤岚 陈红(中南民族大学电子信息工程学院 武汉 430074) 陶秋生(武汉数字工程研究所 武汉 430074)摘 要针对目前有发展前途的开关电源并联系统,提出了开关电源并联的技术要求,简要分析了实现并联系统均流的基础原理,介绍了几种实现均流技术的方案。
关键词 开关电源 电源并联 均流技术1 引言由于大功率负载需求和分布式电源系统的发展,开关电源并联技术的重要性日益增加,并联系统中,每个变换器只处理较小功率,降低了应力;还可以应用冗余技术,提高系统可靠性。
但是并联的开关变换器模块间需要采用均流措施,它是实现大功率电源系统的关键。
均流措施用以保证模块间电流应力和热应力的均匀分配,防止一台或多台模块运行在电流极限值(限流)状态。
因为并联运行的各个模块特性并不一致,外特性好(电压调整率小)的模块,可承担更多的电流,甚至过载,从而使某些外特性较差的模块运行于轻载,甚至基本上是空载运行。
其结果必然是分担电流多的模块,热应力大,降低了可靠性。
对若干个开关变换器模块并联的电源系统,基本要求是:①各模块承受的电流能自动平衡,实现均流;②为提高系统的可靠性,尽可能不增加外部均流控制的措施,并使均流与冗余技术结合;③当输入电压和/或负载电流变化时,应保持输出电压稳定,并且均流的瞬态响应好。
2 均流的基本原理与其它电源一样,开关变换器如图1所示的外特性(或称输出特性)V o=f(I o),R为开关变换器的输出阻抗,其中也包括这个开关变换器模块连接到负载的导线或电缆的电阻。
空载时,模块输出电压为V omax。
当电流变化量为△I时,负载电压变化量为△V,故得该模块的输出电阻为R=△V/△I.对模块来说,当电流增加了△I时,其输出电压降落了△V,因此,此式也代表开关电源的输出电压调整率。
由图1可见,开关变换器的负载电压V。
与负载电流I o的关系可用下式表达:V o=V omax-RI o.572003年第4期 舰船电子工程 ①收稿日期:2002年12月17日,修回日期:2003年3月3日图1 开关变换器的外特性 对两台相同容量,具有相同参数的开关变换器相互并联的情况,如图2,则有下式V ol =V omax -R 1I o1,V o2=V omax -R 2I o2图2 两台并联的开关变换器及外特性R 1、R 2分别为模块1及模块2的输出阻抗(包括电缆电阻)。
浅析开关电源并联系统自动均流技术随着我国人数逐渐增加,用电程度中也在逐渐提高。
在开关系统中,利用并联的方式进行供电,在一定程度上,能够为每户人口提供用电。
但是,在实际的使用中容易出现用电分配不均,并且在使用时,电压不稳定。
因此,论文通过对开关电源并联系统造成电流不均匀的原因进行分析,探究开关电源并联系统自动均流技术的有效方式。
此次研究的主要目的是为能够解决在电源并联系统中,电流分布不均问题,促进用户用电的安全以及用电稳定性。
【Abstract】With the increasing population of China,the degree of electricity consumption is also gradually improving. In the switching system,power is supplied in the mode of parallel,which can provide electricity to each household in a certain degree. However,in actual use,it is easy to have uneven distribution of electricity,and the voltage is unstable when in use. Therefore,through the analysis of the causes of the current inhomogeneity caused by the switching power supply parallel system,this paper probes into the effective way of automatic current-sharing technology in the switching power supply parallel system. The main purpose of this paper is to solve the problem of uneven distribution of current in power supply parallel system and to promote the safety and stability of power consumption.标签:开关电源;并联系统;自动均流技术1 引言电力系统在实际的应用中用电量不足时,可以利用开关电源将电源多个模块进行并联,从而解决供电不足或者输出功率较小的问题。
开关电源并联系统的数字均流技术
1 引言
电源系统的发展方向之一是用分布式电源系统取代集中式电源系统。
这是因为分布式电源系统具有更多的优点,比如易于扩充输出功率容量、可靠性高、使电源保持高的效率和较快的动态响应、可以实现标准化设计、便于维护等。
但是外特性不同的电源模块并联工作时,如果不采取一定的均流措施,每个模块的输出电流将出现分配不均的情况,外特性好的电源模块将承担更多的电流,甚至过载,从而降低了可靠性;分担电流小的模块可能处在效率不高的工作状态。
因此必须采取均流措施。
同时分布式电源系统对两个技术提出了更高的要求:
1)并联模块间的自动均流技术;
2)模块的智能化技术。
电源模块的数字化能够提高其可靠性和产品一致性等工程问题,并且有利于实现智能化,是应用技术的发展方向。
2 平均电流法
目前常用的均流方法有:输出阻抗法、主从设置法、平均电流法、最大电流法、热应力自动均流法和采用均流控制器的方法等。
为了提高电源系统的可靠性和可维护性,采用的均流方法最好有如下特点:
1)单个模块的故障不影响整个系统的正常运行;
2)模块之间自动实现均流,无需人为的调整和设定,无需模块之外控制器的介入。
考虑到均流算法和数字化的特点和互补性,本系统选用平均电流法。
这种。