大数据实验室建设方案
- 格式:docx
- 大小:2.17 MB
- 文档页数:13
物联网大数据分析实验室建设方案目标与范围在这个数字飞速发展的时代,物联网(IoT)和大数据分析已经成为各行各业创新与转型的驱动力。
某个组织希望搭建一个物联网大数据分析实验室,咱们这个方案的目的就是帮助他们设计一个可行且可持续的实验室,以便有效地收集、存储和分析来自物联网设备的数据。
这个方案将涵盖实验室的建设目标、内容、实施步骤、技术方案和预算估算,确保组织顺利开展这项工作。
现状与需求分析在正式动手设计之前,得先搞清楚组织的现状和需求。
通过和相关人员的交流,发现他们在几个方面亟需改进:1. 数据采集与存储:目前他们没有有效的数据采集和存储系统,导致无法充分利用物联网设备产生的数据。
2. 数据分析能力:他们希望能对收集到的数据进行深入分析,以便更好地支持决策和优化业务流程。
3. 技术人才缺乏:在组织内部,缺少具备物联网和数据分析专业技能的人才,所以需要通过这个实验室来培养相关的人才。
4. 设备与资源:需要搭建一套适合物联网设备的数据采集和分析资源配置。
基于这些需求,咱们确定了实验室的建设方向和目标。
实施步骤与操作指南明确需求后,接下来就是制定实施步骤。
整个过程可以分为几个关键阶段。
实验室选址与设计首先得选个合适的地点来建设实验室,确保空间充足,网络环境也得不错。
实验室设计时需要考虑这些因素:- 空间布局:要合理划分采集区、分析区和休息区。
- 设备配置:确保有足够的电源插座和网络接口,以满足各种设备的需求。
- 安全性:建立完善的安全措施,确保设备和数据的安全。
设备采购与安装根据实验室的需求,采购相关的物联网设备和数据分析工具。
主要设备包括:- 传感器:用于数据采集,比如温湿度传感器、运动传感器等。
- 数据存储设备:像云存储服务或者本地服务器。
- 数据分析软件:比如Hadoop、Spark等大数据处理框架,以及可视化工具如Tableau。
设备采购后,需进行安装,并确保系统正常运行。
数据采集与处理建立数据采集系统,编写相关程序,确保各类设备能够实时上传数据。
高校大数据实验室建设方案模板(完整版本)高校大数据实验室建设方案(本研究方案有完整的逻辑框架,数据内容详实,参考和实用价值高!)目录1概述 (3)1.1建设背景 (3)1.2建设现状 (3)2总体设计 (5)2.1总体架构 (5)2.2分步实施方案 (6)2.2.1一期:实现大数据教学实验入口,建立稳定可靠的大数据实验平台 (6)2.2.2二期:基于大数据领域的深入拓展研究 (7)3详细设计 (9)3.1一期建设内容 (9)3.1.1机房装修建议方案 (9)3.1.2云存储平台 (25)3.1.3大数据实验平台 (29)3.1.4桌面虚拟化 (96)3.1.5教学云盘 (98)3.2二期建设内容 (107)3.2.1深度学习平台 (107)3.2.2数据立方大数据库 (111)3.2.3数据挖掘平台 (117)3.2.4数据可视化 (122)3.2.5物联网智能硬件服务平台 (127)4建设意义 (132)5规格配置 (134)1概述1.1建设背景随着移动互联网、云计算、物联网的快速发展,特别是智能手机端博客、社交网络、位置服务(LBS)等信息发布方式的不断涌现,数据正以前所未有的速度在不断地增长和累积,全球在2010年正式进入ZB 时代,根据IDC监测,人类自有史以来所有数据量大约每18 个月翻一番,意味着人类在最近18个月产生的数据量相当于之前产生的全部数据量,预计到2020 年,全球将总共拥有35ZB的数据量,是2010年的近30倍,大数据时代已经来到。
在海量数据面前,大数据人才无疑是其中最关键环节之一,然而,不论国内外,大数据人才却紧缺相当稀缺,在未来5-10年,我国大数据市场规模年均增速将超过30%,而大数据人才缺口将突破150万,目前大数据人才平均月薪达1.5万,在BAT发布的招聘职位中,大数据人才超过60%。
我校为顺应新形式的发展,着手建立大数据学院,创建大数据实验室、大数据实验平台,开设大数据教学培训,实现我校教学科研一体化流程,将为我校增加学生就业机会和薪资水平,提高师资水平,逐步培养当今互联网时代IT行业的大数据人才起到至关重要的作用。
高校大数据实验室建设解决方案随着大数据时代的到来,高校也应当紧跟时代步伐,积极参与到大数据的发展和应用中来。
而大数据实验室,既是促进高校在大数据方面探究和创新的平台,也是吸引优秀人才的重要条件之一。
因此,高校大数据实验室的建设至关重要。
本文将从人员配备、设备采购和实验室管理三个方面来提出解决方案。
一、人员配备高端的研究和技术人才是确保大数据实验室建设和发展的基础条件。
一流的人才会带来先进的思想、科技的发展和新的研究课题。
因此,大数据实验室的建设需要解决如下问题:1. 招聘适当人员:针对大数据实验室目前面临的研究难题,以及未来科研发展方向,应该招聘有相关研究经验的博士生、硕士生和一定数量的本科生。
2. 手写(hiring plan)制定:根据实验室人员的目标、规模和发展方向,确定不同层级、不同专业或技能的人员。
这项工作非常重要,同时还要注意新员工和现有员工的结合和衔接。
3. 常规培训:要定期进行各种技能方面的学习和培训,使得所有工作人员对于实验室所实施的实验都能够熟练掌握,还要对于实验室的安全和维护等方面进行培训。
二、设备采购大数据实验室建设需要采购大量的仪器设备,这些仪器设备是实验室建设中重要的组成部分之一,是确保实验室成果准确性和科学性的关键条件之一。
1. 采购方案:目前市场上大量的仪器设备供应商出现,针对实验室要求设备的性能特点、性价比、技术支持、交付时间等方面进行比较和选择,最终采取适合实验室需要并有较好口碑的设备和厂家进行购买和安装。
2. 产品保障:实验室设备的维护和保养需要具备一定的技能和精神,因此,在购买设备之后,要及时咨询设备生产厂商并制定相应的保养计划和培训计划,有时候还需要购买相应的零配件。
3. 更换设备:随着时间的推移,部分设备的性能和质量下降,有时还可能出现设备故障的状况,必要时就需要更换设备,这时候应该找到质量过硬、实用性强的替代产品,并在更换前制定一个较为具体的实施方案。
大数据实验室建设方案大数据实验室建设方案大数据发展背景国家政策2017年1月工业和信息化部正式发布了《大数据产业发展规划(2016-2020年)》,明确了“十三五”时期大数据产业的发展思路、原则和目标,将引导大数据产业持续健康发展,有力支撑制造强国和网络强国建设。
2018年9月工信部公示“2018年大数据产业发展试点示范项目名单”,公布了包括大数据存储管理、大数据分析挖掘、大数据安全保障、产业创新大数据应用、跨行业大数据融合应用、民生服务大数据应用、大数据测试评估、大数据重点标准研制及应用、政务数据共享开放平台及公共数据共享开放平台等10个方向200个项目。
2019年11月为进一步落实《国务院关于印发促进大数据发展行动纲要的通知》和《大数据产业发展规划(2016~2020年)》,推进实施国家大数据战略,务实推动大数据技术、产业创新发展,我国工业和信息化部将组织开展2020年大数据产业发展试点示范项目申报工作。
行业现状据相关资料显示,随着互联网、移动互联网、物联网等信息通信技术及产业的不断发展,全球数据量呈爆发式增长态势。
至此,IDC研究报告指出,根据ZDNET的统计预计到2020年,中国产生的数据总量将超过8.5ZB,是2013年的10倍。
此外,值得一提的是,大数据市场空间巨大的同时,其产业规模也有望迎来快速增长。
据前瞻产业研究院发布的《中国大数据产业发展前景与投资战略规划分析报告》统计数据显示,2015年我国大数据产业规模已达2800亿元,截止至2017年我国大数据产业规模增长至4700亿元,规模增速进一步提高至30.6%,初步测算2018年我国大数据产业规模将达6200亿元左右,同比增长31.9%。
并预测在2020年我国大数据产业规模增长突破万亿元,达到了10100亿元,同比增长26.3%。
2015-2020年我国大数据产业规模统计及增长情况预测数据来源:前瞻产业研究院整理由此可知,随着来自政策、技术以及市场等各方面的力量推进之下,大数据产业的发展潜力绝不能小觑。
北京软件或统计及数学或信息科学学院大数据实验室建设方案一、大数据实验室建设目标在2017年7月颁布的《教育部关于新形势下进一步做好普通学校装备工作的意见》中,明确指出要“按照标准建设实验教学和音体美装备和场所。
支持探索建设综合实验室、特色实验室、学科功能教室、教育创客空间等教育环境。
鼓励对现有教室进行多功能技术改造,适应学生学习需求”。
为更好的加强信息科学学院的专业技术优势,充分利用信息科学学院现有机房及多功能教室的教学条件,特申请针对学院的大数据学习及应用需求建设大数据实验室,打造课程管理平台及科研平台,为老师和学生提供一个学习大数据技术、数据分析与挖掘、软件开发、工程学等多方面知识的平台和环境。
二、建设方案大数据实验室计划建设稳定、可靠、高效的软硬一体化大数据教学科研环境,以及完善的课程体系、项目数据和视频、多样化的教学手段和丰富的实战案例,来满足学生学习和老师科研需求。
主要包括两个部分:(1)大数据教学平台大数据课程平台根据不同学历和职业方向设置不同的课程学习路线,针对每门课程提供教学实验指导手册、在线视频、资源包、实验示例代码等,让学生通过在线学习、原理验证、实训应用、综合分析及自主设计等多层次的实验操作,实现对大数据开发应用的理解和掌握。
行业典型项目涵盖互联网、运营商、金融、电子商务、政府等十多个领域,通过项目指导手册、讲解视频、行业数据及项目代码等进行充分学习。
平台整体以大数据Hadoop及其生态组件为核心构建软件系统,支持更多的大数据高级特性,保证平台的高性能与稳定可靠运行。
(2)大数据科研平台结合大数据解学平台的教学内容,通过科研平台进行上手实践操作。
科研平台融合大数据相关的开源开发工具,构建包括搜索引擎、自然语言处理、数据可视化等开发工具等开发框架平台,充分进行处理采集、治理、挖掘等项目的研究和探索,全面提升科研成效。
(3)教室布局采用普通终端PC机,组成实验室局域网,支撑学生进行大数据实验三、实验室建设可行性1、教育部鼓励高校对现有教室进行多功能技术改造,适应学生学习需求。
物联网大数据分析实验室建设方案随着物联网技术的快速发展,数据量呈爆炸式增长,对于物联网大数据的分析和处理能力成为了关键。
建设一个功能齐全、高效实用的物联网大数据分析实验室,对于推动相关领域的研究、教学和应用具有重要意义。
以下是一个物联网大数据分析实验室的建设方案。
一、建设目标1、提供一个先进的实验环境,支持物联网数据的采集、存储、处理和分析。
2、培养学生和研究人员在物联网大数据领域的实践能力和创新思维。
3、促进产学研合作,推动物联网技术在各行业的应用和发展。
二、实验室布局1、数据采集区配备各类物联网传感器和数据采集设备,如温度传感器、湿度传感器、压力传感器、图像采集设备等,用于实时采集物理世界的数据。
2、数据存储区构建高性能的存储服务器和数据仓库,能够存储海量的物联网数据,并保证数据的安全性和可靠性。
3、数据分析区配置多台高性能计算机和数据分析软件,如 Hadoop 集群、Spark 平台等,用于对采集到的数据进行深入分析和挖掘。
4、展示区通过大屏幕展示数据分析的结果和可视化图表,方便进行成果展示和交流。
三、硬件设备1、服务器选用高性能的服务器作为数据存储和处理的核心设备,具备强大的计算能力和存储容量。
2、传感器根据实验需求,选择多种类型的传感器,如环境传感器、位置传感器、工业传感器等,确保数据采集的全面性和准确性。
3、网络设备搭建高速稳定的网络环境,包括交换机、路由器等,保证数据的快速传输和通信。
4、终端设备为实验人员配备台式电脑、笔记本电脑等终端设备,方便进行实验操作和数据分析。
四、软件系统1、操作系统采用主流的服务器操作系统,如 Linux 系列,以保证系统的稳定性和安全性。
2、数据库管理系统选择适合大数据存储和处理的数据库,如 MySQL、Oracle 等,并结合 NoSQL 数据库如 MongoDB 等,满足不同类型数据的存储需求。
3、数据分析软件安装 Hadoop 生态系统中的相关组件,如 HDFS、MapReduce、Hive 等,以及 Spark 数据分析框架,同时配备数据挖掘工具如 WEKA 等。
大数据实验室建设方案高校大数据实验室建设方案一、建设目标xx大数据实验室的建设目的是作为大数据教学实验及科研平台,包括数据挖掘与大数据分析平台。
实验室的设计全面落实“产、学、研、用”一体化的思想和模式,从教学、实践、科研和使用多方面注重专业人才和特色人才的培养。
利用虚拟化教学资源,搭建教学系统和集群平台,将理论学习、实践教学和大数据项目实战融为一体,由难而易、循序渐进,逐步提升学生的学习技能和实践水平,提高“学”的质量和成效。
利用大数据分析主流软件框架,搭建与业界主要用户一致的实验与科研环境,将理论课程中学到的数据挖掘算法运用到实际的数据分析过程中,提升学生的动手操作和项目实践能力。
使得学生所学与企业项目人才需求无缝衔接,与教师的科研工作紧密配合。
通过专业的大数据分析计算资源搭建的开放式大数据分析平台,可以充分的融合教师的科研需求,教师可以在开放的平台环境下开展大数据科研工作,提升教师的科研创新能力,充分提高“研”的成效。
二、产品优势交互式学习模式提供体系完整、简单易用的在线教学课堂;以基础知识学习、在线视频教学、习题、线上测试、评估等为主线的一系列方法,确保学生在短时间内掌握大数据虚拟仿真实验、分析部署技能。
真机实验训练实验训练体系设计成各模块相对独立的形式,各模块交互式的实验任务、大数据实验机、实际项目上机操作,通过多方位的训练,最终灵活的、渐进式地掌握大数据生态体系。
大数据实战及案例分析提供实验数据,包括网站流量数据、租房及二手房数据、电商商品交易数据、搜索引擎访问等多种行业数据,数据内容超过20TB,同时周期更新数据内容。
充分支撑科研工作提供行业数据及案例解剖用于基础研究,提供数据分析方案及流程,提供数据更新接口,可以对行业数据进行分析统计,按需求生成数据报表,为科研工作提供数据支撑。
例如某地区经济数据分析、股市数据分析、全国地震数据分析、食品价格行业数据分析等。
三、建设规模按照60台大数据实验机容量进行同时在线使用进行建设为基础,整体系统提供快速扩容升级服务。
大数据实训室方案建议书一、项目背景与目标随着信息技术的飞速发展,大数据已成为推动社会进步和企业创新的重要力量。
为满足市场对大数据人才的需求,提升我校在大数据领域的教学水平和实践能力,特提出建设大数据实训室的方案。
本方案旨在通过建设一个功能齐全、设备先进的大数据实训室,为师生提供一个高效、便捷的学习和实践环境,培养具备大数据分析、挖掘和应用能力的高素质人才。
二、实训室建设内容1. 硬件设施(1)高性能服务器:用于搭建大数据处理和分析平台,支持分布式计算和数据存储。
(2)存储设备:包括大容量硬盘阵列和备份设备,确保数据的安全性和可靠性。
(3)网络设备:提供高速、稳定的网络连接,支持多用户并发访问和远程教学。
(4)实训台及终端设备:配置足够的实训台和计算机终端设备,满足学生实践操作的需求。
2. 软件平台(1)大数据处理与分析软件:包括Hadoop、Spark等主流大数据处理框架和数据分析工具。
(2)数据挖掘与机器学习软件:提供数据挖掘算法库和机器学习平台,支持数据建模和预测分析。
(3)数据库管理系统:安装关系型数据库和非关系型数据库,满足不同类型数据的存储和管理需求。
(4)开发工具与集成环境:配备Java、Python等编程语言的开发工具和集成开发环境,方便学生进行项目开发。
3. 教学资源(1)教材与教辅资料:选购与大数据相关的专业教材和教辅资料,为学生提供系统的学习资料。
(2)在线课程与视频教程:引入优质在线课程和视频教程资源,丰富学生的学习途径和方式。
(3)案例库与项目库:建立大数据案例库和项目库,为学生提供实践操作的素材和参考。
三、实训室管理与运营1. 管理机构成立大数据实训室管理小组,负责实训室的日常管理和运营工作。
管理小组由专业教师和技术人员组成,确保实训室的高效运行和资源的合理利用。
2. 管理制度制定实训室使用规定和管理制度,明确师生使用实训室的权利和义务。
建立设备维护和保养制度,确保设备的正常运行和延长使用寿命。
中职大数据实训室的建设方案可以按照以下步骤:1. 设计规划:首先确定实训室的规模和布局,并考虑到师生的数量和实训课程的需求。
实训室应包括合适的空间来容纳计算机、服务器、网络设备和实训台等设备,并提供充足的通风和冷却系统。
2. 设备采购:购买适当数量的计算机、服务器、网络设备等硬件设备,确保能够满足实训需求。
同时,考虑到大数据处理的需求,建议采购高性能计算机和存储设备。
此外,还需要购买合适的软件许可证,如数据库管理系统、大数据处理软件等。
3. 网络建设:确保实训室具备稳定的网络连接,以支持学生进行实时数据传输和处理。
安装网络交换设备、路由器和防火墙,以提供高速、安全的网络环境。
4. 实训台设置:设置合适的实训台,包括宽敞的工作区、舒适的座椅和工作台面,并为每个学生配备计算机、显示器、键盘和鼠标等设备,保证学生能够进行实际的数据处理和分析工作。
5. 软件环境搭建:安装合适的操作系统和开发工具,以及相关的大数据处理平台和工具。
确保学生能够在实训室内使用各种软件进行数据处理、分析和建模。
6. 实验数据和案例准备:为学生提供真实的大数据样本和案例,让他们能够在实训室的环境下进行实际操作和实验。
可以与相关企业或合作伙伴合作,获取真实的数据集或案例,让学生能够基于真实场景进行实训。
7. 安全保障:确保实训室内的设备和数据安全,配置适当的防火墙和安全措施,设置权限控制和访问控制,定期备份重要数据,并设立合适的监控系统,及时发现和解决安全问题。
8. 教师培训和支持:提供教师培训,使他们能够熟悉实训室的设备和软件环境,并有能力指导学生进行实际操作和实验。
同时,建立技术支持团队,解决实训室使用过程中的技术问题和故障。
以上是中职大数据实训室建设的基本方案,具体的实施过程和细节还需要根据实际情况进行调整和补充。
建议在建设过程中与相关专业教师和技术人员进行充分沟通和协作,以确保实训室能够满足教学需求并提供良好的实训环境。
智慧教育:高校大数据实验室建设方案第一部分、大数据介绍背景介绍移动互联网、电子商务以及社交媒体的快速发展使得企业需要面临的数据量成指数增长。
根据IDC《数字宇宙》(Digital Universe)研究报告显示,2020年全球新建和复制的信息量已经超过40ZB ,是2012年的12倍;而中国的数据量则会在2020年超过8ZB ,比2012 年增长22倍。
数据量的飞速增长带来了大数据技术和服务市场的繁荣发展。
IDC亚太区(不含日本)最新关于大数据和分析(BDA)领域的市场研究表明,大数据技术和服务市场规模将会从2012年的5.48亿美元増加到2017年的23.8亿美元,未来5年的复合増长率达到34.1%。
该市场涵盖了存储、服务器、网络、软件以及服务市场。
数据量的增长是一种非线性的增长速度。
据IDC分析报道,最近一年来,亚太区出现了越来越广泛的大数据和分析领域的应用案例。
在中国,从互联网企业,到电信、金融、政府这样的传统行业,都开始采用各种大数据和分析技术,开始了自己的大数据实践之旅;应用场景也在逐渐拓展,从结构化数据的分析,发展到半结构化、非结构化数据的分析,尤其是社交媒体信息分析受到用户的更多关注。
用户们开始评估以Hadoop、数据库一体机以及内存计算技术为代表的大数据相关新型技术。
二.大数据简介大数据(big data )是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
大数据技术的战略意义不在于掌握庞大的数据信息, 而在于对这些含有意义的数据进行专业化处理。
换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的"加工能力",通过"加工”实现数据的"增值"。
第二部分、大数据实验室介绍大数据实验室建设的必要性数据挖掘与大数据分析是以计算机基础为基础,以挖掘算法为核心,紧密面向行业应用的一门综合性学科。
大数据专业(含实验室)建设方案-高职版-标准版V2随着社会的发展和信息化浪潮的兴起,大数据已经成为了当前最热门的技术领域之一。
为了培养更多高素质的大数据人才,近年来各高职院校纷纷设立了大数据专业,并建立了相应的实验室。
在这篇文章中,我们将围绕《大数据专业(含实验室)建设方案-高职版-标准版V2》来探讨如何打造一个成功的大数据专业及其实验室。
第一步:制定学科实验室建设方案在建设学科实验室之前,我们需要先进行规划和设计,制定详细的建设方案。
这个步骤需要考虑到实验室的功能、规模、师资配备、教学设备、实验课程等各个方面的要求。
特别是在大数据领域,实验室设备和软件架构方面需要极高的规格和要求,需要以市场需求和学生需求为导向,充分考虑到产业需求和企业的对接。
第二步:建设实验室基础环境在实验室建设中,基础环境建设很重要。
包括实验室的地理位置、硬件设备、网络配置、空调温度、防静电等设施。
实验室需要保持一定的温度、湿度、通风等要求,并且需要根据不同种类的设备制定合理的空调温度。
实验室需要配备防静电地板、墙壁和工具,以避免影响教学实验的准确性和安全。
第三步:配备先进的设备大数据实验室需要配备先进的硬件设备和软件架构。
包括大数据存储设备、高性能计算设备、高速网络和先进的分布式计算平台,以满足教学和研究的需要。
同时,在软件架构方面,需要选择先进的大数据分析软件、数据挖掘算法和机器学习算法,以支持教学和研究实验。
第四步:配置合适的软件系统合适的大数据软件系统对于实验课程的进行至关重要。
因此,需要针对不同课程类型选择不同的软件系统。
例如,在数据库系统或数据仓库方面,可以选择MySQL数据库或Oracle数据库;在大数据分析方面,可以选择Hadoop或Spark这样的大数据分析框架。
在配置软件系统时,需要考虑数据安全性、软件性能以及教学需求的平衡。
第五步:优化师资队伍由于大数据专业在教学、研究和实验方面都需要大量的人力支持,因此,建设一支优秀的师资队伍至关重要。
高校大数据实验室建设解决方案随着科技进步的不断发展,大数据技术愈来愈受到各个行业的重视,其中包括高校教育领域。
在大数据的浪潮下,高校大数据实验室建设成为了越来越多高校关注的话题。
如何建设一所具有竞争力的高校大数据实验室,成为高校相关工作人员们面临的一个重大课题。
1、大数据实验室的运营与建设建设一所具有竞争力和科学性的大数据实验室,需要从以下几个方面考虑:1.1 硬件设施的投入大数据实验室的建设首要需要大量的硬件设施投入,包括服务器、存储设备、网络设备等各种设备的采购。
设施投入的质量和数量,直接影响着实验室的实验效果和能力。
1.2 环境设施的投入大数据实验室对环境要求较高,需要专门场所来进行建设。
为了确保实验室环境的安全和舒适,应该合理规划实验室的空间布局和采用科学的环保材料。
1.3 人员组织架构大数据实验室建设需要一支高素质的人才队伍,特别是需要一支结构完整的研究开发团队,能够保证实验室的长远稳定发展。
2、大数据实验室的研究核心技术高校大数据实验室的核心技术研究是实验室的灵魂和竞争力,应该重点关注。
就目前的发展趋势来看,这方面的核心研究应该包括以下几个方面:2.1 数据处理技术数据处理技术是大数据实验室最基本和核心的技术,其研究水平是实验室是否能够快速有效进行数据分析和处理的重要保障。
2.2 数据挖掘技术数据挖掘技术是大数据实验室在开发基于海量数据的应用程序和模型时所需的一项先决技术。
熟练运用数据挖掘技术可以提高数据分析的准确性和效率。
2.3 人工智能技术人工智能可以把我们从大数据中找出有用的信息,提供指导或削减人工干预,使工作更加快捷。
因此,在大数据实验室的建设中,人工智能技术研究也至关重要。
3、大数据实验室建设的组织管理体系在完成大数据实验室硬件和软件等基础工作的同时,还应该注重建立一套组织管理体系,以保证实验室的正常运作。
3.1管理人员的配置管理人员是实验室运作的中坚力量,他们应该对实验室的操作流程、标准化工作流程、人员资源管理有细致的了解,并具有科学的管理方法和技能。
xx国信大数据项目建设方案一、建设背景2.1政策背景在主持学习时强调,大数据发展日新月异。
指出,要构建以数据为关键要素的数字经济。
建设现代化经济体系离不开大数据发展和应用。
我们要坚持以供给侧结构性改革为主线,加快发展数字经济,推动实体经济和数字经济融合发展,推动互联网、大数据、人工智能同实体经济深度融合,继续做好信息化和工业化深度融合这篇大文章,推动制造业加速向数字化、网络化、智能化发展。
要深入实施工业互联网创新发展战略,系统推进工业互联网基础设施和数据资源管理体系建设,发挥数据的基础资源作用和创新引擎作用,加快形成以创新为主要引领和支撑的数字经济。
指出:“促进高校、科研院所、企业科技教育资源共享,推动高校创新组织模式”、“创立高校与科研院所、行业、企业联合培养人才的新机制”是我国未来高校人才培养的最高指导原则。
明确指出:鼓励省内有条件的高校开设大数据相关专业和课程,培养跨界复合型、应用创新型的人才队伍。
进一步筑牢全省科研优势,将我省打造成大数据人才的集聚地,为推动大数据产业发展提供强有力的人才保证和智力支撑。
2.2岗位需求麦肯锡早在几年前就预测,2020年,大数据或者数据工作者的岗位需求将激增,其中大数据科学家的缺口在15万到20万之间,对于懂得如何利用大数据作决策的分析师和开发的岗位缺口则将达到180万。
2.3建设目标通过建立大数据实验室,旨在培养擅长大数据分析、懂得将数据与业务更好结合、达到应用目的的实用型高端人才。
毕业生品格健全,具有科学的人文精神、创新创业精神和良好的职业道德精神。
掌握大数据基本理论和技术,熟练掌握大数据采集、存储、处理与分析、传输和应用技术,同时能以所学的知识与技能分析和解决实际问题。
提高师资的科研水平。
加强学校、系统和企业之间的合作。
依托行业、服务企业,互惠双赢形成长效的校企合作机制,实现工学结合培养高技能人才的可持续发展,为高职院校在共建专业及实训平台方面做出有益的探索。
物联网大数据分析实验室建设方案一、项目背景“十三五”期间,随着我国现代信息技术的蓬勃发展,信息化建设模式发生根本性转变,一场以云计算、大数据、物联网、移动应用等技术为核心的“新 IT”浪潮风起云涌,信息化应用进入一个“新常态”。
章鱼大数据为积极应对“互联网+”和大数据时代的机遇和挑战,适应经济社会发展与改革要求,开发建设物联网大数据平台。
物联网大数据平台打造集数据采集、数据处理、监测管理、预测预警、应急指挥、可视化平台于一体的大数据平台,以信息化提升数据化管理与服务能力,及时准确掌握社会经济发展情况,做到“用数据说话、用数据管理、用数据决策、用数据创新”,牢牢把握社会经济发展主动权和话语权。
二、物联网行业现状数字传感器的大量应用及移动设备的大面积普及,才会导致全球数字信息总量的极速增长。
根据工信部的统计结果,中国物联网产业规模在2011年已经超过2300亿元,虽然和期望的“万亿规模产业”还有一定距离,但已经不可小视。
其中传感器设备市场规模超过900亿元,RFID产业规模190亿元,M2M终端数量也已超过2100万个。
另一个方面,我国的物联网企业也呈现出聚集效应,例如北京中关村已有物联网相关企业600余家,无锡国家示范区有608家,重庆、西安等城市也有近300家。
从区域发展来看,形成了环渤海、长三角、珠三角等核心区以及中西部地区的特色产业集群。
在2009年以前,可能没有哪家企业说自己是物联网企业。
一夜之间产生的上千家物联网企业,他们的核心能力、产品或服务价值定位、目标客户和盈利模式都是如何呢?首先来看这些物联网企业从哪里来。
现在的物联网企业主要分为三类,第一类是以前的公用企业转型,最典型的是电信运营商,他们有自己的基础设施,有客户资源,因此自然转型到物联网行业。
除了电信运营商,一些交通基础设施运营商、甚至是气象设施运营商,也都转型为物联网企业。
第二类是传统IT企业,例如华为、神州数码,以及众多上市公司等。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
高校大数据实验室建设方案 一、 建设目标 xx大数据实验室的建设目的是作为大数据教学实验及科研平台,包括数据挖掘与大数据分析平台。实验室的设计全面落实“产、学、研、用”一体化的思想和模式,从教学、实践、科研和使用多方面注重专业人才和特色人才的培养。 利用虚拟化教学资源,搭建教学系统和集群平台,将理论学习、实践教学和大数据项目实战融为一体,由难而易、循序渐进,逐步提升学生的学习技能和实践水平, 提高“学”的质量和成效。利用大数据分析主流软件框架,搭建与业界主要用户一致的实验与科研环境,将理论课程中学到的数据挖掘算法运用到实际的数据分析过程中,提升学生的动手操作和项目实践能力。使得学生所学与企业项目人才需求无缝衔接,与教师的科研工作紧密配合。 通过专业的大数据分析计算资源搭建的开放式大数据分析平台,可以充分的融合教师的科研需求,教师可以在开放的平台环境下开展大数据科研工作,提升教师的科研创新能力,充分提高“研”的成效。
二、 产品优势 交互式学习模式 提供体系完整、简单易用的在线教学课堂;以基础知识学习、在线视频教学、习题、线上测试、评估等为主线的一系列方法,确保学生在短时间内掌握大数据虚拟仿真实验、分析部署技能。 真机实验训练 实验训练体系设计成各模块相对独立的形式,各模块交互式的实验任务、大数据实验机、实际项目上机操作,通过多方位的训练,最终灵活的、渐进式地掌握大数据生态体系。 大数据实战及案例分析 提供实验数据,包括网站流量数据、租房及二手房数据、电商商品交易数据、搜索引擎访问等多种行业数据,数据内容超过20TB,同时周期更新数据内容。
充分支撑科研工作 提供行业数据及案例解剖用于基础研究,提供数据分析方案及流程,提供数据更新接口, 可以对行业数据进行分析统计,按需求生成数据报表,为科研工作提供数据支撑。例如某地区经济数据分析、股市数据分析、全国地震数据分析、食品价格行业数据分析等。 三、 建设规模 按照60台大数据实验机容量进行同时在线使用进行建设为基础,整体系统提供快速扩容升级服务。 四、 硬件配置 采用十六台高性能品牌服务器作为大数据节点进行建设,采用企业级全千兆三层交换机进行网络数据交换。 每台节点的配置如下: 处理器 每节点支持2个英特尔® 至强® 处理器 E5-2650 CPU 高速缓存 15MB QPI总线速率 7.2GT/s 内存 提供12个内存插槽,标配192G内存, 支持高级内存纠错,内存镜像,内存热备等高级功能 磁盘 标配4块3TB SATA硬盘 标配2块120G SSD 硬盘 300G 10000转SAS系统盘 网络控制器 集成1个高性能千兆以太网控制器(双口),支持虚拟化加速,网络加速,负载均衡,冗余等高级功能 电源 标配大功率高效白金级电源,1+1冗余 虚拟化技术 支持VMware vSphere、Docker、OpenStack等
五、 软件平台介绍 1、大数据教学管理系统 1.1 专业管理 提供对专业信息的增加、删除、修改、查询功能。 1.2 班级管理 提供对专业下属班级的增加、删除、修改、查询功能。 1.3 学生管理 提供对班级内学生的管理,学生内容包含姓名、学号、所属班级、所属专业、联系手机、登录次数等内容。 1.4 交流日志查阅 对实验机分享交流的内容进行查询,包含交流IP、相关学员、相关老师、实验机编号、交流内容等内容。 1.5 成绩管理 对于学习中心在线学习的学习考核成绩进行管理,包含查询及删除等功能。 1.6 学习记录 提供每个学生在学习中心平台内学习课程的学习记录,包含日期、计划、课程、章节、学习IP等。 1.7 学习行为报表 对所有学生的课程学习记录进行统计,包含个体统计、班级统计、全体统计等。 1.8 课程管理 对学习课程进行查询、修改、删除等操作。 1.9 开通课程计划 对于学习开课计划的字段内容包含计划名称、授课讲师、授课时间段、开通状态、允许申请周期,允许申请人数等,功能提供绑定课程计划相关实训平台课程、授课助教、云实验机绑定、实验任务绑定等功能。 1.10 课程测验习题管理 提供对课程相关的习题管理,题型包含单选、多选、判断题等类型,对习题进行增、册、改、查操作。 1.11 分级权限功能 系统分为总管理员、助教等二级管理角色,总管理员进行管理所有的功能点,助教可以进行班级管理、学生管理、开课计划制作、实验机远程协助等。 1.12 学生实训系统 提供学生根据姓名、学号、密码登录系统进行实训操作,学生只需安装浏览即可进行实验任务操作;提供实训课程在线学习功能、实验机在线操作、实验报告提交、实验机界面截图、记录课程学习时长等。 1.13 实验机桌面分享 提供实验机桌面分享功能,如学生在学习、操作云实验机的过程中,有问题可以向老师发起协助请求,助教在收到请求时,可以远程访问学生的实验机,并指导如何操作。 2、云实验机及实验任务
2.1 云实验机 提供基于Web浏览器的实验机可视化操作,操作终端无需安装其它开发软件即可进行实验操作;云实验机可以根据学生编号、实验任务和环境要求自动创建,无需管理人员参与实验 机创建操作过程。管理平台对云实验机可以进行停止、销毁操作。 2.2 云实验机集群管理功能 提供云实验机集群管理,对实验机所属服务器进行新增、删除等操作。 2.3 云实验机类型 包含Hadoop实验机、Hive实验机、HBase实验机、R语言实验机、Scala实验机、Spark实验机、Kafka实验机、Sqoop实验机、Flume实验机、数据可视化实验机等。 2.4 实验机运行监控系统 系统提供对实验集群运行的所有实验机进行监控,可以查询编号、所属服务器、创建时间、运行状态、开放端口等内容。 2.5 实验任务管理 提供对实验任务内容的管理,包含任务课程、绑定实验机、设定任务成绩总分,排序值等,提供多种实验任务内容,例如Hadoop实验任务、Hive实验任务、HBase实验任务、Flume与kafka实验任务等。 2.6 实验报告审阅功能 在实验任务过程中学生上交的任务报告进行审阅评分,提供按照学生、实验任务等字段进行检索功能。 2.7 云实验机桌面分享系统 提供实验机桌面基于浏览器的分享功能,允许学生与学生、学生与老师同步操作实验机桌面系统,提供基于浏览器的交流功能。
3、大数据实战平台系统 3.1 大数据集群管理系统 基于分布式集群管理系统,提供大数据集群管理系统,功能包含Hadoop、Hive、HBase、Sqoop、Flume、Spark等节点部属及管理,提供实时监控集群的CPU、内存、硬盘等使用率及相关信息,可以对管理节点、计算节点进行启动、停止等操作管理。 3.2 大数据作业工作流系统 提供大数据相关作业的上传、部属、流程管理等功能,基于 Web 的任务调度、兼容Hadoop、Spark主流版本、失败任务的、运行状态监控等。
六、 大数据课程及行业案例 实验平台提供100个课时的Hadoop、Spark等大数据主流课程,课程与大数据实验机完美结合,学员在教学管理系统学习课程,随时进行实训操作,包含项目设计、数据采集、清洗、建模、技术实现等,快速提升实操技能,最终掌握大数据开发、数据分析与数据挖掘等大数据能力。部分案例图片: 【电商大数据分析案例】 【电商大数据分析架构】 【房产大数据分析架构】
【房产大数据分析可视化】 【搜索大数据分析架构】
【网站日志大数据分析架构】 课程实验内容包含: 课程名称 课时 课程内容介绍 Hadoop基础 10 讲解Hadoop生态系统,包括操作与开发;详细讲解HDFS和Map-Reduce的功能及作用;了解MapReduce原理、运行流程、压缩数据处理、作业调度、计算器等环节。 HDFS程序开发 6 讲解Hadoop文件系统HDFS JAVA API的使用。掌握如何使用HDFS Java API,读写文件、读写目录、以及对文件进行压缩处理等。 MapReduce开发 6 本课程针对Hadoop MapReduce开发进行讲解。课程以案例为基础,重点介绍MapReduce程序结构,以及如何使用MapReduce进行数据统计,去重,排序,Map端Join,Reduce端Join等关联操作,掌握MapReduce处理过程。 Hive数据仓库 24 Hive是基于Hadoop构建的数据仓库分析系统,通过学习掌握Hive的函数、Hive数据的加载、Hive的DDL操作、自定义函数(UDF)等内容,达到使用Hive进行查询、汇总、分析数据的能力。 分布式数据库HBase 6 HBase是Hadoop生态系统中的重要一员,主要用于海量结构化数据存储;通过学习对HBase表设计、表操作、数据操作、Java API等内容,掌握对HBase系统的开发及使用。 数据迁移工具 Sqoop 4 Sqoop是关系型数据库和Hadoop生态系统之间进行数据转换的主要工具;通过学习将mysql中的数据导入到hdfs中、将数据导入到HBase中、定义导入导出任务等,掌握对数据迁移的能力。 分布式日志框架Flume 4 Flume对海量日志进行采集、聚合和传输的主流大数据工具;课程内容包含Flume应用场景、FlumeNG、FlumeOG、Flume的核心组件、Flume的架构、Flume的source、sink配置说明等。 Kafka流式数据采集 4 Kafka是分布式的消息队列,广泛应用于实时数据处理。学习内容包含Kafka的体系结构、安装模式及安装部署、Topic、Producer、Consumer、发布订阅消息以及Kafka JAVA开发等。 Spark 6 Spark是一款高性能的分布式计算框架,比MapReduce计算快百
倍;本课程内容全面涵盖了Spark生态系统、Spark与Hadoop对比、开发环境搭建、RDD、编程模型、Web监控等内容。 Spark Streaming 4 Spark Streaming是用户结合流式、批处理和交互式查询应用的实
时计算框架;本课程内容详细讲解原理与特点、适用场景、Dstream操作、容错、性能优化和内存优化等。 Spark SQL 4 Spark SQL的出现,使得SQL-on-Hadoop的性能相对于Hive有了
显著的提高。达到Spark兼容Hive的功能。本课程详细讲解特点、运行架构、数据源、数据缓存、DataFrame等。 实战案例 搜索引擎日志 数据统计分析 6 讲解Hadoop系统架构设计以及项目分析流程;通过对用户搜索记录数据的清洗,分析指标内容,得出关键词排行榜、用户停留时间最高页面等。 实战案例 电子商务平台 大数据分析 6 讲解Spark系统架构设计以及项目分析流程;本课程主要讲解搭建电商的数据处理平台、数据统计、分析及可视化技术的应用开发流程。