室外雨水管道水力计算表
- 格式:xls
- 大小:41.00 KB
- 文档页数:3
Hit——暴雨强度(mm/min)——某一段时间内的降雨总量(——降雨时间(min)。
在工程上常用单位时间内单位面积上的降雨体积100%mnqF ——雨水设计流量(L/s );——径流系数,其数值小于1);))s ha 。
: 1167(1lg )()nA c P qt b/s ha ); ——地方参数,根据统计方法计算确定,本设计中暴雨强度0.7583027.3(10.655lg )(19)p qt (2-5)雨水流量主要参数及其确定依据a) 径流系数Ψ降落在地面上的雨水,一部分被植物和地面的洼地截流,一部分渗入土壤,余下的一部分沿地面流入雨水灌渠,这部分进入雨水灌渠的雨水量称作径流量。
径流量与降雨量的比值称径流系数Ψ,其值常小于1。
径流系数的值与汇水面积的地面覆盖情况、地面坡度、地貌、建筑密度的分布、路面铺砌等情况相关。
由于影响因素很多,精确求它的值是相当困难的,因此我们采用经验数值确定。
该区域大部分地区为沥青路面,有部分地区为公园及绿地,综合径流系数为0.6。
b) 重现期P暴雨强度随着重现期的不同而不同。
在雨水管渠设计中,若选用较高的设计重现期,计算所得设计暴雨强度大,相应的雨水设计流量大,管渠的断面相应大。
这对防止地面积水是有利的,安全性高,但经济上则因管渠设计断面的增大而增加了工程造价;若选用较低的设计重现期,管渠断面的相应减小,这样虽然可以降低工程造价,但可能会经常发生排水不畅、地面积水而影响交通,甚至给城市人民的生活及工业生产造成危害。
雨水管渠设计重现期的选用,应根据回水面积的地区建设性质(广场、干道、厂区、居住区)、地形特点、汇水面积和气象特点等因素确定,一般选用0.5~3a ,对于重要干道,立交道路的重要部分,重要地区或短期积水即能引起较严重的地区,宜采用较高的设计重现期,一般选用2~5a ,并应和道路设计协调[9]。
对于特别重要的地区可酌情增加,而且在同一排水系统中也可采用同一设计重现期或不同的设计重现期。
雨水排水系统的水力计算资料一、引言雨水排水系统在城市的建设中起着至关重要的作用。
它们被设计用于有效地收集和排除降雨期间产生的雨水,以避免洪水和滞水的发生。
为了确保雨水排水系统的设计符合实际需要,并且具备良好的水力性能,水力计算是必不可少的一项任务。
本文将介绍雨水排水系统水力计算所需的基本资料和计算方法。
二、雨水排水系统的基本构成雨水排水系统由下述几个主要组成部分组成:1. 排水管道:排水管道是雨水排水系统的核心组成部分。
它们负责将雨水从收集点输送到排放点。
排水管道的直径、长度和坡度是水力计算的重要参数。
2. 排水口:排水口是设计用于接收雨水的出水点。
它们通常位于地面上,通过排水管道将雨水排放到指定的位置,如河流、湖泊或下水道。
3. 水槽和沉积池:水槽和沉积池用于收集和处理排水过程中的杂质和沉积物,以确保排水系统的正常运行。
三、水力计算所需资料在进行雨水排水系统的水力计算时,需要收集和准备以下基本资料:1. 雨量资料:雨量资料用于确定设计雨量,并根据不同的设计频率选择适当的设计雨量。
通常使用的雨量数据包括年均雨量、极大雨量和持续时间曲线等。
2. 地形资料:地形资料包括城市的地形图、高程数据、建筑物分布图等。
这些资料将被用于确定排水系统的布局和地势差,进而影响水力计算的结果。
3. 排水系统布局图:排水系统布局图是指排水管道、排水口、水槽和沉积池的位置和互连关系图。
布局图可帮助识别排水管道长度、直径和接口参数。
4. 排水管道断面图和参数:排水管道断面图用来确定管道的几何形状及其参数,如直径、横截面积等。
这些参数对于计算流量和流速至关重要。
5. 地表渗透性资料:地表渗透性资料反映了地面的渗透能力,影响了雨水的入渗速率和排水速度。
四、水力计算方法进行雨水排水系统的水力计算时,可以采用下述常用的水力计算方法:1. 流量计算: 根据设计雨量和排水区域的面积,以及地表渗透性等因素,计算出入水量或总流量。
- 根据径流公式和设计雨量,计算出径流流量;- 根据地表渗透性和面积,计算出地表径流流量;- 将径流流量和地表径流流量相加,得到总流量。
3 雨水管道的设计3、1划分并计算各设计管段的汇水面积该地区的雨水采用管道收集后直接排入就近水体的方式处理,因为各区汇水分界明显,坡度走势清晰,部分区域有逆坡现象,故雨水管道布置采用沿街顺坡布置,使雨水能够被很好的收集与排放。
雨水干管数量:4 条。
具体雨水管道布置请参瞧某市排水管道设计布置总平面图。
3、2求单位面积径流量q =€ q0 av式中q —单位面积径流量€ —平均径流系数avq —暴雨强度公式由于影响因素多,要精确求定V值较为困难。
因此目前径流系数通常采用按地面覆盖种类确定的经验数值。
径流系数V值见表3、1。
表3、1径流系数V值表中所列为单一覆盖时的V值。
但汇水面积就是由各种性质的地面覆盖所组成,在整个汇水面积上它们各自占有一定的比例,随它们占有的面积比例的变化,V值也不同。
所以,整个汇水面积上的平均径流系数V av值就是按各类地面面积用av 加权平均法计算得出。
F i x €式中Fi ——汇水面积上各类地面的面积(ha);M ——相应于各类地面的径流系数; F ——全部汇水面积(ha)。
市区地面种类如:屋面占 36%,混凝土路面占 16%,碎石路面占 10%,非铺砌路 面占20%,绿地占18%根据市区地面覆盖情况屮 =0、9X 0、36+0、9X 0、16+0、4X 0、1+0、3X 0、2+0、15X 0、18 = 0、av5953、3雨水干管的设计流量与水力计算3、3、1 雨水水力计算的设计参数(1) 采用的流量公式城市、厂矿中雨水管渠由于汇水面积小,属小汇水面积上的排水构筑物,其雨 水设计流量可采用下式:Q ,屮 … q … F式中 Q ---------- 雨水设计流量(L/s);V ——径流系数,其值小于1; F ——汇水面积(ha);q ----- 设计暴雨强度(L/s 、ha)。
(2) 暴雨强度公式qA” + ClgP) q ,―—(t + b)n式中q ——设计暴雨强度P ――设计重现期(a);t ----- 降雨历时(min);A 1,C,b,n ――地方参数,根据统计方法进行计算确定。
虹吸雨水计算虹吸雨水计算【篇一:虹吸雨水系统管径粗算表】【篇二:虹吸雨水计算书】虹吸雨水计算书计算原理参考《建筑与小区雨水利用工程技术规范》(gb50400-2006)一、基本参数:管材:hdpe 温度:10℃二、基本计算公式:1、暴雨强度公式:q=167a(1+clgp)n(t+b)2、雨水设计流量公式:f -- 汇水面积(hm2)1 hm2 = 10000平方米 3、管道沿程阻力公式: lv2d2gg -- 重力加速度(m/s2)取 9.81 4、阻力系数:式中:△ -- 管壁绝对粗糙度(mm),由管材生产厂提供 re -- 雷诺数5、局部阻力损失:2hj=∑t5vx式中:hj--局部阻力损失(mbar)1mbar=100pa=0.1kpa t -- 局部阻力系数 vx -- 管道某一x断面处流速(m/s)6、总阻力损失h总=hf+hj7、管道某一x断面处的压力:2px?98.1?hx?5vx??zx?2式中: px -- 管道某一x断面处的压力(mbar)1mbar=100pa=0.1kpa hx -- 雨水斗顶面至计算断面的高度差(m)vx -- 管道某一x断面处流速(m/s)∑zx-2 -- 断面处对应最远雨水斗至计算断面的总阻力损失之和(mbar)8、压力余量计算公式:pr?98.1h?5v12??z式中:△pr -- 压力余量(mbar)1mbar=100pa=0.1kpa h--雨水斗顶面与排水管出口的几何高差(m) v1 -- 排水管出口的管道流速(m/s)∑z -- 最远雨水斗至排水口处的总阻力损失之和(mbar)9、流速 v=4q2式中:v -- 流速(m/s)q -- 管段流量(l/s)d -- 管道的计算内径(m)三、计算结果:管道最大负压值: -81.37 kpa 压力余量:20.3 kpa四、虹吸雨水水力计算表:【篇三:虹吸排水材料量计算公式】1. 方钢(m):(6m/根)横长/62. 方钢连接件(个):=方钢根数-13. 骑卡(个):每2m一个 =方钢长度/24. m10内膨胀(个):=骑卡数量(可适当上调)5. m10螺纹杆:(3m/根):骑卡数量*1.5m(与墙壁间长度)/36. 管卡(个):间距为管道直径的10倍。
第三章给水排水管道系统水力计算基础本章内容:1、水头损失计算2、无压圆管的水力计算3、水力等效简化本章难点:无压圆管的水力计算第一节基本概念一、管道内水流特征进行水力计算前首先要进行流态的判别。
判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。
对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。
二、有压流与无压流水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。
水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。
从水流断面形式看,在给水排水管道中采用圆管最多三、恒定流与非恒定流给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。
四、均匀流与非均匀流液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。
从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。
对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。
均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。
对于非满管流或明渠流,只要长距离截面不变,也没有转弯或交汇时,也可以近似为均匀流,按沿程水头损失公式进行水力计算,对于短距离或特殊情况下的非均匀流动则运用水力学理论按缓流或急流计算。
虹吸雨水计算书计算原理参考《建筑与小区雨水利用工程技术规范》(GB50400-2006)一、基本参数:管材:HDPE 温度:10℃二、基本计算公式:1、 暴雨强度公式: nb t P C A q )()lg 1(167++=式中:q -- 降雨强度,(L/s ·ha 、L/s ·hm 2、L/s ·104m 2) t -- 降雨历时(min ) P -- 设计重现期(年) A 、b 、C 、n -- 当地降雨参数2、 雨水设计流量公式:qF k Q l ψ=式中:Q -- 雨水设计流量(L/s ) q -- 降雨强度,(L/s ·ha 、L/s ·hm 2、L/s ·104m 2) ψ-- 径流系数。
F -- 汇水面积(hm 2)1 hm 2 = 10000平方米 3、管道沿程阻力公式: gv d l h f2λ2=式中:h f -- 管道沿程阻力损失(m );1米=10kPa λ-- 管道沿程阻力损失系数,按下式计算 l -- 管道长度(m) d -- 管道计算内径(m ) v -- 管内流速(m/s )g -- 重力加速度(m/s 2) 取 9.81 4、阻力系数:⎪⎭⎫ ⎝⎛+=λΔλRe 51.27.3lg 21d 式中:△ -- 管壁绝对粗糙度(mm ),由管材生产厂提供Re -- 雷诺数5、 局部阻力损失:∑25xj v T h =式中:h j --局部阻力损失(mbar )1mbar=100pa=0.1kPaT -- 局部阻力系数 V x -- 管道某一x 断面处流速(m/s )6、 总阻力损失j f h h h +=总7、管道某一x 断面处的压力:∑---⨯=2251.98x x x x Zv h P式中: P x -- 管道某一x 断面处的压力(mbar )1mbar=100pa=0.1kPa h x -- 雨水斗顶面至计算断面的高度差(m ) v x -- 管道某一x 断面处流速(m/s ) ∑Z x-2 -- 断面处对应最远雨水斗至计算断面的总阻力损失之和(mbar )8、压力余量计算公式:∑--=∆Z v H P r 2151.98式中:△P r -- 压力余量(mbar )1mbar=100pa=0.1kPa H--雨水斗顶面与排水管出口的几何高差(m ) V 1 -- 排水管出口的管道流速(m/s )∑Z -- 最远雨水斗至排水口处的总阻力损失之和(mbar ) 9、 流速2π4dQv =式中:V -- 流速(m/s)Q -- 管段流量(L/s )d -- 管道的计算内径(m )三、计算结果:管道最大负压值: -81.37 kPa 压力余量:20.3 kPa四、虹吸雨水水力计算表:。
雨水管网设计计算书设计步骤:1、雨水量计算(1)暴雨强度公式:11号-永安暴雨强度公式()()741.0279.8lg 537.01271.2251++=t P q式中 q —— 设计暴雨强度(L/s ·ha );P —— 设计重现期(a );t —— 降雨历时(min );重现期:为1年,即P=1a降雨历时:21mt t t +=式中 t —— 设计降雨历时(min );t1 —— 地面集水时间(min ),取10min ;t2 —— 管渠内雨水流行时间(min );m —— 折减系数,取2。
(2)径流系数计算:根据规划的地区类别,采用区域综合径流系数,城区取0.6,大面积绿地取0.5。
2、雨水管网定线:(1)充分利用地形,就近排入水体。
雨水管渠应尽量利用自然地形坡度布置,要以最短的距离靠重力流将雨水排入附近的池塘、河流、湖泊等水体中。
在每一排水流域内,结合建筑物及雨水口分布,充分利用各排水流域内的自然地形,布置管道,使雨水以最短距离靠重力流就近排入水体。
在总平面图上绘出各流域的主干管、干管和支管的具体位置。
在图上对管道及划分的面积进行编号,见附后图。
(2)出水口布置:由于河流穿过城市,根据地型的变化,在河道两旁设分散式出水口,按就近原则把管道划分到各个出水口出。
3、划分设计管段:把两个检查井之间流量不变且预计管径和坡度也不变的管段定为设计管段。
对于长度大于350米以上的路段,划分2~3个设计管段,流量变化大、拐弯处设置检查井对管道划分。
设计管段检查井从上游往下游依次编号。
4、汇水面积划分:各设计管段汇水面积的划分应结合地形坡度、汇水面积的大小以及雨水管道布置等情况进行划定。
地形较平坦时,按就近排入附近雨水管道的原则划分;地形坡度较大时,按地面雨水径流的水流方向划分。
并将每块面积进行编号,计算其面积并将数值标注在图上。
见附后图。
5、管段设计流量及管道水力计算:列表进行雨水干管的水力计算,求得各设计管段的设计流量。
雨水管网计算书
工程名称:雨水管道工程
计算:
校核:
说明:雨水汇水面积为48.69公顷,最大设计流量为1688.94升/秒。
计算书内容包括雨水设计流量公式、暴雨强度公式、流速公式、管线汇总表、流量计算表、水力计算表、工程量表。
雨水设计流量公式
Q = q ψ F
公式参数:Q-雨水设计流量(升/秒),q-设计暴雨强度(升/秒·公顷),ψ-径流系数,F-汇水面积(公顷)
暴雨强度公式
q = 167A1(1+ClgP)
(t+b)n
计算城市:湖北
地区参数:167A1=983,C=0.65,b=4,n=0.56
公式参数:q-设计暴雨强度(升/秒·公顷),P-设计重现期(年),t-降雨历时(分钟) 流速公式
v = 1
n R
2/3 I1/2
公式参数:v-流速(米/秒),R-水力半径(米),I-水力坡度,n-粗糙系数 管线汇总表
第1页/ 共4页/ Hpcad Release / 4/11/2013
流量计算表
水力计算表
第2页/ 共4页/ Hpcad Release / 4/11/2013
工程量表
YA线工程量表
YB线工程量表
YC线工程量表
第3页/ 共4页/ Hpcad Release / 4/11/2013
工程量汇总表
第4页/ 共4页/ Hpcad Release / 4/11/2013。
雨水设计流量公式Q S=qΨF 式中Q S———雨水设计流量(L /s)q———设计暴雨强度,(L /s・ha) Ψ———径流系数F———汇水面积(ha公顷)其中一、暴雨强度公式为:q=3245.114(1+0.2561lgP) (t+17.172)0.654式中t———降雨历时(min)P———设计重现期(年)(一)设计降雨历时t=t1+mt2,式中t——设计降雨历时(min)t1——地面集水时间(min)t2——雨水在管渠内流行的时间(min)m——折减系数t1的确定:地面集水时间t1受水区面积大小、地形陡缓、屋顶及地面的排水方式、土壤的干湿程度及地表覆盖情况等因素的影响。
在实际应用中,要准确地计算t1值是比较困难的,所以通常取经验数值,t1=5~15min。
在设计工作中,按经验在地形较陡、建筑密度较大或铺装场地较多及雨水口分布较密的地区,t1=5~8min;而在地势平坦、建筑稀疏、汇水区面积较大,雨水口分布较疏的地区,t1值可取10~15min。
m的确定:暗管m=2,明渠m=1.2,在陡坡地区,暗管折减系数m=1.2~2,经济条件较好、安全性要求较高地区的排水管渠m可取1。
t2的确定:t2=∑L 60v式中t2——雨水在管渠内流行时间(min)L——各管段的长度(m)v——各管段满流时的水流强度(m/s)v的确定:v=1n∙R23∙I12式中v——流速(m/s)R——水力半径(m) I——水利坡度n——粗糙系数R确定:R=A XA——输水断面的过流面积(m2)X——接触的输水管道边长(即湿周)(m)n的确定:(二)设计重现期(P)P的确定:《室外排水设计规范》(GB50014-2006)第3.2.4 条原规定:雨水管渠设计重现期,应根据汇水地区性质、地形特点和气候特征等因素确定。
同一排水系统可采用同一重现期或不同重现期。
重现期一般采用0.5~3年,重要干道、重要地区或短期积水即能引起较严重后果的地区,一般采用3~5年,并应与道路设计协调。
雨水水力计算公式雨水水力计算在水利工程和城市排水系统设计中可是相当重要的一部分呢。
它就像是一个神秘的密码,解开了就能让雨水乖乖听话,流到该去的地方,不造成麻烦。
先来说说雨水流量的计算吧。
雨水流量的计算公式通常是:Q =ψ×q×F 。
这里的 Q 表示雨水设计流量,ψ 是径流系数,q 是设计暴雨强度,F 则是汇水面积。
径流系数ψ 呢,它反映了降雨形成径流的比例。
比如说,一块完全不透水的地面,径流系数就接近 1 ;而一块长满花草树木、能很好吸收雨水的绿地,径流系数就会小很多。
想象一下,学校里的水泥操场和旁边的小花园,在一场大雨过后,操场可能很快就有积水,而小花园里的雨水大多都被土壤和植物吸收了,这就是径流系数不同导致的。
设计暴雨强度 q ,它和降雨的时间、地点都有关系。
不同地区、不同降雨历时,暴雨强度都不一样。
这就好像不同城市的天气脾气不一样,有的城市雨来得急、下得猛,有的城市则是细雨绵绵。
汇水面积 F 相对好理解,就是雨水汇集的区域面积。
比如说一个小区,所有雨水最终流到一个排水口,这个小区的占地面积就是汇水面积。
在实际计算中,可不能简单地套公式就完事。
得考虑很多因素。
就像我之前参与过一个老旧小区排水系统改造的项目。
那小区一下大雨就积水,居民们苦不堪言。
我们去实地勘察,发现原来的排水管道管径太小,而且汇水面积计算不准确,导致雨水排放不畅。
我们重新测量了小区的地形,仔细分析了地面的材质,确定了更准确的径流系数。
还根据当地的气象资料,计算出适合的设计暴雨强度。
经过一番努力,重新设计了排水系统。
当改造完成后,再遇到大雨,小区里再也没有出现积水的情况,居民们脸上都露出了开心的笑容。
再说说雨水管道的水力计算。
这涉及到流速、管径、坡度等参数的确定。
流速不能太快也不能太慢,太快了可能会冲刷管道,太慢了又容易造成淤积。
管径要根据流量来选择,合适的管径才能保证雨水顺利通过。
坡度则要保证雨水能够自流排放,又不能太大导致水流过于湍急。
排水量设计秒流量和排水管网的水力计算要求1.1.排水量及排水定额生活排水平均时排水量和最大时排水量的计算方法与建筑内部的生活给水量计算方法相同。
因建筑内部给水量散失较少,所以生活排水定额和时变化系数与生活给水相同。
建筑内部排水定额有两个,一个是以每人每日为标准,另一个是以卫生器具为标准。
每人每日排放的污水量和时变化系数与气候、建筑物内卫生设备完善程度有关。
卫生器具排水定额是经过实测得到的。
主要用来计算建筑内部各管段的排水设计秒流量,进而确定各管段的管径。
某管段的设计流量与其接纳的卫生器具类型、数量及使用频率有关。
为了便于累计计算,与建筑内部给水一样,以污水盆排水量0.33L∕s为一个排水当量,将其他卫生器具的排水量与0.33L∕s的比值,作为该卫生器具的排水当量。
由于卫生器具排水具有突然、迅速、流速大的特点,所以,一个排水当量的排水流量是一个给水当量额定流量的1.65倍。
具体规定如下:1)居住小区生活排水系统排水定额是其相应的生活给水系统用水定额的85%—95%。
居住小区生活排水系统小时变化系数与其相应的生活给水系统小时变化系数相同,应按规定确定。
2)公共建筑生活排水定额和小时变化系数与公共建筑生活给水用水定额和小时变化系数相同,应按《集体宿舍、旅馆和公共建筑生活用水定额及小时变化系数》表确定。
3)居住小区内生活排水的设计流量应按住宅生活排水最大小时流量与公共建筑生活排水最大小时流量之和确定。
4)工业废水排水定额及时变化系数应按工艺要求确定。
5)卫生器具排水的流量、当量和排水管的管径应按表3-3确定。
6)卫生器具同时排水按表3-4、表3-5和表3-6计算。
卫生器具排水的流量、当量和排水管的管径注:家用洗衣机排水软管,直径为30mm,有上排水的家用洗衣机排水软管内径为19mm o表3・4工业企业生活间、公共浴室、剧院化妆间、体育场馆运动员休息室等卫生器具同时给水百分数注:健身中心的卫生间,可采用本表体育场馆运动员休息室的同时给水百分率。