数字电子仿真实验教程(Multisim)
- 格式:pdf
- 大小:716.38 KB
- 文档页数:36
仿真1。
1.1 共射极基本放大电路按图7。
1-1搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等。
1.静态工作点分析选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。
2.动态分析用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。
由波形图可观察到电路的输入,输出电压信号反相位关系。
再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。
3。
参数扫描分析在图7。
1-1所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失真情况。
选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100K,终值为900K,扫描方式为线性,步长增量为400K,输出节点5,扫描用于暂态分析。
4。
频率响应分析选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。
由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,电路输出中频电压幅值约为0.5V,中频电压放大倍数约为-100倍,下限频率(X1)为14.22Hz,上限频率(X2)为25.12MHz,放大器的通频带约为25。
12MHz.由理论分析可得,上述共射极基本放大电路的输入电阻由晶体管的输入电阻rbe限定,输出电阻由集电极电阻R3限定。
Multisim 电路仿真实验(适用于《电工技术》、《电工与电子技术1》课程)1 实验目的:熟悉电路仿真软件Multisim 的功能,掌握使用Multisim 进行输入电路、分析 电路和仪表测试的方法。
2 使用软件:NI Multisim student V12。
(其他版本的软件界面稍有不同)3 预习准备:提前安装软件熟悉其电路输入窗口和电路的编辑功能、考察其元件库中元件的分类方式、工具栏的定制方法、仪表的种类、电路的分析方法等;预习实验步骤,熟悉各部分电路。
4 熟悉软件功能 (1)了解窗口组成:主要组建包括:电路图编辑窗口、主菜单、元件库工具条、仪表工具条。
初步了解各部分的功能。
(2)初步定制:定制元件符号:Options|Global preferences ,选择Components 标签,将Symbol Standard 区域下的元件符号改为DIN 。
自己进一步熟悉全局定制Options|Global preferences 窗口中各标签中的定制功能。
(3)工具栏定制:选择:View|Toolbars ,从显示的菜单中可以选择显示或者隐藏某些工具栏。
通过显示隐藏各工具栏,体会其功能和工具栏的含义。
关注几个主要的工具栏:Standard (标准工具栏)、View (视图操作工具栏)、Main (主工具栏)、Components (元件工具栏)、Instruments (仪表工具栏)、Virtual (虚拟元件工具栏)、Simulation (仿真)、Simulation switch (仿真开关)。
(4)Multisim 中的元件分类元件分两类:实际元件(有模型可仿真,有封装可布线)、虚拟元件(有模型只能仿真、没有封装不能布线)。
另有一类只有封装没有模型的元件,只能布线不能仿真。
在本实验中只进行仿真,因此电源、电阻、电容、电感等使用虚拟元件,二极管、三极管、运放和其他集成电路使用实际元件。
实验3.5半加器和全加器、实验目的:1. 学会用电子仿真软件Multisim7进行半加器和全加器仿真实验。
2 •学会用逻辑分析仪观察全加器波形:3. 分析二进制数的运算规律。
4. 掌握组合电路的分析和设计方法。
5. 验证全加器的逻辑功能。
、实验准备:组合电路的分析方法是根据所给的逻辑电路,写出其输入与输出之间的逻辑关系(逻辑函数表达式或真值表),从而评定该电路的逻辑功能的方法。
一般是首先对给定的逻辑电路,按逻辑门的连接方法,逐一写出相应的逻辑表达式,然后写出输出函数表达式,这样写出的逻辑函数表达式可能不是最简的,所以还应该利用逻辑代数的公式或者卡诺图进行简化。
再根据逻辑函数表达式写出它的真值表,最后根据真值表分析出函数的逻辑功能。
例如:要分析如图3.5.1所示电路的逻辑功能。
图3.5.11. 写输出函数丫的逻辑表达式:W 二AAB ABB ......................................... 3.5.1X =WWC WCC ....................................... 3.5.2丫= XXD XDD ........................................ 3.5.32. 进行化简:W = AAB ABB 二AB AB ................................................................... 3.5.4X =WC Wc 二 ABC ABC ABC ABC ............................................... 5.5 …..3.Y =XD X D 二A BCD ABCD ABCD ABCD逻辑图是一个检奇电路。
输入变量的取值中,有奇数个 1则有输出,否则 无输出。
组合电路的设计目的就是根据实际的逻辑问题,通过写出它的真值表和逻辑 函数表达式,最终找到实现这个逻辑电路的器件,将它们组成最简单的逻辑电路。
Multisim 数字电路仿真实验1.实验目的用Multisim 的仿真软件对数字电路进行仿真研究。
2.实验内容实验19.1 交通灯报警电路仿真交通灯故障报警电路工作要求如下:红、黄、绿三种颜色的指示灯在下列情况下属正常工作,即单独的红灯指示、黄灯指示、绿灯指示及黄、绿灯同时指示,而其他情况下均属于故障状态。
出故障时报警灯亮。
设字母R、Y、G 分别表示红、黄、绿三个交通灯,高电平表示灯亮,低电平表示灯灭。
字母Z 表示报警灯,高电平表示报警。
则真值表如表19.1 所示。
逻辑表达式为:Z = R Y G + RG + RY若用与非门实现,则表达式可化为:Z = R Y G ⋅RG ⋅RYMultisim 仿真设计图如图19.1 所示:图19.1 的电路图中分别用开关A、B、C 模拟控制红、黄、绿灯的亮暗,开关接向高电平时表示灯亮,接向低电平时表示灯灭。
用发光二极管LED1 的亮暗模拟报警灯的亮暗。
另外用了一个5V直流电源、一个7400 四2 输入与非门、一个7404 六反相器、一个7420 双4 输入与非门、一个500欧姆电阻。
图19.1 交通灯报警电路原理图在仿真实验中可以看出,当开关A、B、C 中只有一个拨向高电平,以及B、C 同时拨向高电平而A 拨向低电平时报警灯不亮,其余情况下报警灯均亮。
实验19.2 数字频率计电路仿真数字频率计电路的工作要求如下:能测出某一未知数字信号的频率,并用数码管显示测量结果。
如果用2 位数码管,则测量的最大频率是99Hz。
数字频率计电路Multisim 仿真设计图如图19.2 所示。
其电路结构是:用二片74LS90(U1 和U2)组成BCD 码100 进制计数器,二个数码管U3 和U4 分别显示十位数和个位数。
四D 触发器74LS175(U5)与三输入与非门7410(U6B)组成可自启动的环形计数器,产生闸门控制信号和计数器清0 信号。
信号发生器XFG1 产生频率为1Hz、占空比为50%的连续脉冲信号,信号发生器XFG2 产生频率为1-99Hz(人为设置)、占空比为50%的连续脉冲信号作为被测脉冲。
实验3.13 D/A 转换器一、实验目的:1. 熟悉D /A 转换器数字输入与模拟输出之间的关系。
2. 学会设置D /A 转换器的输出范围。
3. 学会测量D /A 转换器的输出偏移电压。
4. 掌握测试D /A 转换器的分辩率的方法。
二、实验准备:1. D /A 转换:我们把从数字信号到模拟信号的转换称为数/模转换或D /A 转换,把实现D /A 转换的电路称D /A 转换器,简称DAC 。
D /A 转换的过程是,先把输入数字量的每一位代码按其权的大小转换成相应的模拟量,然后将代表各位的模拟量相加,即可得到与该数字量成正比的模拟量,从而实现数字/模拟转换。
DAC 通常由译码网络、模拟开关、求和运算放大器和基准电压源等部分组成。
DAC 的满度输出电压,为全部有效数码1加到输入端时的DAC 的输出电压值。
满度输出电压决定了DAC 的输出范围。
DAC 的输出偏移电压,为全部有效数码0加到输入端时的DAC 的输出电压值。
在理想的DAC 中,输出偏移电压为0。
在实际的DAC 中,输出偏移电压不为0。
许多DAC 产品设有外部偏移电压调整端,可将输出偏移电压调为0。
DAC 的转换精度与它的分辩率有关。
分辩率是指DAC 对最小输出电压的分辩能力,可定义为输入数码只有最低有效位1时的输出电压与输入数码LSB U 为全1时的满度输出电压之比,即:m U 分辩率=........................................................3.13.1121-=nmLSB U U 当一定时,输入数字代码位数越多,则分辩率越小,分辩能力就越高。
m U n 图3.13.1为8位电压输出型DAC 电路,这个电路可加深我们对DAC 数字输入与模拟输出关系的理解。
DAC 满度输出电压的设定方法为,首先在DAC 数码输入端加全1(即11111111),然后调整2k 电位器使满度输出电压值达到输实验3.8 JK触发器出电压的要求。
实验一逻辑门电路一、与非门逻辑功能的测试74LS20(双四输入与非门)仿真结果74LS02(四二输入或非门)仿真结果:三、与或非门逻辑功能的测试74LS51(双二、三输入与或非门) 仿真结果:四、异或门逻辑功能的测试74LS86(四二输入异或门)各一片仿真结果:二、思考题1. 用一片74LS00实现Y = A+B 的逻辑功能 ;2. 用一片74LS86设计一个四位奇偶校验电路; 实验二 组合逻辑电路 一、 分析半加器的逻辑功能二.3. 验证数据选择器的逻辑功能4.思考题 (1)用两片74LS138接成四线-十六线译码器0000 0001 0111 1000 1111(2)用一片74LS153接成两位四选一数据选择器; (3)用一片74LS153一片74LS00和接成一位全加器(1)设计一个有A 、B 、C 三位代码输入的密码锁(假设密码是011),当输入密码正确时,锁被打开(Y 1=1),如果密码不符,电路发出报警信号(Y 2=1)。
以上四个小设计任做一个,多做不限。
还可以用门电路搭建实验三触发器及触发器之间的转换1.D触发器逻辑功能的测试(上升沿)仿真结果;2.发器测试降沿)Q=0略3.思考题:(1)(2)(3)略实验四寄存器与计数器1.右移寄存器(74ls74 为上升沿有效)2.3位异步二进制加法,减法计数器(74LS112 下降沿有效)也可以不加数码显示管3.设计性试验(1)74LS160设计7进制计数器(74LS160 是上升沿有效,且异步清零,同步置数)若采用异步清零:若采用同步置数:(2)74LS160设计7进制计数器略(3)24进制83进制注意:用74LS160与74LS197、74LS191是完全不一样的实验五 555定时器及其应用1.施密特触发器输入电压从零开始增加:输入电压从5V开始减小:3.35-1.65=1.7V2.单稳态触发器3.多谢振荡。
实验3.9 D 触发器及应用一、实验目的:1.了解边沿D 触发器的逻辑功能和特点。
2.掌握D 触发器的异步置0和异步置1端的作用。
3.了解用D 触发器组成智力抢答器的工作原理。
二、实验准备:和JK 触发器一样,D 触发器也属主、从触发器,为了实现异步置位、复位功能,D 触发器也设置了异步置位D S 和异步复位D R 端。
和JK 触发器不同的是,D触发器的异步置位D S 和异步复位D R 端是高电平有效,且当CP 信号来到时,上升沿触发。
它的特性表如表3.9.1所示。
表3.9.1:图3.9.1是利用CMOS 传输门构成的一种典型边沿D 触发器内部电路。
从图3.9.1中可以看到,反相器1G 、2G 和传输门1TG 、2TG 组成了主触发器,反相器3G 、4G 和传输门3TG 、4TG 组成了从触发器。
1TG 和3TG 分别为主触发器和从触发器的输入控制门。
当CP = 0、CP =1时,1TG 导通、2TG 截止,D 端的输入信号送人主触发器中,使Q '=D 。
但这时主触发器尚未形成反馈连接,不能自行保持,Q '跟随D 端的状态变化。
同时,由于3TG 截止、4TG 导通,所以从触发器维持原状态不变,而且它与主触发器之间的联系被3TG 所切断。
图3.9.1当CP 的上升沿到达时(即CP 跳变为1、CP 跳变为0),1TG 截止、2TG 导通。
由于门1G 的输入电容存储效应,1G 输入端的电压不会立刻消失,于是Q '在1TG 切断前的状态被保存下来。
同时,由于3TG 导通、4TG 截止,主触发器的状态通过3TG和3G 送到了输出端,使=QQ '=D (CP 上升沿到达时D 的状态)。
可见,这种触发器的动作特点是输出端状态的转换发生在CP 的上升沿,而且触发器所保存下来的状态仅仅取决于CP 上升沿到达时的输入状态。
因为触发器输出端状态的转换发生在CP 的上升沿,所以这是一个上升沿触发边沿触发器。
Multisim模拟电子技术仿真实验Multisim是一款著名的电子电路仿真软件,广泛用于电子工程师和学生进行电子电路的设计和验证。
通过Multisim,用户可以方便地搭建电路并进行仿真,实现理论与实际的结合。
本文将介绍Multisim的基本操作和常见的电子技术仿真实验。
一、Multisim基本操作1. 下载与安装首先,需要从官方网站上下载Multisim软件,并按照提示完成安装。
安装完成后,打开软件即可开始使用。
2. 绘制电路图在Multisim软件中,用户可以通过拖拽组件来绘制电路图。
不同的电子组件如电阻、电容、二极管等都可以在Multisim软件中找到并加入电路图中。
用户只需将组件拖放到绘图区域即可。
3. 连接元件在绘制电路图时,还需要连接各个元件。
通过点击元件的引脚,然后拖动鼠标连接到其他元件的引脚上,即可建立连接线。
4. 设置元件的属性在建立电路连接后,还需要设置各个元件的属性。
比如,电阻的阻值、电容的容值等等。
用户可以双击元件,进入属性设置界面,对元件进行参数调整。
5. 添加仪器和测量在Multisim中,用户还可以添加各种仪器和测量设备,如示波器、函数发生器等。
这样可以帮助我们对电路进行更加深入的分析和测试。
二、常见的电子技术仿真实验1. RC电路响应实验RC电路响应实验是电子电路实验中最基础的实验之一。
它用于研究RC电路对输入信号的响应情况。
通过在Multisim中搭建RC电路,可以模拟分析电路的充放电过程,并观察输出电压对时间的响应曲线。
2. 放大器设计实验放大器是电子电路中常见的功能电路之一。
通过在Multisim中搭建放大器电路,可以模拟放大器的工作过程,并对放大器的增益、频率等特性进行分析和调整。
这对于学习和理解放大器的原理和工作方式非常有帮助。
3. 数字电路实验数字电路是现代电子技术中不可或缺的一部分。
通过在Multisim中搭建数字电路,可以模拟数字电路的逻辑运算、时序控制等功能,并对电路的工作波形进行分析和优化。
4位移位寄存器仿真一、实验目的:1. 熟悉移位寄存器的工作原理及调试方法。
2. 掌握用移位寄存器组成计数器的典型应用。
二、实验准备:移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。
既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。
根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。
本实验选用的4位双向通用移位寄存器,型号为74LS194,其逻辑符号及引其中,3D 、2D 、1D 、0D 为并行输入端;3Q 、2Q 、1Q 、0Q 为并行输出端;R S 为右移串行输入端;L S 为左移串行输入端;1S 、0S 为操作模式控制端;R C 为直接无条件清零端;CP 为时钟脉冲输入端。
74LS194有5种不同操作模式:并行送数寄存;右移(方向由3Q →0Q );左移(方向由0Q →3Q );保持及清零。
1S 、0S 和R C 端的控制作用如表3.10.1所示。
表3.10.1:移位寄存器应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据,或并行数据转换为串行数据等。
把移位寄存器的输出反馈到它的串行输入端,就可进行循环移位,如图3.10.2所示。
把输出端0Q 和右移串行输入端R S 相连接,设初始状态3Q 2Q 1Q 0Q =1000,则在时钟脉冲作用下,3Q 2Q 1Q 0Q 将依次变为0100→0010→0001→1000→……,可见,它是一个具有四个有效状态的计数器,这种类型的计数器通常称为环形计数器。
图3.10.2电路可以由各个输出端输出在时间上有先三、计算机仿真实验内容:1.逻辑功能验证: (1). 并行输入:1). 从电子仿真软件Multisim7基本界面左侧左列真实元件工具条的“TTL ”元件库中调出74LS194;从“Basic ”元件库中调出单刀双掷开关8只;从“Source ”元件库中调出Vcc 和地线,将它们放置在电子平台上。
实验3.2 与非门逻辑功能测试及组成其它门电路一、实验目的:1.熟悉THD-1型(或Dais-2B型)数电实验箱的使用方法。
2. 了解基本门电路逻辑功能测试方法。
3.学会用与非门组成其它逻辑门的方法。
二、实验准备:1. 集成逻辑门有许多种,如:与门、或门、非门、与非门、或非门、与或非门、异或门、OC门、TS门等等。
但其中与非门用途最广,用与非门可以组成其它许多逻辑门。
要实现其它逻辑门的功能,只要将该门的逻辑函数表达式化成与非-与非表达式,然后用多个与非门连接起来就可以达到目的。
例如,要实现或门Y=A+B,A ,可用三个与非门连根据摩根定律,或门的逻辑函数表达式可以写成:Y=B接实现。
集成逻辑门还可以组成许多应用电路,比如利用与非门组成时钟脉冲源电路就是其中一例,它电路简单、频率范围宽、频率稳定。
2. 集成电路与非门简介:74LS00是“TTL系列”中的与非门,CD4011是“CMOS系列”中的与非门。
它们都是四-2输入与非门电路,即在一块集成电路内含有四个独立的与非门。
每个与非门有2个输入端。
74LS00芯片逻辑框图、符号及引脚排列如图与非门的逻辑功能是:当输入端中有一个或一个以上是低电平时,输出端为高电平;只有当输入端全部为高电平时,输出才是低电平(即有“0”得“1”,全“1”得“0”)。
其逻辑函数表达式为:B=。
Y⋅ATTL电路对电源电压要求比较严,电源电压Vcc只允许在+5V±10%的范围内工作,超过5.5V将损坏器件;低于4.5V器件的逻辑功能将不正常。
CMOS集成电路是将N沟道MOS晶体管和P沟道MOS晶体管同时用于一个集成电路中,成为组合两种沟道MOS管性能的更优良的集成电路。
CMOS电路的主要优点是:(1). 功耗低,其静态工作电流在10-9A数量级,是目前所有数字集成电路中最低的,而TTL器件的功耗则大得多。
(2).高输入阻抗,通常大于1010Ω,远高于TTL器件的输入阻抗。