1逆向工程关键技术
- 格式:docx
- 大小:1.53 MB
- 文档页数:16
逆向工程的关键步骤及主要技术2011-02-27 10:28:16 作者:SystemMaster 来源: 文字大小:[大][中][小]0前言逆向工程技术Reverse Engineering).是20世纪80年代后期出现在先进制造领域里的新技术。
与传统的“产品概念设计一产品CAD模型一产品(物理模型)”的正向工程不同,逆向工程首先对实物原型进行数据采集,经过数据处理和曲面重构等过程,构造出实物的三维模型,然后再对原型进行复制或在原型基础上进行再设计,实现创新。
1 数据采集实物的数字化是逆向工程实现的初始条件,是数据处理、模型重建的基础。
该技术的好坏直接影响对实物(零件)描述的精确度和完整度,影响数字化实体几何信息的进度。
进而影响重构的CAD曲面和实体模型的质量,最终影响整个逆向工程的进度和质鼍。
所以,数字化测量方法的选择和研究对逆向工程至关重要。
根据测量的方式不同,可以将三维测量设备分为接触式和非接触式两大类型。
1.1接触式数据采集接触式数据采集方法是用机械探头接触表面,机械臂关节处的传感器确定相对坐标位置。
最常见也是应用最广泛的接触式数据采集方法是三坐标测量机.当探针沿被测物体表面运动时,被测表面的反作用力使探针发生形变.这种形变触发测量传感器将测到的信号反馈给测量控制系统.经计算机进行相关的处理得到所测量点的三维坐标。
一般来说.三坐标测量机可以对被测物体边界精确测量.同时不受被测物体表面颜色和色泽的限制。
其主要缺点是速度慢、效率低,摩擦力和弹性变形易引起被测件变形产生测量误差。
对微细部分的测量收到限制,不适于对软质材料或薄型实体的测量。
另外。
探头有一定的半径,不能直接测出实体表面的坐标值,需要进行半径补偿。
接触式数据采集的缺点限制了它的应用领域.随着测量技术的发展和市场的需要,产生了非接触式测量,其克服了接触式测量的一些缺点,是逆向工程中数字化测量的发展方向。
1.2非接触式数据采集非接触式数据采集方法主要利用了光、声、磁场等原理。
逆向工程技术的原理与应用逆向工程是一种通过对已有的产品进行分析、逆推和改进的技术,它涉及多个学科领域,如材料、机械、自动控制、计算机科学等,是一种多学科交叉的综合性技术。
逆向工程可以帮助企业更好地了解自己的产品和竞争对手的产品,提高产品的质量和性能,缩短产品的研发周期,降低研发成本,增强企业的市场竞争力。
一、逆向工程技术的原理逆向工程技术的主要原理是通过对已有的产品进行反复的分析、逆推和改进,获得该产品的详细信息和知识,以便更好地理解和改进该产品,甚至开发出具有类似功能的新产品。
逆向工程技术的主要步骤包括以下几个方面:1.前期调研:了解已有产品的基本情况、机械原理、电控系统、构造设计等相关信息,为后续的分析和研究打下基础。
2.基本情况分析:对已有产品的尺寸、材质、结构、设计等进行深入分析,了解其性能特点和优缺点。
3.产品逆向设计:通过三维扫描和数字化建模等方法,将已有产品转换为计算机模型,实现对该产品的复原和仿真分析。
4.材质分析:通过化学分析、金相分析等方法分析样品的成分、结构和性质,快速确定材质类型和性能。
5.性能测试:通过试验方法对样品的力学性能、热学性能、电学性能等进行测试和分析。
6.产品改进:根据分析结果和测试数据,针对已有产品的不足之处进行改进和优化,提高产品的性能和质量。
二、逆向工程技术的应用逆向工程技术的应用范围广泛,具体包括以下几个方面:1.产品改进和优化:逆向工程可以对已有产品进行分析和改进,提高产品的性能和质量,满足市场需求。
2.产品仿制和生产:逆向工程可以帮助企业快速复制和生产类似的产品,降低生产成本和提高效率。
3.产品维修和维护:逆向工程可以对已有产品进行分析和诊断,帮助维修人员更快地找到故障和进行修理,缩短停机时间和降低维修成本。
4.产权保护和反盗版:逆向工程可以帮助企业对自己的专利技术进行保护和维护,防止被盗版和侵权。
5.文化艺术保护和修复:逆向工程可以对文化遗产、艺术品等进行分析和修复,保护和传承人类的文化遗产。
简单阐述逆向工程技术及其流程
标题:逆向工程技术概述及其流程
一、逆向工程技术概述
逆向工程技术,又称反求工程,是一种产品设计技术手段,其基本原理是从已存在的产品或部件出发,通过对实物的测量、分析和研究,获取产品的几何形状、材料特性、制造工艺等设计信息,进而重构出原始的设计模型或者创新设计新的产品。
逆向工程广泛应用于产品改型设计、技术创新、质量检测、侵权分析等领域,是现代工业设计与制造中不可或缺的重要技术手段。
二、逆向工程的主要流程
1. 数据采集阶段:
这是逆向工程的第一步,通常采用三维扫描仪、CMM(三坐标测量机)等精密测量设备对实物进行精确的数据采集,获取物体表面的点云数据或几何特征数据。
2. 数据处理阶段:
对采集到的大量离散数据进行预处理,包括噪声过滤、数据平滑、点云拼接等操作,将其转化为可供后续建模使用的高质量数据集。
3. 曲面重构阶段:
根据处理后的数据,利用逆向工程软件如Geomagic, Rapidform等构建曲面模型,通过拟合、插值、光顺等方法,生成能准确反映实物表面特性的三维曲面模型。
4. 设计优化阶段:
在得到初步的三维模型后,设计师会对模型进行进一步的修改和完善,包括结构优化、尺寸调整、细节补充等,以满足设计需求和加工要求。
5. 制造阶段:
逆向工程的最后阶段是将优化后的三维模型转换为适合加工的二维图纸或CAM代码,提供给数控机床、3D打印设备等进行生产制造。
总结,逆向工程技术不仅能够帮助我们理解并复制现有的复杂产品,更能在原有产品的基础上进行创新设计和改进,对于推动产品更新换代和技术进步具有重大意义。
反求工程及其关键技术概述逆向工程(Reverse Engineering),又称反求工程或反求设计,是将已有产品模型或实物模型转化为工程设计模型和概念模型,在此基础上对已有产品进行解剖、深化和再创造,是对已有设计的设计。
其目的是为了改善技术水平,缩短产品生产周期,提高生产率,增强经济竞争力。
在科学技术高速发展的今天,世界范围内新的科技成果层出不穷,它们为发展生产力、推动社会进步做出了杰出的贡献。
中国在机械工程领域起步较晚,基础较为薄弱,因此充分地、合理地利用这些科技成果,更快的获得世界上较为先进的技术成果。
反求工程的应用对于我国科技进步,推动经济建设和发展有着重要的现实意义。
在我国最早提出“反求工程”概念并倡导推广的学者是著名的科学学专家夏禹龙、刘吉、冯之浚、张念椿等。
早在1983 年第三次全国科学学和科技政策学术讨论会上他们就提出了“反求工程”的概念。
近20 多年来,随着数字技术的快速发展和应用,给反求工程提供了前所未有的技术手段,直接导致反求工程的实践水平越来越高,反求工程的研究成果也越来越多,与之相配套的各种技术手段也趋于成熟。
反求工程的关键技术包括数据采集、数据处理,模型重建、模型精度分析等。
为了更加全面的了解当今我国学者在各个领域所取得的进展,我选读了2010年至2011年所发表的部分论文,并将读后收获记录如下。
一、数据采集方面数据采集即获取实体模型的几何参数,是反求工程CAD建模的首要环节。
对自由曲面零件的测量是实现数据采集的有效手段。
根据被测物的CAD模型是否已知,可将自由曲面的测量分为CAD模型已知的测量和CAD模型未知的测量。
这两种测量的目的不同,测量的策略也有所不同:前者主要是为了检验和保证产品的精度要求;而后者主要是根据测量所获得的零件表面的测点数据实现曲面重建,以便利用CAD/CAM技术进行模型修改、零件设计、数控加工指令的生成及误差分析等处理。
对于CAD模型已知的自由曲面的测量,其关键问题是如何高效、可靠、安全地获取待测曲面的几何形状信息。
逆向工程知识点总结一、逆向工程的概念逆向工程是指通过分析已有的产品、设备或技术,以逆向思维和方法,重建、理解其内部结构、工作原理和制造工艺,获取相关的设计思路、技术信息和工程数据。
逆向工程通常包括软件逆向工程和硬件逆向工程两大方面。
软件逆向工程主要指对软件程序的逆向分析、解密和修改,硬件逆向工程则是对硬件产品的逆向拆解、分析和重构。
逆向工程的对象可以是各种形式的产品和技术,比如机械设备、电子产品、软件程序、通讯协议、工艺技术等。
逆向工程可以帮助企业了解市场竞争对手的产品和技术,实现产品技术更新和改进,提高产品质量和性能,降低研发成本和周期,提高市场竞争力。
逆向工程的核心思想是"解构-分析-重构”,即通过对目标产品或技术的解构和分析,理解其内部结构和工作原理,然后进行重构和创新。
逆向工程通常需要借助各种工具和方法,比如逆向工程软件、逆向工程设备、CAD/CAM技术、复制材料技术等。
二、逆向工程的原理1. 解构原理解构是逆向工程的第一步,主要是指将目标产品或技术进行拆解和分解,得到其各个组成部分、结构特征和功能模块。
这也是逆向工程的基础工作,是了解目标产品或技术的内部结构和工作原理的重要手段。
解构通常需要借助相应的工具和设备,比如拆解工具、测量仪器、成像技术等。
2. 分析原理分析是逆向工程的核心,主要是指对目标产品或技术进行深入和全面的分析研究,从结构、材料、工艺、功能等方面进行系统分析和评估。
通过分析可以理解目标产品或技术的内部运作机制、关键特征、设计思路和技术要点,帮助确定其工作原理和性能特征。
分析通常需要借助相关的知识和工具,比如数学、物理、材料学、工程学等知识,以及CAD/CAM技术、工程仿真技术、试验验证方法等。
3. 重构原理重构是逆向工程的最终目的,主要是指基于对目标产品或技术的解构和分析,进行重建、改进和创新,实现对目标产品或技术的再设计和重新制造。
重构可以包括产品改良、技术创新、新产品开发等方面,帮助企业提高产品质量和性能,降低成本和风险,提高市场竞争力。
逆向工程技术与应用逆向工程是指通过对产品、设备或系统进行分析、测量和研究,并从中获取设计信息和知识的过程。
逆向工程技术可以应用于各种领域,包括制造业、航空航天、汽车工业、医疗设备、电子产品等。
逆向工程技术的应用可以帮助企业改进产品设计、提高生产效率、降低成本、提高竞争力。
本文将介绍逆向工程技术的基本原理和应用,并探讨其在不同领域中的具体应用案例。
一、逆向工程技术的基本原理逆向工程技术的基本原理是通过采用多种技术手段对产品、设备或系统进行解析和研究,获取其设计信息和知识。
逆向工程技术的主要步骤包括:数据采集、数据处理、数据分析、设计重构等。
具体来说,逆向工程技术可以通过使用3D扫描技术、计算机辅助设计(CAD)软件、计算机辅助制造(CAM)软件、数值控制(NC)机床等手段对产品进行数字化建模或制造。
通过逆向工程技术可以获取产品的CAD模型、零部件结构信息、工艺参数、材料成分等设计信息,实现对产品的重新设计和优化。
二、逆向工程技术在制造业中的应用航空航天领域是逆向工程技术的重要应用领域之一。
航空航天产品的复杂性和高性能要求,要求制造企业不断进行产品设计和制造技术的创新和升级。
逆向工程技术可以帮助航空航天企业提高产品的质量和性能,降低成本,缩短产品开发周期。
在航空航天领域,逆向工程技术可以应用于飞机零部件的设计、制造和售后服务。
通过对飞机发动机零部件进行3D扫描和数字化建模,可以获取零部件的设计信息和结构参数,帮助企业进行零部件的重新设计和优化。
通过逆向工程技术,航空航天企业可以及时对产品进行改进和更新,提高产品的性能和可靠性。
逆向工程技术是一种非常重要的技术手段,可以帮助企业提高产品的质量和竞争力。
逆向工程技术的应用范围非常广泛,可以应用于制造业、航空航天、汽车工业、医疗设备、电子产品等领域。
随着科学技术的不断发展和创新,相信逆向工程技术将会发挥越来越重要的作用,为企业创新和发展提供更多的支持和推动。
逆向工程技术及应用逆向工程是指将制造对象进行解构、分析、破解并拆解出知识产权内容,在此基础上进行再设计、制造的过程,是现代工业技术发展的一个重要组成部分。
逆向工程可以应用于多个领域,如汽车、机械、电子、航空航天、数字化文物保护等。
逆向工程的方法有很多种,常见的包括逆向分析方法、点云扫描技术、CT扫描技术、数字测量与建模技术等。
逆向分析方法是指通过对物体的形态、材料、特征进行逆向分析,从而获得物体的知识产权内容,包括设计图纸、结构参数、功能特征等。
逆向分析方法通常需要对被分析的物体进行拆解和测量,得到数据后进行统计分析,最终获得物体的知识产权内容。
点云扫描技术是指通过对物体表面进行点云数据采集,然后使用软件进行三维重建,得到物体的三维模型。
点云扫描技术通常使用激光测距、相位测量、结构光扫描等方法,将采集到的点云数据进行预处理和后处理,最终得到高精度的三维模型。
CT扫描技术是指通过对物体进行计算机断层扫描,得到物体在空间上的各个断面的扫描图像,然后将图像进行合成,得到物体的三维模型。
CT扫描技术的优点是可以非常精确地测量物体内部的结构和组织,而且无需拆解物体。
数字测量与建模技术是指通过使用数字化测量仪器对物体进行测量,然后根据测量数据进行三维建模。
数字测量仪器包括三坐标测量机、激光测距仪、数字量规等,可以快速地获得物体的测量数据,并进行精确的三维建模。
逆向工程可以应用于多个领域,如汽车制造、数字化文物保护、新材料开发等。
在汽车制造领域,逆向工程可以用于解析竞争对手的产品和技术,并进行仿制和优化。
在数字化文物保护领域,逆向工程可以用于对文物进行数字化重建,实现文物数码化保护和传承。
在新材料开发领域,逆向工程可以用于研究材料的成分和组织结构,设计出更优质的新材料。
逆向工程技术的发展对于现代工业的发展具有重要意义。
随着逆向工程技术的不断推广和改进,逆向工程在商业和工业领域的利用越来越广泛,同时也面临着知识产权保护等问题。
逆向工程及其关键技术院(系)材料科学与工程专业材料加工工程学生学号2010年5月15日逆向工程及其关键技术摘要:随着现代制造业的迅速发展,反求技术在制造领域中的作用日趋重要。
它作为一种新的产品设计思想和方法,已越来越广泛地应用于制造领域[1]。
通过自动测量机对零件的扫描测量,得到点云,使用逆向造型设计方法,对其进行处理,得到实体模型后,通过工艺分析,生成加工程序代码,对零件进行数控模拟加工[2]。
本文对逆向工程中的点云数据获得及输入、点数据的预处理、曲面重构及曲面分析方法进行了详细阐述。
关键字:逆向工程;曲面重构;点云;曲面分析1 引言在计算机技术飞速发展的今天,三维几何造型技术已被制造业广泛应用于产品及模具的设计、方案评审、自动化加工制造及管理维护等各个方面。
热点模具网在当今市场经济瞬息万变的环境下,能否快速地生产出合乎市场要求的产品已经成为企业成败的关键。
而往往我们都会遇到这样的难题,在没有二维工程图纸或三维CAD数据的情况下,工程技术人员没法得到准确的尺寸,制造模具就更无从谈起。
另外一方面,随着测量技术的不断发展和对产品检测要求的提高,测量机也广泛地用于企业的质量检测部门。
逆向工程成为满足这一需求的利器[3]。
2 逆向工程的系统及其关键技术2.1 逆向工程的概念逆向工程[4] (Reverse Engineering)也称反求工程,是指用一定的测量手段对实物或模型进行数据采集,根据测量数据进行计算机三维模型重建过程的总称。
相对于传统的产品设计流程即所谓的正向工程而提出的。
正向工程是泛指按常规的从概念设计到具体模型,再到成品的生产制造过程。
而反求工程是从现有的模型(产品样件、实物模型等)经过一定的手段转化为概念和工程设计模型,如利用三维坐标测量机的测量数据对产品进行数学模型重构,或者直接将这些离散数据转化成NC程序进行数控加工而获取成品的过程。
反求工程的设计流程如图1所示[5]。
2.2 逆向工程的数字化方法与技术逆向工程首先必须使用精密的测量系统将样品轮廓三维尺寸快速测量出来,然后再以取得的各点数据做曲面处理及加工成型。
逆向设计的基础流程及关键技术摘要逆向工程技术是数字化与快速响应制造大趋势下的一项重要技术,是CAD领域中一个相对独立的范畴。
逆向工程是一项开拓性、综合性、实用性较强的技术,逐渐成为产品开发中不可或缺的一环。
逆向工程能够提高设计精度,获得较高的模型质量,缩短设计和制造周期。
逆向工程的关键技术包括:数据获取、数据处理和模型重建。
通过对数据处理方法进行研究,得到数据处理的一般流程。
根据根据玩具车覆盖件的特点,采用逆向工程方法完成模型重建工作。
采用A TOS I光学扫描仪高效率、高精度地完成玩具车覆盖件的数据获取工作。
应用CATIA软件完成玩具车覆盖件的数据处理工作,获得完整、准确的数据以方便后续模型重建工作的进行。
以CA TA软件和Pro/E软件相结合的方法,充分利用软件的优势,完成玩具车模型的重构工作。
研究表明,采用逆向工程技术的方法完成玩具车覆盖件的模型,可以获得较高的模型质量,提高效率,是一种行之有效的方法,具有重要的实际意义和较高的应用价值。
关键词逆向设计CA TIA Pro/E CAD 关键技术1逆向工程技术的现状及应用逆向工程技术是近年来发展起来的消化、吸收和提高先进技术的一系列分析方法以及应用技术的组合,其主要目的是为了改善技术水平,提高生产率,增强经济竞争力。
世界各国在经济技术发展中,应用逆向工程消化吸收先进技术经验,给人们有益的启示。
据统计,各国百分之七十以上的技术源于国外,逆向工程作为掌握技术的一种手段,可使产品研制周期缩短百分之四十以上,极大提高了生产率。
因此研究逆向工程技术,对我国国民经济的发展和科学技术水平的提高,具有重大的意义。
逆向工程的应用领域大致可分为以下几种情况:2 逆向设计的基础流程逆向工程一般可分为四个阶段:1.零件原形的数字化通常采用三坐标测量机(CMM)或激光扫描等测量装置来获取零件原形表面点的三维坐标值。
2.从测量数据中提取零件原形的几何特征按测量数据的几何属性对其进行分割,采用几何特征匹配与识别的方法来获取零件原形所具有的设计与加工特征。
1 逆向工程技术概述1逆向工程技术概述1逆向工程技术概述1逆向工程技术详述逆向工程也称反求工程,是指用一定的测量手段对实物或模型进行测量,根据测量数据通过三维几何建模方法,重构实物的cad模型,从而实现产品设计与制造的过程。
逆向工程技术普遍用于汽车工业,特别是汽车车身的设计与开发。
与传统的设计制造方法不同,其主要是在没有设计图纸或图纸不完整而有样品的情况下,利用三维扫描测量仪,准确快速地测量样品或轮廓外形的表面数据,加以点数据处理、曲面创建、三维实体模型重构,再通过数控加工或快速成型来制造试制样品,然后通过cam数控系统编程加工产品。
通俗说道,从某种程度上说道,逆向工程就是仿制。
这里的前提就是预设我们传统的设计生产为“正向工程。
软件的逆向工程就是分析程序,力图在比源代码更高抽象层次上创建程序的则表示过程,逆向工程就是设计的恢复正常过程。
逆向工程工具可以从已存有的程序中提取数据结构、体系结构和程序设计信息。
imgaware由德国siemens集团旗下的ugs公司出品,是最著名的逆向工程软件,正被广泛应用于汽车、航空、航天、消费家电、模具、计算机零部件等设计与制造领域。
该软件拥有广大的用户群,国外有bmw、boeing、gm、chrysler、ford、raytheon、toyota等著名国际大公司,国内则有上海大众、上海交大、上海delphi、成都飞机制造公司等大企业。
以前该软件主要被应用于航空航天和汽车工业,因为这两个领域对空气动力学性能要求很高,在产品开发的开始阶段就要认真考虑空气动力性。
常规的设计流程首先根据工业造型需要设计出结构,制作出油泥模型之后将其送到风洞实验室去测量空气动力学性能,然后再根据实验结果对模型进行反复修改直到获得满意结果为止,如此所得到的最终油泥模型才是符合需要的模型。
如何将油泥模型的外形精确地输入计算机成为电子模型,这就需要采用逆向工程软件。
首先利用三坐标测量仪器测出模型表面点阵数据,然后利用逆向工程软件(例如:imagewaresurfacer)进行处理即可获得class1曲面。
反求工程及其关键技术反求工程是综合性很强的术语,它是以设计方法为指导,以现代设计理论、方法、技术为基础。
运用各种专业人员的工程设计经验、知识和创新思维,对已有新产品进行解剖、深化和在创造,是已有设计的设计,再创造是反求的灵魂。
一、反求工程的含义反求工程是测量技术,数据处理技术,图形处理技术和加工技术相结合的一门结合性技术。
随着计算机技术的飞速发展和上述单元技术是逐渐成熟,近年来在新产品设计开发中愈来愈多的被得到应用,因为在产品开发过程中需要以实物(样件)作为设计依据参考模型或作为最终验证依据时尤其需要应用该项技术,所以在汽车,摩托车的外形覆盖件和内装饰件的设计,家电产品外形设计,艺术品复制中对反求工程技术的应用需求尤为迫切。
反求工程将数据采集设备获取的实物样件表面或表面及内腔数据,输入专门的数据处理软件或带有数据处理能力的三维CAD软件进行处理和三维重构,在计算机上复现实物样件的几何形状,并在此基础上进行原样复制,修改或重设计,该方法主要用于对难以精确表达的曲面形状或未知设计方法的构件形状进行三维重构和再设计。
二、反求工程发展历史反求工程最早出现于二十世纪六七十年代。
二次世界大战后,为了急于恢复和振兴经济,日本在六十年代初提出了科技立国的方针:“一代引进,二代国产化,三代改进进出口,四代占领国际市场”,其中在汽车、电子、光学设备和家电行业上最为突出。
为了进行国产化,迫切的需要对引进的技术进行消化、吸收、改进和发展,这就是反求设计(Inverse Design)或者反求工程(Inverse Engineering)最初的出现的背景。
发展到现在,已成为世界各国在发展经济中不可缺少的手段或者重要的政策,反求工程的大量采用为日本在战后经济的恢复、经济振兴中发挥了不可替代的作用。
在实际的生产和生活中,任何产品的问世,包括创新、改进和仿制的,都蕴含着对已有科学、技术和产品的继承和发展。
因此反求工程在实际的工程应用中已很早就出现,而作为一门学问去研究,则是最近几十年才出现的。
逆向工程技术及其应用一、逆向工程技术概述逆向工程技术是一种通过对已有产品进行分析,揭示其设计,制造和功能的工艺和过程的技术,逆向工程技术被广泛应用于航空,航天,汽车,机械,电子等领域。
逆向工程技术的发展和应用,可以加快产品的设计和研发,提高产品质量和性能,降低成本和提高效率。
二、逆向工程技术原理介绍逆向工程技术的原理是基于现有的产品或物件,通过逆向思考和技术手段来还原产品的设计和制造过程。
逆向工程技术的整个过程主要包括三个步骤:第一步是获取产品或者物件的基本信息,主要是包括产品的外形和内部结构的信息。
其中,获取产品外形信息的方法有多种,包括扫描仪,光学镜头,CMT等。
而获取产品内部结构信息则主要通过剖面分析获取。
第二步是对获取的产品信息进行建模和还原。
通过三维建模技术或多媒体技术,将产品的物理信息变成数字信息,进行建模和还原。
第三步是使用数字模型进行设计和生产,这一步主要是将数字模型进行优化和改进,用于设计/生产,这样可以加快产品的研发周期和降低研发成本。
三、逆向工程技术的应用领域逆向工程技术是一种广泛应用于制造业的技术,主要应用领域包括:航空,航天,汽车制造,机械制造,电子产品制造,家电等等。
1. 航空制造领域: 在航空制造领域,逆向工程技术可以用于航空部件的分析和设计。
逆向工程技术可以对飞机部件进行分析,了解机件的作用,性能和市场情况,从而对市场上的部件进行研究和研发。
2. 汽车制造领域: 逆向工程技术被广泛应用于汽车制造领域。
逆向工程技术可以帮助汽车制造商了解汽车的设计和生产过程,提高汽车的性能和质量。
逆向工程技术可以还原整个汽车系统的设计和制造过程。
3. 机械制造领域: 在机械制造领域,逆向工程技术可以用于设备的分析和设计。
逆向工程技术可以帮助机械制造商了解设备的设计和生产过程,提高设备的性能和质量。
逆向工程技术可以还原整个机械系统的设计和制造过程。
4. 电子产品制造领域: 在电子产品制造领域,逆向工程技术可以应用于电子产品的分析和设计。
逆向工程造型关键技术解析杨明霞(运城职业技术学院,山西 运城 044000)摘 要:逆向工程为我国制造业的发展提供了较大的帮助,是推动制造业发展的关键。
随着知识经济时代的到来,逆向工程获得了汽车制造、机械制造等越来越多行业的认可和关注。
为对目前我国逆向工程技术做出一个相对全面的了解,文章以逆向工程造型技术为研究对象,以汽车行业中的应用为例,通过对逆向工程概念、特点的解析,对逆向工程造型中的产品数字化技术、逆向工程造型中的数据预处理技术、逆向工程中的曲面重建技术分别进行了详细的介绍,希望为相关人员对逆向工程的研究提供更多参考。
关键词:逆向工程;关键技术;逆向工程应用中图分类号:TG659 文献标志码:A 文章编号:1672-3872(2019)16-0242-02——————————————作者简介: 杨明霞(1982—),女,山西运城人,工程师,研究方向:机械设计,逆向工程。
1 逆向工程的概念及特点逆向工程可以将实际存在的汽车物体转换为CAD 模型中的相关数据,然后对产品进行更加深入彻底地分析,不断创新和优化汽车零件产品。
目前逆向工程技术在汽车覆盖件、汽车模型、三维建模、焊接改造等模具产品开发和设计中都有着很好的应用。
逆向工程一般包括以下步骤:数据获取,通过一些测量工具,对产品的形状或者其他数据进行收集;数据处理,将收集到的数据进行处理,例如:数据的清洗、过滤及特征提取等;通过数据处理,能获取更加可靠的数据,对后续的产品分析和优化提供更多的帮助;模型的重建,将模型的数据进行处理后输入到CAD 系统中;模型的校验和修正,对CAD 模型进行重新计算,不断对产品进行优化,包括精确度方面等等,直到模型符合产品的新需求。
逆向工程造型关键技术主要包括:产品数字化技术,主要是在产品的数据获取步骤中进行应用;数据预处理技术,主要是在数据处理阶段使用;曲面重建技术,主要是应用在模型的校验和修正阶段。
下面就对逆向工程造型的关键技术及应用进行深入分析。
逆向工程及其关键技术逆向工程及其关键技术院(系)材料科学与工程专业材料加工工程学生学号2010年5月15日逆向工程及其关键技术摘要:随着现代制造业的迅速发展,反求技术在制造领域中的作用日趋重要。
它作为一种新的产品设计思想和方法,已越来越广泛地应用于制造领域[1]。
通过自动测量机对零件的扫描测量,得到点云,使用逆向造型设计方法,对其进行处理,得到实体模型后,通过工艺分析,生成加工程序代码,对零件进行数控模拟加工[2]。
本文对逆向工程中的点云数据获得及输入、点数据的预处理、曲面重构及曲面分析方法进行了详细阐述。
关键字:逆向工程;曲面重构;点云;曲面分析1 引言在计算机技术飞速发展的今天,三维几何造型技术已被制造业广泛应用于产品及模具的设计、方案评审、自动化加工制造及管理维护等各个方面。
热点模具网在当今市场经济瞬息万变的环境下,能否快速地生产出合乎市场要求的产品已经成为企业成败的关键。
而往往我们都会遇到这样的难题,在没有二维工程图纸或三维CAD数据的情况下,工程技术人员没法得到准确的尺寸,制造模具就更无从谈起。
另外一方面,随着测量技术的不断发展和对产品检测要求的提高,测量机也广泛地用于企业的质量检测部门。
逆向工程成为满足这一需求的利器[3]。
2 逆向工程的系统及其关键技术2.1 逆向工程的概念逆向工程[4] (Reverse Engineering)也称反求工程,是指用一定的测量手段对实物或模型进行数据采集,根据测量数据进行计算机三维模型重建过程的总称。
相对于传统的产品设计流程即所谓的正向工程而提出的。
正向工程是泛指按常规的从概念设计到具体模型,再到成品的生产制造过程。
而反求工程是从现有的模型(产品样件、实物模型等)经过一定的手段转化为概念和工程设计模型,如利用三维坐标测量机的测量数据对产品进行数学模型重构,或者直接将这些离散数据转化成NC程序进行数控加工而获取成品的过程。
反求工程的设计流程如图1所示[5]。
1.3 逆向工程中的关键技术1.3.1 数据采集技术目前,用来采集物体表面数据的测量设备和方法多种多样,其原理也各不相同。
测量方法的选用是逆向工程中一个非常重要的问题。
不同的测量方式,不但决定了测量本身的精度、速度和经济性,还造成测量数据类型及后续处理方式的不同。
根据测量探头是否和零件表面接触,逆向工程中物体表面数字化三维数据的采集方法基本上可以分为接触式(Contact)和非接触式(Non-contact)两种。
接触式包括三坐标测量机(Coordinate Measuring Machining,CMM)和关节臂测量机;而非接触式主要有基于光学的激光三角法、激光测距法、结构光法、图像分析法以及基于声波、磁学的方法等。
这些方法都有各自的特点和应用范围,具体选用何种测量方法和数据处理技术应根据被测物体的形体特征和应用目的来决定。
目前,还没有找到一种完全使用于工业设计逆向测量方法。
各种数据采集方法分类如图1.3所示。
在接触式测量方法中,CMM是应用最为广泛的一种测量设备;CMM通常是基于力-变形原理,通过接触式探头沿样件表面移动并与表面接触时发生变形,检测出接触点的三维坐标,按采样方式又可分为单点触发式和连续扫描式两种。
CMM 对被测物体的材质和色泽没有特殊要求,可达到很高的测量精度(±0.5μm),对物体边界和特征点的测量相对精确,对于没有复杂内部型腔、特征几何尺寸多、只有少量特征曲面的规则零件反求特别有效。
主要缺点是效率低,测量过程过分依赖于测量者的经验,特别是对于几何模型未知的复杂产品,难以确定最优的采样策略与路径。
图1.3 逆向工程数据采集方法分类随着电子技术、计算机技术的发展,CMM也由以前的机械式发展为目前的计算机数字控制(CNC)型的高级阶段。
目前,智能化是CMM发展的方向。
智能测量机的研究是利用计算机内的知识库与决策库确定测量策略,其关键技术包括零件位置的自动识别技术、测量决策智能化和测量路径规划、CAD/CAM集成技术等。
随着快速测量的需求及光电技术的发展,以计算机图像处理为主要手段的非接触式测量技术得到飞速发展,该方法主要是基于光学、声学、磁学等领域中的基本原理,将一定的物理模拟量通过适当的算法转化为样件表面的坐标点。
一般常用的非接触式测量方法分为被动视觉和主动视觉两大类。
被动式方法中无特殊光源,只能接收物体表面的反射信息,因而设备简单,操作方便,成本低,可用于户外和远距离观察中,特别适用于由于环境限制不能使用特殊照明装置的应用场合,但算法较复杂;主动方法使用一个专门的光源装置来提供目标周围的照明,通过发光装置的控制,使系统获得更多的有用信息,降低问题难度。
被动式非接触测量的理论基础是计算机视觉中的三维视觉重建。
根据可利用的视觉信息,被动视觉方法包括由明暗恢复形状(Shape From Shading,SFS)、由纹理恢复形状、光度立体法、立体视觉和由遮挡轮廓恢复形状等,其中在工程中应用较多的是后两种方法。
立体视觉又称为双目视觉或机器视觉,其基本原理是从两个(或多个)视点观察同一景物,以获取不同视角下的感知图像,通过三角测量原理计算图像像素间的位置偏差(即视差)来获取景物的三维信息,这一过程与人类视觉的立体感知过程是类似的。
双目立体视觉的原理如图1.4所示,其中P是空间中任意一点,C1、C2是两个摄像机的焦点,类似于人的双眼,P1、P2是P点在两个成像面上的像点。
空间点P、C1、C2形成一个三角形,且连线C1P与像平面交于P1点,连线C1P与像平面交于P2点。
因此,若已知像点p1、p2,则连线C1P1和C2P2必交于空间点P,这种确定空间点坐标的方法称为三角测量原理。
图1.4 立体视觉原理图一个完整的立体视觉系统通常由图像获取、摄像机标定、特征提取、立体匹配、深度确定和内插6部分组成。
由于它直接模拟了人类视觉的功能,可以在多种条件下灵活地测量物体的立体信息;而且通过采用高精度的边缘提取技术,可以获得较高的空间地位精度(相对误差为1%~2%),因此在计算机被动测距中得到广泛应用。
但立体匹配始终是立体视觉中最重要的也是最困难的问题,其有效性有赖于三个问题的解决,即选择正确的匹配特征,特征间的本质属性及建立能正确匹配所选特征的稳定算法。
虽然已提出了大量各具特色的匹配算法,但场景中光照、物体的几何形状与物理性质、摄像机特性、噪声干扰和畸变等诸多因素影响,至今仍未有很好地解决。
利用图像平面上将物体与背影分割开来的遮挡轮廓信息来重构表面,称为遮挡轮廓恢复形状,其原理如图1.5中所示。
将视点与物体的遮挡轮廓线相连,即可构成一个视锥体。
当从不同的视点观察时,就会形成多个视锥体,物体一定位于这些视锥体的共同交集内。
因此,通过体相交法,将各个视锥体相交便得到了物体的三维模型。
图1.5 体相交法原理遮挡轮廓恢复形状方法通常由相机标定、遮挡轮廓提取以及物体与轮廓间的投影相交三个步骤完成,而且遮挡轮廓恢复形状方法在实现时仅涉及基本的矩阵运算,因此具有运算速度快、计算过程稳定、可获得物体表面致密点集的优点。
缺点是精度较低,难以达到工程实用的要求,目前多用于计算机动画、虚拟现实模型、网上展示等场合,而且该方法无法应用于某些具有凹陷表面的物体。
如美国Immersion公司开发了Lightscribe系统,该系统由摄像头、背景屏幕、旋转平台及软件系统组成。
首先对放置在自动旋转平台上的物体进行摄像,将摄得的图像输入软件后利用体相交技术可自动生成物体的三维模型,但对于物体表面的一些局部细节和凹陷区域,该系统还需要结合主动式的激光扫描进行细化。
随着主动测距手段的日趋成熟,在条件允许的情况下,工程应用更多使用的是主动视觉方法。
主动视觉是指测量系统向被测物体投射出特殊的结构光,通过扫描、编码或调制,结合立体视觉技术来获得被测物体的三维信息。
对于平坦的、无明显灰度、纹理或形状变化的表面区域,用结构光可形成明亮的条纹,作为一种“人工特征”施加到物体表面,从而方便图像的分析和处理。
根据不同的原理,应用较为成熟的主动视觉方法又可分为激光三角法和投影栅法两类。
激光三角法是目前最成熟,也是目前应用最广泛的一种主动式方法。
激光扫描的原理如图1.6所示。
由激光发出的光束,经过一组改变方向的反射镜组成的扫描装置变向后,投射到被测物体上。
摄像机固定在某个视点上观察物体表面的漫射点,图中激光束的方向角α和摄像机与反射镜间的基线位置是已知的,β可由焦距f和成像点的位置确定。
因此,根据光源、物体表面反射点及摄像机成像点之间的三角关系,可以计算出表面反射点的三维坐标。
激光三角法的原理与立体视觉在本质上是一样的,不同之处是将立体视觉方法中的一个“眼睛”置换为光源,而且在物体空间中通过点、线或栅格形式的特定光源来标记特定的点,可以避免立体视觉中对应点匹配的问题。
激光三角法具有测量速度快,而且可达到较高的精度(±0.05㎜)等优点,但存在的主要问题是对被测物体表面的粗糙度、漫反射率和倾角过于敏感,存在由遮挡造成的阴影效应,对突变的台阶和深孔结构容易产生数据丢失。
图1.6 激光三角法原理在主动式方法中,除了激光以外,也可以采用光栅或白光源投影。
投影光栅发的基本思想是把光栅投影到被测物体表面上,受到被测物体表面高度的调制,光栅投影线发生变形,变形光栅携带了物体表面的三维信息,通过解调变形的光栅影线,从而得到被测表面的高度信息,其原理如图1.7中所示。
入射光线P照射到参考平面上的A点,放上被测物体后,P照射到物体上的B点,此时从图示方向观察,A点就移动到新的位置C点,距离AC就携带了物体表面的高度信息Z=h(x,y),即高度受到了表面形状的调制。
按照不同的解调原理,就形成了诸如莫尔条纹法、傅里叶变换轮廓法和相位测量法等多种投影光栅的方法。
图1.7 投影光栅法原理图投影光栅法的主要优点是测量范围大、速度快、成本低、且精度较高(±0.04㎜);缺点是只能测量表面起伏不大较平坦的物体,对于表面变化剧烈的物体,在陡峭处往往会发生相位突变,使测量精度大大降低。
总的来说,精度与速度是数字化方法最基本的指标。
数字化方法的精度决定了CAD模型的精度及反求的质量,测量速度也在很大程度上影响着反求过程的快慢。
目前,常用的各种方法在这两方面各有优缺点,且有一定的适用范围,所以在应用是应根据被测物体的特点及对测量精度的要求来选择对应的测量方法。
在接触式测量方法中,CMM是应用最广泛的一种测量设备;而在非接触式测量方法中,结构光法被认为是目前最成熟的三维形状测量方法,在工业界广泛应用,德国GOM公司研发的ATOS测量系统及Steinbicher公司的COMET测量系统都是这种方法的典型代表。
表1.1对CMM与激光扫描数字化测量方法进行了全面比较,从表中可以清楚的看出,每一种测量方法都有其优势与不足,在实际测量中,两种测量技术的结合将能够为逆向工程带来很好的弹性,有助于逆向工程的进行。
以传感器规划和信息融合为基础,开发多种数字化方法的联合使用方法与集成系统,其中CMM与视觉方法的集成由于在测量速度,精度与物理特性等方面具有较强的互补性,是目前最具有发展前景的集成数字方法。
但如何提高集成过程中的自动化、智能化程度,以下一些关键问题值得进一步研究:(1)基于视觉技术的边界轮廓和物体特征的识别方法;(2)CMM智能化测量技术;(3)高效的多传感器数据融合方法;(4)考虑后续的模型重建的要求,数字化过程与表面重构的集成化研究。
1.3.2 CAD建模技术产品的三维CAD建模是指从一个已有的物理模型或者实物零件产生出相应的CAD模型的过程,包括物体离散数据点的网格化、特征提取、表面分片和曲面生成等,是整个逆向过程中最关键、最复杂的一环,也为后续的工程分析、创新设计和加工制造等应用提供数学模型支持。
其内容涉及计算机、图像处理、图形学、计算几何、测量和数控加工等众多交叉学科和工程领域,是国内外学术界,尤其是CAD/CAM领域广泛关注的热点和难度问题。
在实际的产品中,只由一张曲面构成的情况不多,产品往往有多张曲面混合而成。
由于组成曲面类型不同,因此,CAD模型重建的一般步骤:先根据几何特征对点云数据进行分割,然后分别对各个曲面片进行拟合,再通过曲面的过渡、相交、裁剪、倒圆、等手段,将多个曲面“缝合”成一个整体,即重建的CAD 模型。
在逆向工程应用初期,由于没有专用的逆向软件,只能选择一些正向的CAD系统来完成模型的重建;后来,为满足复杂曲面重建的要求,一些软件商在其传统CAD系统里集成了逆向造型模块,如Pro/Scan-tools、Point Cloudy等;而伴随着逆向工程及其相关技术理论研究的深入进行及其成果商业应用的广泛展开,大量的商业化专用逆向工程CAD建模系统不断涌现。