midas28度斜交桥分析
- 格式:ppt
- 大小:2.73 MB
- 文档页数:40
斜桥与弯桥分析北京迈达斯技术有限公司2007年8月目录1. 斜桥 (1)1.1 概述 (1)1.2 斜交桥梁的受力特点 (1)1.3 建模方法 (2)2. 弯桥 (3)2.1 概述 (3)2.2 弯桥的受力特点 (3)2.3 建模方法 (4)2.4 弯桥建模例题 (5)1. 斜桥1.1 概述桥梁设计中,会因为桥位、线型的因素,而需要将桥梁做成斜交桥。
斜交桥受力性能较复杂,与正交桥有很大差别。
平面结构计算软件无法对其进行精确的分析,限制了此类结构桥型的应用。
1.2 斜交桥梁的受力特点a) 钝角角隅处出现较大的反力和剪力,锐角角隅处出现较小的反力,还可能出现翘起;(图1.2.1)b) 出现很大的扭矩;(图1.2.2)c) 板边缘或边梁最大弯矩向钝角方向靠拢。
(图1.2.3 ~ 图1.2.4)图1.2.1 斜交空心板桥支点反力图1.2.2 斜交空心板桥扭矩图图1.2.3 正、斜交板桥自重弯矩图(板单元)图1.2.4 正、斜交空心板桥自重弯矩图(梁格单元)这些效应的大小与斜交角度大小也有很大的关系,斜交角度越大,上述效应就越大。
一般来说斜交角度小于20度时,对于简支斜交桥的上述影响可以忽略。
如果斜交角度超过20度就必须考虑上述效应的影响。
设计人员还应根据实际情况,找出适当的处理方案。
1.3 建模方法对斜交桥梁多用梁格法建立模型。
可用斜交梁格或正交梁格来建模。
对于斜交角度小于20度时,使用斜交梁格是非常方便的。
但是对于大角度的斜交桥,根据它的荷载传递特性,建议选用正交梁格,而且配筋时也尽量沿正交方向配筋。
图1.3.1 斜交梁格与正交梁格2. 弯桥2.1 概述目前弯梁桥在现代化的公路及城市道路立交中的数量逐年增加,应用已非常普遍。
尤其在互通式立交的匝道桥设计中应用更为广泛。
目前出现了很多小半径的曲线梁桥,特别是匝道桥梁更是如此。
此类桥梁具有斜、弯、坡、异形等特点,给桥梁的线型设计和构造处理带来很大困难。
2.2 弯桥的受力特点a) 弯桥在外荷载的作用下会同时产生弯矩和扭矩,并且互相影响,使梁截面处于弯扭共同作用的状态,其截面主拉应力往往比相应的直梁桥大得多(图2.2.1);图2.2.1 弯桥弯矩与扭矩b) 弯桥在外荷载的作用下,还会出现横向弯矩(图2.2.2);图2.2.2 横向弯矩c) 由于弯扭耦合,弯桥的变形比同样跨径直线桥要大,外边缘的挠度大于内边缘的挠度,而且曲率半径越小、桥越宽,这一趋势越明显。
斜交地道桥的受力分析摘要:斜交地道桥受力情况复杂,不仅受到弯矩和剪力作用,由于斜交角还会有扭矩作用。
运用MIDAS软件,采用厚板理论建立空间有限元模型进行空间受力分析,求出主应力方向及板内受力分布规律,根据主弯矩作用确定合理的布筋方式。
关键字:斜交地道桥,空间有限元Abstract: to skew bridge force of complex, not only by bending moment and shear function, due to the oblique Angle will also have the torque role. Using the MIDAS software, a thick plate theory, a space finite element model space force analysis, to work out the principal stress direction in the plate and the stress distribution law, according to the bending moment role the determination of reasonable cloth reinforced ways.Key words: to skew bridge, space finite element交通工程中一个重要问题是铁路和公路平面交叉所产生的交通干扰,解决的办法主要是修建地道桥。
地道桥用地少,投资小,施工方便,越来越被大量采用,斜交地道桥结构日益增多,但其受力情况复杂,尚未形成完整的理论体系。
当采用平面杆系的计算方法和实际情况相差较多,而且不能对另一方向的受力进行分析。
本文采用厚板理论,用MIDAS软件建立空间有限元模型对斜交地道桥进行受力分析,根据受力分析结果确定合理的配筋原则。
1 某地道桥基本概况地道桥为1-11.5m框架桥,铁路和公路夹角为60°,顶板厚0.85m,边墙厚0.85m,底板厚0.95m,轨底到顶板顶填土厚为0.8m,地道桥全长14m,构造图见图1。
midas_斜拉桥正装分析操作例题目录概要错误!未定义书签。
桥梁基本数据错误!未定义书签。
荷载错误!未定义书签。
设定建模环境错误!未定义书签。
定义材料和截面特性值错误!未定义书签。
成桥阶段分析错误!未定义书签。
建立模型错误!未定义书签。
建立加劲梁模型错误!未定义书签。
建立主塔错误!未定义书签。
建立拉索错误!未定义书签。
建立主塔支座错误!未定义书签。
输入边界条件错误!未定义书签。
索初拉力计算错误!未定义书签。
定义荷载工况错误!未定义书签。
输入荷载错误!未定义书签。
运行结构分析错误!未定义书签。
建立荷载组合错误!未定义书签。
计算未知荷载系数错误!未定义书签。
查看成桥阶段分析结果错误!未定义书签。
查看变形形状错误!未定义书签。
正装施工阶段分析错误!未定义书签。
正装施工阶段分析错误!未定义书签。
正装施工阶段分析错误!未定义书签。
正装分析模型错误!未定义书签。
定义施工阶段错误!未定义书签。
定义结构组错误!未定义书签。
定义边界组错误!未定义书签。
定义荷载组错误!未定义书签。
定义施工阶段错误!未定义书签。
施工阶段分析控制数据错误!未定义书签。
运行结构分析错误!未定义书签。
查看施工阶段分析结果错误!未定义书签。
查看变形形状错误!未定义书签。
查看弯矩错误!未定义书签。
查看轴力错误!未定义书签。
查看计算未闭合配合力时使用的节点位移和内力值错误!未定义书签。
成桥阶段分析和正装分析结果比较错误!未定义书签。
概要斜拉桥是塔、拉索和加劲梁三种基本结构组成的缆索承重结构体系,桥形美观,且根据所选的索塔形式以及拉索的布置能够形成多种多样的结构形式,容易与周边环境融合,是符合环境设计理念的桥梁形式之一。
为了决定安装拉索时的控制张拉力,首先要决定在成桥阶段恒载作用下的初始平衡状态,然后再按施工顺序进行施工阶段分析。
一般进行斜拉桥分析时首先通过倒拆分析计算初张拉力,然后进行正装施工阶段分析。
在本例题将介绍建立斜拉桥模型的方法、计算拉索初拉力的方法、施工阶段分析方法、采用未闭合配合力功能只利用成桥阶段分析张力进行正装分析的方法。