纳米二氧化钛项目情况介绍
- 格式:doc
- 大小:13.00 KB
- 文档页数:2
二氧化钛纳米材料二氧化钛(TiO2)是一种重要的功能材料,具有广泛的应用前景。
而纳米材料作为一种特殊的材料形态,具有独特的物理化学性质和应用潜力,因此二氧化钛纳米材料备受关注。
本文将介绍二氧化钛纳米材料的制备方法、性质和应用前景。
首先,二氧化钛纳米材料的制备方法有多种途径。
常见的制备方法包括溶胶-凝胶法、水热法、溶剂热法、气相沉积法等。
其中,溶胶-凝胶法是一种常用的制备方法,通过溶胶的凝胶化和热处理过程,可以得到具有较高比表面积和较小晶粒尺寸的二氧化钛纳米材料。
水热法则是利用高温高压条件下水热反应合成纳米材料,具有简单、环保的特点。
此外,溶剂热法和气相沉积法也是常用的制备方法,它们分别适用于不同形态的纳米材料制备,如纳米颗粒、纳米管、纳米片等。
其次,二氧化钛纳米材料具有许多特殊的性质。
首先,由于其较大的比表面积和较小的晶粒尺寸,二氧化钛纳米材料表现出优异的光催化性能。
其次,二氧化钛纳米材料还具有优异的光电化学性能,可应用于太阳能电池、光催化水分解等领域。
此外,二氧化钛纳米材料还具有优异的光学性能和电化学性能,可应用于传感器、光电器件等领域。
最后,二氧化钛纳米材料具有广泛的应用前景。
在环境领域,二氧化钛纳米材料可应用于水处理、空气净化等方面,具有重要的应用价值。
在能源领域,二氧化钛纳米材料可应用于太阳能电池、光催化水分解等领域,具有重要的推动作用。
在光电子器件领域,二氧化钛纳米材料可应用于传感器、光电器件等方面,具有广阔的市场前景。
综上所述,二氧化钛纳米材料具有重要的科研和应用价值。
随着纳米技术的不断发展,二氧化钛纳米材料的制备方法将更加多样化,其性质和应用前景也将得到更广泛的拓展。
相信在不久的将来,二氧化钛纳米材料将在多个领域展现出重要的作用,为人类社会的可持续发展做出重要贡献。
二氧化钛纳米线阵列二氧化钛纳米线阵列是一种新兴的纳米结构材料,由许多纳米尺寸的二氧化钛线构成的规则阵列组成。
它具有很多优异的物理和化学性质,被广泛研究和应用于许多领域,包括光电子器件、传感器、储能、光催化以及生物医学等。
下面将从制备、性质以及应用等方面详细介绍二氧化钛纳米线阵列。
首先,我们来了解一下二氧化钛纳米线阵列的制备方法。
最常见的制备方法是通过电化学沉积、溶胶凝胶、热氧化等方法来合成。
其中,电化学沉积法是一种简单且可控性较好的方法,通过在电解液中将金属钛在电势作用下沉积形成纳米线阵列。
溶胶凝胶法则是通过溶胶凝胶相变过程中的胶体自组装来形成纳米线阵列。
而热氧化法则是通过在高温下用金属钛蒸发沉积在基底上,然后在氧气氛围中进行热氧化反应来得到纳米线阵列。
二氧化钛纳米线阵列具有很多独特的物理和化学性质。
首先,由于其纳米尺寸的特点,二氧化钛纳米线阵列具有很大的比表面积。
这使得其具有优异的光电转换效率、光吸收能力和电子传输性能,使其在光电子器件和光催化等领域有着广泛的应用。
其次,二氧化钛纳米线阵列还具有优异的化学稳定性和导电性能,这使得它在传感器和储能领域有着重要的应用价值。
另外,二氧化钛纳米线阵列还具有可调控的带隙宽度和能带结构,这使得其在光催化和光电子器件等方面有着广泛的应用前景。
除了上述的制备方法和性质,二氧化钛纳米线阵列在各个领域都有广泛的应用。
首先,在光电子器件方面,二氧化钛纳米线阵列可以用于制备太阳能电池和光电探测器等器件,利用其优异的光电转换效率和光吸收能力来实现光电能量转换和信号检测。
其次,在传感器方面,二氧化钛纳米线阵列可以用于制备气体传感器、湿度传感器等,利用其优异的化学稳定性和导电性能来检测环境中的气体成分和湿度变化。
此外,在储能领域,二氧化钛纳米线阵列可以用于制备超级电容器和锂离子电池等电池储能器件,利用其优异的导电性能和储能性能来实现高性能的能量储存。
最后,二氧化钛纳米线阵列还在光催化和生物医学等方面也有着广泛的应用前景。
产品简介:纳米二氧化钛是金红石型白色疏松粉末,作为紫外线屏蔽剂,防止紫外线的侵害。
也可用于高档汽车面漆,具有随角异色效应。
纳米技术在光催化领域扮演着重要的角色。
纳米二氧化钛的光催化作用能将光能转变为电能和化学能,实现许多难以实现或不可能进行的反应。
屏蔽紫外线作用强,有良好的分散性和耐候性。
可用于化妆品、功能纤维、塑料、涂料、油漆等领域,。
目前,环境污染的控制与治理是我们面临的亟待解决的重大问题,在众多环境治理技术中,利用太阳光作为光源来活化纳米二氧化钛,使其在室温下进行氧化还原反应,杀灭有害菌、清除污染物,这一技术已成为一种理想的环境治理技术。
纳米二氧化钛属非溶出型抗菌剂,本身具有很好的化学稳定性,无毒性,重金属含量少,抗菌性广且长效,被越来越广泛地应用于日常生活之中。
如太阳能电池、抗菌材料、空气净化器、自清洁材料、精细陶瓷及建筑材料等。
将对提高我们的生活质量发挥无穷潜力。
分类:纳米二氧化钛主要有两种结晶形态:锐钛型(Anatase)和金红石型(Rutile)。
金红石型二氧化钛比锐钛型二氧化钛稳定而致密,有较高的硬度、密度、介电常数及折射率,其遮盖力和着色力也较高。
而锐钛型二氧化钛在可见光短波部分的反射率比金红石型二氧化钛高,带蓝色色调,并且对紫外线的吸收能力比金红石型低,光催化活性比金红石型高。
在一定条件下,锐钛型二氧化钛可转化为金红石型二氧化钛。
结构:纳米材料的两个重要特征是纳米晶粒与高浓度晶界。
纳米TiO2的微观结构特征的研究报道较少。
其中用拉曼散射和高分辨电镜研究了纳米TiO2陶瓷, 显示的结果与通常粗晶材料无多大的区别,晶粒间界处亦含有短程有序的结构单元。
纳米TiO2晶粒基本是等轴晶粒, 与从气体凝聚法得到的原子团簇形状相同, 尺寸相同并都服从对数正态分布。
性能:™纳米TiO2有白色和透明状的两种颗粒,常见的TiO2粉体有金红石、锐钛矿、板钛矿等3 种晶型。
™其中金红石和锐钛矿是四方晶系,板钛矿是正交晶系。
纳米二氧化钛
基本信息:
CAS#:13463-67-7 分子式:TiO2
性质:
1、金红石型纳米二氧化钛:
具有独特的颗粒形状、良好的分散性和极高的紫外屏蔽性能(经紫外分光光度仪检测,其紫外屏蔽率高达99.99%以上),如用于涂料,可显著提高涂膜的抗老化性、耐洗刷性和自洁功能;用于有机颜料,可提高颜料的耐光等级;
用于防晒化妆品,能大幅提高SPF与PA值,避免UVB与UVA对人体的伤害,从而实现化妆品的紫外全波段物理防晒;用于橡胶、塑料可提高制品的抗老化性、耐磨性和强度等。
2、锐钛矿型纳米二氧化钛:
纳米氧化钛在紫外光的作用下能生成电子--空穴对,由于带正电的空穴具有很强的氧化能力,能够使有机物氧化分解为二氧化碳和水,而有机物初始含有的卤、硫、磷和氮原子也被分别转化为X-、SO4-、PO4-和NO3-等无机盐从而消除原有的危害性。
可广泛应用于空气净化、污水处理、抗菌陶(搪)瓷和工业催化等领域。
用量:1.5-2%
使用方法: 直接加入到体系中,用研磨机或高速分散机分散0.5-2小时,确保分散均匀即可。
包装:15公斤/桶。
纳米二氧化钛(钛白粉)简要介绍纳米二氧化钛,亦称纳米钛白粉,是化工颜料钛白粉的一种,是根据钛白粉粒径尺寸大小来定义的,从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在100纳米以下,其外观为白色疏松粉末,具有抗紫外线、抗菌、自洁净、抗老化功效,纳米二氧化钛的可应用领域特别广泛,比如纳米二氧化钛可用于化妆品、功能纤维、塑料、油墨、涂料、油漆、精细陶瓷等领域,还可用于污水处理、空气净化等产品中,锐钛型纳米二氧化钛因比表面积大,在光催化,太阳能电池,环境净化,催化剂载体,锂电池以及气体传感器等方面得到广泛的应用。
除此之外,纳米二氧化钛还可广泛应用于军事领域。
纳米二氧化钛主要有两种结晶形态:锐钛型(Anatase)和金红石型(Rutile)。
金红石型二氧化钛比锐钛型二氧化钛稳定而致密,有较高的硬度、密度、介电常数及折射率,其遮盖力和着色力也较高。
而锐钛型二氧化钛在可见光短波部分的反射率比金红石型二氧化钛高,带蓝色色调,并且对紫外线的吸收能力比金红石型低,光催化活性比金红石型高。
在固定条件下,锐钛型二氧化钛可转化为金红石型二氧化钛。
纳米二氧化钛(钛白粉)应用领域纳米TiO2具有十分宝贵的光学性质,在汽车工业及诸多领域都显示出美好的发展前景。
纳米TiO2还具有很高的化学稳定性、热稳定性、无毒性、超亲水性、非迁移性,且完全可以与食品接触,所以被广泛应用于抗紫外材料、纺织、光催化触媒、自洁玻璃、防晒霜、涂料、油墨、食品包装材料、造纸工业、航天工业中、锂电池中。
河北麦森钛白粉有限公司生产的纳米钛白粉(MS-GCA01)产品性能:锐钛型纳米二氧化钛外观为白色疏松粉末。
具有很好的光催化效果,能分解在空气中的有害气体和部分无机化合物,并抑制细菌生长和病毒的活性,达到空气净化,杀菌,除臭,防霉。
纳米二氧化钛具有抗菌,自洁净化净化功效,还可以大幅提高产品粘结力。
无毒无害,与其他原料有极好的相容性。
粒径均匀,比表面积大,分散性好;纳米材料效果强。
纳米二氧化钛能有效降解空气中的有害有机物——文章来源:晶和纳米视角1、纳米二氧化钛光催化剂(JR05)对环境污染的净化功能由于纳米TiO2(JR05)除了具有纳米材料的特点外,还具有光催化性能,使得它在环境污染治理方面将扮演极其重要的角色。
1.1、降解空气中的有害有机物。
近年来,随着室内装潢涂料油漆用量的增加,室内空气污染越来越受到人们的重视。
调查表明,新装修的房间内空气中有机物浓度高于室外,甚至高于工业区。
目前已从空气中鉴定出几百种有机物质,其中有许多物质对人体有害,有些是致癌物。
对室内主要的气体污染物甲醛、甲笨等的研究结果表明,宣城晶瑞公司的光催化剂可以很好地降解这些物质,其中纳米TiO2(JR05)的降解效率最好,将近达到99.5%。
其降解机理是在光照条件下将这些有害物质转化为二氧化碳、水和有机酸。
纳米TiO2的光催化剂(JR05)也可用于石油、化工等产业的工业废气处理,改善厂区周围空气质量。
1.2、它可以降解有机磷农物。
这种70年代发展起来的农药品种占我国农药产量的80%,它的生产和使用会造成大量有毒废水。
这一环保难题,使用纳米TiO2(JR05)来催化降解可以得到根本解决。
1.3、用纳米TiO2(JR05)催化降解技术来处理毛纺染整废水,具有省资、高效、节能,最终能使有机物完全矿化、不存在二次污染等特点,显示出良好的应用前景。
1.4、在石油开采运输和使用过程中,有相当数量的石油类物质废弃在地面、江湖和海洋水面,用纳米TiO2(JR05)可以降解石油,解决海洋的石油污染问题。
1.5、用纳米TiO2(JR05)可以加速城市生活垃圾的降解,其速度是大颗粒TiO2的10倍以上,从而解决大量生活垃圾给城市环境带来的压力。
1.6、一般常用的杀菌剂Ag、Cu等能使细胞失去活性,但细菌被杀死后,可释放出致热和有毒的组分如内毒素。
内毒素是致命物质,可引起伤寒、霍乱等疾病。
利用纳米TiO2的光催化性能不仅能杀死环境中的细菌,而且能同时降解由细菌释放出的有毒复合物。
催化剂纳米二氧化钛(TiO2)具有多种作用,主要集中在以下几个方面:
1. 光催化作用:
纳米二氧化钛在紫外线照射下具有很强的光催化活性。
当其吸收紫外光后,能产生电子-空穴对,这些载流子参与氧化还原反应,能够分解空气中的有害气体如甲醛、苯、氨气以及某些有机污染物,将其转化为无害的二氧化碳和水。
因此,纳米二氧化钛被广泛应用于空气净化、水质净化等领域。
2. 抗菌性能:
光催化作用也能有效杀灭细菌和病毒,通过生成的羟基自由基等强氧化性物质破坏微生物细胞膜和DNA结构,从而实现高效抗菌和抗病毒功能。
这种特性使得纳米二氧化钛常用于制备具有自清洁、抗菌效果的涂层材料,比如应用于建材表面、医疗设备表面处理等。
3. 紫外线屏蔽:
由于二氧化钛对紫外线有较高的反射率和吸收率,所以它是一种高效的紫外线屏蔽剂,可以添加到化妆品、涂料、塑料等材料中,保护人体皮肤或产品免受紫外线伤害,延长产品的使用寿命和提高其耐候性。
4. 新能源应用:
在能源领域,纳米二氧化钛也被研究作为光电化学电池的光阳极材料,利用其光生电荷分离的能力来转化太阳能为电能。
5. 其他功能:
还可作为催化剂载体,支持负载其他活性成分进行催化反应;同时,在某些特定条件下,纳米二氧化钛还可以表现出优异的导电性和良好的化学稳定性,进一步拓宽了其在传感器制造、环保材料、药物传递系统等方面的应用潜力。
纳米二氧化钛研究现状论文导读:综述了纳米TiO2的特性,包括纳米级TiO2常见的三种结构,化学稳定性及热稳定性等方面性质。
重点综述了纳米TiO2常见制备方法,包括气相法、液相法。
并讨论了液相法和气相法合成纳米级TiO2粉体的优缺点。
关键词:纳米TiO2,气相法,液相法0.前言二十世纪纳米技术兴起并迅速发展,由于纳米材料的独特性质使它在科学技术领域占据重要地位。
我们把粉体粒径小于100nm的粉体称作纳米粉体。
纳米粉体具有宏观块材所没有的奇特性质,如量子尺寸效应,宏观隧道效应等。
这些奇特的性质决定了纳米粉体的广阔运用前景。
纳米粉体中纳米TiO2粉体目前在能源、化工、冶金、半导体材料、光催化材料、太阳能的储存与利用、光化学转换、精细陶瓷等方面得到广泛应用,所以合成纳米TiO2已经成为人们广泛关注的热点。
纳米TiO2的制备方法有气相法、液相法。
此两种方法各有其优缺点。
气相法制备的TiO2纳米粒径小,单分散性好但能耗大,成本较高。
与气相法相比液相法制备纳米TiO2方法简单、易操作、成本低,但制备的TiO2纳米形貌不易控制。
本文综述了近年来制备纳米TiO2的常见方法,客观的分析和评价了各种方法的优缺点。
1.纳米TiO2的性能纳米TiO2有白色和透明状的两种颗粒,常见的TiO2粉体有金红石、锐钛矿、板钛矿等3种晶型。
其中金红石和锐钛矿是四方晶系,板钛矿是正交晶系。
纳米TiO2化学性能稳定,常温下几乎不与其它化合物反应,不溶于水和稀酸,在一定条件下微溶于碱和热硝酸,纳TiO2热稳定性也比较好。
纳米TiO2的一个显著特点是他具有半导体性质,它的禁带宽度较宽,其中锐钛矿为3.2eV,金红石为3.0eV,当吸收一定波长的光子后价带中的电子就会被激发到导带,形成带负电的高活性电子e-,同时在价带上产生带正电的空穴h+。
2. 纳米TiO2的制备方法2.1 气相法2.1.1 气相氢氧焰水解法该法[1]是以精制的氢气、空气、氯化物(TiCl4)蒸气为原料。
目录概述 (3)1总论 (22)1.1编制依据 (22)1.2环境因素识别和评价因子筛选 (26)1.3执行标准 (28)1.4评价等级 (34)1.6评价内容和评价重点 (40)1.7环境保护目标 (40)1.8评价工作程序 (44)2拟建项目概况及工程分析 (46)2.1建设项目概况 (46)2.2工程分析 (71)2.3清洁生产水平分析 (72)2.4主要原辅材料理化性质、毒性毒理 (74)2.5工程污染源分析 (79)2.6污染物排放汇总表 (126)3环境现状调查与评价 (127)3.1自然环境概况 (127)3.2环境保护目标 (132)3.3环境质量现状评价 (133)4环境影响预测与评价 (174)4.1施工期环境影响分析 (174)4.2营运期环境影响预测及评价 (178)5环保措施效果评价 (293)5.1施工期环境保护措施及论证 (293)5.2营运期环境保护措施及论证 (296)6环境经济损益分析 (347)6.1环保费用估算 (347)6.2主要环境经济损益指标分析 (347)6.3环境经济损益分析小结 (348)7环境风险评价 (349)7.1评价原则 (349)7.2评价工作程序 (349)7.3风险调查 (349)7.4环境风险潜势初判 (352)7.5评价工作等级 (357)7.6评价范围 (358)7.7环境风险识别 (358)7.8风险事故情形分析 (362)7.9源项分析 (364)7.10风险预测与评价 (368)7.11环境风险管理 (408)7.12小结 (428)8环境管理与监测计划 (429)8.1环境管理 (429)8.2环境监测计划 (433)9环境影响评价结论 (435)9.1环境影响评价结论 (435)9.2建议 (450)概述1.项目概况及背景安徽钛谷纳米材料有限公司,公司注册于2018年5月,注册资金4亿元。
它是凯盛科技集团联合蚌埠市政府,布局新材料领域的重要企业平台。
纳米二氧化钛项目情况介绍
一、产品作用原理
项目产品为纳米二氧化钛(光触媒),产品具有强大的光催化氧化还原能力、化学性质稳定、无毒、无害。
在光的作用下,纳米二氧化钛(光触媒)可以产生具有极强氧化作用的超氧离子自由基、羟基自由基,能将甲醛、苯、甲苯、二甲
苯等挥发性致癌有机物以及臭气、细菌、病毒等氧化分解成无害的CO
2和H
2
O。
二、产品用途
纳米二氧化钛(光触媒)广泛应用于室内空气净化、污水处理、涂料、化妆品、塑料、纺织品、陶瓷、玻璃、脱腥嗅、消毒杀菌等领域。
例如:在养殖业可用来预防各种动物传播疫病;在纺织业可制作出多种功能纤维,如抗紫外线型、抗菌除臭型、远红外线反射型、拒水防污型等多功能的纺织产品;在油漆领域可制出着色很强的轿车金属闪光面漆和防锈漆;在涂料领域通过添加该产品可制出具有消毒杀菌和空气净化等功能的涂料产品。
三、技术支撑
项目来源:
1.河南省科技攻关项目“太阳能光催化纳米复合材料的合成及净化污水性
能”(0624210001)。
2.河南省重点科技攻关项目“高效可见光光电转换材料组装太阳能电池”
(07210220001)。
项目发明专利:
1.纳米掺杂二氧化钛光催化剂的制备方法(ZL 200410060567.4)。
2.高效可见光催化剂及光电转化和发光材料TiOxNyCz的制备方法
(ZL 200610107259.1)。
技术鉴定成果:
1. 《纳米二氧化钛光催化剂的简单制备方法》2005.9
2. 《可见光光电催化材料的制备》2009.5
3. 《光催化处理污水技术》2009.5
四、产品特性
1. 产品为白色粉末,自身无毒、无害、无腐蚀性、可反复使用。
2. 产品粒径在5-30nm之间,产品粒径大小可以控制。
3. 产品的光利用效率大幅度提高,在可见光的作用下,即可有效地氧化分解有害物质,杀灭细菌、病毒和除臭。
用于居室、医院、禽畜养殖场的空气净化。
五、技术优势
1. 四氯化钛,氨水,尿素,甲醇,原料廉价易得。
2. 一步法制备,工艺简单,工序短,节能。
3. 粒径分布均匀可控。
4. 太阳光利用效率高,催化活性高。
5. 适合大规模工业化生产。
无三废。
6. 该项生产技术已获得两项国家发明专利。