江苏省盐城市2015-2016学年八年级数学上册期末检测考试题3
- 格式:doc
- 大小:611.00 KB
- 文档页数:22
2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。
每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。
点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。
BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。
对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。
使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。
2015-2016学年八年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.下列标志中,是轴对称图形的是()A. B. C. D.2.2的算术平方根是()A. B. 2 C.± D.±23.如图,AC=AD,∠C=∠D=90°,那么△ABC与△ABD全等的理由是()A. HL B. SAS C. ASA D. AAS4.等腰三角形的周长为15cm,其中一边长为3cm.则该等腰三角形的底长为()A. 3cm或5cm B. 3cm或7cm C. 3cm D. 5cm5.2013年12月2日,“嫦娥三号”从西昌卫星发射中心发射升空,并于12月14日在月球上成功实施软着陆.月球距离地球平均为384401000米,用四舍五入法取近似值,精确到1000000米,并用科学记数法表示,其结果是()A. 3.84×107米 B. 3.8×107米 C. 3.84×108米 D. 3.8×108米6.一次函数y=kx+b,当k<0,b<0时,它的图象大致为()A. B. C. D.7.正三角形ABC中,BD=CE,AD与BE交于点P,∠APE的度数为()A. 45° B. 55° C. 60° D. 75°8.(3分)(2013•德州)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A.(1,4) B.(5,0) C.(6,4) D.(8,3)二、填空题(共10小题,每小题3分,满分30分)9.点A(2,﹣3)关于x轴的对称点A′的坐标是.10.为了了解某商品促销广告中所称中奖的真实性,某人买了100件该商品调查其中奖率,那么他采用的调查方式是.11.将直线y=2x﹣1的图象向上平移3个单位长度所得的函数表达式.12.如图,将Rt△ABC沿AC所在的直线向右平移3个长度单位得到△DEF,已知AC=5,则DC= .13.如图,在Rt△ABC中,∠C=90°,D为AC上的一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是.14.如图,在等腰三角形纸片ABC中,AB=AC,∠A=40°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE= °.15.写出同时具备下列两个条件的一次函数关系式.(写出一个即可)(1)y随x的增大而减小;(2)图象经过点(1,﹣2).16.如图,点O是△ABC的两条角平分线的交点,若∠A=80°,则∠BOC的大小是.17.如图是一等腰三角形状的铁皮△ABC,BC为底边,尺寸如图,单位:cm,根据所给的条件,则该铁皮的面积为.18.如图①,在正方形ABCD中,点P沿边DA从点D开始向点A以1cm/s的速度移动;同时,点Q沿边AB、BC从点A开始向点C以2cm/s的速度移动.当点P移动到点A时,P、Q同时停止移动.设点P出发xs时,△PAQ的面积为ycm2,y与x的函数图象如图②,则线段EF 所在的直线对应的函数关系式为.三、解答题(共10小题,满分86分)19.计算:+﹣(2+)0﹣|﹣|20.解方程;2x2﹣32=0.21.已知:y与x+2成正比例,且x=1时,y=3,(1)写出y与x之间的函数关系式;(2)计算y=4时,x的值.22.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连结AE,求证:BD=AE.23.某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)①样本中D级学生有人,并补齐条形统计图;②扇形统计图中A级所在的扇形的圆心角度数是;③若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数约为人.24.某校有一空地ABCD,如图所示,现计划在空地上中草皮,经测量,∠B=90°,AB=3m,BC=4m,AD=12m,CD=13m,若种植1平方米草皮需要200元,问总共需要投入多少元?25.△ABC在方格纸中的位置如图所示,方格纸中的每个小正方形的边长为1个单位,(1)△A1B1C1与△ABC关于y轴对称,请你在图中画出△A1B1C1;(2)将△ABC向下平移8个单位后得到△A2B2C2,请你在图中画出△A2B2C2;请分别写出A2、B2、C2的坐标.(3)求△ABC的面积.26.如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标.27.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D不与点B、C 重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠BAD= °,∠EDC= °,∠DEC= °;点D从B向C的运动过程中,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由.28.如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x轴以及y=x+1的图象分别交于点C、D,且点D的坐标为(1,n),(1)点A的坐标是,n= ,k= ,b= ;(2)x取何值时,函数y=kx+b的函数值大于函数y=x+1的函数值;(3)求四边形AOCD的面积;(4)是否存在y轴上的点P,使得以点P,B,D为顶点的三角形是等腰三角形?若存在求出点P的坐标;若不存在,请说明理由.2015-2016学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.下列标志中,是轴对称图形的是()A. B. C. D.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、不是轴对称图形,故错误;B、是轴对称图形,故正确;C、不是轴对称图形,故错误;D、不是轴对称图形,故错误.故选B.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.2的算术平方根是()A. B. 2 C.± D.±2考点:算术平方根.分析:根据平方与开平方互为逆运算,可得一个数的算术平方根.解答:解:,2的算术平方根是,故选:A.点评:本题考查了算术平方根,注意一个正数的算术平方根只有一个.3.如图,AC=AD,∠C=∠D=90°,那么△ABC与△ABD全等的理由是()A. HL B. SAS C. ASA D. AAS考点:全等三角形的判定.分析:根据直角三角形全等的判定定理HL推出即可.解答:解:∵∠C=∠D=90°,∴在Rt△ABC和Rt△ABD中∴Rt△ABC≌Rt△ABD(HL),故选A.点评:本题考查了对全等三角形的判定定理的应用,主要考查学生的理解能力和推理能力,注意:直角三角形全等的判定定理有S AS,ASA,AAS,SSS,HL.4.等腰三角形的周长为15cm,其中一边长为3cm.则该等腰三角形的底长为()A. 3cm或5cm B. 3cm或7cm C. 3cm D. 5cm考点:等腰三角形的性质;三角形三边关系.分析:已知的边可能是腰,也可能是底边,应分两种情况进行讨论.解答:解:当腰是3cm时,则另两边是3cm,9cm.而3+3<9,不满足三边关系定理,因而应舍去.当底边是3cm时,另两边长是6cm,6cm.则该等腰三角形的底边为3cm.故选:C.点评:本题从边的方面考查三角形,涉及分类讨论的思想方法.5.2013年12月2日,“嫦娥三号”从西昌卫星发射中心发射升空,并于12月14日在月球上成功实施软着陆.月球距离地球平均为384401000米,用四舍五入法取近似值,精确到1000000米,并用科学记数法表示,其结果是()A. 3.84×107米 B. 3.8×107米 C. 3.84×108米 D. 3.8×108米考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:384401000米=3.84×108米.故选:C.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.一次函数y=kx+b,当k<0,b<0时,它的图象大致为()A. B. C. D.考点:一次函数图象与系数的关系.专题:数形结合.分析:直接根据一次函数与系数的关系进行判断.解答:解:∵k<0,b<0,∴一次函数图象在二、三、四象限.故选B.点评:本题考查了一次函数与系数的关系:由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.7.正三角形ABC中,BD=CE,AD与BE交于点P,∠APE的度数为()A. 45° B. 55° C. 60° D. 75°考点:全等三角形的判定与性质;等边三角形的性质.分析:根据条件三角形ABC是正三角形可得:AB=BC,BD=CE,∠ABD=∠C可以判定△ABD≌△BCE,即可得到∠BAD=∠CBE,又知∠APE=∠ABP+∠BAP,故知∠APE=∠ABP+∠CBE=∠B.解答:解:∵△ABC是等边三角形,∴AB=BC,∠ABD=∠C=60°,在△ABD和△BCE中,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠APE=∠ABP+∠BAP,∴∠APE=∠ABP+∠CBE=∠B=60°,故选C.点评:本题主要考查等边三角形的性质和全等三角形的判定与性质的知识点,解答本题的关键是能看出∠APE=∠ABP+∠BAP,还要熟练掌握三角形全等的判定与性质定理.8.(3分)(2013•德州)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A.(1,4) B.(5,0) C.(6,4) D.(8,3)考点:规律型:点的坐标.专题:压轴题;规律型.分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2013除以6,根据商和余数的情况确定所对应的点的坐标即可.解答:解:如图,经过6次反弹后动点回到出发点(0,3),∵2013÷6=335…3,∴当点P第2013次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选:D.点评:本题考查了对点的坐标的规律变化的认识,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.二、填空题(共10小题,每小题3分,满分30分)9.点A(2,﹣3)关于x轴的对称点A′的坐标是(2,3).考点:关于x轴、y轴对称的点的坐标.分析:直接利用关于x轴对称点的性质,得出点A′的坐标.解答:解:点A(2,﹣3)关于x轴的对称点A′的坐标是:(2,3).故答案为:(2,3).点评:此题主要考查了关于x轴对称点的性质,正确把握横纵坐标关系是解题关键.10.为了了解某商品促销广告中所称中奖的真实性,某人买了100件该商品调查其中奖率,那么他采用的调查方式是抽样调查.考点:全面调查与抽样调查.分析:根据抽样调查的定义可直接得到答案.解答:解:为了了解某商品促销广告中所称中奖的真实性,某人买了100件该商品调查其中奖率,那么他采用的调查方式是抽样调查,故答案为:抽样调查.点评:此题主要考查了抽样调查的定义,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,这种调查方式叫抽样调查.11.将直线y=2x﹣1的图象向上平移3个单位长度所得的函数表达式y=2x+2 .考点:一次函数图象与几何变换.分析:根据“上加下减”的原则进行解答即可.解答:解:由“上加下减”的原则可知,将函数y=2x﹣1的图象向上平移3个单位所得函数的解析式为y=2x﹣1+3,即y=2x+2.故答案为:y=2x+2.点评:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.12.如图,将Rt△ABC沿AC所在的直线向右平移3个长度单位得到△DEF,已知AC=5,则DC= 2 .考点:平移的性质.分析:根据平移的性质得AD=3,然后利用CD=AC﹣AD进行计算即可.解答:解:∵将Rt△ABC沿AC所在的直线向右平移3个长度单位得到△DEF,∴AD=3,∴CD=AC﹣AD=5﹣3=2.故答案为2.点评:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.13.如图,在Rt△ABC中,∠C=90°,D为AC上的一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是 3 .考点:勾股定理.分析:根据Rt△ABC中,∠C=90°可知BC是△DAB的高,然后利用三角形面积公式求出BC 的长,再利用勾股定理即可求出DC的长.解答:解:∵在Rt△ABC中,∠C=90°,∴BC⊥AC,即BC是△DAB的高,∵△DAB的面积为10,DA=5,∴DA•BC=10,∴BC=4,∴CD===3.故答案为:3.点评:本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.14.如图,在等腰三角形纸片ABC中,AB=AC,∠A=40°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE= 30 °.考点:翻折变换(折叠问题).分析:首先运用等腰三角形的性质求出∠ABC的大小;借助翻折变换的性质求出∠ABE的大小问题即可解决.解答:解:∵AB=AC,且∠A=40°,∴∠ABC=∠C=;由题意得:AE=BE,∴∠A=∠ABE=40°,∴∠CBE=70°﹣40°=30°,故答案为:30.点评:该命题主要考查了翻折变换的性质及其应用问题;解题的关键是根据翻折变换的性质找出图中相等的边或角,利用等腰三角形的性质等几何知识来分析、判断、解答.15.写出同时具备下列两个条件的一次函数关系式y=﹣x﹣1(答案不唯一).(写出一个即可)(1)y随x的增大而减小;(2)图象经过点(1,﹣2).考点:一次函数的性质.专题:开放型.分析:设该一次函数为y=kx+b(k≠0),再根据y随x的增大而减小;图象经过点(1,﹣2)确定出k的符号及k与b的关系,写出符合条件的函数解析式即可.解答:解:该一次函数为y=kx+b(k≠0),∵y随x的增大而减小;图象经过点(1,﹣2),∴k<0,k+b=﹣2,∴答案可以为y=﹣x﹣1.故答案为:y=﹣x﹣1(答案不唯一).点评:本题考查的是一次函数的性质,先根据题意判断出k的符号及k与b的关系是解答此题的关键.16.如图,点O是△ABC的两条角平分线的交点,若∠A=80°,则∠BOC的大小是130°.考点:三角形内角和定理.分析:先根据三角形内角和定理得出∠ABC+∠ACB的度数,再由角平分线的定义得出∠1=∠2,∠3=∠4,再根据三角形内角和定理求出∠2+∠4的度数,进而可得出∠BOC的度解答:解:∵△ABC中,∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣80°=100°,∵OB、OC分别是∠ABC、∠ACB的平分线,∴∠1=∠2=∠ABC,∠3=∠4=∠ACB,∴∠2+∠4=(∠ABC+∠ACB)=×100°=50°,∴∠BOC=180°﹣(∠2+∠4)=180°﹣50°=130°.故答案为:130°.点评:本题考查的是三角形内角和定理及角平分线的性质,熟知三角形的内角和为180°是解答此题的关键.17.如图是一等腰三角形状的铁皮△ABC,BC为底边,尺寸如图,单位:cm,根据所给的条件,则该铁皮的面积为60c m2.考点:勾股定理的应用.分析:作AD⊥BC于D.结合等腰三角形的三线合一的性质和勾股定理即可得AD,进而求出该铁皮的面积.解答:解:作AD⊥BC于D.∵AB=AC,∴BD=CD=5,∴AD==12,∴×AD•BD=×10×12=60cm2,故答案为:60cm2点评:此题综合运用了勾股定理和等腰三角形的性质.等腰三角形底边上的高也是底边上的中线.18.如图①,在正方形ABCD中,点P沿边DA从点D开始向点A以1cm/s的速度移动;同时,点Q沿边AB、BC从点A开始向点C以2cm/s的速度移动.当点P移动到点A时,P、Q同时停止移动.设点P出发xs时,△PAQ的面积为ycm2,y与x的函数图象如图②,则线段EF 所在的直线对应的函数关系式为y=﹣3x+18 .考点:动点问题的函数图象.专题:压轴题;动点型.分析:根据从图②可以看出当Q点到B点时的面积为9,求出正方形的边长,再利用三角形的面积公式得出EF所在的直线对应的函数关系式.解答:解:∵点P沿边DA从点D开始向点A以1cm/s的速度移动;点Q沿边AB、BC从点A开始向点C以2cm/s的速度移动.∴当Q到达B点,P在AD的中点时,△PAQ的面积最大是9cm2,设正方形的边长为acm,∴×a×a=9,解得a=6,即正方形的边长为6,当Q点在BC上时,AP=6﹣x,△APQ的高为AB,∴y=(6﹣x)×6,即y=﹣3x+18.故答案为:y=﹣3x+18.点评:本题主要考查了动点函数的图象,解决本题的关键是求出正方形的边长.三、解答题(共10小题,满分86分)19.计算:+﹣(2+)0﹣|﹣|考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用平方根定义计算,第二项利用立方根定义计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简即可得到结果.解答:解:原式=3﹣2﹣1﹣=﹣.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.解方程;2x2﹣32=0.考点:平方根.专题:计算题.分析:方程整理后,利用平方根定义开方即可求出解.解答:解:方程整理得:x2=16,开方得:x1=6,x2=﹣6.点评:此题考查了平方根,熟练掌握平方根的定义是解本题的关键.21.已知:y与x+2成正比例,且x=1时,y=3,(1)写出y与x之间的函数关系式;(2)计算y=4时,x的值.考点:待定系数法求一次函数解析式.分析:(1)根据正比例函数的定义设y=k(x+2),然后把已知的一组对应值代入可求出k 的值,从而得到y与x的函数关系式;(2)利用(1)的函数关系式,计算函数值为4时所对应的自变量的值.解答:解:(1)设y=k(x+2),把x=1,y=3代入得k×(1+2)=3,解得k=1,所以y与x之间的函数关系式为y=x+2;(2)当y=4时,x+2=4,解得x=2.点评:本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.22.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连结AE,求证:BD=AE.考点:全等三角形的判定与性质;等边三角形的性质.专题:证明题.分析:根据等边三角形性质推出BC=AC,CD=CE,∠ABC=∠BC A=∠ECD=60°,求出∠BCD=∠ACE,根据SAS证△ACE≌△BCD,即可证明BD=AE.解答:证明:∵△ABC和△DEC是等边三角形,∴BC=AC,CD=CE,∠ABC=∠BCA=∠ECD=60°,∴∠BCA﹣∠DCA=∠ECD﹣∠DCA,即∠BCD=∠ACE,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴BD=AE.点评:本题考查了等边三角形性质,全等三角形的判定和性质,关键是证明△ACE≌△BCD 是解题的关键.23.某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)①样本中D级学生有 5 人,并补齐条形统计图;②扇形统计图中A级所在的扇形的圆心角度数是72°;③若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数约为330 人.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)利用学生总数=A类的学生数÷对应的百分比求解即可,(2)利用A级所在的扇形的圆心角度数=A级的百分比×360°求解即可,(3)利用全校学生总数×A级和B级的百分比=A级和B级的学生人数求解即可.解答:解:(1)学生总数为:10÷20%=50人,D级学生有50﹣10﹣23﹣12=5人,如图故答案为:5.(2)扇形统计图中A级所在的扇形的圆心角度数=20%×360°=72°.故答案为:72°.(3)用此样本估计体育测试中A级和B级的学生人数约为500×=330人.故答案为:330.点评:本题主要考查了条形统计图,扇形统计图及用样本估算总体,解题的关键是读懂统计图,从不同的统计图中得到必要的信息.24.某校有一空地ABCD,如图所示,现计划在空地上中草皮,经测量,∠B=90°,AB=3m,BC=4m,AD=12m,CD=13m,若种植1平方米草皮需要200元,问总共需要投入多少元?考点:勾股定理的逆定理;勾股定理.分析:仔细分析题目,需要求得四边形的面积才能求得结果.在直角三角形ABC中可求得AC的长,由AC、AD、DC的长度关系可得三角形DAC为一直角三角形,DA为斜边;由此看,四边形ABCD由Rt△ABC和Rt△DAC构成,则容易求解.解答:解:在Rt△ABC中,∵AC2=AB2+BC2=32+42=52,∴AC=5.在△CAD中,CD2=132,AD2=122,AC2=52而122+52=132,即AC2+AD2=CD2,∴∠DCA=90°,∴S四边形ABCD=S△BAC+S△DAC=•BC•AB+DC•AC,=×4×3+×12×5=36.所以需费用36×200=7200(元).点评:本题考查了勾股定理及其逆定理的相关知识,通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单.25.△ABC在方格纸中的位置如图所示,方格纸中的每个小正方形的边长为1个单位,(1)△A1B1C1与△ABC关于y轴对称,请你在图中画出△A1B1C1;(2)将△ABC向下平移8个单位后得到△A2B2C2,请你在图中画出△A2B2C2;请分别写出A2、B2、C2的坐标.(3)求△ABC的面积.考点:作图-轴对称变换;作图-平移变换.分析:(1)根据关于y轴对称的点的坐标特点画出△A1B1C1即可;(2)根据图形平移得性质画出△A2B2C2即可;(3)利用矩形的面积减去三个角上三角形的面积即可.解答:解:(1)如图所示;(2)如图所示;(3)S△ABC=5×6﹣×3×6﹣×3×5﹣×2×3=30﹣9﹣﹣3=.点评:本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.26.如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标.考点:翻折变换(折叠问题);坐标与图形性质.分析:先根据勾股定理求出BE的长,进而可得出CE的长,求出E点坐标,在Rt△DCE中,由DE=OD及勾股定理可求出OD的长,进而得出D点坐标.解答:解:依题意可知,折痕AD是四边形OAED的对称轴,∴在Rt△ABE中,AE=AO=10,AB=8,BE===6,∴CE=4,∴E(4,8).在Rt△DCE中,DC2+CE2=DE2,又∵DE=OD,∴(8﹣OD)2+42=OD2,∴OD=5,∴D(0,5),综上D点坐标为(0,5)、E点坐标为(4,8).点评:本题主要考查了翻折变换、勾股定理等知识点,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.27.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D不与点B、C 重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠BAD= 25 °,∠EDC= 25 °,∠DEC= 115 °;点D从B 向C的运动过程中,∠BDA逐渐变小(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由.考点:全等三角形的判定;等腰三角形的性质.专题:动点型.分析:(1)利用邻补角的性质和三角形内角和定理解题;(2)当DC=2时,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE解答:解:(1)∵在△BAD中,∠B=∠C=∠40°,∠BDA=115°,∴∠BAD=180°﹣∠B﹣∠BDA=180°﹣40°﹣115°=25°;∠EDC=180°﹣∠ADB﹣∠ADE=180°﹣115°﹣40°=25°.∠DEC=180°﹣∠C﹣∠EDC=180°﹣40°﹣25°=115°,故答案为:25,25,115,小;(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,∴△ABD≌△DCE(AAS),即当DC=2时,△ABD≌△DCE.点评:本题考查了等腰三角形的性质,全等三角形的性质和判定,三角形的外角性质等知识点的应用,此题用到的知识比较多,综合性比较强,难度不是很大.28.如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x轴以及y=x+1的图象分别交于点C、D,且点D的坐标为(1,n),(1)点A的坐标是(0,1),n= 2 ,k= 3 ,b= ﹣1 ;(2)x取何值时,函数y=kx+b的函数值大于函数y=x+1的函数值;(3)求四边形AOCD的面积;(4)是否存在y轴上的点P,使得以点P,B,D为顶点的三角形是等腰三角形?若存在求出点P的坐标;若不存在,请说明理由.考点:一次函数综合题.分析:(1)由函数y=x+1的图象与y轴交于点A,可求点A的坐标,由y=x+1的图象过点D,且点D的坐标为(1,n),可得D的坐标,由一次函数y=kx+b的图象经过点B(0,﹣1)与D(1,2),即可求出k,b的值.(2)根据图象即可得出答案;(3)先求出点D的坐标,再求出BD的解析式,然后根据S四边形AOCD=S△AOD+S△COD即可求解;(4)分三种情况讨论:①当DP=DB时,②当BP=DB时,③当PB=PD时分别求解.解答:解:(1)∵函数y=x+1的图象与y轴交于点A,∴令x=0时,y=0+1,解得y=1,∴A(0,1),∵y=x+1的图象过点D,且点D的坐标为(1,n),∴n=1+1=2,∴D(1,2),∵一次函数y=kx+b的图象经过点B(0,﹣1)与D(1,2),∴解得,∴一次函数的表达式为y=3x﹣1故答案为:(0,1),2,3,﹣1.(2)由一次函数图象可得当x>1时,函数y=kx+b的函数值大于函数y=x+1的函数值;(3)∵D(1,2),∴直线BD的解析式为y=3x﹣1,∴A(0,1),C(,0)∴S四边形AOCD=S△AOD+S△COD=×1×1+××2=(4)①当DP=DB时,设P(0,y),∵B(0,﹣1),D(1,2),∴DP2=12+(y﹣2)2=DB2=12+(2+1)2,∴P(0,5);②当BP=DB时,DB=,∴P(0,﹣1﹣)或P(0,﹣1);③当PB=PD时,设P(0,a),则(a+1)2=1+(2﹣a)2,解得a=,∴P(0,).综上所述点P的坐标为(0,5),(0,﹣1﹣),P(0,﹣1)或(0,).点评:本题考查了一次函数综合知识,难度适中,解题的关键是掌握分类讨论思想的运用.。
2015-2016学年八年级上学期期末考试数学试题2016.1.8 一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.将具有下列长度的三条线段首尾顺次相连,能组成直角三角形的是( ) A.1,2,3 B.5,12,13 C.4,5,7 D.9,10,112.在实数722-、0、3-、506、π、..101.0中,无理数的个数是 ( ) A.2个 B.3个 C.4个 D.5个3.4的平方根是( )A . 4B .-4C . 2D . ±2 4.下列平方根中, 已经化简的是( )A. 31B. 20C. 22D. 1215.在平行四边形、菱形、矩形、正方形、圆中,既是中心对称图形又是轴对称图形的图形个数为 ( )A.1B.2C.3D.46. 点P (-1,2)关于y 轴对称的点的坐标为 ( ) A.(1,-2) B.(-1,-2) C.(1,2) D.(2,1)7. 矩形具有而菱形不一定具有的性质是 ( ) A. 对角线互相平分 B.对角线相等 C. 四条边都相等 D. 对角线互相垂直8.下列说法正确的是 ( )A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.平移和旋转的共同点是改变图形的位置C.图形可以向某个方向平移一定距离,也可以向某方向旋转一定距离D. 经过旋转,对应角相等,对应线段一定相等且平行9. 鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的 ( ) A.平均数 B.众数 C.中位数 D.众数或中位数10. 一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是( )A. B. C. D.二、填空题(每小题3分,共30分)11.在Rt △ABC 中,∠C=90°a=3,b=4,则c= 。
12.一个菱形的两条对角线长分别是6㎝和8㎝,则菱形的面积等于 13.在ABCD 中,若AB=3cm ,BC=4cm ,则ABCD 的周长为。
2015-2016学年江苏省盐城市滨海县八年级(上)期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列四个图案,其中是轴对称图形的是()A.B.C.D.2.(3分)在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列四组线段中,可以构成直角三角形的是()A.3,5,6 B.2,3,4 C.1,,2 D.3,4,4.(3分)如图,∠C=∠D=90°,AC=AD,那么△ABC与△ABD全等的理由是()A.HL B.SAS C.ASA D.AAS5.(3分)在,﹣,,这四个数中,无理数有()A.1个 B.2个 C.3个 D.4个6.(3分)已知地球上海洋面积约为361000000km2,361000000用科学记数法可以表示为()A.36.1×107B.3.61×107C.3.61×108D.3.61×1097.(3分)在平面直角坐标系中,把直线y=2x﹣3沿y轴向上平移2个单位后,得到的直线的函数表达式为()A.y=2x+2 B.y=2x﹣5 C.y=2x+1 D.y=2x﹣18.(3分)在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是()A.甲的速度随时间的增加而增大B.乙的平均速度比甲的平均速度大C.在起跑后第180秒时,两人相遇D.在起跑后第50秒时,乙在甲的前面二、填空题(本大题共10小题,每小题3分,共30分)9.(3分)9的算术平方根是.10.(3分)P(﹣3,2)关于x轴对称的点的坐标是.11.(3分)已知△ABC≌△DEF,若∠B=40°,∠D=30°,则∠F=°.12.(3分)如图,在△ABC中,∠B=40°,BC边的垂直平分线交BC于D,交AB 于E,若CE平分∠ACB,则∠A=°.13.(3分)已知△ABC的三边长分别为5、12、13,则最长边上的中线长为.14.(3分)已知一次函数y=2x+b﹣1,b=时,函数图象经过原点.15.(3分)已知点A(3,y1)、B(2,y2)在一次函数y=﹣x+3的图象上,则y1,y2的大小关系是y1y2.(填>、=或<)16.(3分)直线y=x+6与x轴、y轴围成的三角形面积为(平方单位).17.(3分)如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P(4,﹣6),则二元一次方程组的解是.18.(3分)如图,△AOB是等腰三角形,OA=OB,点B在x轴的正半轴上,点A 的坐标是(1,1),则点B的坐标是.三、解答题(本大题共10小题,共96分)19.(8分)(1)计算:﹣(1+)0+(2)求x的值:(x+4)3=﹣64.20.(8分)如图:点C,D在AB上,且AC=BD,AE=FB,DE=FC.求证:△ADE ≌△BCF.21.(8分)如图,AC=AD,线段AB经过线段CD的中点E,求证:BC=BD.22.(8分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可).23.(10分)如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯子的顶端A到墙底端C的距离为2.4米,如果梯子的底端B沿CB向外平移0.8米至B1,求梯子顶端A沿墙下滑的距离AA1的长度.24.(10分)已知一次函数y1=kx+b与函数y=﹣2x的图象平行,且与x轴的交点A的横坐标为2.(1)求一次函数y1=kx+b的表达式;(2)在给定的网格中,画出函数一次函数y2=x+1的图象,并求出一次函数y1=kx+b 与y=x+1图象的交点坐标;(3)根据图象直接写出,当x取何值时,y1>y2.25.(10分)如图,△ABC是等边三角形,点D、E分别是BC、CA延长线上的点,且CD=AE,DA的延长线交BE于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.26.(10分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个,已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设每天生产A种购物袋x个,该工厂每天共需成本y元,共获利w元.(1)求出y与x的函数表达式;(2)求出w与x的函数表达式;(3)如果该厂每天最多投入成本10000元,那么每天最多获利多少元?27.(12分)为促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中的折线反映了每户居民每月用电电费y(单位:元)与用电量x(单位:度)间的函数关系.(1)根据图象,阶梯电价方案分为三个档次,请填写下表:(2)小明家某月用电70度,需交电费元;(3)求第二档每月电费y(元)与用电量x(单位:度)之间的函数表达式;(4)在每月用电量超过230度时,每度电比第二档多m元,小刚家某月用电290度,缴纳电费153元,求m的值.28.(12分)如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A(0,4),交x轴于点B.(1)求直线AB的表达式和点B的坐标;(2)直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上一动点,且在点D的上方,设点P的纵坐标为n.①用含n的代数式表示△ABP的面积;=8时,求点P的坐标;②当S△ABP③在②的条件下,以PB为斜边在第一象限作等腰直角△PBC,求点C的坐标.2015-2016学年江苏省盐城市滨海县八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2015秋•滨海县期末)下列四个图案,其中是轴对称图形的是()A.B.C.D.【分析】根据轴对称的定义结合各选项的特点即可得出答案.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误;故选:C.【点评】本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)(2011•德宏州)在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】横坐标小于0,纵坐标大于0,则这点在第二象限.【解答】解:∵﹣2<0,3>0,∴(﹣2,3)在第二象限,故选B.【点评】本题考查了点的坐标,个象限内坐标的符号:第一象限:+,+;第二象限:﹣,+;第三象限:﹣,﹣;第四象限:+,﹣;是基础知识要熟练掌握.3.(3分)(2015秋•滨海县期末)下列四组线段中,可以构成直角三角形的是()A.3,5,6 B.2,3,4 C.1,,2 D.3,4,【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、32+52≠62,不能构成直角三角形,故不符合题意;B、22+32≠42,不能构成直角三角形,故不符合题意;C、12+()2=22,能构成直角三角形,故符合题意;D、32+42≠()2,不能构成直角三角形,故不符合题意.故选C.【点评】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.(3分)(2015秋•滨海县期末)如图,∠C=∠D=90°,AC=AD,那么△ABC与△ABD全等的理由是()A.HL B.SAS C.ASA D.AAS【分析】已知∠C=∠D=90°,AC=AD,且公共边AB=AB,故△ABC与△ABD全等【解答】解:在Rt△ABC与Rt△ABD中,∴Rt△ABC≌Rt△ABD(HL)故选(A)【点评】本题考查全等三角形的判定,解题的关键是注意AB是两个三角形的公共边,本题属于基础题型.5.(3分)(2015秋•滨海县期末)在,﹣,,这四个数中,无理数有()A.1个 B.2个 C.3个 D.4个【分析】根据无理数的定义,可得答案.【解答】解:﹣,是无理数,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.6.(3分)(2015秋•滨海县期末)已知地球上海洋面积约为361000000km2,361000000用科学记数法可以表示为()A.36.1×107B.3.61×107C.3.61×108D.3.61×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将361000000用科学记数法表示为3.61×108.故选C【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(3分)(2015秋•滨海县期末)在平面直角坐标系中,把直线y=2x﹣3沿y轴向上平移2个单位后,得到的直线的函数表达式为()A.y=2x+2 B.y=2x﹣5 C.y=2x+1 D.y=2x﹣1【分析】根据平移法则上加下减可得出平移后的解析式.【解答】解:由题意得:平移后的解析式为:y=2x﹣3+2,即y=2x﹣1.故选D.【点评】本题考查一次函数图象与几何变换,掌握平移法则“左加右减,上加下减”是解题的关键.8.(3分)(2015•荆门)在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是()A.甲的速度随时间的增加而增大B.乙的平均速度比甲的平均速度大C.在起跑后第180秒时,两人相遇D.在起跑后第50秒时,乙在甲的前面【分析】A、由于线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,由此可以确定甲的速度是没有变化的;B、甲比乙先到,由此可以确定甲的平均速度比乙的平均速度快;C、根据图象可以知道起跑后180秒时,两人的路程确定是否相遇;D、根据图象知道起跑后50秒时OB在OA的上面,由此可以确定乙是否在甲的前面.【解答】解:A、∵线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴甲的速度是没有变化的,故选项错误;B、∵甲比乙先到,∴乙的平均速度比甲的平均速度慢,故选项错误;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故选项错误;D、∵起跑后50秒时OB在OA的上面,∴乙是在甲的前面,故选项正确.故选D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.二、填空题(本大题共10小题,每小题3分,共30分)9.(3分)(2016•广东)9的算术平方根是3.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.10.(3分)(2016秋•鄞州区期末)P(﹣3,2)关于x轴对称的点的坐标是(﹣3,﹣2).【分析】根据点P(m,n)关于x轴对称点的坐标P′(m,﹣n),然后将题目所给点的坐标代入即可求得解.【解答】解:根据轴对称的性质,得点P(﹣3,2)关于x轴对称的点的坐标为(﹣3,﹣2).故答案为:(﹣3,﹣2).【点评】本题考查平面直角坐标系点的对称性质,属于基础题,难度不大,解决本题的关键是掌握好对称点的坐标规律.11.(3分)(2015秋•滨海县期末)已知△ABC≌△DEF,若∠B=40°,∠D=30°,则∠F=110°.【分析】先根据全等三角形的性质得到∠E=∠B=40°,然后根据三角形内角和求∠F的度数.【解答】解:∵△ABC≌△DEF,∴∠E=∠B=40°,∴∠F=180°﹣∠E﹣∠D=180°﹣40°﹣30°=110°.故答案为110.【点评】本题考查了全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等.12.(3分)(2015秋•滨海县期末)如图,在△ABC中,∠B=40°,BC边的垂直平分线交BC于D,交AB于E,若CE平分∠ACB,则∠A=60°.【分析】由线段垂直平分线和角平分线的定义可得∠B=∠ECB=∠ACE=40°,在△ABC中由三角形内角和定理可求得∠A.【解答】解:∵E在线段BC的垂直平分线上,∴BE=CE,∴∠ECB=∠B=40°,∵CE平分∠ACB,∴∠ACD=2∠ECB=80°,又∵∠A+∠B+∠ACB=180°,∴∠A=180°﹣∠B﹣∠ACB=60°,故答案为:60.【点评】本题主要考查线段垂直平分线的性质,掌握垂直平分线上的点到线段两端点的距离相等是解题的关键.13.(3分)(2015秋•滨海县期末)已知△ABC的三边长分别为5、12、13,则最长边上的中线长为.【分析】先根据勾股定理的逆定理判断出△ABC的形状,再由直角三角形的性质即可得出结论.【解答】解:∵△ABC的三边长分别为5、12、13,52+122=132,∴△ABC是直角三角形,∴最长边上的中线长=.故答案为:.【点评】本题考查的是直角三角形斜边上的中线,熟知在直角三角形中,斜边上的中线等于斜边的一半是解答此题的关键.14.(3分)(2015秋•滨海县期末)已知一次函数y=2x+b﹣1,b=1时,函数图象经过原点.【分析】直接把原点坐标(0,0)代入一次函数y=2x+b﹣1求出b的值即可.【解答】解:∵一次函数y=2x+b﹣1的图象过原点,∴0=b﹣1,解得b=1.故答案为:1.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.(3分)(2015秋•滨海县期末)已知点A(3,y1)、B(2,y2)在一次函数y=﹣x+3的图象上,则y1,y2的大小关系是y1<y2.(填>、=或<)【分析】首先判断一次函数一次项系数为负,然后根据一次函数的性质当k<0,y随x的增大而减小即可作出判断.【解答】解:∵一次函数y=﹣x+3中k=﹣<0,∴y随x增大而减小,∵3>2,∴y1<y2.故答案为<.【点评】本题主要考查了一次函数图象上点的坐标特征的知识,解答本题要掌握一次函数的性质当k<0,y随x的增大而减小,此题难度不大.16.(3分)(2015秋•滨海县期末)直线y=x+6与x轴、y轴围成的三角形面积为18(平方单位).【分析】分别求出直线与x轴、y轴的交点坐标,再根据直角三角形的面积公式求解即可.注意线段的长度是正数.【解答】解:因为直线y=x+6中,﹣=﹣=﹣6,∴b=6,设直线与x轴、y轴的交点坐标分别为A(﹣6,0),B(0,6),=×|﹣6|×6=×6×6=18,∴S△AOB故直线y=x+6与x轴、y轴围成的三角形面积为18.【点评】求出直线与坐标轴的交点,把求线段的长的问题转化为求函数的交点的问题.17.(3分)(2015秋•滨海县期末)如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P(4,﹣6),则二元一次方程组的解是.【分析】两个一次函数的交点坐标为P(4,﹣6),那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:∵一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P(4,﹣6),∴点P(4,﹣6)满足二元一次方程组;∴方程组的解是.故答案为.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.18.(3分)(2016春•潮南区期末)如图,△AOB是等腰三角形,OA=OB,点B 在x轴的正半轴上,点A的坐标是(1,1),则点B的坐标是(,0).【分析】由勾股定理求出OA,得出OB,即可得出结果.【解答】解:根据勾股定理得:OA==,∴OB=OA=,∴点B的坐标是(,0).故答案为:(,0).【点评】本题考查了勾股定理、等腰三角形的性质、坐标与图形性质;由勾股定理求出OA是解决问题的关键.三、解答题(本大题共10小题,共96分)19.(8分)(2015秋•滨海县期末)(1)计算:﹣(1+)0+(2)求x的值:(x+4)3=﹣64.【分析】(1)分别根据0指数幂的计算法则、数的开方法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)直接把方程两边开立方即可得出结论.【解答】解:(1)原式=﹣2﹣1+2=﹣1;(2)两边开方得,x+4=﹣4解得x=﹣8.【点评】本题考查的是实数的运算,熟知0指数幂的计算法则、数的开方法则是解答此题的关键.20.(8分)(2015秋•滨海县期末)如图:点C,D在AB上,且AC=BD,AE=FB,DE=FC.求证:△ADE≌△BCF.【分析】先依据等式的性质证明AD=BC,然后依据SSS进行证明即可.【解答】证明:∵AC=BD,∴AC+CD=BD+CD,即AD=BC.在△ADE和△BCF中,,∴△ADE≌△BCF.【点评】本题主要考查的是全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.21.(8分)(2015秋•滨海县期末)如图,AC=AD,线段AB经过线段CD的中点E,求证:BC=BD.【分析】根据题意得到AB垂直平分CD,根据线段垂直平分线的性质证明即可.【解答】证明:∵AC=AD,E是CD中点,∴AB垂直平分CD,∴BC=BD.【点评】本题考查的是线段的垂直平分线的判定和性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.22.(8分)(2013•枣庄)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可).【分析】(1)利用网格结构,过点A的竖直线与过点B的水平线相交于点C,连接即可,或过点A的水平线与过点B的竖直线相交于点C,连接即可;(2)根据网格结构,作出BD=AB或AB=AD,连接即可得解.【解答】解:(1)如图1,①、②,画一个即可;(2)如图2,①、②,画一个即可.【点评】本题考查了应用与设计作图,(1)中作直角三角形时根据网格的直角作图即可,比较简单,(2)中根据网格结构作出与AB相等的线段是解题的关键,灵活性较强.23.(10分)(2015秋•滨海县期末)如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯子的顶端A到墙底端C的距离为2.4米,如果梯子的底端B沿CB向外平移0.8米至B1,求梯子顶端A沿墙下滑的距离AA1的长度.【分析】在直角三角形ABC中,已知AB,AC,根据勾股定理即可求BC的长度,根据B1C=B1B+BC即可求得B1C的长度,在直角三角形A1B1C中,已知A1B1=AB,B1C,即可求得A1C的长度,根据AA1=AC﹣A1C即可求得A1A的长度.【解答】解:根据题意,在Rt△ABC中,AB=2.5,AC=2.4,由勾股定理得:BC==0.7,∵BB1=0.8,∴B1C=B1B+BC=1.5.∵在Rt△A1B1C中,A1B1=2.5,B1C=1.5,∴A1C==2,∴A1A=2.4﹣2=0.4.答:那么梯子顶端沿墙下滑的距离为0.4米.【点评】本题考查的是勾股定理的应用及勾股定理在直角三角形中的正确运用,本题中求B1C的长度是解题的关键.24.(10分)(2015秋•滨海县期末)已知一次函数y1=kx+b与函数y=﹣2x的图象平行,且与x轴的交点A的横坐标为2.(1)求一次函数y1=kx+b的表达式;(2)在给定的网格中,画出函数一次函数y2=x+1的图象,并求出一次函数y1=kx+b 与y=x+1图象的交点坐标;(3)根据图象直接写出,当x取何值时,y1>y2.【分析】(1)利用两直线平行的问题得到k=﹣2,再把A点坐标代入y=﹣2x+b 中求出b即可;(2)利用描点法画出直线y=x+1,然后通过解方程组得到一次函数y1=kx+b与y=x+1图象的交点坐标;(3)观察函数图象,写出直线y1=kx+b在直线y=x+1上方所对应的自变量的范围即可.【解答】解:(1)∵一次函数y1=kx+b与y=﹣2x的图象平行且过A(2,0),∴k=﹣2,2k+b=0,∴b=4,∴一次函数的表达式为y1=﹣2x+4;(2)如图,解方程组得,所以一次函数y1=kx+b与y=x+1图象的交点坐标为(1,2);(3)x<1.【点评】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.25.(10分)(2015秋•滨海县期末)如图,△ABC是等边三角形,点D、E分别是BC、CA延长线上的点,且CD=AE,DA的延长线交BE于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.【分析】(1)由△ABC是等边三角形,得到∠BAC=∠ACB=60°,AC=AB,于是得到∠EAB=∠ACD=120°,即可得到结论;(2)由全等三角形的性质得到∠E=∠D,由于∠D+∠CAD=∠ACB=60°,即可得到结论.【解答】(1)证明:∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,AC=AB,∴∠EAB=∠ACD=120°,在△CAD和△ABE中,,∴△ABE≌△CAD;(2)解:∵△ABE≌△CAD,∴∠E=∠D,∵∠D+∠CAD=∠ACB=60°,∴∠AFB=∠E+∠EAF=∠D+∠CAD=60°.【点评】本题考查了全等三角形的判定和性质,等边三角形的性质,三角形外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.26.(10分)(2015秋•滨海县期末)某工厂每天生产A、B两种款式的布制环保购物袋共4500个,已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设每天生产A种购物袋x个,该工厂每天共需成本y元,共获利w元.(1)求出y与x的函数表达式;(2)求出w与x的函数表达式;(3)如果该厂每天最多投入成本10000元,那么每天最多获利多少元?【分析】(1)根据总成本y=A种购物袋x个的成本+B种购物袋x个的成本即可得到答案.(2)根据总利润w=A种购物袋x个的利润+B种购物袋x个的利润即可得到答案.(3)列出不等式,根据函数的增减性解决.【解答】解:(1)根据题意得:y=2x+3(4500﹣x)y=﹣x+13500(2)根据题意得:w=(2.3﹣2)x+(3.5﹣3)(4500﹣x)w=﹣0.2x+2250(3)根据题意得:﹣x+13500≤10000 解得x≥3500元,∵k=﹣0.2<0,∴y随x增大而减小,∴当x=3500时,y=﹣0.2×3500+2250=1550,答:该厂每天至多获利1550元.【点评】本题考查了销售量、成本、售价、利润之间的关系,正确理解这些量之间的关系是解决问题的关键,学会用函数的增减性解决实际问题.27.(12分)(2015秋•滨海县期末)为促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中的折线反映了每户居民每月用电电费y(单位:元)与用电量x(单位:度)间的函数关系.(1)根据图象,阶梯电价方案分为三个档次,请填写下表:(2)小明家某月用电70度,需交电费31.5元;(3)求第二档每月电费y(元)与用电量x(单位:度)之间的函数表达式;(4)在每月用电量超过230度时,每度电比第二档多m元,小刚家某月用电290度,缴纳电费153元,求m的值.【分析】(1)利用函数图象可以得出,阶梯电价方案分为三个档次,利用横坐标可得出:第二档,第三档中x的取值范围;(2)根据第一档范围是:0<x≤140,利用图象上点的坐标得出解析式,进而得出x=70时,求出y的值;(3)设第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=ax+c,将(140,63),(230,108)代入得出即可;(4)分别求出第二、三档每度电的费用,进而得出m的值即可.【解答】解:(1)利用函数图象可以得出,阶梯电价方案分为三个档次,利用横坐标可得出:第二档:140<x≤230,第三档x>230;(2)根据第一档范围是:0<x≤140,根据图象上点的坐标得出:设解析式为:y=kx,将(140,63)代入得出:k==0.45,故y=0.45x,当x=70,y=0.45×70=31.5(元),故答案为:31.5;(3)设第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=ax+c,将(140,63),(230,108)代入得出:,解得:,则第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=x﹣7(140<x≤230);(4)根据图象可得出:用电230度,需要付费108元,用电140度,需要付费63元,故,108﹣63=45(元),230﹣140=90(度),45÷90=0.5(元/度),则第二档电费为0.5元/度;∵小刚家某月用电290度,交电费153元,290﹣230=60(度),153﹣108=45(元),45÷60=0.75(元/度),m=0.75﹣0.5=0.25,答:m的值为0.25.【点评】此题主要考查了一次函数的应用以及待定系数法求一次函数解析式,利用图象获取正确信息是解题关键.28.(12分)(2015秋•滨海县期末)如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A(0,4),交x轴于点B.(1)求直线AB的表达式和点B的坐标;(2)直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上一动点,且在点D的上方,设点P的纵坐标为n.①用含n的代数式表示△ABP的面积;=8时,求点P的坐标;②当S△ABP③在②的条件下,以PB为斜边在第一象限作等腰直角△PBC,求点C的坐标.【分析】(1)把点A的坐标代入直线解析式可求得b=4,则直线的解析式为y=﹣x+4,令y=0可求得x=4,故此可求得点B的坐标;(2)①由题l垂直平分OB可知OE=BE=2,将x=2代入直线AB的解析式可求得=S△APD+S△BPD可得到△APB 点D的坐标,设点P的坐标为(2,n),然后依据S△APB=2n﹣4;的面积与n的函数关系式为S△APB=8得到关于n的方程可求得n的值,从而得到点P的坐标;②由S△ABP③如图1所示,过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C的坐标为(p,q),先证明△PCM≌△CBN,得到CM=BN,PM=CN,然后由CM=BN,PM=CN列出关于p、q的方程组可求得p、q的值;如图2所示,同理可求得点C的坐标.【解答】解:(1)∵把A(0,4)代入y=﹣x+b得b=4∴直线AB的函数表达式为:y=﹣x+4.令y=0得:﹣x+4=0,解得:x=4∴点B的坐标为(4,0).(2)①∵l垂直平分OB,∴OE=BE=2.∵将x=2代入y=﹣x+4得:y=﹣2+4=2.∴点D的坐标为(2,2).∵点P的坐标为(2,n),∴PD=n﹣2.=S△APD+S△BPD,∵S△APB=P D•OE+PD•BE=(n﹣2)×2+(n﹣2)×2=2n﹣4.∴S△ABP=8,②∵S△ABP∴2n﹣4=8,解得:n=6.∴点P的坐标为(2,6).③如图1所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C(p,q).∵△PBC为等腰直角三角形,PB为斜边,∴PC=CB,∠PCM+∠MCB=90°.∵CM⊥l,BN⊥CM,∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.∴∠MPC=∠NCB.在△PCM和△CBN中,,∴△PCM≌△CBN.∴CM=BN,PM=CN.∴,解得.∴点C的坐标为(6,4).如图2所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C(p,q).∵△PBC为等腰直角三角形,PB为斜边,∴PC=CB,∠PCM+∠MCB=90°.∵CM⊥l,BN⊥CM,∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.∴∠MPC=∠NCB.在△PCM和△CBN中,,∴△PCM≌△CBN.∴CM=BN,PM=CN.∴,解得.∴点C的坐标为(0,2).综上所述点C的坐标为(6,4)或(0,2).【点评】本题主要考查的是一次函数的综合应用,解答本题主要应用了待定系数法求一次函数的解析式、割补法求面积、三角形的面积公式,全等三角形的性质可判断,由CM=BN,PM=CN列出关于p、q的方程组是解题的关键.。
江苏省盐城市建湖县2015-2016学年八年级数学上学期期末试题一、选择题(共8小题,每小题2分,满分16分)1.下列各数中,没有平方根的是( )A.﹣4 B.0 C.0.25 D.2.下列点中,位于直角坐标系第二象限的点是( )A.(2,1)B.(﹣2,﹣1)C.(﹣2,1)D.(2,﹣1)3.在实数、、﹣3.121221222、、3.14、中,无理数共有( )A.2个B.3个C.4个D.5个4.由四舍五入得到的地球半径约为6.4×103km;精确到( )A.1000 B.100 C.0.1 D.0.015.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( )A.PO B.PQ C.MO D.MQ6.若一次函数y=kx+b的图象如图所示,则k、b的取值范围是( )A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<07.如图,在平面直角坐标系中,点B的坐标为(3,2),以点O为圆心,OB的长为半径画弧,交x轴的正半轴于点A,则点A的横坐标在( )A.2和3之间B.3和3.5之间C.3.5和4之间D.4和5之间8.如图,把矩形ABCD沿EF翻折,点B恰好落在点D处,若AE=1,∠AEF=120°,则△DEF 的面积是( )A.1 B.2 C.D.2二、填空题(共10小题,每小题3分,满分30分)9.﹣8的立方根是__________.10.已知点P(3,﹣4)关于y轴对称的对称点Q的坐标是__________.11.阅读理解:∵24=16,(﹣2)4=16,∴16的四次方根为±2,即,则=__________.12.已知y与x+2成正比例,且当x=1时,y=3,则y与x之间的函数关系式是__________.13.直线y=2x+2沿y轴向下平移4个单位后,所得新直线与x轴的交点坐标是__________.14.已知一次函数y=(2﹣m)x+2的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是__________.15.如图,直线l1:y=k1x+b1与直线l2:y=k2x+b2交于点(2,2),则方程组的解为__________.16.如图,一农户要建一个矩形猪舍,猪舍的一边利用住房墙,另外三边用25m长的建筑材料围成,为方便进出,在CD边上留一个1m宽的门,若设AB为y(m),BC为x(m),则y 与x之间的函数关系式为__________.17.如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为__________.18.如图,已知A(2,0),B(4,0),点P是直线y=x上一点,当PA+PB最小时,点P的坐标为__________.三、解答题(共9小题,满分74分)19.解答下列各题:(1)计算:;(2)求x的值:4x2﹣25=0.20.如图,在平面直角坐标系xOy中,已知点A(0,6),点B(6,6).(1)尺规作图,求作一点P,使点P同时满足下列条件(保留作图痕迹,不写作法)①点P到A、B两点的距离相等;②点P到∠xOy的两边的距离相等;(2)直接写出点P的坐标.21.如图,正方形网格中每个小正方形的边长为1,格点△ABC的顶点A(1,2)、B(﹣2,1),将△ABC平移得到△A′B′C′,使得点A的对应点A′,试解答下列问题:(1)根据题意,在网格中建立平面直角坐标系;(2)画出△A′B′C′,并写出点C′的坐标为__________.22.已知函数y=x3+2,不画图象,解答下列问题:(1)判断A(0,2)、B(2,0)、C(,﹣1)三点是否在该函数图象上,说明理由;(2)若点P(a,0)、Q(﹣,b)都在该函数的图象上,试求a、b的值.23.已知一次函数y=kx+b的图象与直线y=3x+2平行,且与直线y=﹣2x+3的交点A的纵坐标为1.(1)求这个一次函数关系式;(2)在给定网格图中,画出(1)中函数的图象;(3)当y<1时,写出x的取值范围.24.如图,△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.(1)求证:MD=ME;(2)若D为AB的中点,且AB=10,求ME的长.25.如图,在四边形ABCD中,AB∥CD,AD⊥DC,AB=BC,点E为BC上一点,且CD=CE.(1)求证:AE⊥BC;(2)若AD=6,DC=3,求AB的长.26.小东从A地出发以某一速度向B地走去,同时小明从B地出发以另一速度向A地而行,如图所示,图中的线段y1,y2分别表示小东、小明离B地的距离(千米)与所用时间(小时)的关系.(1)试用文字说明:交点P所表示的实际意义.(2)试求出A,B两地之间的距离.27.如图,直线l1:y1=kx+2(k≠0)与直线l2:y2=4x﹣4交于点P(m,4),直线l1分别交x轴、y轴于点A、B,直线l2交x轴于点C.(1)求k、m的值;(2)写出使得不等式kx+2<4x﹣4成立的x的取值范围;(3)在直线l2上找点Q,使得S△QAC=S△BPC,求点Q的坐标.2015-2016学年江苏省盐城市建湖县八年级(上)期末数学试卷一、选择题(共8小题,每小题2分,满分16分)1.下列各数中,没有平方根的是( )A.﹣4 B.0 C.0.25 D.【考点】平方根.【专题】计算题;实数.【分析】根据负数没有平方根判断即可.【解答】解:没有平方根的是﹣4,故选A【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.2.下列点中,位于直角坐标系第二象限的点是( )A.(2,1)B.(﹣2,﹣1)C.(﹣2,1)D.(2,﹣1)【考点】点的坐标.【专题】应用题.【分析】根据点在第二象限的符号特点横坐标是负数,纵坐标是正数作答.【解答】解:∵点在第二象限的符号特点是横坐标是负数,纵坐标是正数,∴符合题意的只有选项C,故选C.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),比较简单.3.在实数、、﹣3.121221222、、3.14、中,无理数共有( )A.2个B.3个C.4个D.5个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:,共2个.故选A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.由四舍五入得到的地球半径约为6.4×103km;精确到( )A.1000 B.100 C.0.1 D.0.01【考点】近似数和有效数字.【分析】近似数精确到哪一位就是看这个数的最后一位是哪一位.【解答】解:6.4×103=6400,则这个数近似到百位.故选B.【点评】本题考查了近似数精确到的数位,正确记忆精确到哪一位就是看这个数的最后一位是哪位是本题的关键.5.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( )A.PO B.PQ C.MO D.MQ【考点】全等三角形的应用.【分析】利用全等三角形对应边相等可知要想求得MN的长,只需求得其对应边PQ的长,据此可以得到答案.【解答】解:要想利用△PQO≌△NMO求得MN的长,只需求得线段PQ的长,故选:B.【点评】本题考查了全等三角形的应用,解题的关键是如何将实际问题与数学知识有机的结合在一起.6.若一次函数y=kx+b的图象如图所示,则k、b的取值范围是( )A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【考点】一次函数图象与系数的关系.【分析】观察图象,找到一次函数y=kx+b的图象过的象限,进而分析k、b的取值范围,即可得答案.【解答】解:观察图象可得,一次函数y=kx+b的图象过一、三、四象限;故k>0,b<0;故选B.【点评】本题要求学生根据图象分析出k、b参数的取值范围,考查学生对一次函数中k、b 参数的意义的了解与运用.7.如图,在平面直角坐标系中,点B的坐标为(3,2),以点O为圆心,OB的长为半径画弧,交x轴的正半轴于点A,则点A的横坐标在( )A.2和3之间B.3和3.5之间C.3.5和4之间D.4和5之间【考点】估算无理数的大小;坐标与图形性质;勾股定理.【分析】结合勾股定理得出OB的值,进而再利用估算无理数的方法得出答案.【解答】解:由题意可得:OB=OA==,∵<<,∴3<<4,∵3.52=12.25,∴点A的横坐标在:3.5和4之间.故选:C.【点评】此题主要考查了估算无理数的大小,正确估计出最接近的有理数是解题关键.8.如图,把矩形ABCD沿EF翻折,点B恰好落在点D处,若AE=1,∠AEF=120°,则△DEF 的面积是( )A.1 B.2 C.D.2【考点】翻折变换(折叠问题).【分析】根据折叠的性质得到A′E=AE=1,∠A′EF=∠AEF=120°,∠A′=∠A=90°,A′D=AB,由邻补角的定义得到∠DEF=60°,解直角三角形得到DE=2A′E=2,A′D=,根据三角形的面积公式即可得到结论.【解答】解:∵把矩形ABCD沿EF翻折,点B恰好落在点D处,∴A′E=AE=1,∠A′EF=∠AEF=120°,∠A′=∠A=90°,A′D=AB,∴∠DEF=60°,∴∠A′ED=60°,∴DE=2A′E=2,A′D=,∴S△DEF=DE•AB=DE•A′D==.故选C.【点评】本题考查的是图形折叠的性质,折叠的原图与对应图的对应角、对应边对应相等,还要熟练应用平行线的性质.二、填空题(共10小题,每小题3分,满分30分)9.﹣8的立方根是﹣2.【考点】立方根.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.10.已知点P(3,﹣4)关于y轴对称的对称点Q的坐标是(﹣3,﹣4).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:由点P(3,﹣4)关于y轴对称的对称点Q的坐标是(﹣3,﹣4),故答案为:(﹣3,﹣4).【点评】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.11.阅读理解:∵24=16,(﹣2)4=16,∴16的四次方根为±2,即,则=±3.【考点】实数.【专题】计算题.【分析】根据已知四次方根的定义,(±3)四次方为81,因而可以得出答案.【解答】解:由已知四次方根的定义得:∵34=81,(﹣3)4=81,∴81的四次方根为±3,即则=±3.故答案为:±3.【点评】题目考查了四次方根的概念,学生只要抓住基本的运算规律即可,另外不要出现漏解的现象.12.已知y与x+2成正比例,且当x=1时,y=3,则y与x之间的函数关系式是y=x+2.【考点】待定系数法求一次函数解析式.【分析】直接利用正比例函数的性质假设出函数关系式,进而将已知代入求出答案.【解答】解:∵y与x+2成正比例,∴设y=k(x+2),∵当x=1时,y=3,∴3=3k,解得:k=1,则y与x之间的函数关系式是:y=x+2.故答案为:y=x+2.【点评】此题主要考查了待定系数法求一次函数解析式,正确假设出函数关系式是解题关键.13.直线y=2x+2沿y轴向下平移4个单位后,所得新直线与x轴的交点坐标是(1,0).【考点】一次函数图象与几何变换.【分析】直接利用一次函数平移规律得出平移后解析式,进而利用y=0时求出直线与x轴交点坐标即可.【解答】解:∵直线y=2x+2沿y轴向下平移4个单位,∴平移后解析式为:y=2x﹣2,当y=0时,0=2x﹣2,解得:x=1.故新直线与x轴的交点坐标是:(1,0).故答案为:(1,0).【点评】此题主要考查了一次函数图象与几何变换,正确记忆一次函数平移规律是解题关键.14.已知一次函数y=(2﹣m)x+2的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是m>2.【考点】一次函数图象上点的坐标特征.【分析】先根据x1<x2时,y1>y2,得到y随x的增大而减小,所以x的比例系数小于0,那么2﹣m<0,解不等式即可求解.【解答】解:∵x1<x2时,y1>y2,∴y随x的增大而减小∴2﹣m<0∴m>2.故答案为m>2.【点评】本题考查一次函数的图象性质:当k>0,y随x增大而增大;当k<0时,y将随x 的增大而减小.15.如图,直线l1:y=k1x+b1与直线l2:y=k2x+b2交于点(2,2),则方程组的解为.【考点】一次函数与二元一次方程(组).【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.【解答】解:∵直线l1:y=k1x+b1与直线l2:y=k2x+b2交于点(2,2),∴二元一次方程组的解为,故答案为:【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.16.如图,一农户要建一个矩形猪舍,猪舍的一边利用住房墙,另外三边用25m长的建筑材料围成,为方便进出,在CD边上留一个1m宽的门,若设AB为y(m),BC为x(m),则y与x之间的函数关系式为y=13﹣x.【考点】根据实际问题列二次函数关系式.【分析】设AB为y(m),BC为x(m),根据AB+BC+CD﹣1=25列出方程即可.【解答】解:设AB为y(m),BC为x(m),根据题意得y+x+y﹣1=25,整理得y=13﹣x.故答案为y=13﹣x.【点评】此题考查了根据实际问题列函数关系式的知识,属于基础题,解答本题关键是根据三边建筑材料的总长为25米,列出等式.17.如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为60°.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】几何图形问题.【分析】可证明△COD≌△COB,得出∠D=∠CBO,再根据∠BAC=80°,得∠BAD=100°,由角平分线可得∠BAO=40°,从而得出∠DAO=140°,根据AD=AO,可得出∠D=20°,即可得出∠CBO=20°,则∠ABC=40°,最后算出∠BCA=60°【解答】解:∵△ABC三个内角的平分线交于点O,∴∠ACO=∠BCO,在△COD和△COB中,,∴△COD≌△COB,∴∠D=∠CBO,∵∠BAC=80°,∴∠BAD=100°,∴∠BAO=40°,∴∠DAO=140°,∵AD=AO,∴∠D=20°,∴∠CBO=20°,∴∠ABC=40°,∴∠BCA=60°,故答案为:60°.【点评】本题考查了全等三角形的判定和性质以及等腰三角形的性质,证明三角形全等是解决此题的关键.18.如图,已知A(2,0),B(4,0),点P是直线y=x上一点,当PA+PB最小时,点P的坐标为(,).【考点】轴对称-最短路线问题;一次函数图象上点的坐标特征.【分析】先作出点A关于直线y=x的对称点A′,再连接A′B,求出直线A′B的函数解析式,再联立直线y=x列方程组即可求解.【解答】解:如图,作A关于直线y=x的对称点A′,则PA=PA′,故PA+PB=PA′+PB,由图知,只有当A、P、B共线时,PA+PB最小,又由A与A′关于y=x对称知,A′(0,2),由A′、B两点坐标得直线A′B的解析式为y=﹣x+2,联立,解得 x=y=,故当PA+PB最小时,P的坐标为:(,).故答案为:(,).【点评】此题主要考查了轴对称﹣﹣最短路线问题,综合运用了一次函数和方程组的知识,综合性较强,做题的关键是正确作出图形.三、解答题(共9小题,满分74分)19.解答下列各题:(1)计算:;(2)求x的值:4x2﹣25=0.【考点】实数的运算;平方根;零指数幂.【专题】计算题;实数.【分析】(1)原式第一项利用平方根定义计算,第二项利用立方根定义,最后一项利用零指数幂法则计算即可得到结果;(2)方程整理后,利用平方根定义开方即可求出解.【解答】解:(1)原式=4﹣3﹣1=0;(2)方程整理得:x2=,开方得:x=±.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,在平面直角坐标系xOy中,已知点A(0,6),点B(6,6).(1)尺规作图,求作一点P,使点P同时满足下列条件(保留作图痕迹,不写作法)①点P到A、B两点的距离相等;②点P到∠xOy的两边的距离相等;(2)直接写出点P的坐标.【考点】作图—复杂作图;坐标与图形性质;角平分线的性质;线段垂直平分线的性质.【分析】(1)点P到A、B两点的距离相等,因此P在AB的垂直平分线上,作AB的AB的垂直平分线MN;点P到∠xOy的两边的距离相等,因此P在∠xOy的角平分线上,作∠xOy的角平分线OF,两线的交点就是P点;(2)根据线段垂直平分线的性质可得P点横坐标为3,根据角平分线的性质可得P点纵坐标等于横坐标,进而可得答案.【解答】解:(1)如图所示:(2)∵MN是AB的垂直平分线,B(6,6),∴P点横坐标为3,∵FO是∠yOx的角平分线,∴点P到角两边的距离相等,∴P点纵坐标等于横坐标为3,∴P(3,3).【点评】此题主要考查了复杂作图,关键是掌握角平分线上的点到角两边的距离相等,线段垂直平分线上的点到线段两端点的距离相等.21.如图,正方形网格中每个小正方形的边长为1,格点△ABC的顶点A(1,2)、B(﹣2,1),将△ABC平移得到△A′B′C′,使得点A的对应点A′,试解答下列问题:(1)根据题意,在网格中建立平面直角坐标系;(2)画出△A′B′C′,并写出点C′的坐标为(﹣4,﹣5).【考点】作图-平移变换.【分析】(1)根据A点坐标确定原点位置,然后建立平面直角坐标系;(2)从A到A′的平移方法是:向左平移1个单位,再向下平移3个单位,B、C也是同样的平移方法,然后再确定对应点位置,再连接即可.【解答】解:(1)如图所示:(2)如图所示:点C′的坐标为(﹣4,﹣5),故答案为:(﹣4,﹣5).【点评】此题主要考查了作图﹣﹣平移变换,关键是正确确定对应点的位置.22.已知函数y=x3+2,不画图象,解答下列问题:(1)判断A(0,2)、B(2,0)、C(,﹣1)三点是否在该函数图象上,说明理由;(2)若点P(a,0)、Q(﹣,b)都在该函数的图象上,试求a、b的值.【考点】函数关系式.【分析】(1)分别将A,B,C点代入函数关系式进而判断即可;(2)分别将P,Q点代入函数关系式进而得出答案.【解答】解:(1)当x=0时,y=2,当x=2时,y=+2=,当x=时,y=5,故B,C点不在该函数图象上,A点在该函数图象上;(2)当y=0时,0=x3+2,即0=a3+2,解得;a=,当x=﹣时,b=×(﹣)3+2,解得:b=2﹣.【点评】此题主要考查了函数关系式以及函数图象上点的坐标性质,正确理解图象上点的坐标性质是解题关键.23.已知一次函数y=kx+b的图象与直线y=3x+2平行,且与直线y=﹣2x+3的交点A的纵坐标为1.(1)求这个一次函数关系式;(2)在给定网格图中,画出(1)中函数的图象;(3)当y<1时,写出x的取值范围.【考点】两条直线相交或平行问题.【分析】(1)根据两直线平行,则函数解析式的一次项系数相同,即可确定k的值,把A 的纵坐标代入y=﹣2x+3求得横坐标,进而将(1,1)代入求出即可.(2)利用两点法画出函数的图象;(3)根据图象求得即可.【解答】解:(1)∵一次函数y=kx+b的图象与直线y=3x+2平行,∴k=3,∵与直线y=﹣2x+3的交点A的纵坐标为1,∴1=﹣2x+3,解得x=1,∴A(1,1),把A的坐标代入y=3x+b,则1=3+b,解得:b=﹣2,故这个一次函数关系式为:y=3x﹣2.(2)画出函数的图象如图,(3)当y<1时,x<1.【点评】本题考查了两条直线平行问题,属于基础题,关键是掌握两直线平行则k值相同.24.如图,△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.(1)求证:MD=ME;(2)若D为AB的中点,且AB=10,求ME的长.【考点】全等三角形的判定与性质.【分析】(1)根据等腰三角形的性质求出∠B=∠C,求出BM=CM,根据全等三角形的判定得出△DBM≌△ECM,根据全等三角形的性质得出即可;(2)根据三角形的中位线求出ME=AB,代入求出即可.【解答】(1)证明:∵AB=AC,∴∠B=∠C,∵M是BC的中点,∴BM=CM,在△DBM和△ECM中,,∴△DBM≌△ECM(SAS),∴MD=ME;(2)解:∵M是BC的中点,D为AB的中点,∴ME=AB,∵AB=10,∴ME=5.【点评】本题考查了全等三角形的性质和判定,三角形中位线的应用,能求出△DBM≌△ECM和ME=AB是解此题的关键.25.如图,在四边形ABCD中,AB∥CD,AD⊥DC,AB=BC,点E为BC上一点,且CD=CE.(1)求证:AE⊥BC;(2)若AD=6,DC=3,求AB的长.【考点】全等三角形的判定与性质.【分析】(1)连接AC,求出∠DCA=∠ECA,根据SAS推出△DCA≌△ECA,根据全等得出∠D=∠CEA,即可得出答案;(2)根据全等得出AE=AD=6,设AB=x,根据勾股定理得出方程,求出方程的解即可.【解答】(1)证明:连接AC,∵AB=BC,∴∠ECA=∠BAC,∵AB∥CD,∴∠DCA=∠BAC,∴∠DCA=∠ECA,在△DCA和△ECA中∴△DCA≌△ECA(SAS),∴∠D=∠CEA,∵AD⊥DC,∴∠D=90°,∴∠CEA=90°,∴AE⊥BC;(2)解:∵△DCA≌△ECA,∴AE=AD=6,设AB=x,∵DC=CE=3,∴在Rt△BEA中,由勾股定理得:AB2=BE2+AE2,∵AB=BC,∴x2=(x﹣3)2+62,解得:x=7.5,即AB=7.5.【点评】本题考查了等腰三角形的性质,全等三角形的性质和判定,勾股定理的应用,能推出△DCA≌△ECA是解此题的关键.26.小东从A地出发以某一速度向B地走去,同时小明从B地出发以另一速度向A地而行,如图所示,图中的线段y1,y2分别表示小东、小明离B地的距离(千米)与所用时间(小时)的关系.(1)试用文字说明:交点P所表示的实际意义.(2)试求出A,B两地之间的距离.【考点】一次函数的应用.【分析】(1)因为小东从A地出发以某一速度向B地走去,同时小明从B地出发以另一速度向A地而行,所以交点P(2.5,7.5)的意义是经过2.5小时后,小东与小明在距离B地7.5千米处相遇;(2)需求直线y1的解析式,因为它过点(2.5,7.5),(4,0),利用待定系数法即可求出其解析式.然后令x=0,求出此时的y值即可.【解答】解:(1)交点P所表示的实际意义是:经过2.5小时后,小东与小明在距离B地7.5千米处相遇.(2)设y1=kx+b(k≠0),又y1经过点P(2.5,7.5),(4,0),∴,解得,∴y1=﹣5x+20,当x=0时,y1=20,故AB两地之间的距离为20千米.【点评】本题需仔细分析图象,利用函数解析式解决问题.27.如图,直线l1:y1=kx+2(k≠0)与直线l2:y2=4x﹣4交于点P(m,4),直线l1分别交x轴、y轴于点A、B,直线l2交x轴于点C.(1)求k、m的值;(2)写出使得不等式kx+2<4x﹣4成立的x的取值范围;(3)在直线l2上找点Q,使得S△QAC=S△BPC,求点Q的坐标.【考点】两条直线相交或平行问题.【专题】计算题.【分析】(1)先把P(m,4)代入y2=4x﹣4可求出m=2,则P点坐标为(2,4),然后把P 点坐标代入y1=kx+2可求出k的值;(2)观察函数图象,写出直线l2在直线l1上方所对的自变量的取值范围即可;(3)先利用y1=x+2确定A点和B点坐标,再利用y2=4x﹣4=0确定C点坐标,则根据S△BP C=S△PAC﹣S△BAC可计算出S△BPC=3,设Q点坐标为(t,4t﹣4),根据三角形面积公式得到所以×(1+2)×|4t﹣4|=3,然后解绝对值方程求出t的值即可得到Q点的坐标.【解答】解:(1)把P(m,4)代入y2=4x﹣4得4m﹣4=4,解得m=2,所以P点坐标为(2,4),把P(2,4)代入y1=kx+2得2k+2=4,解得k=1;(2)当x>2时,kx+2<4x﹣4;(3)当y=0时,x+2=0,解得x=﹣2,则A(﹣2,0);当x=0时,y1=x+2=2,则B(0,2),当y=0时,4x﹣4=0,解得x=1,则C(1,0),所以S△BPC=S△PAC﹣S△BAC=×(1+2)×4﹣×(1+2)×2=3,设Q点坐标为(t,4t﹣4),因为S△QAC=S△BPC=3,所以×(1+2)×|4t﹣4|=3,解得t=或t=,所以Q点的坐标为(,2)或(,2).【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.。
2015-2016学年江苏省盐城市景山中学八年级(上)期末数学试卷一、选择题(每小题3分,共24分)1.(3分)计算:=()A.3B.﹣3C.±3D.92.(3分)下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.3.(3分)“盐城,一个让人打开心扉的地方”.环境保护意识在我市已经深入人心!近期,我校团委组织全校近3000名学生参加环保知识竞赛,随机抽查了100名学生的竞赛成绩进行统计分析,以下说法正确的是()A.这100名学生是总体的一个样本B.近3000名学生是总体C.每位考生的竞赛成绩是个体D.100名学生是样本容量4.(3分)已知A(﹣4,y1),B(2,y2)在直线y=﹣x+20上,则y1、y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较5.(3分)△ABO与△A1B1O在平面直角坐标系中的位置如图所示,它们关于点O成中心对称,其中点A(5,2),则点A1的坐标是()A.(5,﹣2)B.(﹣5,﹣2)C.(﹣2,﹣5)D.(﹣2,5)6.(3分)如图,下列条件之一能使平行四边形ABCD是菱形的为()①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.A.①③B.②③C.③④D.①②③7.(3分)如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC 重合,点B落在点F处,折痕为AE,且EF=3.则AB的长为()A.3B.4C.5D.68.(3分)如图,在菱形ABCD中,若∠B=60°,点E、F分别在AB、AD上,且BE=AF,则∠AEC+∠AFC的度数等于()A.120°B.140°C.160°D.180°二、填空题(每题3分,共30分)9.(3分)分式有意义的条件是.10.(3分)已知点A(a,2)在一次函数y=x+1的图象上,则a=.11.(3分)袋子中装有3个红球和5个白球,这些球除颜色外均相同.在看不到球的条件下,随机从袋中摸出一个球,则摸出白球的概率是.12.(3分)已知菱形ABCD中,对角线AC、BD的长度分别为6cm、8cm,它的面积为cm2.13.(3分)若实数a、b满足(a﹣5)2+=0,则a+b=.14.(3分)分式和的最简公分母是.15.(3分)下列两个条件:①y随x的增大而减小;②图象经过点(1,2).写出1个同时具备条件①、②的一个一次函数表达式.16.(3分)如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是.17.(3分)如图,△ABC中,AB=8cm,AC=5cm,AD平分∠BAC,且AD⊥CD,E 为BC中点,则DE的长cm.18.(3分)在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于A、B,在△AOB内部作正方形,使正方形的四个顶点都落在该三角形的边上,则此正方形落在x轴正半轴的顶点坐标为.三、解答题(共8小题,66分)19.(8分)(1)计算:|﹣3|+(π+1)0﹣;(2)已知:(x+1)2=16,求x.20.(6分)下表中是一次函数的自变量x与函数y的部分对应值.(1)求一次函数的表达式并求m的值.(2)画出函数图象,结合图象思考:若y>0,则x的取值范围是.(直接写出结论)21.(8分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?22.(8分)如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O 且与边AD、BC分别交于点M和点N.(1)请你判断OM与ON的数量关系,并说明理由;(2)过点D作DE∥AC交BC的延长线于E,当AB=5,AC=6时,求△BDE的周长.23.(8分)如图,出租车是人们出行的一种便利交通工具,折线ABC是在我市乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图象.(1)根据图象,当x≥3时y为x的一次函数,请写出函数关系式;(2)某人乘坐13km,应付多少钱?(3)若某人付车费42元,出租车行驶了多少千米?24.(8分)如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC 上的一动点,且满足BP=AQ,D是BC的中点.(1)求证:△PDQ是等腰直角三角形;(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.25.(10分)在直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如,图中过点P分别作x轴,y轴的垂线,与坐标轴围成矩形OAPB的周长与面积相等,则点P是和谐点.(1)点M(3,2)和谐点(填“是”或“不是”);(2)若点P(a,6)是和谐点,a的值为;(3)若(2)中和谐点P(a,6)在y=﹣4x+m上,求m的值.26.(10分)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(8,8),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连CH、CG.(1)求证:△CBG≌△CDG;(2)求∠HCG的度数;判断线段HG、OH、BG的数量关系,并说明理由;(3)连结BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.2015-2016学年江苏省盐城市景山中学八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)计算:=()A.3B.﹣3C.±3D.9【解答】解:∵32=9∴=3故选:A.2.(3分)下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:A.3.(3分)“盐城,一个让人打开心扉的地方”.环境保护意识在我市已经深入人心!近期,我校团委组织全校近3000名学生参加环保知识竞赛,随机抽查了100名学生的竞赛成绩进行统计分析,以下说法正确的是()A.这100名学生是总体的一个样本B.近3000名学生是总体C.每位考生的竞赛成绩是个体D.100名学生是样本容量【解答】解:A、100名学生的竞赛成绩是总体的一个样本,故A错误;B、3000名学生参加环保知识竞赛成绩是总体,故B错误;C、每位考生的竞赛成绩是个体,故C正确;D、100是样本容量,故D错误;故选:C.4.(3分)已知A(﹣4,y1),B(2,y2)在直线y=﹣x+20上,则y1、y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较【解答】解:∵直线y=﹣x+20中的﹣<0,∴该直线是y随x的增大而减小,∵点A(﹣4,y1),B(2,y2)在直线y=﹣x+20上,∴﹣4<2,∴y1>y2.故选:A.5.(3分)△ABO与△A1B1O在平面直角坐标系中的位置如图所示,它们关于点O成中心对称,其中点A(5,2),则点A1的坐标是()A.(5,﹣2)B.(﹣5,﹣2)C.(﹣2,﹣5)D.(﹣2,5)【解答】解:由题意可得:A和A1关于原点对称,A(5,2),故点A1的坐标是(﹣5,﹣2),故选:B.6.(3分)如图,下列条件之一能使平行四边形ABCD是菱形的为()①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.A.①③B.②③C.③④D.①②③【解答】解:①▱ABCD中,AC⊥BD,根据对角线互相垂直的平行四边形是菱形,即可判定▱ABCD是菱形;故①正确;②▱ABCD中,∠BAD=90°,根据有一个角是直角的平行四边形是矩形,即可判定▱ABCD是矩形,而不能判定▱ABCD是菱形;故②错误;③▱ABCD中,AB=BC,根据一组邻边相等的平行四边形是菱形,即可判定▱ABCD是菱形;故③正确;D、▱ABCD中,AC=BD,根据对角线相等的平行四边形是矩形,即可判定▱ABCD是矩形,而不能判定▱ABCD是菱形;故④错误.故选:A.7.(3分)如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC 重合,点B落在点F处,折痕为AE,且EF=3.则AB的长为()A.3B.4C.5D.6【解答】解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选:D.8.(3分)如图,在菱形ABCD中,若∠B=60°,点E、F分别在AB、AD上,且BE=AF,则∠AEC+∠AFC的度数等于()A.120°B.140°C.160°D.180°【解答】解:连接AC,∵在菱形ABCD中,∠B=60°,∴AC=AB=BC=CD=AD,∵BE=AF,∴AE=DF,∵∠B=60°,AC是对角线,∴∠BAC=60°,∴∠BAC=∠D=60°,∴△ACE≌△CDF,∴EC=FC.∠ACE=∠DCF,∵∠DCF+∠ACF=60°,∴∠ACE+∠ACF=60°,∴△ECF是等边三角形.故可得出∠ECF=60°,又∠EAF=120°,∴∠AEC+∠AFC=360°﹣(60°+120°)=180°.故选:D.二、填空题(每题3分,共30分)9.(3分)分式有意义的条件是x≠1.【解答】解:由有意义,得x﹣1≠0,解得x≠1有意义的条件是x≠1,故答案为:x≠1.10.(3分)已知点A(a,2)在一次函数y=x+1的图象上,则a=1.【解答】解:∵点A(a,2)在一次函数y=x+1的图象上,∴2=a+1,解得a=1.故答案为:1.11.(3分)袋子中装有3个红球和5个白球,这些球除颜色外均相同.在看不到球的条件下,随机从袋中摸出一个球,则摸出白球的概率是.【解答】解:∵布袋中有除颜色外完全相同的8个球,其中5个白球,∴从布袋中随机摸出一个球是白球的概率为:.12.(3分)已知菱形ABCD中,对角线AC、BD的长度分别为6cm、8cm,它的面积为24cm2.【解答】解:∵菱形的对角线长AC、BD的长度分别为6cm、8cm∴菱形ABCD的面积S=BD•AC=×8×6=24(cm2),故答案为:24.13.(3分)若实数a、b满足(a﹣5)2+=0,则a+b=2.【解答】解:根据题意得,a﹣5=0,b+3=0,解得a=5,b=﹣3,所以a+b=5+(﹣3)=2.故答案为:2.14.(3分)分式和的最简公分母是6b2.【解答】解:分式和的分母分别是3b、6b2,故最简公分母是6b2;故答案为6b2.15.(3分)下列两个条件:①y随x的增大而减小;②图象经过点(1,2).写出1个同时具备条件①、②的一个一次函数表达式y=﹣x+3.【解答】解:∵y随x的增大而减小,∴取k=﹣1,∵图象经过点(1,2),∴设解析式为y=kx+b,即﹣1+b=2,解得b=3,∴同时具备条件①、②的一个一次函数表达式为y=﹣x+3,故答案为y=﹣x+3.16.(3分)如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是(﹣4,3).【解答】解:如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,∵OA绕坐标原点O逆时针旋转90°至OA′,∴OA=OA′,∠AOA′=90°,∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°,∴∠OAB=∠A′OB′,在△AOB和△OA′B′中,,∴△AOB≌△OA′B′(AAS),∴OB′=AB=4,A′B′=OB=3,∴点A′的坐标为(﹣4,3).故答案为:(﹣4,3).17.(3分)如图,△ABC中,AB=8cm,AC=5cm,AD平分∠BAC,且AD⊥CD,E 为BC中点,则DE的长 1.5cm.【解答】解:延长CD交AB于F点.如图所示:∵AD平分∠BAC,∴∠FAD=∠CAD;∵AD⊥CD,∴∠ADF=∠ADC;在△ACD和△AFD中,,∴△ACD≌△AFD(ASA),∴CD=DF,AF=AC=5cm.∵E为BC中点,BF=AB﹣AF=8﹣5=3,∴DE=BF=1.5(cm).故答案为:1.5.18.(3分)在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于A、B,在△AOB内部作正方形,使正方形的四个顶点都落在该三角形的边上,则此正方形落在x轴正半轴的顶点坐标为(1.5,0)或(1,0).【解答】解:分两种情况;①如图1,令x=0,则y=3,令y=0,则x=3,∴OA=OB=3,∴∠BAO=45°,∵DE⊥OA,∴DE=AE,∵四边形COED是正方形,∴OE=DE,∴OE=AE,∴OE=OA=1.5,∴E(1.5,0);②如图2,由①知△OFC,△EFA是等腰直角三角形,∴CF=OF,AF=EF,∵四边形CDEF是正方形,∴EF=CF,∴AF=×OF=2OF,∴OA=OF+2OF=3,∴OF=1,∴F(1,0).故答案为(1.5,0)或(1,0).三、解答题(共8小题,66分)19.(8分)(1)计算:|﹣3|+(π+1)0﹣;(2)已知:(x+1)2=16,求x.【解答】解:(1)原式=3+1﹣2+2=4;(2)开方得:x+1=4或x+1=﹣4,解得:x=3或x=﹣5.20.(6分)下表中是一次函数的自变量x与函数y的部分对应值.(1)求一次函数的表达式并求m的值.(2)画出函数图象,结合图象思考:若y>0,则x的取值范围是x>﹣3.(直接写出结论)【解答】解:(1)设一次函数的解析式是y=kx+b,则,解得:,则一次函数的解析式是y=x+3,把x=0代入得m=3;(2)如图:根据图象可得:y>0,则x的取值范围是x>﹣3.故答案是:x>﹣3.21.(8分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是50,并补全频数分布直方图;(2)C组学生的频率为0.32,在扇形统计图中D组的圆心角是72度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?【解答】解:(1)这次抽样调查的样本容量是4÷8%=50,B组的频数=50﹣4﹣16﹣10﹣8=12,补全频数分布直方图,如图:(2)C组学生的频率是0.32;D组的圆心角=;(3)样本中体重超过60kg的学生是10+8=18人,该校初三年级体重超过60kg的学生=人,故答案为:(1)50;(2)0.32;72.22.(8分)如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O 且与边AD、BC分别交于点M和点N.(1)请你判断OM与ON的数量关系,并说明理由;(2)过点D作DE∥AC交BC的延长线于E,当AB=5,AC=6时,求△BDE的周长.【解答】解:(1)∵四边形ABCD是菱形,∴AD∥BC,AO=OC,∴==1,∴OM=ON.(2)∵四边形ABCD是菱形,∴AC⊥BD,AD=BC=AB=5,∴BO==4,∴BD=2BO=8,∵DE∥AC,AD∥CE,∴四边形ACED是平行四边形,∴DE=AC=6,∴△BDE的周长是:BD+DE+BE=BD+AC+(BC+CE)=8+6+(5+5)=24即△BDE的周长是24.23.(8分)如图,出租车是人们出行的一种便利交通工具,折线ABC是在我市乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图象.(1)根据图象,当x≥3时y为x的一次函数,请写出函数关系式;(2)某人乘坐13km,应付多少钱?(3)若某人付车费42元,出租车行驶了多少千米?【解答】解:(1)当x≥3时,设解析式为设y=kx+b,∵一次函数的图象过B(3,7)、C(8,14),∴,解得,∴当x≥3时,y与x之间的函数关系式是y=x+;(2)当x=13时,y=×13+=21,答:乘车13km应付车费21元;(3)将y=42代入y=x+,得42=x+,解得x=28,即出租车行驶了28千米.24.(8分)如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC 上的一动点,且满足BP=AQ,D是BC的中点.(1)求证:△PDQ是等腰直角三角形;(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.【解答】(1)证明:连接AD∵△ABC是等腰直角三角形,D是BC的中点∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,在△BPD和△AQD中,,∴△BPD≌△AQD(SAS),∴PD=QD,∠ADQ=∠BDP,∵∠BDP+∠ADP=90°∴∠ADP+∠ADQ=90°,即∠PDQ=90°,∴△PDQ为等腰直角三角形;(2)解:当P点运动到AB的中点时,四边形APDQ是正方形;理由如下:∵∠BAC=90°,AB=AC,D为BC中点,∴AD⊥BC,AD=BD=DC,∠B=∠C=45°,∴△ABD是等腰直角三角形,当P为AB的中点时,DP⊥AB,即∠APD=90°,又∵∠A=90°,∠PDQ=90°,∴四边形APDQ为矩形,又∵DP=AP=AB,∴矩形APDQ为正方形(邻边相等的矩形为正方形).25.(10分)在直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如,图中过点P分别作x轴,y轴的垂线,与坐标轴围成矩形OAPB的周长与面积相等,则点P是和谐点.(1)点M(3,2)不是和谐点(填“是”或“不是”);(2)若点P(a,6)是和谐点,a的值为±3;(3)若(2)中和谐点P(a,6)在y=﹣4x+m上,求m的值.【解答】解:(1)∵点M(3,2),∴矩形OAPB的周长=2(3+2)=10,面积=3×2=6,∵10≠6,∴则点M(3,2)不是和谐点;故答案为:不是;(2)根据题意得:2(|a|+6)=6|a|,解得:a=±3;故答案为:±3;(3)∵点P(a,6)在直线y=﹣4x+m上,∴﹣4a+m=6,即m=4a+6,当a=3时,m=18;当a=﹣3时,m=﹣6,∴m的值为18或﹣6.26.(10分)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(8,8),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连CH、CG.(1)求证:△CBG≌△CDG;(2)求∠HCG的度数;判断线段HG、OH、BG的数量关系,并说明理由;(3)连结BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.【解答】(1)证明:∵正方形ABCO绕点C旋转得到正方形CDEF,∴CD=CB,∠CDG=∠CBG=90°.在Rt△CDG和Rt△CBG中,,∴△CDG≌△CBG(HL);(2)解:∵△CDG≌△CBG,∴∠DCG=∠BCG,DG=BG.在Rt△CHO和Rt△CHD中,∵,∴△CHO≌△CHD(HL),∴∠OCH=∠DCH,OH=DH,∴∠HCG=∠HCD+∠GCD=∠OCD+∠DCB=∠OCB=45°,∴HG=HD+DG=HO+BG;(3)解:四边形AEBD可为矩形.如图,连接BD、DA、AE、EB,四边形AEBD若为矩形,则需先为平行四边形,即要对角线互相平分,合适的点只有G为AB中点的时候.∵DG=BG,∴DG=AG=EG=BG,即平行四边形AEBD对角线相等,则其为矩形,∴当G点为AB中点时,四边形AEBD为矩形.∵四边形DAEB为矩形,∴AG=EG=BG=DG.∵AB=8,∴AG=BG=4.设H点的坐标为(x,0),则HO=x∵OH=DH,BG=DG,∴HD=x,DG=4.在Rt△HGA中,∵HG=x+4,GA=4,HA=8﹣x,∴(x+4)2=42+(8﹣x)2,解得x=.∴H点的坐标为(,0).。
2015—2016学年度第一学期期末考试八 年 级 数 学 试 卷试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分,考试时间100分钟。
答题前,学生务必将自己的姓名和学校、班级、学号等填写在答题卷上;答案必须写在答题卷各题目指定区域内的相应位置上;考试结束后,只需将答题卷交回。
第Ⅰ卷(选择题)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项正确) 1、9的平方根是( ).A .3B .-3C .±3D .±32、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ).A .1、2、3B . 2、3、4C . 3、4、5D .4、5、63、下列说法:①实数与数轴上的点一一对应;②2a 没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1.其中正确的有( ) A .1个 B .2个 C .3个 D .4个4、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ).A B C D5、若一个多边形的内角和等于720°,则这个多边形的边数是( ). A .5 B .6 C .7 D .86、为筹备本班元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( ) A .中位数 B .平均数 C .加权平均数 D .众数7、如图,已知棋子“车”的坐标为(-2,3),棋子“马” 的坐标为 (1,3),则棋子“炮”的坐标为( ).A .(3,1)B .(2,2)C .(3,2)D .(-2,2)8.下列一次函数中,y 的值随着x 值的增大而减小的是( ). A .y =x B .y =-x C .y =x +1 D .y = x -19、如图所示,两张等宽的纸条交叉重叠在一起,则重叠部分ABCD 一定是( ). A .菱形 B .矩形 C .正方形 D .梯形10、一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩下的水的立方数Q (m 3)与放水时间t (时)的函数关系用图表示为( )A B C D(第9题图)(第7题图)第Ⅱ卷(非选择题)二、填空题(本大题共5小题,每小题3分,共15分,将答案填写在题中横线上) 11、比较大小:3(填“>”、“<”、或“=”).12、写出一个你所学过的既是轴对称又是中心对称图形的四边形: .13、如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是 度.14、 如图,若直线l 1:32-=x y 与l 2:3+-=x y 相交于点P ,则根据图象可得,二元一次方程组⎩⎨⎧=+=-332y x y x 的解是 . 15、 如图,在直角坐标平面内的△ABC 中,点A 的坐标为(0,2),点C 的坐标为(5,5),要使以A 、B 、 C 、D 为顶点的四边形是平行四边形,且点D 坐标在第一象限,那么点D 的坐标是 .三、解答题(本大题共10小题,共75分。
盐城市八年级(上)期末数学试卷(含答案) 一、选择题1.下列图书馆的馆徽不是..轴对称图形的是( ) A . B . C . D .2.下列四组线段中,可以构成直角三角形的是 ( )A .4,5,6B .2,3,4C .7 ,3 ,4D .1,2 ,33.如图,D 为ABC ∆边BC 上一点,AB AC =,56BAC ∠=︒,且BF DC =,EC BD =,则EDF ∠等于( )A .62︒B .56︒C .34︒D .124︒4.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为( ) A .(﹣4,1) B .(1,﹣4) C .(4,﹣1) D .(﹣1,4)5.如图,以Rt ABC ∆的三边为边,分别向外作正方形,它们的面积分别为1S 、2S 、3S ,若12316S S S ++=,则1S 的值为( )A .7B .8C .9D .10 6.64的立方根是( )A .4B .±4C .8D .±8 7.正比例函数y kx =的图象经过第一、三象限,则一次函数y x k =+的图象大致是()A.B.C.D.8.9的平方根是( )A.3B.81C.3±D.81±9.已知正比例函数y=kx的图象经过点(﹣2,1),则k的值()A.﹣2 B.﹣12C.2 D.1210.下列二次根式中属于最简二次根式的是()A32B24x y C yxD24+x y二、填空题11.若函数y=2x+3﹣m是正比例函数,则m的值为_____.12.某厂现在的年产值是15万元,计划今后每年增加2万元,年产值y与年数x之间的函数关系为________.13.矩形ABCD中,其中三个顶点的坐标分别是(0,0)、(5,0)、(5,3),则第四个顶点的坐标是______.14.在实数范围内分解因式35x x-=___________.15.36的算术平方根是.16.已知直角三角形的两边长分别为3、4.则第三边长为________.17.如图,在平面直角坐标系xOy中,点A的坐标为(1,3),点B的坐标为(2,-1),点C在同一坐标平面中,且△ABC是以AB为底的等腰三角形,若点C的坐标是(x,y),则x、y之间的关系为y=______(用含有x的代数式表示).18.如图,在平面直角坐标系中,函数y=﹣2x 与y=kx+b 的图象交于点P (m ,2),则不等式kx+b >﹣2x 的解集为_____.19.等腰三角形的一个内角是100︒,则它的底角的度数为_________________.20.如图,已知正方形ABCD 的边长为4cm ,则图中阴影部分的面积为__________2cm .三、解答题21.如图1,在平面直角坐标系xOy 中,点A 的坐标是(0,2),点C 是x 轴上的一个动点.当点C 在x 轴上移动时,始终保持ACP ∆是等腰直角三角形(90ACP ︒∠=,点A 、C 、P 按逆时针方向排列);当点C 移动到点O 时,得到等腰直角三角形AOB (此时点P 与点B 重合).(初步探究)(1)写出点B 的坐标________;(2)点C 在x 轴上移动过程中,作PD x ⊥轴,垂足为点D ,都有AOC CDP ∆∆≌,请在图2中画出当等腰直角AOP ∆的顶点P 在第四象限时的图形,并求证:AOC CDP ∆∆≌.(深入探究)(3)当点C 在x 轴上移动时,点P 也随之运动.探究点P 在怎样的图形上运动,请直接写出结论,并求出这个图形所对应的函数表达式;(4)直接写出2AP 的最小值为________.22.在如图所示的正方形网格中,每个小正方形的边长都是1,已知三角形ABC 的三个顶点的坐标分别为(3,6)A -,(1,2)B -,(5,4)C -(1)作出三角形ABC 关于y 轴对称的三角形111A B C(2)点1A 的坐标为 .(3)①利用网络画出线段AB 的垂直平分线L ;②P 为直线上L 上一动点,则PA PC +的最小值为 .23.(1)计算:203(12125(39)(45)(45);π---+⨯-(2)求x 的值:23(3)27.x +=24.如图,在平面直角坐标系中,已知A(4,0)、B(0,3).(1)求AB的长为____.(2)在坐标轴上是否存在点P,使△ABP是等腰三角形?若存在,请直接写出点P坐标;若不存在,请说明理由.25.如图,将一张边长为8的正方形纸片OABC放在直角坐标系中,使得OA与y轴重合,OC与x轴重合,点P为正方形AB边上的一点(不与点A、点B重合).将正方形纸片折叠,使点O落在P处,点C落在G处,PG交BC于H,折痕为EF.连接OP、OH.初步探究(1)当AP=4时①直接写出点E的坐标;②求直线EF的函数表达式.深入探究(2)当点P在边AB上移动时,∠APO与∠OPH的度数总是相等,请说明理由.拓展应用(3)当点P在边AB上移动时,△PBH的周长是否发生变化?并证明你的结论.四、压轴题26.(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A作AD⊥l,过点B作BE⊥l,垂足分别为D、E.求证:AD=CE,CD=BE.(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.27.在等边△ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、E处,请问:(1)如图1,在爬行过程中,CD和BE始终相等吗,请证明?(2)如果将原题中的“由A向B和由C向A爬行”,改为“沿着AB和CA的延长线爬行”,EB与CD交于点Q,其他条件不变,蜗牛爬行过程中∠CQE的大小保持不变,请利用图2说明:∠CQE=60°;(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,如图3,则爬行过程中,证明:DF=EF28.已知在△ABC中,AB=AC,∠BAC=α,直线l经过点A(不经过点B或点C),点C关于直线l的对称点为点D,连接BD,CD.(1)如图1,①求证:点B ,C ,D 在以点A 为圆心,AB 为半径的圆上;②直接写出∠BDC 的度数(用含α的式子表示)为 ;(2)如图2,当α=60°时,过点D 作BD 的垂线与直线l 交于点E ,求证:AE =BD ;(3)如图3,当α=90°时,记直线l 与CD 的交点为F ,连接BF .将直线l 绕点A 旋转的过程中,在什么情况下线段BF 的长取得最大值?若AC =22a ,试写出此时BF 的值.29.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .(1)若∠AED =20°,则∠DEC = 度;(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.30.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不是轴对称图形,符合题意;故选:D.【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.D解析:D【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A.42+52≠62,不可以构成直角三角形,故A选项错误;B.22+32≠42,不可以构成直角三角形,故B选项错误;C)2+2≠42,可以构成直角三角形,故C选项错误.D.12+)22,可以构成直角三角形,故D选项正确.故选D.【点睛】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.A解析:A【解析】【分析】由AB=AC,利用等边对等角得到一对角相等,再由BF=CD,BD=CE,利用SAS得到三角形FBD 与三角形DEC 全等,利用全等三角形对应角相等得到一对角相等,再根据三角形内角和定理以及外角的性质,可以找出∠EDF 与∠A 之间的等量关系,进而求解.【详解】解:∵AB=AC ,∴∠B=∠C ,在△BFD 和△EDC 中,,,,BF DC B C BD CE ⎧⎪∠∠⎨⎪⎩=== ∴△BFD ≌△EDC (SAS ),∴∠BFD=∠EDC ,∴∠FDB+∠EDC=∠FDB+∠BFD=180°-∠B=180°-1802A ︒-∠=90°+12∠A , 则∠EDF=180°-(∠FDB+∠EDC )=90°-12∠A=62°. 故选:A .【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键. 4.A解析:A【解析】【分析】根据一次函数与二元一次方程组的关系进行解答即可.【详解】解:∵二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩∴在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为:(-4,1)故选:A.【点睛】本题考查的是一次函数与二元一次方程组的关系,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.5.B解析:B【解析】【分析】根据正方形的面积公式及勾股定理即可求得结果.【详解】因为是以Rt ABC ∆的三边为边,分别向外作正方形,所以AB 2=AC 2+BC 2所以123S S S =+因为12316S S S ++=所以1S =8故选:B【点睛】考核知识点:勾股定理应用.熟记并理解勾股定理是关键.6.A解析:A【解析】试题分析:∵43=64,∴64的立方根是4,故选A考点:立方根.7.A解析:A【解析】【分析】根据正比例函数的图象及性质即可求出k 的取值范围,然后根据一次函数的图象及性质即可判断.【详解】解:∵正比例函数y kx =的图象经过第一、三象限,∴0k >∵一次函数y x k =+中,1>0, 0k >∴一次函数y x k =+经过一、二、三象限故选A .【点睛】此题考查的是正比例函数的图象及性质和一次函数的图象及性质,掌握一次函数的图象及性质与各项系数的关系是解决此题的关键.8.C解析:C【解析】【分析】根据平方根的定义进行求解即可.【详解】解:9的平方根是3±.故选C.【点睛】本题考查平方根,一个正数有两个实平方根,它们互为相反数. 9.B解析:B【解析】【分析】将点(﹣2,1)代入y=kx即可求出k的值.【详解】解:∵正比例函数y=kx的图象经过点(﹣2,1),∴1=﹣2k,解得k=﹣12,故选:B.【点睛】本题考查了正比例函数,熟练掌握求正比例函数解析式的方法是解题的关键. 10.D解析:D【解析】【分析】最简二次根式即被开方数不含分母且不含能开得尽方的因数或因式,由此判断即可.【详解】解:AB2CD故选:D.【点睛】本题考查了最简二次根式,熟练掌握最简二次根式的概念是解题的关键.二、填空题11.【解析】【分析】直接利用正比例函数的定义得出答案.【详解】∵函数y=2x+3﹣m是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.【点睛】本题考查的是正比例函数的定义,一般解析:【解析】【分析】直接利用正比例函数的定义得出答案.【详解】∵函数y=2x+3﹣m是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.【点睛】(k是常数,k≠0)的函数叫做正比本题考查的是正比例函数的定义,一般地形如y kx例函数.12.y=15+2x【解析】【分析】根据年产值y(万元)=现在的年产值+以后每年增加的年产值求解.【详解】解:∵某厂现在的年产值是15万元,计划今后每年增加2万元,∴年产值y与年数x之间的函数解析:y=15+2x【解析】【分析】根据年产值y(万元)=现在的年产值+以后每年增加的年产值求解.【详解】解:∵某厂现在的年产值是15万元,计划今后每年增加2万元,∴年产值y与年数x之间的函数关系为:y=15+2x,故答案为:y=15+2x.【点睛】此题主要考查一次函数在实际问题的应用,找到所求量的等量关系是解决问题的关键.13.(0,3)【解析】【分析】画图分析,由矩形的性质求得第四点的坐标,再解答.【详解】如图,根据图形易知第四点的坐标是(0,3).故填:(0,3).【点睛】用到的知识点为:矩形的邻边垂直解析:(0,3)【解析】【分析】画图分析,由矩形的性质求得第四点的坐标,再解答.【详解】如图,根据图形易知第四点的坐标是(0,3).故填:(0,3).【点睛】用到的知识点为:矩形的邻边垂直,对边平行.本题画出图后可很快求解. 14.【解析】提取公因式后利用平方差公式分解因式即可,即原式=.故答案为解析:(55x x x -【解析】 提取公因式后利用平方差公式分解因式即可,即原式=2(5)(5)(5)x x x x x -=-.故答案为(55.x x x15.【解析】试题分析:根据算术平方根的定义,36的算术平方根是6.故答案为6. 考点:算术平方根.解析:【解析】试题分析:根据算术平方根的定义,36的算术平方根是6.故答案为6.考点:算术平方根.16.5或【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:;②长为3、4的边都是直角边时:第三边的解析:5或7【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:22437-=; ②长为3、4的边都是直角边时:第三边的长为:22435;∴第三边的长为:7或5.考点:1.勾股定理;2.分类思想的应用. 17.【解析】【分析】设的中点为,过作的垂直平分线,通过待定系数法求出直线的函数表达式,根据可以得到直线的值,再求出中点坐标,用待定系数法求出直线的函数表达式即可.【详解】解:设的中点为,过作的解析:1548x + 【解析】【分析】设AB 的中点为D ,过D 作AB 的垂直平分线EF ,通过待定系数法求出直线AB 的函数表达式,根据EF AB ⊥可以得到直线EF 的k 值,再求出AB 中点坐标,用待定系数法求出直线EF 的函数表达式即可.【详解】解:设AB 的中点为D ,过D 作AB 的垂直平分线EF∵A(1,3),B(2,-1)设直线AB 的解析式为11y k x b =+,把点A 和B 代入得:321k b k b +=⎧⎨+=-⎩解得:1147k b =-⎧⎨=⎩ ∴47y x =-+∵D 为AB 中点,即D (122+,312-) ∴D (32,1) 设直线EF 的解析式为22y k x b =+∵EF AB ⊥∴121k k =- ∴ 214k = ∴把点D 和2k 代入22y k x b =+可得:213142b =⨯+ ∴258b =∴1548y x =+ ∴点C(x ,y )在直线1548y x =+上 故答案为1548x + 【点睛】 本题主要考查了等腰三角形的性质,中垂线的性质,待定系数法求一次函数的表达式,根据题意作出中垂线,再用待定系数法求出一次函数的解析式是解题的关键.18.x >﹣1【解析】【分析】先利用正比例函数解析式确定P 点坐标,然后观察函数图象得到,当x >﹣1时,直线y=﹣2x 都在直线y=kx+b 的下方,于是可得到不等式kx+b >﹣2x 的解集.【详解】当解析:x >﹣1【解析】【分析】先利用正比例函数解析式确定P点坐标,然后观察函数图象得到,当x>﹣1时,直线y=﹣2x都在直线y=kx+b的下方,于是可得到不等式kx+b>﹣2x的解集.【详解】当y=2时,﹣2x=2,x=﹣1,由图象得:不等式kx+b>﹣2x的解集为:x>﹣1,故答案为x>﹣1.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)﹣2x的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在﹣2x上(或下)方部分所有的点的横坐标所构成的集合.19.【解析】【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;②当这个角是解析:40【解析】【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;②当这个角是底角时,另一个底角为100°,因为100°+100°=200°,不符合三角形内角和定理,所以舍去.故答案为:40°.【点睛】本题考查了等腰三角形的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.20.8【解析】【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S 阴影=×4×4=8cm2.故答案为:8.解析:8【解析】【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S 阴影=12×4×4=8cm 2. 故答案为:8.【点睛】本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键. 三、解答题21.(1)()2,0B ;(2)证明见解析;(3)点P 在直线上运动;2y x =-;(4)8.【解析】【分析】(1)根据等腰三角形的性质即可求解;(2)根据题意作图,再根据等腰直角三角形的性质判定AOC CDP ∆∆≌;(3)根据题意去特殊点,再利用待定系数法即可求解;(4)当P 在B 点时,AP 最小,故可求解.【详解】(1)∵点A 的坐标是(0,2),△AOB 为等腰直角三角形,∴AO=BO∴()2,0B(2)如图,∵ACP ∆是等腰直角三角形,且90ACP ∠=︒∴AC PC =∵PD BC ⊥∴90PDC ∠=︒∴90AOC PDC ∠=∠=︒,90DPC PCD ∠+∠=︒ ∵90ACP ∠=︒∴90ACB PCD ∠+∠=︒∴DPC ACB ∠=∠在AOC∆和CDP∆中,,,.AOC PDCDPC ACBAC PC∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AOC CDP AAS∆∆≌(3)点P在直线上运动;∵两点确定一条直线∴可以取两个特殊点当P在y轴上时,2OP OC OA===,∴()0,2P-当P在x轴上时,2OP OA==,∴()2,0P设所求函数关系式为y kx b=+;将()2,0和()0,2-代入,得20,2.k bb+=⎧⎨=-⎩220bk b=-⎧⎨+=⎩解得1,2.kb=⎧⎨=-⎩21bk=-⎧⎨=⎩所以所求的函数表达式为2y x=-;(4)如图,作AP⊥直线2y x=-,即P与B点重合,∴AP2=22+22=8.【点睛】此题主要考查一次函数的几何综合,解题的关键是熟知一次函数的性质。
苏科版江苏省盐城市八年级(上)期末数学试卷(含答案) 一、选择题 1.如图,一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B ,则该一次函数的表达式为( )A .y=-x+2B .y=x+2C .y=x-2D .y=-x-2 2.若a 满足3a a =,则a 的值为( ) A .1B .0C .0或1D .0或1或1- 3.下列四组线段中,可以构成直角三角形的是 ( )A .4,5,6B .2,3,4C .7 ,3 ,4D .1,2 ,3 4.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( )A .x>12B .12<x<32C .x<32D .0<x<325.如图,将△ABC 折叠,使点A 与BC 边中点D 重合,折痕为MN ,若AB=9,BC=6,则△DNB 的周长为( )A .12B .13C .14D .15 6.64的立方根是( ) A .4B .±4C .8D .±8 7.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是( )A .a >bB .a =bC .a <bD .以上都不对8.下列实数中,无理数是( )A .227B .3πC .4-D 3279.如果0a b -<,且0ab <,那么点(),a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限10.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( )A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)11.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣112.已知:如图,点P 在线段AB 外,且PA=PB ,求证:点P 在线段AB 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A .作∠APB 的平分线PC 交AB 于点CB .过点P 作PC ⊥AB 于点C 且AC=BCC .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C13.9的平方根是( )A .3B .81C .3±D .81± 14.在平面直角坐标系中,点M (﹣3,2)关于y 轴对称的点的坐标为( )A .(﹣3,﹣2)B .(﹣2,﹣3)C .(3,2)D .(3,﹣2) 15.如图:若△ABE ≌△ACD ,且AB =6,AE =2,则EC 的长为( )A .2B .3C .4D .6二、填空题16.已知点(,5)A m -和点(2,)B n 关于x 轴对称,则m n +的值为______.17.公元前3世纪,我国数学家赵爽曾用“弦图”证明了勾股定理.如图,“弦图”是由四个全等的直角三角形(两直角边长分别为a 、b 且a <b )拼成的边长为c 的大正方形,如果每个直角三角形的面积都是313b -a =____.18.已知22139273m ⨯⨯=,求m =__________.19.若1712a +=,则352020a a -+=__________. 20.点(−1,3)关于x 轴对称的点的坐标为____. 21.若等腰三角形的顶角为100︒,则这个等腰三角形的底角的度数__________.22.如图,在ABC ∆和EDB ∆中,90C EBD ∠=∠=︒,点E 在AB 上.若ABC EDB ∆∆≌,4AC =,3BC =,则DE =______.23.在ABC 中,,AB AC BD =是高,若40ABD ∠=︒,则C ∠的度数为______.24.一次函数y =2x -4的图像与x 轴的交点坐标为_______.25.某人一天饮水1679mL ,精确到100mL 是_____.三、解答题26.已知A 、B 两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以每小时60千米/时的速度沿此公路从A 地匀速开往B 地,乙车从B 地沿此公路匀速开往A 地,两车分别到达目的地后停止甲、乙两车相距的路程y (千米)与甲车的行驶时间x (时)之间的函数关系如图所示:(1)乙年的速度为______千米/时,a =_____,b =______.(2)求甲、乙两车相遇后y 与x 之间的函数关系式,并写出相应的自变量x 的取值范围.27.如图,四边形ABCD 中,AC=5,AB=4,CD=12,AD=13,∠B=90°.(1)求BC 边的长;(2)求四边形ABCD 的面积.28.计算:()()023163.1422781π-+--+-. 29.定义:到一个三角形三个顶点的距离相等的点叫做该三角形的外心.(1)如图①,小海同学在作△ABC 的外心时,只作出两边BC ,AC 的垂直平分线得到交点O ,就认定点O 是△ABC 的外心,你觉得有道理吗?为什么?(2)如图②,在等边三角形ABC 的三边上,分别取点D ,E ,F ,使AD =BE =CF ,连接DE ,EF ,DF ,得到△DEF .若点O 为△ABC 的外心,求证:点O 也是△DEF 的外心.30.如图,已知直线l 1:y 1=x +b 经过点A (﹣5,0),交y 轴于点B ,直线l 2:y 2=﹣2x ﹣4与直线l 1:y 1=x +b 交于点C ,交y 轴于点D .(1)求b 的值;(2)求△BCD 的面积;(3)当0≤y 2<y 1时,则x 的取值范围是 .(直接写出结果)31.一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,其部分图象如图所示.(1)求y 关于x 的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】解:设一次函数的解析式y=kx+b(k≠0),∵一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,∴在直线y=-x中,令x=-1,解得:y=1,则B的坐标是(-1,1).把A(0,2),B(-1,1)的坐标代入一次函数的解析式y=kx+b得:2{1bk b=-+=,解得2{1bk==,该一次函数的表达式为y=x+2.故选B.2.C解析:C【解析】【分析】只有0和1的算术平方根与立方根相等.【详解】3a a=∴a为0或1.故选:C.【点睛】本题考查了立方根:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.也考查了算术平方根.3.D解析:D【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A.42+52≠62,不可以构成直角三角形,故A选项错误;B.22+32≠42,不可以构成直角三角形,故B选项错误;C)2+2≠42,可以构成直角三角形,故C选项错误.D.12+)22,可以构成直角三角形,故D选项正确.故选D.【点睛】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.B解析:B【解析】【分析】由mx﹣2<(m﹣2)x+1,即可得到x<32;由(m﹣2)x+1<mx,即可得到x>12,进而得出不等式组mx﹣2<kx+1<mx的解集为12<x<32.【详解】把(12,12m)代入y1=kx+1,可得1 2m=12k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<32;当kx+1<mx时,(m﹣2)x+1<mx,解得x>12,∴不等式组mx﹣2<kx+1<mx的解集为12<x<32,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.5.A解析:A【解析】【分析】根据中点的定义可得BD=3,由折叠的性质可知DN=AN,即DN+BN=AB=9,可得△DNB的周长.【详解】解:∵D是BC的中点,BC=6,∴BD=3,由折叠的性质可知DN=AN,∴△DNB的周长=DN+BN+BD=AN+BN+BD=AB+BD=9+3=12.故选A.【点睛】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等6.A解析:A【解析】试题分析:∵43=64,∴64的立方根是4,故选A考点:立方根.7.A解析:A【解析】【分析】【详解】∵k=﹣2<0,∴y随x的增大而减小,∵1<2,∴a>b.故选A.8.B解析:B【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】 A.227是有理数,不符合题意; B.3π是无理数,符合题意;C.=-2,是有理数,不符合题意;是有理数,不符合题意.故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.9.B解析:B【解析】【分析】根据0a b -<,且0ab <可确定出a 、b 的正负情况,再判断出点(),a b 的横坐标与纵坐标的正负性,然后根据各象限内点的坐标特征解答.【详解】解:∵0a b -<,且0ab <,∴a 0,0b <>∴点(),a b 在第二象限故选:B【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10.B解析:B【解析】【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案.【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+, 此时与x 轴相交,则0y =,∴360x +=,即2x =-,∴点坐标为(-2,0),故选B.【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.11.D解析:D【解析】因为函数12y x =-与23y ax =+的图象相交于点A (m ,2),把点A 代入12y x =-可求出1m =-,所以点A (-1,2),然后把点A 代入23y ax =+解得1a =, 不等式23x ax ->+, 可化为23x x ->+,解不等式可得:1x <-,故选D.12.B解析:B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A 、利用SAS 判断出△PCA ≌△PCB ,∴CA=CB ,∠PCA=∠PCB=90°,∴点P 在线段AB 的垂直平分线上,符合题意;B 、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C 、利用SSS 判断出△PCA ≌△PCB ,∴CA=CB ,∠PCA=∠PCB=90°,∴点P 在线段AB 的垂直平分线上,符合题意;D 、利用HL 判断出△PCA ≌△PCB ,∴CA=CB ,∴点P 在线段AB 的垂直平分线上,符合题意,故选B .【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.13.C解析:C【解析】【分析】根据平方根的定义进行求解即可.【详解】解:9的平方根是3±.故选C.【点睛】本题考查平方根,一个正数有两个实平方根,它们互为相反数.14.C解析:C【解析】【分析】直接利用关于y 轴对称则纵坐标相等横坐标互为相反数进而得出答案.【详解】解:点M (﹣3,2)关于y 轴对称的点的坐标为:(3,2).故选:C .【点睛】本题考查的知识点是关于x 轴、y 轴对称的点的坐标,属于基础题目,易于掌握.15.C解析:C【解析】【分析】根据全等三角形的对应边相等解答即可.【详解】解:∵△ABE ≌△ACF ,∴AC =AB =6,∴EC =AC ﹣AE =6-2=4,故选:C .【点睛】本题考查的知识点是全等三角形的性质,熟记性质内容是解此题的关键.二、填空题16.7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵和点关于轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+解析:7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵(,5)A m 和点(2,)B n 关于x 轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+n=7.故答案为7.【点睛】本题考查了点的坐标特征,解决本题的关键是熟练掌握关于x 轴对称的点的坐标特征,要与关于y 轴对称的点的坐标特征相区别.17.1【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积4个直角三角形的面积,利用已知,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.【详解解析:1【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知c =,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.【详解】解:根据题意,可知,∵c =,132ab =, ∴221()42b a ab c -+⨯=,213c =, ∴2()13431b a -=-⨯=,∴1b a -=±;∵a b <,即0b a ->,∴1b a -=;故答案为:1.【点睛】此题主要考查了勾股定理、完全平方公式、四边形和三角形面积的计算,利用数形结合的思想是解题的关键.18.8【解析】【分析】根据幂的乘方可得,,再根据同底数幂的乘法法则解答即可.∵,即,∴,解得,故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练解析:8【解析】【分析】根据幂的乘方可得293m m ,3273=,再根据同底数幂的乘法法则解答即可. 【详解】∵22139273m ⨯⨯=,即22321333m ,∴22321m ,解得8m =, 故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练掌握幂的运算法则是解答本题的关键.19.2024【解析】【分析】,代入a 值,根据乘法法则进行计算即可.【详解】===4+2020=2024故答案为:2024【点睛】考核知识点:二次根式运算.掌握运算法则,运用乘法公解析:2024【解析】352020a a -+=()252020a a -+,代入a 值,根据乘法法则进行计算即可.【详解】352020a a -+=()225202052020a a ⎡⎤⎢⎥-+=-+⎢⎥⎝⎭⎣⎦=1185202024⎡⎤+⨯-+⎢⎥⎣⎦=11202022⨯+ =4+2020=2024故答案为:2024【点睛】 考核知识点:二次根式运算.掌握运算法则,运用乘法公式是关键.20.(-1,-3).【解析】【分析】根据关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x 轴对称的点的坐标为(-1,-3),故答案是:(-1,解析:(-1,-3).【解析】【分析】根据关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x 轴对称的点的坐标为(-1,-3),故答案是:(-1,-3).【点睛】此题主要考查了关于x 轴的对称点的坐标,关键是掌握点的坐标变化规律.21.40°【解析】【分析】根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵等腰三角形的顶角为∴这个等腰三角形的底角为(180°-100°)=40°故答案为:40°.【点睛解析:40°【解析】【分析】根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵等腰三角形的顶角为100∴这个等腰三角形的底角为12(180°-100°)=40°故答案为:40°.【点睛】此题考查的是等腰三角形的性质和三角形的内角和,掌握等边对等角和三角形的内角和定理是解决此题的关键.22.5【解析】【分析】先根据勾股定理求得AB的长度,再由全等三角形的性质可得DE的长度.【详解】解:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌解析:5【解析】【分析】先根据勾股定理求得AB的长度,再由全等三角形的性质可得DE的长度.【详解】解:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌△EDB,∴DE=AB=5.【点睛】本题考查勾股定理,全等三角形的性质.熟记全等三角形对应边相等是解决此题的关键. 23.65°或25°【解析】【分析】分两种情况:①当为锐角三角形;②当为钝角三角形.然后先在直角△ABD中,利用三角形内角和定理求得∠BAC的度数,然后利用等边对等角以及三角形内角和定理求得∠C的度解析:65°或25°【解析】【分析】分两种情况:①当ABC为锐角三角形;②当ABC为钝角三角形.然后先在直角△ABD中,利用三角形内角和定理求得∠BAC的度数,然后利用等边对等角以及三角形内角和定理求得∠C的度数.【详解】解:①当ABC为锐角三角形时:∠BAC=90°-40°=50°,∴∠C=12(180°-50°)=65°;②当ABC为钝角三角形时:∠BAC=90°+40°=130°,∴∠C=12(180°-130°)=25°;故答案为:65°或25°.【点睛】此题考查了等腰三角形的性质,三角形的内角和定理,熟练掌握等腰三角形性质是解题的关键.24.(2,0)【解析】【分析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x-4得:0=2x-4,x=2,即一次函数y=2x-4与x轴的交点坐标是(2,0)解析:(2,0)【解析】【分析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x -4得:0=2x -4,x=2,即一次函数y=2x -4与x 轴的交点坐标是(2,0).故答案是:(2,0).【点睛】考查了一次函数图象上点的坐标特征,注意:一次函数与x 轴的交点的纵坐标是0. 25.7×103ml【解析】【分析】先用科学记数法表示,再根据精确度求解.【详解】解:1679mL=1.679×103mL,所以1679mL 精确到100mL 是1.7×103mL. 故答案为:1.解析:7×103ml【解析】【分析】先用科学记数法表示,再根据精确度求解.【详解】解:1679mL =1.679×103mL ,所以1679mL 精确到100mL 是1.7×103mL .故答案为:1.7×103mL .【点睛】本题考查了近似数和有效数字,属于基本题型,掌握求解的方法是解题关键.三、解答题26.(1)75;3.6;4.5;(2) 当2 3.6x <≤时,135270y x =-;当3.6 4.5x <≤时,60y x =.【解析】【分析】(1)根据图像可知两车2小时候相遇,根据路程和为270千米即可求出乙车的速度,然后根据“路程、速度、时间”的关系确定a 、b 的值;(2)根据图像可知相遇后图像分为两段,将相遇后点的坐标和分段处以及到达B 地后的坐标分别表示出来,然后运用待定系数法解决即可;【详解】解:(1)乙车的速度为:(270-60×2)÷2=75(千米/时);a =270÷75=3.6,b=270÷60=4.5故答案为:75;3.6;4.5;(2)60×3.6=216(千米),如图,可得(2,0)M ,(3.6,216)N ,(4.5,270)Q .设当2 3.6x <≤时的解析式为11y k x b =+,1111203.6216k b k b +=⎧⎨+=⎩, 解得11135270k b =⎧⎨=-⎩ ∴当2 3.6x <≤时,135270y x =-,设当3.6 4.5x <≤时的解析式为22y k x b =+,则22223.62164.5270k b k b +=⎧⎨+=⎩, 解得22600k b =⎧⎨=⎩, 当3.6 4.5x <≤时,60y x =.【点睛】本题考查了分段函数实际问题,解决本题的关键是能够读懂函数图像,从函数图像中找到相关的量,能够熟练运用待定系数法求函数解析式.27.(1)3;(2)36.【解析】【分析】(1)先根据勾股定理求出BC 的长度;(2)根据勾股定理的逆定理判断出△ACD 是直角三角形,四边形ABCD 的面积等于△ABC 和△ACD 的面积和,再利用三角形的面积公式求解即可.【详解】解:(1)∵∠ABC=90°,AC=5,AB=4∴2222543AC AB --=,(2)在△ACD 中,AC 2+CD 2= 52+122=169AD 2 =132=169,∴AC 2+CD 2= AD 2,∴△ACD 是直角三角形,∴∠ACD=90°;由图形可知:S 四边形ABCD =S △ABC +S △ACD = 12AB•BC+ 12AC•CD , =12×3×4+ 12×5×12, =36.【点睛】 本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ACD 的形状是解答此题的关键.28.49- 【解析】【分析】原式利用零指数幂法则,平方根、立方根定义计算即可求出值.【详解】解:原式=1+2﹣49+(﹣3) =﹣49. 【点睛】 本题考查了实数的运算,涉及到了零指数幂、平方根、立方根定义,熟练掌握法则是解题的关键29.(1)定点O 是△ABC 的外心有道理,理由见解析;(2)见解析【解析】【分析】(1)连接OA 、OB 、OC ,如图①,根据线段垂直平分线的性质得到OB OC =,OC OA =,则OA OB OC ==,从而根据三角形的外心的定义判断点O 是ABC ∆的外心;(2)连接OA 、OD 、OC 、OF ,如图②,利用等边三角形的性质得到OA OC =,2120AOC B ∠=∠=︒,再计算出30OAD OCF OAD ∠=∠=∠=︒,接着证明AOD COF ∆≅∆得到OD OC =,同理可得OD OE =,所以OD OE OF ==,然后根据三角形外心的定义得到点O 是DEF ∆的外心.【详解】(1)解:定点O 是ABC ∆的外心有道理.理由如下:连接OA 、OB 、OC ,如图①,BC ,AC 的垂直平分线得到交点O ,OB OC ∴=,OC OA =,OA OB OC ∴==,∴点O 是ABC ∆的外心;(2)证明:连接OA 、OD 、OC 、OF ,如图②,点O 为等边ABC ∆的外心,OA OC ∴=,2120AOC B ∠=∠=︒,30OAD OCF ∴∠=∠=︒,30OAD ∴∠=︒,在AOD ∆和COF ∆中OA OC OAD OCF AD CF =⎧⎪∠=∠⎨⎪=⎩,()AOD COF SAS ∴∆≅∆,OD OC ∴=,同理可得OD OE =,OD OE OF ∴==,∴点O 是DEF ∆的外心.【点睛】本题考查了线段垂直平分线性质和全等三角形的判定、等边三角形的性质.掌握线段垂直平分线性质和构造三角形全等是解题关键.30.(1)b =5;(2)272;(3)﹣3<x ≤﹣2 【解析】【分析】(1)把点A的坐标代入直线l1:y1=x+b,列出方程并解答;(2)利用两直线相交求得点C的坐标,由直线l2、l1求得点B、D的坐标,根据三角形的面积公式解答;(3)结合图形直接得到答案.【详解】(1)把A(﹣5,0)代入y1=x+b,得﹣5+b=0解得b=5;(2)由(1)知,直线l1:y1=x+5,且B(0,5).根题意知,524 y xy x=+⎧⎨=--⎩.解得32xy=-⎧⎨=⎩,即C(﹣3,2).又由y2=﹣2x﹣4知,D(0,﹣4).所以BD=9.所以S△BCD=12BD•|x C|=1932⨯⨯=272;(3)由(2)知,C(﹣3,2).当y=0时,﹣2x﹣4=0,此时x=﹣2.所以由图象知,当0≤y2<y1时,则x的取值范围是﹣3<x≤﹣2.故答案是:﹣3<x≤﹣2.【点睛】此题主要考查一次函数性质的综合应用,熟练掌握,即可解题.31.(1)该一次函数解析式为y=﹣110x+60.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【解析】【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.【详解】(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,60)代入y=kx+b中,得1504560k b b +=⎧⎨=⎩,解得:11060k b ⎧=-⎪⎨⎪=⎩, ∴该一次函数解析式为y=﹣110x+60; (2)当y=﹣110x+60=8时, 解得x=520,即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米,∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.。
2015——2016学年度第一学期期末教学质量测试八年级数学试卷一.选择题(每小题2分,共20分)1.下列各数中,属于无理数的是( )(A )﹣1 (B )3.1415 (C )12(D 2. 若一个有理数的平方根与立方根是相等的,则这个有理数一定是 ( ) (A) 0 (B) 1 (C) 0或1 (D) 0和±1 3.下列命题中,逆命题是真命题的是( )(A )直角三角形的两锐角互余. (B )对顶角相等. (C )若两直线垂直,则两直线有交点. (D )若21,1x x ==则.4.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为( )(A )40°. (B )100°. (C )50°或70°. (D )40°或100°. 5.如图,图中的尺规作图是作( )(A )线段的垂直平分线. (B )一条线段等于已知线段. (C )一个角等于已知角. (D )角平分线.6.如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知AC=5cm, △ADC 的周长为17cm,则BC 的长为( )(A )7cm (B )10cm (C )12cm (D )22cm5题图 6题图 7题图7.如图是某手机店今年1—5月份音乐手机销售额统计图。
根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是( )(A )1月至2月 (B )2月至3月 (C )3月至4月 (D )4月至5月8. 若b 为常数,要使16x 2+bx+1成为完全平方式,那么b 的值是 ( )(A) 4 (B) 8 (C) ±4 (D) ±89题图 10题图9.如图,正方形网格中有△ABC ,若小方格边长为1,则△ABC 是( )(A )直角三角形. (B )锐角三角形. (C )钝角三角形. (D )以上都不对. 10.如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )(A )48. (B )60. (C )76. (D )80.二、填空题(每小题2分,共18分)11.计算:25a a ⋅= .12.因式分解:24x y y -=__________________.13. 如图将4个长、宽分别均为a 、b 的长方形,摆成了一个大的正方形.利用面积的不同表示方法写出一个代数恒等式是__________________.13题图 14题图14.将一张长方形的纸片ABCD 按如图所示方式折叠,使C 点落在/C 处,/BC 交AD 于点E ,则△EBD 的形状是__________________.15.某校对1200名女生的身高进行了测量,身高在 1.58m ~1.63m 这一小组的频率为0.25,则该组共有_________人16. 如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交两直角边于A、B两点,若再以A为圆心,以OA长为半径画弧,与弧AB交于点C,则∠AOC=_________度16题图 17题图17.如图,将一根长为20cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,筷子露在杯子外面的长度为_________cm18.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形。
2015-2016学年第一学期初二数学期末考试试卷一、选择题:(本大题共10小题,每小题3分,共30分)1. 未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为…………………………………………………………………( )A .40.84510⨯亿元;B .38.4510⨯亿元;C .48.4510⨯亿元;D .284.510⨯亿元; 2. 在平面直角坐标系中,位于第四象限的点是………………………………………( )A .(﹣2,3)B .(4,﹣5)C .(1,0)D .(﹣8,﹣1)3.(2015•贵港)在平面直角坐标系中,若点P (m ,m-n )与点Q (-2,3)关于原点对称,则点M (m ,n )在………………………………………………………………………………( )A .第一象限 ;B .第二象限;C .第三象限;D .第四象限;4. 下列说法正确的是……………………………………………………………( )A .9的立方根是3;B .算术平方根等于它本身的数一定是1;C .﹣2是4的平方根; D的算术平方根是4;5. 如果()2213m y m x -=-+是一次函数,那么m 的值是………………………………( ) A .1;B .﹣1; C .±1; D.6.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x+1图象上的两点,则a 与b 的大小关系是……( )A .a >b ;B .a=b ;C .a <b ;D .以上都不对;7. 如图,△ABC 中,D 为AB 中点,E 在AC 上,且BE ⊥AC .若DE=5,AE=8,则BE 的长度是……( )A .5;B .5.5;C .6;D .6.5;8.已知正比例函数y=kx (k ≠0)的函数值y 随x 的增大而减小,则一次函数y=kx+k 的图象经过的象限为……………………………………………………………………………( )A .二、三、四;B .一、二、四;C .一、三、四;D .一、二、三;9. 同一平面直角坐标系中,一次函数1y k x b =+的图象与一次函数2y k x =的图象如图所示,则关于x 的方程1k x b +=2k x 的解为…………………………………………………( )A .x=0B .x=﹣1C .x=﹣2D .x=110. 如图为正三角形ABC 与正方形DEFG 的重叠情形,其中D 、E 两点分别在AB 、BC 上,且BD=BE .若AC=18,GF=6,则F 点到AC 的距离为……………………………………………( )第7题图第9题图第10题图 第13题图A .2;B .3; C.12-D.6;二、填空题:(本大题共8小题,每小题3分,共24分)11. (2015•恩施州)4的平方根是 .12. 已知等腰三角形的一个内角等于20°,则它的一个底角是 .13.(2015•青海)如图,点B ,F ,C ,E 在同一直线上,BF=CE ,AB ∥DE ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是 (只需写一个,不添加辅助线).14. 已知:m 、n为两个连续的整数,且m n <<,则m n += .15. 如图,在△ABC 中,AB=AC ,BC=6,△DEF 的周长是7,AF ⊥BC 于F ,BE ⊥AC 于E ,且点D 是AB 的中点,则AF= .16.(2015•聊城)如图,在△ABC 中,∠C=90°,∠A=30°,BD 是∠ABC 的平分线.若AB=6,则点D 到AB 的距离是 .17. 如图,△ABC 中,AB=17,BC=10,CA=21,AM 平分∠BAC ,点D 、E 分别为AM 、AB 上的动点,则BD+DE 的最小值是 .18. 已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE .以下四个结论:①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°;④BE=AC+AD.其中结论正确的个数是 .三、解答题:(本题满分76分)19. (本题满分10分)计算:(1)()()120160113π-⎛⎫-+-+ ⎪⎝⎭(221+;20. (本题满分6分)(2015•重庆)如图,在△ABD 和△FEC 中,点B ,C ,D ,E 在同一直线上,且AB=FE ,BC=DE ,∠B=∠E .求证:∠ADB=∠FCE .21. (本题满分6分)第18题图 第17题图 第16题图 第15题图在平面直角坐标系中,已知点A (-2,0)、B (0,3),O 为原点.(1)求三角形AOB 的面积;(2)若点C 在坐标轴上,且三角形ABC 的面积为6,求点C 的坐标.22. (本题满分6分) 如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.23. (本题满分6分)已知等腰三角形的周长为20cm ,试求出底边长y (cm )表示成腰长x (cm )的函数关系式,并求其自变量x 的取值范围.24. (本题满分6分)如图,四边形OABC 是矩形,点D 在OC 边上,以AD 为折痕,将△OAD 向上翻折,点O 恰好落在BC 边上的点E 处,若△ECD 的周长为4,△EBA 的周长为12.(1)矩形OABC 的周长为 .(2)若A 点坐标为(5,0),求线段AE 所在直线的解析式.25. (本题满分8分)(2015•益阳)如图,直线l 上有一点1P (2,1),将点1P 先向右平移1个单位,再向上平移2个单位得到像点2P ,点2P 恰好在直线l 上.(1)写出点2P 的坐标;(2)求直线l 所表示的一次函数的表达式;(3)若将点2P 先向右平移3个单位,再向上平移6个单位得到像点3P .请判断点3P 是否在直线l 上,并说明理由.26. (本题满分9分)(2015•潜江)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A ,B 两种上网学习的月收费方式:设每月上网学习时间为x 小时,方案A ,B 的收费金额分别为A y ,B y .(1)如图是B y 与x 之间函数关系的图象,请根据图象填空:m= ;n= .(2)写出A y 与x 之间的函数关系式.(3)选择哪种方式上网学习合算,为什么?27.(本题满分10分)如图,已知直线y=-2x+8和x 轴、y 轴分别交于B 和A ,直线l 经过点C (2,-4)和D (0,-3),向下平移1个单位后与x轴、y轴分别交于点E、F,直线AB和EF相交于点P.(1)直线l的解析式为,线段BC的长为;(2)求证:△AOB≌△EOF;(3)判断△APE的形状,并说明理由;(4)求△APE的面积.28.(本题满分9分)(1)如图1,E、F是正方形ABCD的边AB及DC延长线上的点,且BE=CF,则BG与BC的数量关系是.(2)如图2,D、E是等腰△ABC的边AB及AC延长线上的点,且BD=CE,连接DE交BC于点F,DG⊥BC交BC于点G,试判断GF与BC的数量关系,并说明理由;(3)如图3,已知矩形ABCD的一条边AD=4,将矩形ABCD沿过A的直线折叠,使得顶点B 落在CD边上的P点处.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥PB于点E,且EF=结论求出矩形ABCD的面积.2015-2016学年第一学期初二数学期末考试试卷答案一、选择题:1.B ;2.B ;3.A ;4.C ;5.B ;6.A ;7.C ;8.A ;9.B ;10.D ;填空题:11.±2;12.20°或80°;13.AD=DE ;14.7;15.;16.;17.8;18.①②③;三、解答题:19.(1)1;(2;20.(略)21.(1)3;(2)C 点坐标为(0,-3),(0,9).22. 解:(1)三边分别为:3、4、5 (如图1);(2、2);(33).23. 解:∵2x+y=20,∴y=20-2x ,即x <10,∵两边之和大于第三边,∴x >5, 综上可得5<x <1024. 解:(1)16.(2)∵矩形OABC 的周长为16,∴2OA+2OC=16,∵A 点坐标为(5,0),∴OA=5,∴OC=3,∵在Rt △ABE 中,∠B=90°,AB=3,AE=OA=5,由勾股定理得:BE=4,∴CE=5-4=1,∴E 的坐标是(1,3).设直线AE 的解析式为y=kx+b (k ≠0),∵A (5,0),E (1,3),∴503x b k b +=⎧⎨+=⎩,解得34154k b ⎧=-⎪⎪⎨⎪=⎪⎩. ∴线段AE 所在直线的解析式为:3154y x =-+. 25.(1)2P (3,3);(2)23y x =-;(3)3P 在直线l 上;26. 解:(1)由图象知:m=10,n=50;(2)yA 与x 之间的函数关系式为:当x ≤25时,A y =7,当x >25时,A y =7+(x-25)×60×0.01,∴A y =0.6x-8,∴()()70250.6825A x y x x <≤⎧⎪=⎨->⎪⎩;(3)∵B y 与x 之间函数关系为:当x ≤50时,B y =10,当x >50时,B y =10+(x-50)×60×0.01=0.6x-20,当0<x ≤25时,A y =7,B y =50,∴A y <B y ,∴选择A 方式上网学习合算, 当25<x ≤50时.A y =B y ,即0.6x-8=10,解得;x=30,∴当25<x <30时,A y <B y ,选择A 方式上网学习合算,当x=30时,A y =B y ,选择哪种方式上网学习都行,当30<x ≤50,A y >B y ,选择B 方式上网学习合算,当x >50时,∵A y =0.6x-8,B y B=0.6x-20,A y >B y ,∴选择B 方式上网学习合算,综上所述:当0<x <30时,A y <B y ,选择A 方式上网学习合算, 当x=30时,A y =B y ,选择哪种方式上网学习都行,当x >30时,A y >B y ,选择B 方式上网学习合算.27. (1)132y x =--;(2) (2)证明:直线向下平移1个单位后解析式为142y x =--, ∴E (-8,0),F (0,-4),∴OE=OA=8,OF=OB=4,在△AOB 和△EOF 中,OA OE AOB EOF OB OF =⎧⎪∠=∠⎨⎪=⎩,∴△AOB ≌△EOF (SAS ); (3)解:△APE 是等腰三角形;理由如下:由(2)得:△AOB ≌△EOF ,∴∠OAB=∠OEF ,又OA=OE ,∴∠OAE=∠OEA , ∴∠OAB+∠OAE=∠OEF+∠OEA ,即∠PAE=∠PEA ,∴△APE 是等腰三角形;(4)解:由直线AB 和直线EF 的解析式组成方程组为28142y x y x =-+⎧⎪⎨=--⎪⎩,解得:88x y =⎧⎨=-⎩,∴点P 的坐标为(8,-8), ∵BE=OE+OB=8+4=12,∴△APE 的面积=△ABE 的面积+△PBE 的面积=12×12×8+12×12×8=96. 28. 解:(1)BG=12BC ,理由如下: ∵四边形ABCD 是正方形,∴∠EBG=∠FCG=90°,在△EBG 与△FCG 中,EB CF EBG FCG BGE CGF =⎧⎪∠=∠⎨⎪∠=∠⎩,∴△EBG ≌△FCG (AAS ), ∴BG=GC=12BC ; 故答案为:BG=12BC ; (2)GF=12BC ,理由如下:过点E 作EH ⊥BC ,如图1: ∵等腰△ABC,∴∠B=∠ACB ,∵∠ACB=∠ECH ,∴∠B=∠ECH ,在△DBG 与△ECH 中, 90DGB CHE B ECHDB CE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△DBG ≌△ECH (AAS ),∴DG=EH ,BG=CH ,∴BC=BG+GC=GH=GC+CH ,同理证明△DGF ≌△FHE ,∴GF=FH=12BC ; (3)由(1)(2)得出EF=12PB= 可得2==,因为将矩形ABCD 沿过A 的直线折叠,使得顶点B 落在CD 边上的P 点处,所以AP=AB ,在Rt △ADP 中,()2222AP AB AD AB PC ==+-,即()22242AB AB =+-,解得:AB=5.所以矩形的面积=20.。
江苏省盐城市滨海县2015-2016学年八年级数学上学期期末考试试题2015年秋学期期末教研片教学调研 八年级数学参考答案及评分标准一、选择题(每小题3分,共24分)题号 12345678得分C B C A B CD D二、填空题(每小题3分,共30分)9. 3; 10. (-3,-2); 11. 110 ; 12. 60 ; 13.132; 14. 1; 15. <; 16. 18; 17. 46x y =⎧⎨=-⎩;18. (2,0).三、解答题(本大题共有10题,共96分).19.解:(1)原式=-2-1+2 ………………3分=-1 ………………4分(2):x+4=-4 ………………2分 x =-8 ………………4分20.证明:∵AC =BD∴AC+CD =BD +CD即 AD =BC ………………2分 在△ADE 和 △BCF 中AD BCAE BF DE CF =⎧⎪=⎨⎪=⎩………………6分 ∴ △ADE ≌△BCF (SSS ). ………………8分21.证明: ∵AC =AD , E 是CD 中点∴AB 垂直平分CD ………………4分 ∴ BC=BD (答案不唯一) ………………8分22.(1)正确画图(参考图1-图4) ………………4分 (2)正确画图(参考图5-图8) ………………8分23. 根据题意,在Rt △ABC 中,AB =2.5 AC =2.4由勾股定理得:BC =222.5 2.40.7-= ………………4分 ∵BB 1=0.8∴B 1C = B 1B+BC =1.5 ………………6分 在Rt △A 1B 1C 中,A 1B 1=2.5 B 1C =1.5∴A 1C =222.5 1.52-= ………………8分 ∴A 1A =2.4-2=0.4答:那么梯子顶端沿墙下滑的距离为0.4米. ………………10分 24. 解:(1)∵一次函数1y kx b =+与函数2y x =-的图像平行 且过A (2,0)∴220k k b =-⎧⎨+=⎩………………2分解得24k b =-⎧⎨=⎩∴一次函数的表达式为124y x =-+ ………………4分(2)图略 ………………6分 x +1=-2x +4 解得:x =1 ………………7分 ∴1y 与2y 的交点坐标为(1,2) ………………8分 (3)x <1 ………………10分 25.(1)证明:∵△ABC 是等边三角形, ∴∠BAC =∠ACB =60°,AC =AB∴∠EAB =∠ACD =120° ………………3分 ∵在△CAD 和△ABE 中,CA AB ACD BAE CD AE =⎧⎪∠=∠⎨⎪=⎩………………5分 ∴△ABE ≌△CAD ………………6分 (2) ∵△ABE ≌△CAD∴∠E =∠D ………………8分 ∵∠D +∠CAD =∠ACB =60°∴∠AFB =∠E +∠EAF =∠D +∠CAD =60° ………………10分 26.解:(1)根据题意得:y =2x +3(4500-x ) ………………2分y =-x +13500 ………………3分 (2)根据题意得:w =(2.3-2)x +(3.5-3)(4500-x ) ………………5分 w =-0.2x +2250 ………………6分(3)根据题意得:-x +13500≤10000 ………………7分解得x ≥3500元 ………………8分 ∵k =-0.2<0,∴y 随x 增大而减小 ………………9分 ∴当x =3500时,y =-0.2×3500+2250=1550答:该厂每天至多获利1550元. ………………10分27.(1)档 次 第一档 第二档 第三档每月用电量x 度0<x ≤140140<x ≤230x >230(不区分<与≤,>与≥) ………………4分 (2)31.5元 ………………6分 (3)解:设y 与x 的关系式为y=kx+b∵点(140,63)和(230,108)在y=kx+b 上 ∴ 14063230108k b k b +=⎧⎨+=⎩ ………………8分解得 0.57k b =⎧⎨=-⎩………………9分∴y 与x 的关系式为0.57y x =- (140<x ≤230) ………………10分 (4)根据题意: 10863()(290230)108153230140m -+⨯-+=- ………………11分解得:m =0.25 ………………12分 28. 解:(1)把A (0,4)代入y x b =-+,解得b =4∴直线AB 的函数表达式为:4y x =-+ ………………2分 当y =0时,x =4∴点B 的坐标为(4,0) ………………4分 (2)①∵l 垂直平分OB ∴OE =BE =2当x =2时,y =2∴ 点D 的坐标为(2,2),点P 的坐标为(2,n ) ………………5分 ∴ PD =n -2 ………………6分 ∵ABP S ∆=ADP S ∆+BDP S ∆ ∴ ABP S ∆=1122PD OE PD BE ⋅+⋅ =11(2)2(2)222n n -⨯+-⨯11 =24n - ………………7分② 248n -= ………………8分解得:6n =∴点P 的坐标为(2,6) ………………9分 ③设点C (p ,q )过点C 作CM ⊥l ,垂足为M ,再过点B 作BN ⊥CM 于点N易证△PCM ≌△CBN………………10分 ∴ CM =BN ,PM =CN∴462p qq p -=-⎧⎨=-⎩………………11分解得64p q =⎧⎨=⎩ ∴点C的坐标为(6,4)………12分 (注:其他解法,参照得分)图3x。
2015~2016学年第一学期期末考试卷 八年级数学试题 2016.1注意事项:1.本卷考试时间为100分钟,满分100分.其余结果均应给出精确结果.一、选择题:(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1.如图,下列图案中是轴对称图形的是-------------------------------------------------------( )A .(1)、(2) B .(1)、(3) C .(1)、(4) D .(2)、(3)2.下列实数中,是无理数的为--------------------------------------------------------------------( )AB .13C .0D .3-3.在△ABC 中和△DEF 中,已知BC =EF ,∠C =∠F ,增加下列条件后还不能判定△ABC ≌△DEF 的是-------------------------------------------------------------------------( ) A 、AC =DF B 、AB =DE C 、∠A =∠D D 、∠B =∠E 4.满足下列条件的△ABC 不是..直角三角形的是----------------------------------------------( ) A 、1=a 、2=b , 3=c B 、1=a 、2=b , 5=cC 、a ∶b ∶c =3∶4∶5D 、∠A ∶∠B ∶∠C =3∶4∶55.如图,直线l 是一条河,P ,Q 是两个村庄.计划在l 上的某处修建一个水泵站M ,向P ,Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道),则所需管道最短的是------------------------------------------------------------------------------------------------------( ) A . B . C .D CB A6.设正比例函数mx y =的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则m 的值为-----------------------------------------------------------------------------------------------( )A.2B.-2C. 4D.-4 7.如图,在平面直角坐标系中,点P 坐标为(-4,3), 以点B (-1,0)为圆心,以BP 的长为半径画弧, 交x 轴的负半轴于点A ,则点A 的横坐标介于-----------( ) A 、-6和-5之间 B 、-5和-4之间 C 、-4和-3之间 D 、-3和-2之间8. 在平面直角坐标系中,点A(1,1),B(3,3),动点C 在x轴上,若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数为------------------------------------------------------( )B.3C.4D.5二、填空题:(本大题共11小题,每题2分,共22分)9.16的平方根是10.点A (—3,4)关于y 轴对称的点的坐标是 . 11.地球上七大洲的总面积约为149 480 000km 2,把这个数值精确到千万位,并用科学计数法表示为 .12. 函数2-=x y 中自变量x 的取值范围是_____ ________13. 如图,在等腰三角形ABC 中,AC AB =,DE 垂直平分AB ,已知∠ADE =40º,则∠DBC= ︒.14.如图,锐角△ABC 的高AD 、BE 相交于F ,若BF =AC ,BC =7,CD =2,则AF 的长为15.如图,已知△ABC 中,AB=17,AC=10,BC 边上的高AD=8.则△ABC 的周长为__________。
2015~2016学年度上学期期末考试试卷八年级数学一、选择题(每空3分,共30分)1、要使分式1x 有意义,则x 应满足的条件是( ) A .x ≠1B .x ≠﹣1C .x ≠0D .x >12、下列计算正确的是( ) A . 6a 3•6a 4=6a 7B .(2+a )2=4+2a + a 2C .(3a 3)2=6a 6D .(π﹣3.14)0=13、如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得OA=15米,OB =10米,A 、B 间的距离不可能是( ) A .5米B .10米C .15米D .20米4、一张长方形按如图所示的方式折叠,若∠AEB ′=30°,则∠B ′EF=( ) A .60°B .65°C .75°D .95°5、如图,已知△ABC 中,AB=AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),第3题EADCBFC ’B ’第4题AB C EF P第5题第9题第10题给出以下四个结论:①AE=CF ;②△EPF 是等腰直角三角形;③2S 四边形AEPF =S △ABC ;④BE +CF =EF .上述结论中始终正确的有( ) A .4个 B .3个C .2个D .1个6、如果2925x kx ++是一个完全平方式,那么k 的值是 ( ) A 、30B 、±30C 、15D 、±157、计算:()20162014133⎛⎫-⨯-= ⎪⎝⎭( )A .13B .13- C .﹣3D .198、点M (1,2)关于x 轴对称的点的坐标为( )A.(—1,2)B.(-1,-2)C.(1,-2)D.(2,-1)9、如图,两个正方形的边长分别为a 和b ,如果10a b +=,20ab =,那么阴影部分的面积是( ) A.20B .30C.40D .1010、如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( ) A .10 B .7 C .5 D .4二、填空题(每小题3分, 共18分)11、有四条线段,长分别是为3cm 、5cm 、7cm 、9cm,如果用这些线段组成三角形,可以组成 个三角形 。
2015-2016学年八年级上学期期末数学试卷一、选择题(每题3分,共45分) 1.下列各式中计算正确的是( ) A .B .C .D .2.(3分)如图中点P 的坐标可能是( ) A . (﹣5,3) B . (4,3) C . (5,﹣3) D .(﹣5,﹣3)3.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论①k <0;②a >0;③当x <3时,y 1<y 2中,正确的个数是( ) A . 0 B . 1 C . 2 D .3 4.在﹣2,0,3,这四个数中,最大的数是() A . ﹣2 B . 0 C . 3 D . 5.如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=60°, 则∠2的度数是( ) A . 50° B . 45° C . 35° D .30° 6.(3分)一次函数y=﹣2x+1的图象不经过下列哪个象限( ) A . 第一象限 B . 第二象限 C . 第三象限 D .第四象限 7.若方程mx+ny=6的两个解是,,则m ,n 的值为( )A . 4,2B . 2,4C . ﹣4,﹣2D .﹣2,﹣4 8.(3分)为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果: 居民(户) 1 3 2 4 月用电量(度/户) 40 50 55 60那么关于这10户居民月用电量(单位:度),下列说法错误的是() A . 中位数是55 B . 众数是60 C . 方差是29 D .平均数是54 9.(3分)下列四组线段中,可以构成直角三角形的是() A . 4,5,6 B . 1.5,2,2.5 C . 2,3,4 D .1,,3 10.(3分)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x 表示时间,y 表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是() A . 体育场离张强家2.5千米 B . 张强在体育场锻炼了15分钟 C . 体育场离早餐店4千米 D . 张强从早餐店回家的平均速度是3千米/小时11.下列命题是真命题的是( )A;如果a 2=b 2,则a=b B:两边一角对应相等的两个三角形全等。
江苏省无锡市锡山区2015.2016学年八年级数学上学期期末考试试题本试卷分试卷和答题卷两部分.所有答案一律写在答题卷上.考试时间为100分钟,试卷满分120分.一、选择题(本大题共10小题,每小题3分,共30分.)1.下列各数中,是无理数的是…………………………………………………………( ▲ ) A .9 B .247C .π2D .38 .2.窗花是我国的传统艺术,下列四个窗花图案中,不是..轴对称图形的是……………( ▲ )A .B .C .D .3.若0<a <2,则点M (a ,a 2)所在的象限是……………………………………( ▲ ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.以下列线段长为边,能构成直角三角形的是…………………………………………( ▲ ) A .2,3,5 B .2,3,4 C .3,7 ,4, D . 2,4,5 5.如图,在△ABC 中,按以下步骤作图:①分别以A 、B 为圆心, 大于12AB 的长为半径画弧,相交于两点M ,N ;②作直线MN 交AC 于点D ,连接BD .若∠A =25°,则∠CDB =…………………( ▲ )A .25°B .50°C .60°D . 90° 6.一次函数y =2x -1的图像不.经过..……………………………………………………( ▲ ) A .第一象限 B .第二象限 C .第三象限D .第四象限.7.下列两个三角形中,一定全等的是…………………………………………………( ▲ ) A. 两个等腰三角形 B. 两个等腰直角三角形 C. 两个等边三角形 D. 两个周长相等的等边三角形8.已知点A (m +2,3m -6)在第一象限角平分线上,则m 的值为………………( ▲ ) A .2 B .-1 C . 4 D .-29则不等式+>0(其中,,,为常数)的解集为……………………( ▲ ) A .x >2 B .x >3 C .x <2 D .无法确定 10.如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,AB=AC=2, O 为AC 中点,若点D 在直线BC 上运动,连接OE 则在点D 运动过程中,线段OE 的最小值是为…………(A .12B . 22C .1D . 2二、填空题(本大题共8小题,每小题3分,共24分.) 11.4的算术平方根是 ▲ .1213.点A (-2,3)关于x 轴对称的点的坐标为 ▲ . 14.等腰三角形两边长分别为3、7,则其周长为 ▲ .15. 如图,△ABC 中,AB =AC ,点D ,E 在BC 边上,若要以“SAS ”为依据说明△ABD ≌△ACE ,还要添加的条件为 ▲ .16.如图,已知函数y 1=kx -1和y 2=x -b 的图像交于点P (-2,-5),则根据图像可得不等式kx -1>x -b 的解集是 ▲ .17.如图,在平面直角坐标系中,已知点A (0,4),B (-3,0),连接AB .将△AOB 沿过点B 的直线折叠,使点A 落在x 轴上的点A '处,折痕所在的直线交y 轴正半轴于点C ,则点C 的坐标为 ▲ .18.若直线l 1:y =ax +b (a ≠0)与直线l 2:y =mx +n (m ≠0)的交点坐标为(-2,1),则直线l 3:y =a (x -3)+b +2(a ≠0)与直线l 4:y =m (x -3)+n +2(m ≠0)的交点坐标为 ▲ . 三.解答题(本大题共8小题,共66分.) 19.(本题满分8分) (1011(3)()2π---(2)求3(2)27x -=中的x 的值.20.(本题满分10分)已知:如图,AB ∥CD ,E 是AB 的中点,CE =DE .求证:(1) ∠AEC =∠BED ;(2) AC =BD .21.(本题满分6分)方格纸中小正方形的顶点叫格点.点A 和点B 是格点,位置如图.(1)在图1中确定格点C 使△ABC 为直角三角形,画出一个这样的△ABC ; (2)在图2中确定格点D 使△ABD 为等腰三角形,画出一个这样的△ABD ; (3)在图2中满足题(2)条件的格点D 有__ ▲ 个.第15题ED图3DC BA我市某草莓种植农户喜获丰收,共收获草莓2000kg .经市场调查,可采用批发、零售两种(1)求y 与x 之间的函数关系式;(2)若零售量不超过批发量的4倍,求该农户按计划全部售完后获得的最大利润. 23.(本题满分6分)已知:如图,∠ABC =∠ADC =90°,M 、N 分别是AC 、BD 的中点. 求证:MN ⊥BD .24.(本题满分7分) 阅读下面材料:小明遇到这样一个问题:“如图1,在Rt △ABC 中,∠ACB =90°,∠A =60°,CD 平分∠ACB ,试判断BC 和AC 、AD 之间的数量关系.”小明发现,利用轴对称做一个变化,在BC 上截取CA′=CA ,连接DA′,得到一对全等的三角形,从而将问题解决(如图2).A'DDCB CBAA图1 图2 请回答:(1)在图2中,小明得到的全等三角形是△ ≌△ ; (2)BC 和AC 、AD 之间的数量关系是 . 参考小明思考问题的方法,解决问题:如图3,在四边形ABCD 中,AC 平分∠BAD ,BC =CD =10,AC =17,AD =9. 求AB 的长.第23题D一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发..车辆行驶的时间为x h ,两车之间的距离为........y km .当两车均到达各自终点时,运动停止.下图是y 与x 之间函数关系的部分图像.(1)由图像知,慢车的速度为 ▲ km/h ,快车的速度为 ▲ km/h ; (2)请在图中补全函数图像.(3)求当x 为多少时,两车之间的距离为300km .26.(本题满分11分)如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标为(4,0),点B 的坐标为(0,b )(b >0),点P 是直线AB 上位于第二象限内的一个动点,过点P 作PC ⊥x 轴于点C ,记点P 关于y 轴的对称点为Q ,设点P 的横坐标为a . (1)当b =3时, ①求直线AB 的解析式②若QO=QA ,求P 点的坐标.(2)是否同时存在a 、b ,使得△QAC 是等腰直角三角形?若存在,求出所有满足条件的a 、b 的值;若不存在,请说明理由.第26题第25题y2015年秋学期期末考试试卷 初二数学答题卷 2016.1一、选择题(本大题共10小题,每小题3分,共30分.)二、填空题(本大题共8小题,每小题3分,共24分.)班级 姓名 学号 .……………………………………………………………装……………订……………线…………………………………………………………请回答:2015~2016学年度秋学期期末试卷初二数学参考答案 2016.1 一、选择题(每小题3分,共30分)1.C ; 2.D ; 3.D ; 4.C ; 5.B ; 6.B ; 7.D ; 8.C ; 9.A ; 10.B . 二、填空题(每小题3分,共24分)11. 2; 12.4.25×104; 13.(-2,-3); 14.17; 15. BD=CE ;16.x >-2;17.(0, 32);18.(1, 3).三、解答题(共66分) 19.(本题满分8分) (111(3)()2π---=4+1-2 ………………………3分 =3 ……………………4分 (2)求3(2)27x -=中的x 的值.x -2=3 ……………………………3分 x=5 ……………………………4分 20.(本题满分10分) 证明:(1)∵AB ∥CD∴∠AEC =∠ECD ,∠BED =∠EDC ……………2分 ∵CE =DE∴∠ECD =∠EDC ………………………………4分 ∴∠AEC =∠BED ………………………………5分 (2)∵E 是AB 的中点∴AE =BE ……………………………………… …7分 在△AEC 和△BED 中AE BE AEC BED EC ED =⎧⎪∠=∠⎨⎪=⎩∴△AEC ≌△BED (SAS )………………………9分 ∴AC =BD …………………………………………10分 21.(本题满分6分)解:(1) 画出一个如下图1中的一个三角形………………………………2分 (2) 画出一个如下图2中的一个三角形………………………………4分 (3) 4.(理由如图2) ………………………………6分22.(本题满分8分) 解:(1)由题意可知零售量为(1500-x )吨,故…………………………1分 y =6 x +12(1500-x )∴整理得y 与x 之间的函数关系式为y =-6 x +24000. ……………3分 (2)由题意得02000020004x x x x ≥⎧⎪-≥⎨⎪-≤⎩,解得:500≤x ≤2000. …………………5分∵-6<0,∴y 随x 的增大而减小.∴当x =500时,y 有最大值,且y 最大=21000元. ………………7分 ∴最大利润为21000元. ……………………………………………8分 23.(本题满分6分)证明:连接MB 、MD ……………………………1分 ∵∠ABC =90°,M 是AC 的中点 ∴BN=12AC ………………………………3分同理,DM=12AC …………………………4分∴BM=DM ……………………………………5分又∵N 是BD 的中点… ∴MN ⊥BD ……………………………………6分 24.(本题满分7分) 解:阅读材料(1)△ADC ≌△A ′DC ;……………………1分 (2)BC =AC +AD .……………………………3分解决问题如图,在AB 上截取AE =AD ,连接CE . ∵ AC 平分∠BAD ,∴ ∠DAC =∠EAC .又 ∵AC =AC ,∴ △ADC ≌△AEC . ……………………………4分 ∴ AE =AD =9,CE=CD =10=BC . 过点C 作CF ⊥AB 于点F . ∴ EF =BF . 设EF =BF =x .在Rt △CFB 中,∠CFB =90°,由勾股定理得CF 2=CB 2-BF 2=102-x 2.在Rt △CFA 中,∠CFA =90°,由勾股定理得CF 2=AC 2-AF 2=172-(9+x )2.∴ 102-x 2=172-(9+x )2,解得x =6.……………………………………6分DCFE BA D B∴AB=AE+EF+FB=9+6+6=21.∴AB的长为21.…………………………7分25.(本题满分10分)解:(1)慢车80,……………………………………………………………………1分快车120;…………………………………………………………………3分(2)如下图,注意端点值。
2015学年度第一学期期末初二质量调研 数 学 试 卷(2016.1)(时间90分钟,满分100分)一、填空题(本大题共有14题,每题2分,满分28分) 1.化简:()=>0182x x . 2.方程022=-x x 的根是 . 3.函数2-=x y 的定义域是 .4.某件商品原价为100元,经过两次促销降价后的价格为64元,如果连续两次降价的百分率相同,那么这件商品降价的百分率是 .5.在实数范围内分解因式:1322--x x = . 6.如果函数()12+=x x f ,那么()3f = .7.已知关于x 的一元二次方程012=+-x kx 有两个不相等的实数根,那么k 的取值范围是 .8.正比例函数x a y )12(-=的图像经过第二、四象限,那么a 的取值范围是 . 9.已知点),(11y x A 和点),(22y x B 在反比例函数xky =的图像上,如果当210x x <<,可得1y >2y ,那么0______k .(填“>”、“=”、“<”)10.经过定点A 且半径为2cm 的圆的圆心的轨迹是 . 11.请写出“等腰三角形的两个底角相等”的逆命题: . 12.如图1,在△ABC 中,︒=∠90C ,∠CAB 的平分线AD 交BC 于点D ,BC =8,BD =5,那么点D 到AB 的距离等于 .13.如果点A 的坐标为(3-,1),点B 的坐标为(1,4),那么线段AB 的长等于____________.学校_______________________ 班级__________ 学号_________ 姓名______________……………………密○………………………………………封○………………………………………○线………………………………………………图114.在Rt △ABC 中,︒=∠90C ,将这个三角形折叠,使点B 与点A 重合,折痕交AB 于点M ,交BC 于点N ,如果AC BN 2=,那么=∠B 度. 二、选择题(本大题共有4题,每题3分,满分12分)15.下列方程中,是一元二次方程的是 ……………………………………………………( ) (A )y x 342=; (B )15)1(2-=+x x x ; (C )6532-=-x x ; (D )01312=-+x x. 16.已知等腰三角形的周长等于20,那么底边长y 与腰长x 的函数解析式和定义域分别是…( )(A )x y 220-=)200(<<x ; (B )x y 220-=)100(<<x ; (C )x y 220-=)105(<<x ; (D )220xy -=)105(<<x . 17.下列问题中,两个变量成正比例的是………………………………………………… ( ) (A )圆的面积S 与它的半径r ; (B )正方形的周长C 与它的边长a ;(C )三角形面积一定时,它的底边a 和底边上的高h ;(D )路程不变时,匀速通过全程所需要的时间t 与运动的速度v .18.如图2,在△ABC 中,AB=AC ,∠A =120°,如果D 是BC 的中点,DE ⊥AB ,垂足是E ,那么 AE ︰BE 的值等于………………………………………………………………… ( ) (A )31; (B )33; (C )41; (D )51.三、(本大题共有7题,满分60分) 19.(本题满分7分)计算:)7581()3165.0(---.图220.(本题满分7分)用配方法解方程:01632=-+x x .21.(本题满分7分)已知21y y y +=,并且1y 与x 成正比例,2y 与x -2成反比例. 当1=x 时,1-=y ; 当3=x 时,5=y .求y 关于x 的函数解析式.……………………密○………………………………………封○…………………………………○线………………………………………………22.(本题满分8分)已知:如图3,在△ABC 中,45ACB ∠=︒,AD 是边BC 上的高,G 是AD 上一点,联结CG ,点E 、F 分别是AB 、CG 的中点,且DE DF =.求证:△ABD ≌△CGD .23.(本题满分8分)已知:如图4,在△ABC 中,∠ACB =90°, AD 为△ABC 的外角平分线,交BC 的 延长线于点D ,且∠B=2∠D . 求证:AB+AC=CD .图 3DCBA图424.(本题满分11分)如图5,在平面直角坐标系xOy 中,已知直线x y 3=与反比例函数)0(≠=k xky 的图像交于点A ,且点A 的横坐标为1,点B 是x 轴正半轴上一点,且AB ⊥OA . (1)求反比例函数的解析式; (2)求点B 的坐标;(3)先在AOB ∠的内部求作点P ,使点P 到AOB ∠的两边OA 、OB 的距离相等,且PA PB =;再写出点P 的坐标.(不写作法,保留作图痕迹,在图上标注清楚点P )学校_____________________ 班级__________ 学号_________ 姓名______________……………………密○………………………………………封○………………………………………○线………………………………………………图525.(本题满分12分)如图6,在△ABC 中,D 是AB 的中点,E 是边AC 上一动点,联结DE ,过点D 作DF ⊥DE 交边BC 于点F (点F 与点B 、C 不重合),延长FD 到点G ,使DF DG =,联结EF 、AG ,已知10=AB ,6=BC ,8=AC . (1)求证: AG AC ⊥;(2)设x AE =,y CF =,求y 与x 的函数解析式,并写出定义域; (3)当△BDF 是以BF 为腰的等腰三角形时,求AE 的长.GFEDCBA 图62015学年度第一学期期末初二质量调研数学试卷参考答案一、填空题(本大题共14题,每题2分,满分28分) 1.x 23; 2.21,021==x x ; 3.x ≥2; 4.20%; 5.)4173)(4173(2--+-x x ; 6.13-; 7.41<k 且0≠k ;8.a <21; 9.>; 10.以点A 为圆心,2cm 为半径的圆; 11.有两个角相等的三角形是等腰三角形(写两个“底角”相等不给分); 12.3; 13.5; 14.15二、选择题(本大题共4题,每题3分,满分12分)15.B ; 16.C ; 17.B ; 18.A .三、简答题(本大题共5题,每题7分,满分35分) 19.解:原式= )3542()3222(---················································· (4分) =35423222+-- ······················································· (1分) =3342+. ···································································· (2分) 20.解:移项,得1632=+x x . ································································· (1分) 二次项系数化为1,得3122=+x x . ················································ (1分) 配方,得131122+=++x x , 34)1(2=+x . ······························································· (2分)利用开平方法,得3321±=+x .解得 33211+-=x ,33211--=x . ··············································· (2分) 所以,原方程的根是33211+-=x ,33211--=x . ··························· (1分)21.解:由1y 与x 成正比例,可设111(0)y k x k =≠··········································· (1分) 由2y 与x -2成反比例,可设222(0)2k y k x =≠-. ································· (1分) ∵21y y y +=,∴221-+=x k x k y . ··············································· (1分) 把1=x ,1-=y 和3=x ,5=y 分别代入上式,得 ⎩⎨⎧=+-=-.53,12121k k k k ······································································ (1分)解得⎩⎨⎧==.2,121k k ··········································································· (2分)所以 y 关于x 的函数解析式是22-+=x x y . ·································· (1分)22.证明:∵AD ⊥BC ,E 是AB 的中点,∴AB DE 21=(直角三角形斜边上的中线等于斜边的一半). ··········· (2分) 同理:CG DF 21=. ······························································· (1分)∵ DF DE =,∴ CG AB =. ·················································· (1分) ∵AD ⊥BC ,︒=∠45ACB ,∴︒=∠45DAC . ·························· (1分) ∴DAC ACD ∠=∠. ································································ (1分) ∴ CD AD = . ······································································· (1分) 在Rt △ABD 和Rt △CGD 中,⎩⎨⎧==.,CG AB CD AD∴Rt △ABD ≌Rt △CGD (H .L ). ············································· (1分)23.证明:过点D 作DE ⊥AB ,垂足为点E . ················································ (1分)又∵∠ACB =90°(已知)∴DE =DC (在角的平分线上的点到这个角的两边的距离相等). ········ (2分) 在Rt △ACD 和Rt △AED 中DE =DC (已证) AD =AD (公共边)∴Rt △ACD ≌Rt △AED (H.L ). ··················································· (1分) ∴AC =AE ,∠CDA=∠EDA . ······················································· (1分) ∵∠B=2∠D (已知),∴∠B=∠BDE . ············································ (1分) ∴BE =DE . ·············································································· (1分) 又∵AB +AE =BE ,∴AB+AC=CD .········································································ (1分)24. 解:(1)由题意,设点A 的坐标为(1,m ),∵点A 在正比例函数x y 3=的图像上,∴3=m . ∴点A 的坐标为)3,1(. ········································ (1分) ∵点A 在反比例函数xky =的图像上, ∴13k=,解得3=k . ······················································ (1分) ∴反比例函数的解析式为xy 3=. ············································· (1分) (2)过点A 作AC ⊥OB ,垂足为点C ,可得1=OC ,3=AC .∵AC ⊥OB ,∴∠90=ACO °.由勾股定理,得2=AO . ······················································· (1分) ∴AO OC 21=. ∴∠30=OAC °.∴∠60=AOC °.∵AB ⊥OA ,∴∠90=OAB °.∴∠30=ABO °. ································································ (1分) ∴OA OB 2=.∴4=OB . ·········································································· (1分) ∴点B 的坐标是)0,4(. ··························································· (1分) 【说明】其他方法相应给分.(3)作图略. ··············································································· (2分) 点P的坐标是3(. ····························································· (2分) 25.(1)证明:∵6=BC ,8=AC ,∴100643622=+=+AC BC .∵1002=AB , ∴222AB AC BC =+.∴△ABC 是直角三角形,且∠ACB =90°(勾股定理的逆定理). ·· (1分)∵D 是AB 的中点,∴BD AD =.在△ADG 和△BDF 中,⎪⎩⎪⎨⎧=∠=∠=.,,DF DG BDF ADG BD AD∴△ADG ≌△BDF (S.A.S ).∴B GAB ∠=∠. ································································· (1分) ∵︒=∠90ACB ,∴︒=∠+∠90B CAB (直角三角形的两个锐角互余). ················· (1分) ∴︒=∠+∠90GAB CAB .∴︒=∠90EAG . ···························· (1分) 即:AG AC ⊥.(2)联结EG .∵x AE =,8=AC ,∴x EC -=8.∵︒=∠90ACB ,由勾股定理,得222)8(y x EF +-=. ···································· (1分) ∵△ADG ≌△BDF ,∴BF AG =.∵y CF =,6=BC ,∴y BF AG -==6.∵︒=∠90EAG ,由勾股定理,得222)6(y x EG -+=. ···································· (1分)∵DF DG =,DF ⊥DE ,∴EG EF =.∴22)8(y x +-22)6(y x -+=. ············································· (1分) ∴374-=x y ,定义域:74<x <254. ································· (1+1分) (3)1°当DB BF =时,56=-y ,∴1=y .∴3741-=x .∴25=x .即25=AE . ····································· (1分) 2°当FB DF =时,联结DC ,过点D 作FB DH ⊥,垂足为点H . 可得y FB DF -==6.∵︒=∠90ACB ,D 是AB 的中点,∴5==DB DC .∵FB DH ⊥,6=BC ,∴3==HB CH .∴y FH -=3.∵FB DH ⊥,由勾股定理,得4=DH .在Rt △DHF 中,可得222)3(4)6(y y -+=-.解得611=y . ··································································· (1分) ∴374611-=x .解得825=x ,即825=AE . ··············································· (1分) 综上所述,AE 的长度是25,825.。
盐城市八年级(上)期末数学试卷(含答案)一、选择题1.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .k 0<2.如图,矩形ABCD 中,AB =6,BC =12,如果将该矩形沿对角线BD 折叠,那么图中阴影部分△BED 的面积是 ( )A .18B .22.5C .36D .453.如图,一艘轮船停在平静的湖面上,则这艘轮船在湖中的倒影是( )A .B .C .D .4.如图,我们知道数轴上的点与实数一一对应,由图中的信息可知点P 表示的数是( )A .132--B .132-+C .132-D .13-5.中国传统服装历史悠远,下列服装中,是轴对称的是()A .B .C .D .6.64的立方根是( )A .4B .±4C .8D .±87.如图,正方形OACB 的边长是2,反比例函数k y x=图像经过点C ,则k 的值是( )A .2B .2-C .4D .4-8.下列各式中,属于分式的是( )A .x ﹣1B .2mC .3bD .34(x+y ) 9.已知:如图,点P 在线段AB 外,且PA=PB ,求证:点P 在线段AB 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A .作∠APB 的平分线PC 交AB 于点CB .过点P 作PC ⊥AB 于点C 且AC=BCC .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C10.如图,已知AB AD =,下列条件中,不能作为判定ABC ≌ADC 条件的是A .BC DC =B .BAC DAC ∠=∠ C .90BD ︒∠=∠= D .ACB ACD ∠=∠二、填空题11.“徐宿淮盐”铁路是一条连接徐州与盐城的高速铁路,全长约为316000米.将数据316000用四舍五入法精确到万位,并用科学记数法表示为____________.12.如图,点P 是BAC ∠的平分线AD 上一点,PE AC ⊥于点E ,若3PE =,则点P 到AB 的距离是______.13.如图,已知函数y =x +b 和y =ax +3的图象交点为P ,则不等式x +b <ax +3的解集为_____.14.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1米),却踩伤了花草.15.若分式293x x --的值为0,则x 的值为_______. 16.将一次函数2y x =-的图象平移,使其经过点(2,3),则所得直线的函数解析式是______.17.已知以点C (a ,b )为圆心,半径为r 的圆的标准方程为(x -a )2+(y -b )2=r 2.例如:以A (2,3)为圆心,半径为2的圆的标准方程为(x -2)2+(y -3)2=4,则以原点为圆心,过点P (1,0)的圆的标准方程为____.18.将矩形纸片ABCD 按如图所示的方式折叠,恰好得到菱形AECF .若AB=6,则菱形AECF 的面积为__________.19.如图,平面直角坐标系中,长方形OABC ,点A ,C 分别在y 轴,x 轴的正半轴上,OA =6,OC =3.∠DOE =45°,OD ,OE 分别交BC ,AB 于点D ,E ,且CD =2,则点E 坐标为_____.20.已知A (x 1,y 1)、B (x 2,y 2)是一次函数y =(2﹣m )x +3图象上两点,且(x 1﹣x 2)(y 1﹣y 2)<0,则m 的取值范围为_____.三、解答题21.如图,矩形ABCD 中,AB =12,BC =8,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.22.(问题背景)如图,在平面直角坐标系xOy 中,点A 的坐标是(0,1),点C 是x 轴上的一个动点.当点C 在x 轴上移动时,始终保持ACP ∆是等腰直角三角形,且90CAP ∠=︒(点A 、C 、P 按逆时针方向排列);当点C 移动到点O 时,得到等腰直角三角形AOB (此时点P 与点B 重合). (初步探究)(1)写出点B 的坐标______.(2)点C 在x 轴上移动过程中,当等腰直角三角形ACP 的顶点P 在第四象限时,连接BP . 求证:AOC ABP ∆∆≌;(深入探究)(3)当点C 在x 轴上移动时,点P 也随之运动.经过探究发现,点P 的横坐标总保持不变,请直接写出点P 的横坐标:______.(拓展延伸)(4)点C 在x 轴上移动过程中,当POB ∆为等腰三角形时,直接写出此时点C 的坐标.备用图23.如图,在四边形ABCD中,AB=DC,延长线段CB到E,使BE=AD,连接AE、AC,且AE=AC,求证:(1)△ABE≌△CDA;(2)AD∥EC.24.如图,过点A(2,0)的两条直线1l,2l分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=13.(1)求点B的坐标;(2)若△ABC的面积为4,求2l的解析式.25.阅读下列材料,并回答问题.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:()1一个直角三角形的两条直角边分别为512、,那么这个直角三角形斜边长为____; ()2如图①,AD BC ⊥于,,,10,6D AD BD AC BE AC DC ====,求BD 的长度; ()3如图②,点A 在数轴上表示的数是____请用类似的方法在图2数轴上画出表示数10-的B 点(保留痕迹).四、压轴题26.已知ABC 是等腰直角三角形,∠C=90°,点M 是AC 的中点,延长BM 至点D ,使DM =BM ,连接AD .(1)如图①,求证:DAM ≌BCM ;(2)已知点N 是BC 的中点,连接AN .①如图②,求证:ACN ≌BCM ;②如图③,延长NA 至点E ,使AE =NA ,连接,求证:BD ⊥DE .27.如图,A 点的坐标为(0,3),B 点的坐标为(﹣3,0),D 为x 轴上的一个动点且不与B ,O 重合,将线段AD 绕点A 逆时针旋转90°得线段AE ,使得AE ⊥AD ,且AE =AD ,连接BE 交y 轴于点M .(1)如图,当点D 在线段OB 的延长线上时,①若D 点的坐标为(﹣5,0),求点E 的坐标.②求证:M 为BE 的中点.③探究:若在点D 运动的过程中,OM BD的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO ,DO ,AM 之间的数量关系(不需要说明理由).28.学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.(初步思考)我们不妨将问题用符号语言表示为:在△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.(深入探究)第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角.求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角.请你用直尺在图③中作出△DEF,使△DEF和△ABC不全等,并作简要说明.29.如图1中的三种情况所示,对于平面内的点M,点N,点P,如果将线段PM绕点P 顺时针旋转90°能得到线段PN,就称点N是点M关于点P的“正矩点”.(1)在如图2所示的平面直角坐标系xOy 中,已知(3,1),(1,3),(1,3)S P Q ---,(2,4)M -.①在点P ,点Q 中,___________是点S 关于原点O 的“正矩点”;②在S ,P ,Q ,M 这四点中选择合适的三点,使得这三点满足:点_________是点___________关于点___________的“正矩点”,写出一种情况即可; (2)在平面直角坐标系xOy 中,直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,点A 关于点B 的“正矩点”记为点C ,坐标为(,)C C C x y .①当点A 在x 轴的正半轴上且OA 小于3时,求点C 的横坐标C x 的值;②若点C 的纵坐标C y 满足12C y -<≤,直接写出相应的k 的取值范围.30.问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC 是等边三角形,点D 是BC 的中点,且满足∠ADE =60°,DE 交等边三角形外角平分线于点E .试探究AD 与DE 的数量关系.操作发现:(1)小明同学过点D 作DF ∥AC 交AB 于F ,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD 与DE 的数量关系,并进行证明.类比探究:(2)如图2,当点D 是线段BC 上任意一点(除B 、C 外),其他条件不变,试猜想AD 与DE 之间的数量关系,并证明你的结论.拓展应用:(3)当点D在线段BC的延长线上,且满足CD=BC,在图3中补全图形,直接判断△ADE的形状(不要求证明).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y随x的增大而增大,∴k-2>0,∴k>2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b(k≠0)中,当k>0时,y 随x的增大而增大;当k<0时,y随x的增大而减小.2.B解析:B【解析】【分析】易得BE=DE,利用勾股定理求得DE的长,利用三角形的面积公式可得阴影部分的面积.【详解】根据翻折的性质可知:∠EBD=∠DBC.又∵AD∥BC,∴∠ADB=∠DBC,∴∠ADB=∠EBD,∴BE=DE.设BE=DE=x,∴AE=12﹣x.∵四边形ABCD是矩形,∴∠A=90°,∴AE2+AB2=BE2,即(12﹣x)2+62=x2,x=7.5,∴S△EDB=12×7.5×6=22.5.故选B.【点睛】本题考查了折叠的性质:折叠前后的两个图形全等,即对应线段相等,对应角相等.同时也考查了勾股定理,利用勾股定理得到DE的长是解决本题的关键.3.D解析:D【解析】【分析】易得所求的图形与看到的图形关于水平的一条直线成轴对称,找到相应图形即可.【详解】解:如下图,∴正确的图像是D ;故选择:D.【点睛】解决本题的关键是找到相应的对称轴;难点是作出相应的对称图形,也可根据所给图形的特征得到相应图形.4.A解析:A【解析】【分析】根据可知AP=AB ,在直角三角形ABC 中,由勾股定理可求AB 的长度,由点P 在0的左边,即可得到答案.【详解】解:如图所示,由图可知,AP=AB ,△ABC 是直角三角形,∵AC=2,BC=3,由勾股定理,得:22222313AB AC BC -+=, ∴13AP AB == ∴132PC =,∵点P 在点C 的左边,点C 表示的数为0,∴点P 表示的数为:2)2-=;故选择:A.【点睛】本题考查了利用数轴表示无理数,解题的关键是掌握利用数轴表示有理数,依据掌握勾股定理计算长度.5.B解析:B【解析】【分析】直接利用轴对称图形的定义判断即可.【详解】解:A 、不是轴对称图形,不合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,不合题意;D 、不是轴对称图形,不合题意;故选:B .【点睛】此题主要考查了轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,6.A解析:A【解析】试题分析:∵43=64,∴64的立方根是4,故选A考点:立方根.7.C解析:C【解析】【分析】根据正方形的性质,即可求出点C 的坐标,然后代入反比例函数解析式里即可.【详解】解:∵正方形OACB 的边长是2,∴点C 的坐标为(2,2)将点C 的坐标代入k y x=中,得 22k = 解得:4k =故选C.【点睛】此题考查的是求反比例函数的比例系数,掌握用待定系数法求反比例函数的比例系数是解决此题的关键.8.B解析:B【解析】【分析】利用分式的定义判断即可.分式的分母中必须含有字母,分子分母均为整式.【详解】解:2m是分式,故选:B.【点睛】此题考查了分式的定义,熟练掌握分式的定义是解本题的关键.9.B解析:B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,故选B.【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.10.D解析:D【解析】【分析】利用全等三角形的判定定理:SSS、SAS、ASA、AAS、HL进行分析即可.【详解】解:A、AB=AD,BC=DC,再加上公共边AC=AC可利用SSS判定△ABC≌△ADC,故此选项不符合题意;B、AB=AD,∠BAC=∠DAC再加上公共边AC=AC可利用SAS判定△ABC≌△ADC,故此选项不合题意;C、AB=AD,∠B=∠D=90°再加上公共边AC=AC可利用HL判定△ABC≌△ADC,故此选项不合题意;D、AB=AD,∠ACB=∠ACD再加上公共边AC=AC不能判定△ABC≌△ADC,故此选项合题意;故选:D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题11.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于解析:53.210【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】316000≈320000=3.2×105.故答案为:3.2×105.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解题的关键.12.3【解析】【分析】根据角平分线的性质:角平分线上的点到角两边倒角两边的距离相等判断即可. 【详解】解:∵点是的平分线上一点,且,∴P点到AB上的距离也是3.故答案为3.【点睛】本题考解析:3【解析】【分析】根据角平分线的性质:角平分线上的点到角两边倒角两边的距离相等判断即可.【详解】解:∵点P 是BAC ∠的平分线AD 上一点,且PE AC ⊥,∴P 点到AB 上的距离也是3.故答案为3.【点睛】本题考查了角平分线的性质,解决本题的关键是正确的理解题意,能够熟练掌握角平分线的性质.13.x <1【解析】【分析】当直线y=x+b 的图象在直线y=ax+3的上方时,不等式x+b >ax+3成立;【详解】由于两直线的交点横坐标为:x=1,观察图象可知,当x<1时,x+b<ax+3;解析:x <1【解析】【分析】当直线y=x+b 的图象在直线y=ax+3的上方时,不等式x+b >ax+3成立;【详解】由于两直线的交点横坐标为:x=1,观察图象可知,当x<1时,x+b<ax+3;故答案为x<1.考点: 一次函数与一元一次不等式.14.8【解析】【分析】先根据勾股定理求出斜边的长,与直角边进行比较即可求得结果.【详解】解:由题意得,斜边长AB===10米,则少走(6+8-10)×2=8步路,故答案为8.【点睛】本解析:8【解析】【分析】先根据勾股定理求出斜边的长,与直角边进行比较即可求得结果.【详解】解:由题意得,斜边长米,则少走(6+8-10)×2=8步路,故答案为8.【点睛】本题考查的是勾股定理的应用,属于基础应用题,只需学生熟练掌握勾股定理,即可完成.15.-3【解析】【分析】根据分式的值为零的条件可以求出x的值.【详解】解:根据题意得:,解得:x=-3.故答案为:-3.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2解析:-3【解析】【分析】根据分式的值为零的条件可以求出x的值.【详解】解:根据题意得:29=030 xx⎧-⎨-≠⎩,解得:x=-3.故答案为:-3.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.16.【解析】试题分析:解:设y=x+b,∴3=2+b,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其 解析:1y x =+【解析】试题分析:解:设y=x+b ,∴3=2+b ,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k 的值不变.17.x2+y2=1【解析】因为原点为圆心,过点P (1,0)的圆即是以(0,0)半径为1的圆,则标准方程为: (x -0)2+(y -0)2=1,即x2+y2=1,故答案为: x2+y2=1.解析:x 2+y 2=1【解析】因为原点为圆心,过点P (1,0)的圆即是以(0,0)半径为1的圆,则标准方程为: (x -0)2+(y -0)2=1,即x 2+y 2=1,故答案为: x 2+y 2=1.18.8【解析】【分析】根据菱形AECF ,得∠FCO=∠ECO ,再利用∠ECO=∠ECB ,可通过折叠的性质,结合直角三角形勾股定理求得BC 的长,则利用菱形的面积公式即可求解.【详解】解:∵四边形解析:【解析】【分析】根据菱形AECF ,得∠FCO=∠ECO ,再利用∠ECO=∠ECB ,可通过折叠的性质,结合直角三角形勾股定理求得BC 的长,则利用菱形的面积公式即可求解.【详解】解:∵四边形AECF 是菱形,AB=6,∴设BE=x ,则AE=6-x ,CE=6-x ,∵四边形AECF 是菱形,∴∠FCO=∠ECO ,∵∠ECO=∠ECB ,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE ,∴CE=2x,∴2x=6-x,解得:x=2,∴CE=AE=4.利用勾股定理得出: BC=22EC BE-=2242-=23,∴菱形的面积=AE•BC=83.故答案为:83.【点睛】此题主要考查了折叠问题以及勾股定理等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.19.(,6)【解析】【分析】如图,过点E作EF⊥OE交OD延长线于点F,过点F作FG⊥AB交AB延长线于点G,作FH⊥BC于H,由“AAS”可证△AEO≌△GEF,可得AE=GF,EG=AO=6,解析:(65,6)【解析】【分析】如图,过点E作EF⊥OE交OD延长线于点F,过点F作FG⊥AB交AB延长线于点G,作FH⊥BC于H,由“AAS”可证△AEO≌△GEF,可得AE=GF,EG=AO=6,通过证明△ODC∽△FDH,可得HF HDOC CD=,即可求解.【详解】如图,过点E作EF⊥OE交OD延长线于点F,过点F作FG⊥AB交AB延长线于点G,作FH⊥BC于H,∵∠EOF=45°,EF⊥EO,∴∠EOF=∠EFO=45°,∴OE=EF,∵∠AOE+∠AEO=90°,∠AEO+∠GEF=90°,∴∠GEF=∠AOE,且∠OAE=∠G=90°,OE=EF,∴△AEO≌△GEF(AAS)∴AE=GF,EG=AO=6,∴BG=EG﹣BE=6﹣(3﹣AE)=3+AE,∵FH⊥BC,∠G=∠CBG=90°,∴四边形BGFH是矩形,∴BH=GF=AE,BG=HF=3+AE,HF∥BG∥OC,∴HD=BD﹣BH=4﹣AE,∵HF∥OC,∴△ODC∽△FDH,∴HF HD OC CD=,∴3432AE AE +-=∴AE=65,∴点E(65,6)故答案为:(65,6)【点睛】此题主要考查利用全等三角形和相似三角形的判定与性质判定矩形在平面直角坐标系中的坐标,解题关键是利用其性质构建方程.20.m>2.【解析】【分析】根据(x1﹣x2)(y1﹣y2)<0,得出y随x的增大而减小,再根据2﹣m<0,求出其取值范围即可.【详解】(x1﹣x2)(y1﹣y2)<0,即:或,也就是,y解析:m>2.【解析】【分析】根据(x1﹣x2)(y1﹣y2)<0,得出y随x的增大而减小,再根据2﹣m<0,求出其取值范围即可.【详解】(x1﹣x2)(y1﹣y2)<0,即:121200x x y y >⎧⎨<⎩﹣﹣或121200x x y y <⎧⎨>⎩﹣﹣, 也就是,y 随x 的增大而减小,因此,2﹣m <0,解得:m >2,故答案为:m >2.【点睛】本题主要考查了一次函数的图象和性质,掌握一次函数的增减性以及适当的转化是解决问题的关键.三、解答题21.(1)见解析;(2)3. 【解析】【分析】(1)根据平行四边形ABCD 的性质,判定△BOE ≌△DOF (ASA ),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt △ADE 中,由勾股定理得出方程,解方程求出DE ,由勾股定理求出BD ,得出OD ,再由勾股定理求出EO ,即可得出EF 的长.【详解】解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD ,∴∠OBE=∠ODF ,在△BOE 和△DOF 中, ,,,OBE ODF OB OD BOE DOF ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△BOE ≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)∵四边形BEDF 为菱形,∴BE=DE DB ⊥EF ,又∵AB=12,BC=8,设BE=DE=x ,则AE=12-x ,在Rt △ADE 中,82+(12-x )2=x 2,∴x =263. 又BD=∴DO =12BD =213, ∴OE =22DE DO -=4133. ∴EF=2OE=8133. 【点睛】 本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.22.(1)(1,1);(2)证明见解析;(3)1;(4)(2,0)(2,0)(1,0)(2,0)---.【解析】【分析】根据等腰直角三角形的性质,OA=AB ,题干中已知A 点坐标,即可求得OB 的长度,表示出B 点坐标即可.根据等腰直角三角形的性质得到90CAP OAB ︒∠=∠=,再根据等角的余角相等,得出角12∠=∠,最后利用三角形全等的判定方法进行判定即可.根据(2)的结论△ABP 也为直角三角形,且AB 垂直BP ,且AB=OB=1,即可得出P 点的横坐标.先根据题意,确定B 点、A 点坐标,设出P 点和C 点坐标,分情况进行讨论,当OP=OB 时,当OB=BP 时,当OP=BP 时,分别利用两点间距离公式求出点P 点的坐标,然后分别算出AP 的长,最后利用AP=AC 计算出A 点坐标即可.【详解】解:(1)∵点A 的坐标为(0,1)△OAB 是等腰直角三角形,且OA=AB ,OA⊥BA∴B 点坐标为(1,1).(2)证明:在等腰直角三角形ACP 中,AC AP =,90CAP ∠=︒在等腰直角三角形AOB 中,AO AB =,90OAB ∠=︒90CAP OAB ︒∠=∠=CAP OAP OAB OAP ∴∠-∠=∠-∠12∠∠∴=在AOC ∆和ABP ∆中2AC AP AO AB =⎧⎪∠=∠⎨⎪=⎩()AOC ABP SAS ∴∆∆≌(3)AOC ABP ∆∆≌(已证)∴∠ABP=90°∴PB 垂直AB ,P 点在过B 点且垂直与AB 的垂线上,∵点B 的坐标为(1,1)∴P 点的横坐标为1.(4)由题意和(1)可知()01(11)A B ,,,, 设P (1,y ),C (x ,0),当OB=OP解得:1y =或1y =+,则AP ==AP ==解得:x =所以C点坐标为(0)同理当OB=OP 时,可得C 点坐标为(-2,0)当BP=OP 时,可得C 点坐标为(-1,0)故答案为:(2,0)(--【点睛】本题考查了等腰三角形的性质,三角形全的的判定方法,计算两点间距离,动点问题,解决本题的关键是熟练掌握等腰三角形的性质,能够得到相等的线段和角,动点问题要注意分类进行讨论,根据情况确定答案.23.(1)证明见解析;(2)证明见解析.【解析】【分析】试题分析:(1)直接根据SSS 就可以证明△ABE ≌△CDA ;(2)由△ABE ≌△CDA 可以得出∠E=∠CAD ,就可以得出∠ACE=∠CAD ,从而得出结论. 试题解析:(1)在△ABE 和△CDA 中{AE ACAB CD BE AD===∵△ABE ≌△CDA (SSS );(2)∵△ABE ≌△CDA ,∴∠E=∠CAD .∵AE=AC ,∴∠E=∠ACE∴∠ACE=∠CAD ,∴AD ∥EC .考点:全等三角形的判定与性质.【详解】请在此输入详解!24.(1)(0,3);(2)112y x =-. 【解析】【分析】(1)在Rt △AOB 中,由勾股定理得到OB=3,即可得出点B 的坐标;(2)由ABC S ∆=12BC•OA ,得到BC=4,进而得到C (0,-1).设2l 的解析式为y kx b =+, 把A (2,0),C (0,-1)代入即可得到2l 的解析式.【详解】(1)在Rt △AOB 中,∵222OA OB AB +=,∴2222OB +=,∴OB=3,∴点B 的坐标是(0,3) .(2)∵ABC S ∆=12BC•OA , ∴12BC×2=4, ∴BC=4,∴C (0,-1).设2l 的解析式为y kx b =+,把A (2,0),C (0,-1)代入得:20{1k b b +==-, ∴1{21k b ==-,∴2l 的解析式为是112y x =-. 考点:一次函数的性质. 25.()113;()28BD =;()3.数轴上画出表示数的B 点.见解析.【解析】【分析】(1) 根据勾股定理计算;(2) 根据勾股定理求出AD ,根据题意求出BD;(3) 根据勾股定理计算即可.【详解】()1∵这一个直角三角形的两条直角边分别为512、 ∴这个直角三角形斜边长为225+12=13故答案为:13()2∵AD BC ⊥∴90ADC BDE ∠=∠=︒在ADC 中,90,10,6ADC AC DC ∠=︒==,则由勾股定理得8BD =,在t R ADC 和t R BDE △中AD BD AC BE =⎧⎨=⎩∴t t R ADC R BDE ≌∴8BD AD ==(3)点A 在数轴上表示的数是:22-215+=- ,由勾股定理得,221+3=10OC =以O 为圆心、OC 为半径作弧交x 轴于B ,则点B 即为所求,故答案为:5点为所求.【点睛】本题考查的是勾股定理与数轴上的点的应用,掌握任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方是解题的关键.四、压轴题26.(1)见解析;(2)①见解析;②见解析【解析】【分析】(1)由点M是AC中点知AM=CM,结合∠AMD=∠CMB和DM=BM即可得证;(2)①由点M,N分别是AC,BC的中点及AC=BC可得CM=CN,结合∠C=∠C和BC=AC 即可得证;②取AD中点F,连接EF,先证△EAF≌△ANC得∠NAC=∠AEF,∠C=∠AFE=90°,据此知∠AFE=∠DFE=90°,再证△AFE≌△DFE得∠EAD=∠EDA=∠ANC,从而由∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM即可得证.【详解】解:(1)∵点M是AC中点,∴AM=CM,在△DAM和△BCM中,∵AM CMAMD CMBDM BM=⎧⎪∠=∠⎨⎪=⎩,∴△DAM≌△BCM(SAS);(2)①∵点M是AC中点,点N是BC中点,∴CM=12AC,CN=12BC,∵△ABC是等腰直角三角形,∴AC=BC,∴CM=CN,在△BCM和△ACN中,∵CM CNC C BC AC=⎧⎪∠=∠⎨⎪=⎩,∴△BCM≌△ACN(SAS);②证明:取AD中点F,连接EF,则AD=2AF,∵△BCM≌△ACN,∴AN=BM,∠CBM=∠CAN,∵△DAM≌△BCM,∴∠CBM=∠ADM,AD=BC=2CN,∴AF=CN,∴∠DAC=∠C=90°,∠ADM=∠CBM=∠NAC,由(1)知,△DAM ≌△BCM ,∴∠DBC=∠ADB ,∴AD ∥BC ,∴∠EAF=∠ANC ,在△EAF 和△ANC 中,AE AN EAF ANC AF NC =⎧⎪∠=∠⎨⎪=⎩,∴△EAF ≌△ANC (SAS ),∴∠NAC=∠AEF ,∠C=∠AFE=90°,∴∠AFE=∠DFE=90°,∵F 为AD 中点,∴AF=DF ,在△AFE 和△DFE 中,AF DF AFE DFE EF EF =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFE (SAS ),∴∠EAD=∠EDA=∠ANC ,∴∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM=180°-90°=90°,∴BD ⊥DE .【点睛】本题是三角形的综合问题,解题的关键是掌握中点的性质、等腰直角三角形的性质、全等三角形的判定与性质等知识点.27.(1)①E (3,﹣2)②见解析;③12OM BD =,理由见解析;(2)OD+OA =2AM 或OA ﹣OD =2AM【解析】【分析】(1)①过点E 作EH ⊥y 轴于H .证明△DOA ≌△AHE (AAS )可得结论.②证明△BOM ≌△EHM (AAS )可得结论.③是定值,证明△BOM ≌△EHM 可得结论.(2)根据点D 在点B 左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论.【详解】解:(1)①过点E 作EH ⊥y 轴于H .∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y轴,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③结论:OMBD=12.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=12OH=12BD.(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:当点D在点B左侧时,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.当点D在点B右侧时,过点E作EH⊥y轴于点H∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∵AD=AE∴△DOA≌△AHE(AAS),∴EH=AO=3=OB,OD=AH∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴OM=MH∴OA+OD= OA+AH=OH=OM+MH=2MH=2(AM+AH)=2(AM+OD)整理可得OA﹣OD=2AM.综上:OA+OD=2AM或OA﹣OD=2AM.【点睛】此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键.28.(1)HL;(2)见解析;(3)如图②,见解析;△DEF就是所求作的三角形,△DEF 和△ABC不全等.【解析】【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.【详解】(1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL.(2)证明:如图①,分别过点C、F作对边AB、DE上的高CG、FH,其中G、H为垂足.∵∠ABC、∠DEF都是钝角∴G、H分别在AB、DE的延长线上.∵CG⊥AG,FH⊥DH,∴∠CGA=∠FHD=90°.∵∠CBG=180°-∠ABC,∠FEH=∠180°-∠DEF,∠ABC=∠DEF,∴∠CBG=∠FEH.在△BCG和△EFH中,∵∠CGB=∠FHE,∠CBG=∠FEH,BC=EF,∴△BCG≌△EFH.∴CG=FH.又∵AC=DF.∴Rt△ACG≌△DFH.∴∠A=∠D.在△ABC和△DEF中,∵∠ABC=∠DEF,∠A=∠D,AC=DF,∴△ABC≌△DEF.(3)如图②,△DEF就是所求作的三角形,△DEF和△ABC不全等.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.29.(1)①点P ;②见解析;(2)①点C 的横坐标C x 的值为-3;②334k -≤<-【解析】【分析】 (1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ;②利用新定义得点S 是点P 关于点M 的“正矩点”(答案不唯一);(2)①利用新定义结合题意画出符合题意的图形,利用新定义的性质证明△BCF ≌△AOB ,则FC=OB 求得点C 的横坐标;②用含k 的代数式表示点C 纵坐标,代入不等式求解即可.【详解】解:(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ,故答案为点P ;②因为MP 绕M 点顺时针旋转90︒得MS ,所以点S 是点P 关于点M 的“正矩点”,同理还可以得点Q 是点P 关于点S 的“正矩点”.(任写一种情况就可以)(2)①符合题意的图形如图1所示,作CE ⊥x 轴于点E ,CF ⊥y 轴于点F ,可得 ∠BFC=∠AOB=90°.∵直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,∴点B 的坐标为3(0,3),(,0)B A k-在x 轴的正半轴上, ∵点A 关于点B 的“正矩点”为点(,)C C C x y ,∴∠ABC=90°,BC=BA ,∴∠1+∠2=90°,∵∠AOB=90°,∴∠2+∠3=90°,∴∠1=∠3.∴△BFC ≌△AOB ,∴3FC OB ==,可得OE =3.∵点A 在x 轴的正半轴上且3OA <,0C x ∴<,∴点C 的横坐标C x 的值为-3.②因为△BFC ≌△AOB ,3(,0)A k-,A 在x 轴正半轴上, 所以BF =OA ,所以OF =OB-OF =33k +。
2015-2016学年江苏省盐城市建湖县八年级(上)期末数学试卷一、选择题(共8小题,每小题2分,满分16分)1.下列各数中,没有平方根的是( )A.﹣4 B.0 C.0.25 D.2.下列点中,位于直角坐标系第二象限的点是( )A.(2,1)B.(﹣2,﹣1)C.(﹣2,1)D.(2,﹣1)3.在实数、、﹣3.121221222、、3.14、中,无理数共有( )A.2个B.3个C.4个D.5个4.由四舍五入得到的地球半径约为6.4×103km;精确到( )A.1000 B.100 C.0.1 D.0.015.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( )A.PO B.PQ C.MO D.MQ6.若一次函数y=kx+b的图象如图所示,则k、b的取值范围是( )A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<07.如图,在平面直角坐标系中,点B的坐标为(3,2),以点O为圆心,OB的长为半径画弧,交x轴的正半轴于点A,则点A的横坐标在( )A.2和3之间B.3和3.5之间C.3.5和4之间D.4和5之间8.如图,把矩形ABCD沿EF翻折,点B恰好落在点D处,若AE=1,∠AEF=120°,则△DEF 的面积是( )A.1 B.2 C.D.2二、填空题(共10小题,每小题3分,满分30分)9.﹣8的立方根是__________.10.已知点P(3,﹣4)关于y轴对称的对称点Q的坐标是__________.11.阅读理解:∵24=16,(﹣2)4=16,∴16的四次方根为±2,即,则=__________.12.已知y与x+2成正比例,且当x=1时,y=3,则y与x之间的函数关系式是__________.13.直线y=2x+2沿y轴向下平移4个单位后,所得新直线与x轴的交点坐标是__________.14.已知一次函数y=(2﹣m)x+2的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是__________.15.如图,直线l1:y=k1x+b1与直线l2:y=k2x+b2交于点(2,2),则方程组的解为__________.16.如图,一农户要建一个矩形猪舍,猪舍的一边利用住房墙,另外三边用25m长的建筑材料围成,为方便进出,在CD边上留一个1m宽的门,若设AB为y(m),BC为x(m),则y与x之间的函数关系式为__________.17.如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为__________.18.如图,已知A(2,0),B(4,0),点P是直线y=x上一点,当PA+PB最小时,点P 的坐标为__________.三、解答题(共9小题,满分74分)19.解答下列各题:(1)计算:;(2)求x的值:4x2﹣25=0.20.如图,在平面直角坐标系xOy中,已知点A(0,6),点B(6,6).(1)尺规作图,求作一点P,使点P同时满足下列条件(保留作图痕迹,不写作法)①点P到A、B两点的距离相等;②点P到∠xOy的两边的距离相等;(2)直接写出点P的坐标.21.如图,正方形网格中每个小正方形的边长为1,格点△ABC的顶点A(1,2)、B(﹣2,1),将△ABC平移得到△A′B′C′,使得点A的对应点A′,试解答下列问题:(1)根据题意,在网格中建立平面直角坐标系;(2)画出△A′B′C′,并写出点C′的坐标为__________.22.已知函数y=x3+2,不画图象,解答下列问题:(1)判断A(0,2)、B(2,0)、C(,﹣1)三点是否在该函数图象上,说明理由;(2)若点P(a,0)、Q(﹣,b)都在该函数的图象上,试求a、b的值.23.已知一次函数y=kx+b的图象与直线y=3x+2平行,且与直线y=﹣2x+3的交点A的纵坐标为1.(1)求这个一次函数关系式;(2)在给定网格图中,画出(1)中函数的图象;(3)当y<1时,写出x的取值范围.24.如图,△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.(1)求证:MD=ME;(2)若D为AB的中点,且AB=10,求ME的长.25.如图,在四边形ABCD中,AB∥CD,AD⊥DC,AB=BC,点E为BC上一点,且CD=CE.(1)求证:AE⊥BC;(2)若AD=6,DC=3,求AB的长.26.小东从A地出发以某一速度向B地走去,同时小明从B地出发以另一速度向A地而行,如图所示,图中的线段y1,y2分别表示小东、小明离B地的距离(千米)与所用时间(小时)的关系.(1)试用文字说明:交点P所表示的实际意义.(2)试求出A,B两地之间的距离.27.如图,直线l1:y1=kx+2(k≠0)与直线l2:y2=4x﹣4交于点P(m,4),直线l1分别交x轴、y轴于点A、B,直线l2交x轴于点C.(1)求k、m的值;(2)写出使得不等式kx+2<4x﹣4成立的x的取值范围;(3)在直线l2上找点Q,使得S△QAC=S△BPC,求点Q的坐标.2015-2016学年江苏省盐城市建湖县八年级(上)期末数学试卷一、选择题(共8小题,每小题2分,满分16分)1.下列各数中,没有平方根的是( )A.﹣4 B.0 C.0.25 D.【考点】平方根.【专题】计算题;实数.【分析】根据负数没有平方根判断即可.【解答】解:没有平方根的是﹣4,故选A【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.2.下列点中,位于直角坐标系第二象限的点是( )A.(2,1)B.(﹣2,﹣1)C.(﹣2,1)D.(2,﹣1)【考点】点的坐标.【专题】应用题.【分析】根据点在第二象限的符号特点横坐标是负数,纵坐标是正数作答.【解答】解:∵点在第二象限的符号特点是横坐标是负数,纵坐标是正数,∴符合题意的只有选项C,故选C.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),比较简单.3.在实数、、﹣3.121221222、、3.14、中,无理数共有( )A.2个B.3个C.4个D.5个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:,共2个.故选A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.由四舍五入得到的地球半径约为6.4×103km;精确到( )A.1000 B.100 C.0.1 D.0.01【考点】近似数和有效数字.【分析】近似数精确到哪一位就是看这个数的最后一位是哪一位.【解答】解:6.4×103=6400,则这个数近似到百位.故选B.【点评】本题考查了近似数精确到的数位,正确记忆精确到哪一位就是看这个数的最后一位是哪位是本题的关键.5.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( )A.PO B.PQ C.MO D.MQ【考点】全等三角形的应用.【分析】利用全等三角形对应边相等可知要想求得MN的长,只需求得其对应边PQ的长,据此可以得到答案.【解答】解:要想利用△PQO≌△NMO求得MN的长,只需求得线段PQ的长,故选:B.【点评】本题考查了全等三角形的应用,解题的关键是如何将实际问题与数学知识有机的结合在一起.6.若一次函数y=kx+b的图象如图所示,则k、b的取值范围是( )A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【考点】一次函数图象与系数的关系.【分析】观察图象,找到一次函数y=kx+b的图象过的象限,进而分析k、b的取值范围,即可得答案.【解答】解:观察图象可得,一次函数y=kx+b的图象过一、三、四象限;故k>0,b<0;故选B.【点评】本题要求学生根据图象分析出k、b参数的取值范围,考查学生对一次函数中k、b 参数的意义的了解与运用.7.如图,在平面直角坐标系中,点B的坐标为(3,2),以点O为圆心,OB的长为半径画弧,交x轴的正半轴于点A,则点A的横坐标在( )A.2和3之间B.3和3.5之间C.3.5和4之间D.4和5之间【考点】估算无理数的大小;坐标与图形性质;勾股定理.【分析】结合勾股定理得出OB的值,进而再利用估算无理数的方法得出答案.【解答】解:由题意可得:OB=OA==,∵<<,∴3<<4,∵3.52=12.25,∴点A的横坐标在:3.5和4之间.故选:C.【点评】此题主要考查了估算无理数的大小,正确估计出最接近的有理数是解题关键.8.如图,把矩形ABCD沿EF翻折,点B恰好落在点D处,若AE=1,∠AEF=120°,则△DEF 的面积是( )A.1 B.2 C.D.2【考点】翻折变换(折叠问题).【分析】根据折叠的性质得到A′E=AE=1,∠A′EF=∠AEF=120°,∠A′=∠A=90°,A′D=AB,由邻补角的定义得到∠DEF=60°,解直角三角形得到DE=2A′E=2,A′D=,根据三角形的面积公式即可得到结论.【解答】解:∵把矩形ABCD沿EF翻折,点B恰好落在点D处,∴A′E=AE=1,∠A′EF=∠AEF=120°,∠A′=∠A=90°,A′D=AB,∴∠DEF=60°,∴∠A′ED=60°,∴DE=2A′E=2,A′D=,∴S△DEF=DE•AB=DE•A′D==.故选C.【点评】本题考查的是图形折叠的性质,折叠的原图与对应图的对应角、对应边对应相等,还要熟练应用平行线的性质.二、填空题(共10小题,每小题3分,满分30分)9.﹣8的立方根是﹣2.【考点】立方根.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.10.已知点P(3,﹣4)关于y轴对称的对称点Q的坐标是(﹣3,﹣4).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:由点P(3,﹣4)关于y轴对称的对称点Q的坐标是(﹣3,﹣4),故答案为:(﹣3,﹣4).【点评】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.11.阅读理解:∵24=16,(﹣2)4=16,∴16的四次方根为±2,即,则=±3.【考点】实数.【专题】计算题.【分析】根据已知四次方根的定义,(±3)四次方为81,因而可以得出答案.【解答】解:由已知四次方根的定义得:∵34=81,(﹣3)4=81,∴81的四次方根为±3,即则=±3.故答案为:±3.【点评】题目考查了四次方根的概念,学生只要抓住基本的运算规律即可,另外不要出现漏解的现象.12.已知y与x+2成正比例,且当x=1时,y=3,则y与x之间的函数关系式是y=x+2.【考点】待定系数法求一次函数解析式.【分析】直接利用正比例函数的性质假设出函数关系式,进而将已知代入求出答案.【解答】解:∵y与x+2成正比例,∴设y=k(x+2),∵当x=1时,y=3,∴3=3k,解得:k=1,则y与x之间的函数关系式是:y=x+2.故答案为:y=x+2.【点评】此题主要考查了待定系数法求一次函数解析式,正确假设出函数关系式是解题关键.13.直线y=2x+2沿y轴向下平移4个单位后,所得新直线与x轴的交点坐标是(1,0).【考点】一次函数图象与几何变换.【分析】直接利用一次函数平移规律得出平移后解析式,进而利用y=0时求出直线与x轴交点坐标即可.【解答】解:∵直线y=2x+2沿y轴向下平移4个单位,∴平移后解析式为:y=2x﹣2,当y=0时,0=2x﹣2,解得:x=1.故新直线与x轴的交点坐标是:(1,0).故答案为:(1,0).【点评】此题主要考查了一次函数图象与几何变换,正确记忆一次函数平移规律是解题关键.14.已知一次函数y=(2﹣m)x+2的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是m>2.【考点】一次函数图象上点的坐标特征.【分析】先根据x1<x2时,y1>y2,得到y随x的增大而减小,所以x的比例系数小于0,那么2﹣m<0,解不等式即可求解.【解答】解:∵x1<x2时,y1>y2,∴y随x的增大而减小∴2﹣m<0∴m>2.故答案为m>2.【点评】本题考查一次函数的图象性质:当k>0,y随x增大而增大;当k<0时,y将随x 的增大而减小.15.如图,直线l1:y=k1x+b1与直线l2:y=k2x+b2交于点(2,2),则方程组的解为.【考点】一次函数与二元一次方程(组).【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.【解答】解:∵直线l1:y=k1x+b1与直线l2:y=k2x+b2交于点(2,2),∴二元一次方程组的解为,故答案为:【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.16.如图,一农户要建一个矩形猪舍,猪舍的一边利用住房墙,另外三边用25m长的建筑材料围成,为方便进出,在CD边上留一个1m宽的门,若设AB为y(m),BC为x(m),则y与x之间的函数关系式为y=13﹣x.【考点】根据实际问题列二次函数关系式.【分析】设AB为y(m),BC为x(m),根据AB+BC+CD﹣1=25列出方程即可.【解答】解:设AB为y(m),BC为x(m),根据题意得y+x+y﹣1=25,整理得y=13﹣x.故答案为y=13﹣x.【点评】此题考查了根据实际问题列函数关系式的知识,属于基础题,解答本题关键是根据三边建筑材料的总长为25米,列出等式.17.如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为60°.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】几何图形问题.【分析】可证明△COD≌△COB,得出∠D=∠CBO,再根据∠BAC=80°,得∠BAD=100°,由角平分线可得∠BAO=40°,从而得出∠DAO=140°,根据AD=AO,可得出∠D=20°,即可得出∠CBO=20°,则∠ABC=40°,最后算出∠BCA=60°【解答】解:∵△ABC三个内角的平分线交于点O,∴∠ACO=∠BCO,在△COD和△COB中,,∴△COD≌△COB,∴∠D=∠CBO,∵∠BAC=80°,∴∠BAD=100°,∴∠BAO=40°,∴∠DAO=140°,∵AD=AO,∴∠D=20°,∴∠CBO=20°,∴∠ABC=40°,∴∠BCA=60°,故答案为:60°.【点评】本题考查了全等三角形的判定和性质以及等腰三角形的性质,证明三角形全等是解决此题的关键.18.如图,已知A(2,0),B(4,0),点P是直线y=x上一点,当PA+PB最小时,点P 的坐标为(,).【考点】轴对称-最短路线问题;一次函数图象上点的坐标特征.【分析】先作出点A关于直线y=x的对称点A′,再连接A′B,求出直线A′B的函数解析式,再联立直线y=x列方程组即可求解.【解答】解:如图,作A关于直线y=x的对称点A′,则PA=PA′,故PA+PB=PA′+PB,由图知,只有当A、P、B共线时,PA+PB最小,又由A与A′关于y=x对称知,A′(0,2),由A′、B两点坐标得直线A′B的解析式为y=﹣x+2,联立,解得x=y=,故当PA+PB最小时,P的坐标为:(,).故答案为:(,).【点评】此题主要考查了轴对称﹣﹣最短路线问题,综合运用了一次函数和方程组的知识,综合性较强,做题的关键是正确作出图形.三、解答题(共9小题,满分74分)19.解答下列各题:(1)计算:;(2)求x的值:4x2﹣25=0.【考点】实数的运算;平方根;零指数幂.【专题】计算题;实数.【分析】(1)原式第一项利用平方根定义计算,第二项利用立方根定义,最后一项利用零指数幂法则计算即可得到结果;(2)方程整理后,利用平方根定义开方即可求出解.【解答】解:(1)原式=4﹣3﹣1=0;(2)方程整理得:x2=,开方得:x=±.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,在平面直角坐标系xOy中,已知点A(0,6),点B(6,6).(1)尺规作图,求作一点P,使点P同时满足下列条件(保留作图痕迹,不写作法)①点P到A、B两点的距离相等;②点P到∠xOy的两边的距离相等;(2)直接写出点P的坐标.【考点】作图—复杂作图;坐标与图形性质;角平分线的性质;线段垂直平分线的性质.【分析】(1)点P到A、B两点的距离相等,因此P在AB的垂直平分线上,作AB的AB 的垂直平分线MN;点P到∠xOy的两边的距离相等,因此P在∠xOy的角平分线上,作∠xOy 的角平分线OF,两线的交点就是P点;(2)根据线段垂直平分线的性质可得P点横坐标为3,根据角平分线的性质可得P点纵坐标等于横坐标,进而可得答案.【解答】解:(1)如图所示:(2)∵MN是AB的垂直平分线,B(6,6),∴P点横坐标为3,∵FO是∠yOx的角平分线,∴点P到角两边的距离相等,∴P点纵坐标等于横坐标为3,∴P(3,3).【点评】此题主要考查了复杂作图,关键是掌握角平分线上的点到角两边的距离相等,线段垂直平分线上的点到线段两端点的距离相等.21.如图,正方形网格中每个小正方形的边长为1,格点△ABC的顶点A(1,2)、B(﹣2,1),将△ABC平移得到△A′B′C′,使得点A的对应点A′,试解答下列问题:(1)根据题意,在网格中建立平面直角坐标系;(2)画出△A′B′C′,并写出点C′的坐标为(﹣4,﹣5).【考点】作图-平移变换.【分析】(1)根据A点坐标确定原点位置,然后建立平面直角坐标系;(2)从A到A′的平移方法是:向左平移1个单位,再向下平移3个单位,B、C也是同样的平移方法,然后再确定对应点位置,再连接即可.【解答】解:(1)如图所示:(2)如图所示:点C′的坐标为(﹣4,﹣5),故答案为:(﹣4,﹣5).【点评】此题主要考查了作图﹣﹣平移变换,关键是正确确定对应点的位置.22.已知函数y=x3+2,不画图象,解答下列问题:(1)判断A(0,2)、B(2,0)、C(,﹣1)三点是否在该函数图象上,说明理由;(2)若点P(a,0)、Q(﹣,b)都在该函数的图象上,试求a、b的值.【考点】函数关系式.【分析】(1)分别将A,B,C点代入函数关系式进而判断即可;(2)分别将P,Q点代入函数关系式进而得出答案.【解答】解:(1)当x=0时,y=2,当x=2时,y=+2=,当x=时,y=5,故B,C点不在该函数图象上,A点在该函数图象上;(2)当y=0时,0=x3+2,即0=a3+2,解得;a=,当x=﹣时,b=×(﹣)3+2,解得:b=2﹣.【点评】此题主要考查了函数关系式以及函数图象上点的坐标性质,正确理解图象上点的坐标性质是解题关键.23.已知一次函数y=kx+b的图象与直线y=3x+2平行,且与直线y=﹣2x+3的交点A的纵坐标为1.(1)求这个一次函数关系式;(2)在给定网格图中,画出(1)中函数的图象;(3)当y<1时,写出x的取值范围.【考点】两条直线相交或平行问题.【分析】(1)根据两直线平行,则函数解析式的一次项系数相同,即可确定k的值,把A 的纵坐标代入y=﹣2x+3求得横坐标,进而将(1,1)代入求出即可.(2)利用两点法画出函数的图象;(3)根据图象求得即可.【解答】解:(1)∵一次函数y=kx+b的图象与直线y=3x+2平行,∴k=3,∵与直线y=﹣2x+3的交点A的纵坐标为1,∴1=﹣2x+3,解得x=1,∴A(1,1),把A的坐标代入y=3x+b,则1=3+b,解得:b=﹣2,故这个一次函数关系式为:y=3x﹣2.(2)画出函数的图象如图,(3)当y<1时,x<1.【点评】本题考查了两条直线平行问题,属于基础题,关键是掌握两直线平行则k值相同.24.如图,△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.(1)求证:MD=ME;(2)若D为AB的中点,且AB=10,求ME的长.【考点】全等三角形的判定与性质.【分析】(1)根据等腰三角形的性质求出∠B=∠C,求出BM=CM,根据全等三角形的判定得出△DBM≌△ECM,根据全等三角形的性质得出即可;(2)根据三角形的中位线求出ME=AB,代入求出即可.【解答】(1)证明:∵AB=AC,∴∠B=∠C,∵M是BC的中点,∴BM=CM,在△DBM和△ECM中,,∴△DBM≌△ECM(SAS),∴MD=ME;(2)解:∵M是BC的中点,D为AB的中点,∴ME=AB,∵AB=10,∴ME=5.【点评】本题考查了全等三角形的性质和判定,三角形中位线的应用,能求出△DBM≌△ECM和ME=AB是解此题的关键.25.如图,在四边形ABCD中,AB∥CD,AD⊥DC,AB=BC,点E为BC上一点,且CD=CE.(1)求证:AE⊥BC;(2)若AD=6,DC=3,求AB的长.【考点】全等三角形的判定与性质.【分析】(1)连接AC,求出∠DCA=∠ECA,根据SAS推出△DCA≌△ECA,根据全等得出∠D=∠CEA,即可得出答案;(2)根据全等得出AE=AD=6,设AB=x,根据勾股定理得出方程,求出方程的解即可.【解答】(1)证明:连接AC,∵AB=BC,∴∠ECA=∠BAC,∵AB∥CD,∴∠DCA=∠BAC,∴∠DCA=∠ECA,在△DCA和△ECA中∴△DCA≌△ECA(SAS),∴∠D=∠CEA,∵AD⊥DC,∴∠D=90°,∴∠CEA=90°,∴AE⊥BC;(2)解:∵△DCA≌△ECA,∴AE=AD=6,设AB=x,∵DC=CE=3,∴在Rt△BEA中,由勾股定理得:AB2=BE2+AE2,∵AB=BC,∴x2=(x﹣3)2+62,解得:x=7.5,即AB=7.5.【点评】本题考查了等腰三角形的性质,全等三角形的性质和判定,勾股定理的应用,能推出△DCA≌△ECA是解此题的关键.26.小东从A地出发以某一速度向B地走去,同时小明从B地出发以另一速度向A地而行,如图所示,图中的线段y1,y2分别表示小东、小明离B地的距离(千米)与所用时间(小时)的关系.(1)试用文字说明:交点P所表示的实际意义.(2)试求出A,B两地之间的距离.【考点】一次函数的应用.【分析】(1)因为小东从A地出发以某一速度向B地走去,同时小明从B地出发以另一速度向A地而行,所以交点P(2.5,7.5)的意义是经过2.5小时后,小东与小明在距离B地7.5千米处相遇;(2)需求直线y1的解析式,因为它过点(2.5,7.5),(4,0),利用待定系数法即可求出其解析式.然后令x=0,求出此时的y值即可.【解答】解:(1)交点P所表示的实际意义是:经过2.5小时后,小东与小明在距离B地7.5千米处相遇.(2)设y1=kx+b(k≠0),又y1经过点P(2.5,7.5),(4,0),∴,解得,∴y1=﹣5x+20,当x=0时,y1=20,故AB两地之间的距离为20千米.【点评】本题需仔细分析图象,利用函数解析式解决问题.27.如图,直线l1:y1=kx+2(k≠0)与直线l2:y2=4x﹣4交于点P(m,4),直线l1分别交x轴、y轴于点A、B,直线l2交x轴于点C.(1)求k、m的值;(2)写出使得不等式kx+2<4x﹣4成立的x的取值范围;(3)在直线l2上找点Q,使得S△QAC=S△BPC,求点Q的坐标.【考点】两条直线相交或平行问题.【专题】计算题.【分析】(1)先把P(m,4)代入y2=4x﹣4可求出m=2,则P点坐标为(2,4),然后把P 点坐标代入y1=kx+2可求出k的值;(2)观察函数图象,写出直线l2在直线l1上方所对的自变量的取值范围即可;(3)先利用y1=x+2确定A点和B点坐标,再利用y2=4x﹣4=0确定C点坐标,则根据S△BPC=S△PAC﹣S△BAC可计算出S△BPC=3,设Q点坐标为(t,4t﹣4),根据三角形面积公式得到所以×(1+2)×|4t﹣4|=3,然后解绝对值方程求出t的值即可得到Q点的坐标.【解答】解:(1)把P(m,4)代入y2=4x﹣4得4m﹣4=4,解得m=2,所以P点坐标为(2,4),把P(2,4)代入y1=kx+2得2k+2=4,解得k=1;(2)当x>2时,kx+2<4x﹣4;(3)当y=0时,x+2=0,解得x=﹣2,则A(﹣2,0);当x=0时,y1=x+2=2,则B(0,2),当y=0时,4x﹣4=0,解得x=1,则C(1,0),所以S△BPC=S△PAC﹣S△BAC=×(1+2)×4﹣×(1+2)×2=3,设Q点坐标为(t,4t﹣4),因为S△QAC=S△BPC=3,所以×(1+2)×|4t﹣4|=3,解得t=或t=,所以Q点的坐标为(,2)或(,2).【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.沁园春·雪 <毛泽东>北国风光,千里冰封,万里雪飘。