云南省文山州富宁一中_七年级数学下学期期中试题(含解析)北师大版【含解析】
- 格式:doc
- 大小:228.01 KB
- 文档页数:15
北师大版七年级下册数学《期中》考试题(含答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.下列图形中,不是轴对称图形的是( )A .B .C .D .3.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°4.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70°5.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣16.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3 B .M =﹣1,N =3 C .M =2,N =4 D .M =1,N =47.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .18.1221()()n n x x +-=( )A .4n xB .43n x +C .41n x +D .41n x -9.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°10.如果,长方形ABCD 中有6个形状、大小相同的小长方形,且3EF =,12CD =,则图中阴影部分的面积为( ).A .108B .72C .60D .48二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a 、b 的代数式表示).3.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.4.如图,阴影部分的面积用整式表示为_________.5.若25.36=5.036,253.6=15.906,则253600=__________.6.如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解方程(1)37322x x +=- (2)31322322510x x x +-+-=-2.若关于x、y的二元一次方程组2133x y mx y-=+⎧⎨+=⎩的解满足x+y>0,求m的取值范围.3.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.4.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?5.6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB 型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型 A B AB O人数10 5(1)这次随机抽取的献血者人数为人,m= ;(2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?6.已知2辆A型车和1辆B型车载满货物一次可运货10吨.用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆和B型车b辆,一次运完,且每辆车都满载货物.根据以上信息解答下列问题:(1)1辆A型车和1辆B型车载满货物一次分别可运货物多少吨?(2)请帮助物流公司设计租车方案(3)若A型车每辆车租金每次100元,B型车每辆车租金每次120元.请选出最省钱的租车方案,并求出最少的租车费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、A4、B5、D6、B7、A8、A9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、ab3、724、x2+3x+65、503.66、54°三、解答题(本大题共6小题,共72分)1、(1)x=5;(2)811 x2、m>﹣23、24°.4、(1)略(2)成立5、(1)50,20;(2)12,23;见图;(3)大约有720人是A型血.6、(1)1辆A型车载满货物每次可运货物3吨,1辆B型车载满货物一次可运货物4吨;(2) 有三种租车方案:方案一,租用A型车9辆,B型车1辆,方案二,租用A型车5辆,B型车4辆,方案三,租用A型车1辆,B型车7辆.(3)选择方案三最省钱,最少的租车费为940元.。
北师大版七年级下册数学《期中》测试卷(及参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d大小顺序为()A.a<b<c<d B.a<b<d<c C.b<a<c<d D.a<d<b<c 2.下列图形中,不是轴对称图形的是()A.B.C.D.3.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB=6.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()A.118°B.119°C.120°D.121°7.把1aa-根号外的因式移入根号内的结果是()A.a-B.a--C.a D.a-8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°10.如图,在菱形ABCD中,2,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是________.2.如图,在△ABC中,BO、CO 分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.3.正五边形的内角和等于______度.4.已知直线AB∥x轴,点A的坐标为(1,2),并且线段AB=3,则点B的坐标为________.5.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.6.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解下列不等式(组),并把它们的解集在数轴上表示出来:(1)9221163x x+--≥-(2)()328134x xx x⎧+>+⎪⎨-≤⎪⎩①②2.若关于x 的方程221933m x x x +=-+-有增根,则增根是多少?并求方程产生增根时m 的值.3.如图,四边形ABCD 中,AD ∥BC ,点E 在CD 上,EA ,EB 分别平分∠DAB 和∠CBA ,设AD =x ,BC =y 且(x ﹣3)2+|y ﹣4|=0.求AB 的长.4.如图,EF ∥AD ,AD ∥BC ,CE 平分∠BCF ,∠DAC =120°,∠ACF =20°,求∠FEC 的度数.5.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、D4、C5、C6、C7、B8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、22、40°3、5404、(4,2)或(﹣2,2).5、40°6、5三、解答题(本大题共6小题,共72分)1、(1)2x ≥-,画图见解析;(2)14x <≤,画图见解析2、x =3或-3是原方程的增根;m =6或12.3、74、20°5、(1)20%;(2)6006、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。
北师大版七年级下册期中数学试卷一、选择题1 .下列各题运算正确的是()A.x5+x5=x10B.x2•x6=x12 C.(2x2)3=6x6D.x5÷x2=x32.下列多项式的乘法中,不能用平方差公式计算的是()A.(x﹣y)(﹣x+y)B.(﹣x+y)(x+y) C.(x﹣y)(﹣x﹣y)D.(x﹣y)(y+x)3.下列各式中,计算正确的是()A.(2a+b)2=4a2+b2B.(﹣a+b)(a﹣b)=a2﹣b2C.(x+1)(﹣x﹣1)=x2﹣1 D.(﹣x﹣y)2=x2+2xy+y24.如图,由∠1=∠2,则可得出()A.AD∥BC B.AB∥CD C.AD∥BC且AB∥CD D.∠3=∠45.一个锐角为52°,则这个角的余角是()A.52°B.48°C.128°D.38°6.某红外线遥控器发出的红外线波长为0.000 000 94m,用科学记数法表示这个数是()A.9.4×10﹣7m B.9.4×107m C.9.4×10﹣8m D.9.4×108m7.下列说法正确的是()A.一个角的补角定是锐角B.两直线被第三直线所截,同位角相等C.有两边与一角对应相等的两个三角形一定全等D.同角的余角相等8.等腰三角形的一边长为4,另一边长为9,则它的周长为()A.13 B.17 C.17或者22 D.229.三角形的①中线、角平分线、高都是线段;②三条高必交于一点;③三条角平分线必交于一点;④三条高必在三角形内.其中正确的是()A.①②B.①③C.②④D.③④10.如图,在△ABC中,已知∠A=50°,OB、OC平分∠ABC和∠ACB,则∠BOC的度数是()A.72°B.54°C.46°D.115°11.如图,CD=CE,AE=BD,∠ADC=∠BEC=100°,∠ACD=26°,则∠BCD的度数是()A.72°B.54°C.46°D.20°二、填空12.计算:()2+(π+2015)0﹣|﹣2|=.13.△ABC中,∠A+∠B=2∠C,则∠C=.14.如图,点B,C,F,E在同一直线上,∠1=∠2,BC=FE,要使△ABC≌△DEF,还需添加一个条件,这个条件可以(只需写出一个).15.若a+b=5,ab=,则a2﹣b2=.三、解答题16.计算:(1)(a﹣b)(a+2b)(2)(x﹣y)2﹣(x+y)(x﹣y)(3)(m+2n﹣3)(m+2n+3)(4)20152﹣2013×2017 (用乘法公式)17.已知:|x+2|+(y﹣1)2=0,化简:[(xy+2)(xy﹣2)+(3xy﹣2)2]÷(2xy),再求这个代数式化简后的值.18.完成推理填空如图,已知A、C、F、D在同一直线上,BC∥EF,AF=DC,∠B=∠E,说明:∠A=∠D.解:∵CB∥EF(已知)∴=(两直线平行,内错角相等)∵∠ACB+∠BCF=∠DFE+∠EFC=180°(平角定义)∴∠ACB=∠DFE∵AF=DC(已知)∴AF﹣CF=DC﹣CF(等式性质)即=.在△ABC与△DEF中∠B=∠E(已知)=(已证)=(已证)∴△ABC≌△DEF.19.如图:已知AB=CD,AB∥CD,试说明△ABO≌△DCO.20.如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.求证:(1)△ABC≌△AED;(2)OB=OE.21.如图1,在△ABC中,∠ACB=90°,AC=BC,直线MN过点C,且AD⊥MN于点D,BE⊥MN 于点E,(1)这时,DE、AD、BE的数量关系是:DE=AD+BE.并写出图中的一对全等三角形:答;(2)当直线MN绕点C旋转到图2的位置时,请说明DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,DE、AD、BE又怎么样的数量关系?答:.参考答案与试题解析一、选择题1 .下列各题运算正确的是()A.x5+x5=x10B.x2•x6=x12 C.(2x2)3=6x6D.x5÷x2=x3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同类项、同底数幂的乘法和除法以及幂的乘方计算即可.【解答】解:A、x5+x5=2x5,错误;B、x2•x6=x8,错误;C、(2x2)3=8x6,错误;D、x5÷x2=x3,正确;故选D【点评】此题考查同类项、同底数幂的乘法和除法以及幂的乘方,关键是根据法则进行计算.2.下列多项式的乘法中,不能用平方差公式计算的是()A.(x﹣y)(﹣x+y)B.(﹣x+y)(x+y) C.(x﹣y)(﹣x﹣y)D.(x﹣y)(y+x)【考点】平方差公式.【分析】根据平方差公式的形式:(a+b)(a﹣b)=a2﹣b2,结合各选项进行判断即可.【解答】解:A、不能用平方差公式计算,故本选项正确;B、变换成(y﹣x)(y+x),能用平方差公式计算,故本选项错误;C、变换成﹣(x﹣y)(x+y),能用平方差公式计算,故本选项错误;D、能用平方差公式计算,故本选项错误;故选A.【点评】本题考查了平方差公式,注意掌握平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.3.下列各式中,计算正确的是()A.(2a+b)2=4a2+b2B.(﹣a+b)(a﹣b)=a2﹣b2C.(x+1)(﹣x﹣1)=x2﹣1 D.(﹣x﹣y)2=x2+2xy+y2【考点】完全平方公式;平方差公式.【分析】利用完全平方公式化简,即可得到结果.【解答】解:A、(2a+b)2=4a2+4ab+b2,错误;B、(﹣a+b)(a﹣b)=﹣a2+2ab﹣b2,错误;C、(x+1)(﹣x﹣1)=﹣x2﹣x﹣1,错误;D、(﹣x﹣y)2=x2+2xy+y2,正确;故选D【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.4.如图,由∠1=∠2,则可得出()A.AD∥BC B.AB∥CD C.AD∥BC且AB∥CD D.∠3=∠4【考点】平行线的判定.【分析】∠1与∠2是直线AB、CD被直线AC所截形成的内错角,利用内错角相等,两直线平行求解.【解答】解:∵∠1=∠2,∴AB∥CD(内错角相等,两直线平行).故选B.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.5.一个锐角为52°,则这个角的余角是()A.52°B.48°C.128°D.38°【考点】余角和补角.【分析】根据互余的两角之和为90°,可得这个角的余角.【解答】解:90°﹣52°=38°,则这个角的余角是38°.故选D.【点评】本题考查了余角的知识,关键是掌握互余的两角之和为90°.6.某红外线遥控器发出的红外线波长为0.000 000 94m,用科学记数法表示这个数是()A.9.4×10﹣7m B.9.4×107m C.9.4×10﹣8m D.9.4×108m【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 94=9.4×10﹣7.故选A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.下列说法正确的是()A.一个角的补角定是锐角B.两直线被第三直线所截,同位角相等C.有两边与一角对应相等的两个三角形一定全等D.同角的余角相等【考点】余角和补角;同位角、内错角、同旁内角;全等三角形的判定.【分析】根据补角、同位角及全等三角形的判定定理,结合选项进行判断即可.【解答】解:A、一个角的补角定是锐角,说法错误,例如30°的补角是150°,为钝角,故本选项错误;B、只有两条平行线被被第三直线所截,同位角相等,故本选项错误;C、SSA不能判定三角形全等,故本选项错误;D、同角的余角相等,说法正确,故本选项正确.故选D.【点评】本题考查了余角和补角的知识,解答本题的关键是掌握同位角、互余和互补的定义.8.等腰三角形的一边长为4,另一边长为9,则它的周长为()A.13 B.17 C.17或者22 D.22【考点】等腰三角形的性质;三角形三边关系.【分析】分5是腰长和底边两种情况讨论求解即可.【解答】解:4是腰长时,三角形的三边分别为4、4、9,∵4+4=8<9,∴不能组成三角形,4是底边时,三角形的三边分别为4、9、9,能组成三角形,周长=4+9+9=22,综上所述,该等腰三角形的周长为22.故选D.【点评】本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.9.三角形的①中线、角平分线、高都是线段;②三条高必交于一点;③三条角平分线必交于一点;④三条高必在三角形内.其中正确的是()A.①②B.①③C.②④D.③④【考点】三角形的角平分线、中线和高.【分析】根据三角形的中线、角平分线、高的定义对四个说法分析判断后利用排除法求解.【解答】解:①三角形的中线、角平分线、高都是线段,说法正确;②三角形的三条高所在的直线交于一点,三条高不一定相交,故三条高必交于一点的说法错误;③三条角平分线必交于一点,说法正确;④锐角三角形的三条高在三角形内部;直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部.故三条高必在三角形内的说法错误;故选:B.【点评】本题考查了三角形的角平分线、中线、高线,从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高;三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线;三角形一边的中点与此边所对顶点的连线叫做三角形的中线.熟记概念与性质是解题的关键.10.如图,在△ABC中,已知∠A=50°,OB、OC平分∠ABC和∠ACB,则∠BOC的度数是()A.72°B.54°C.46°D.115°【考点】三角形内角和定理.【分析】由三角形内角和定理求出∠ABC+∠ACB=180°﹣∠A=130°,由角平分线的定义得出∠OBC+∠OCB=65°,再由三角形内角和定理即可求出∠BOC的度数.【解答】解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=130°,∵OB、OC分别平分∠ABC、∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°;故选:D.【点评】本题考查了三角形内角和定理、角平分线的定义;熟练掌握三角形内角和定理,并能进行推理计算是解决问题的关键.11.如图,CD=CE,AE=BD,∠ADC=∠BEC=100°,∠ACD=26°,则∠BCD的度数是()A.72°B.54°C.46°D.20°【考点】等腰三角形的性质.【分析】根据三角形的内角和和外角的性质得到∠BDC=80°,∠A=54°,通过△ACD≌△BCE,得到∠B=∠A=54°,根据三角形的内角和即可得到结论.【解答】解:∵∠ADC=100°,∠ACD=26°∴∠BDC=80°,∠A=54°,∵AE=BD,∴AD=BE,在△ACD与△BCE中,,∴△ACD≌△BCE,∴∠B=∠A=54°,∴∠BCD=180°﹣∠B﹣∠BDC=46°.故选C.【点评】本题考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握各定理是解题的关键.二、填空12.计算:()2+(π+2015)0﹣|﹣2|=﹣.【考点】实数的运算;零指数幂.【专题】计算题.【分析】原式第一项利用乘方的意义计算,第二项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=+1﹣2=﹣﹣.故答案为:﹣【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.13.△ABC中,∠A+∠B=2∠C,则∠C=60°.【考点】三角形内角和定理.【分析】根据三角形的三个内角和是180°,结合已知条件求解.【解答】解:∵∠A+∠B+∠C=180°,∠A+∠B=2∠C,∴3∠C=180°,∠C=60°.故答案为60°.【点评】此题主要是三角形内角和定理的运用,注意整体代入求解.14.如图,点B,C,F,E在同一直线上,∠1=∠2,BC=FE,要使△ABC≌△DEF,还需添加一个条件,这个条件可以AC=DF或∠A=∠D或∠B=∠E(只需写出一个).【考点】全等三角形的判定.【专题】开放型.【分析】若添的条件是AC=DF,利用SAS可得出△ABC≌△DEF;若添的条件是∠A=∠D,利用AAS可得出△ABC≌△DEF;若添的条件是∠B=∠E,利用ASA可得出△ABC≌△DEF.【解答】解:若添的条件为AC=DF,在△ABC和△DEF中,∵,∴△ABC≌△DEF(SAS);若添的条件是∠A=∠D,在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS);若添的条件是∠B=∠E,在△ABC和△DEF中,∵,∴△ABC≌△DEF(ASA).故答案为:AC=DF或∠A=∠D或∠B=∠E.【点评】此题考查了全等三角形的判定,全等三角形的判定方法有:SSS;SAS;ASA;AAS,以及HL(直角三角形判定全等的方法),熟练掌握全等三角形的判定方法是解本题的关键.15.若a+b=5,ab=,则a2﹣b2=±20.【考点】因式分解-运用公式法;完全平方公式.【专题】计算题.【分析】将a+b=5两边平方,把ab=代入求出a2+b2的值,利用完全平方公式求出a﹣b的值,原式利用平方差公式分解,将各自的值代入计算即可求出值.【解答】解:已知等式a+b=5两边平方得:(a+b)2=a2+b2+2ab=25,把ab=代入得:a2+b2=25﹣=,∴(a﹣b)2=a2+b2﹣2ab=﹣=16,即a﹣b=±4,则原式=(a+b)(a﹣b)=±20,故答案为:±20.【点评】此题考查了因式分解﹣运用公式法,以及完全平方公式,熟练掌握公式是解本题的关键.三、解答题16.计算:(1)(a﹣b)(a+2b)(2)(x﹣y)2﹣(x+y)(x﹣y)(3)(m+2n﹣3)(m+2n+3)(4)20152﹣2013×2017 (用乘法公式)【考点】整式的混合运算.【分析】(1)直接利用多项式乘法求出即可;(2)直接利用平方差公式以及完全平方公式化简求出即可;(3)直接利用平方差公式以及完全平方公式化简求出即可;(4)首先利用平方差公式得出即可.【解答】解:(1)(a﹣b)(a+2b)=a2﹣2ab﹣ab﹣2b2=a2﹣2b2﹣3ab;(2)(x﹣y)2﹣(x+y)(x﹣y)=x2+y2﹣xy﹣(x2﹣y2)=x2+y2﹣xy﹣x2+y2=2y2﹣xy;(3)(m+2n﹣3)(m+2n+3)=(m+2n)2﹣9=m2+4n2﹣4mn﹣9;(4)20152﹣2013×2017=20152﹣(2015﹣2)(2015+2)=20152﹣(20152﹣4)=4.【点评】此题主要考查了整式的混合运算,正确利用乘法公式是解题关键.17.已知:|x+2|+(y﹣1)2=0,化简:[(xy+2)(xy﹣2)+(3xy﹣2)2]÷(2xy),再求这个代数式化简后的值.【考点】整式的混合运算—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】先根据绝对值和偶次方的非负性求出x、y的值,再化简代数式,最后代入求出即可.【解答】解:∵|x+2|+(y﹣1)2=0,∴x+2=0,y﹣1=0,∴x=﹣2,y=1,[(xy+2)(xy﹣2)+(3xy﹣2)2]÷(2xy)=[x2y2﹣4+9x2y2﹣12xy+4]÷(2xy)=(10x2y2﹣12xy)÷(2xy)=5xy﹣6=5×(﹣2)×1﹣6=﹣16.【点评】本题考查了绝对值,偶次方,整式的混合运算和求值的应用,能正确根据整式的运算法则进行计算是解此题的关键,注意:运算顺序.18.完成推理填空如图,已知A、C、F、D在同一直线上,BC∥EF,AF=DC,∠B=∠E,说明:∠A=∠D.解:∵CB∥EF(已知)∴∠BCF=∠EFC(两直线平行,内错角相等)∵∠ACB+∠BCF=∠DFE+∠EFC=180°(平角定义)∴∠ACB=∠DFE等式的性质∵AF=DC(已知)∴AF﹣CF=DC﹣CF(等式性质)即AC=.DF在△ABC与△DEF中∠B=∠E(已知)∠ACB=∠DFE(已证)AC=DF(已证)∴△ABC≌△DEF AAS.【考点】全等三角形的判定与性质.【专题】推理填空题.【分析】首先证明∠ACB=∠DFE,然后根据等式的性质证明AC=DC,则利用AAS即可证得△ABC≌△DEF,从而证明.【解答】解:∵CB∥EF(已知),∴∠BCF=∠EFC(两直线平行,内错角相等),∵∠ACB+∠BCF=∠DFE+∠EFC=180°(平角定义),∴∠ACB=∠DFE 等式的性质,∵AF=DC(已知),∴AF﹣CF=DC﹣CF(等式性质),即AC=DF,在△ABC与△DEF中,∴△ABC≌△DEF (AAS).【点评】本题考查了全等三角形的判定,注意全等三角形的判定条件是三角形中对应相等的边和对应相等的角.19.如图:已知AB=CD,AB∥CD,试说明△ABO≌△DCO.【考点】全等三角形的判定.【专题】证明题.【分析】根据平行线的性质求出∠A=∠D,∠B=∠C,根据全等三角形的判定定理ASA推出即可.【解答】解:∵AB∥CD,∴∠A=∠D,∠B=∠C,在△ABO和△DCO中∴△ABO≌△DCO.【点评】本题考查了全等三角形的判定,平行线的性质的应用,能熟练地运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,AAS,ASA,SSS,直角三角形全等的判定定理除了具有以上定理外,还有HL定理.20.如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.求证:(1)△ABC≌△AED;(2)OB=OE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)由∠BAD=∠EAC可知∠BAC=∠EAD,所以有可证△ABC≌△AED (SAS);(2)由(1)知∠ABC=∠AED,AB=AE可知∠ABE=∠AEB,所以∠OBE=∠OEB,则OB=OE.【解答】证明:(1)∵∠BAD=∠EAC,∴∠BAD+∠DAC=∠EAC+∠DAC,即∠BAC=∠EAD.在△ABC和△AED中,∴△ABC≌△AED(SAS).(2)∵由(1)知△ABC≌△AED∴∠ABC=∠AED,∵AB=AE,∴∠ABE=∠AEB,∴∠ABE﹣∠ABC=∠AEB﹣∠AED,∴∠OBE=∠OEB.∴OB=OE.【点评】本题考查三角形全等的性质和判定方法,也涉及到等腰三角形的性质,判定两个三角形全等的一般方法有:ASA、SSS、SAS、SSA、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.21.如图1,在△ABC中,∠ACB=90°,AC=BC,直线MN过点C,且AD⊥MN于点D,BE⊥MN 于点E,(1)这时,DE、AD、BE的数量关系是:DE=AD+BE.并写出图中的一对全等三角形:答△ADC≌△CEB;(2)当直线MN绕点C旋转到图2的位置时,请说明DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,DE、AD、BE又怎么样的数量关系?答:DE=BE ﹣AD.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)由于△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E,由此即可证明△ADC≌△CEB,然后利用全等三角形的性质即可解决问题;(2)由于△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,由此仍然可以证明△ADC≌△CEB,然后利用全等三角形的性质也可以解决问题;(3)当直线MN绕点C旋转到图(3)的位置时,仍然△ADC≌△CEB,然后利用全等三角形的性质可以得到DE=BE﹣AD.【解答】解:(1)∵△ABC中,∠ACB=90°,∴∠ACD+∠BCE=90°,又∵直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°∴∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴CD=BE,CE=AD,∴DE=CD+CE=AD+BE;(2)∵△ABC中,∠ACB=90°,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,而AC=BC,∴△ADC≌△CEB,∴CD=BE,CE=AD,∴DE=CE﹣CD=AD﹣BE;(3)如图3,∵△ABC中,∠ACB=90°,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,∴∠ACD=∠CBE,∵AC=BC,∴△ADC≌△CEB,∴CD=BE,CE=AD,∴DE=CD﹣CE=BE﹣AD;DE、AD、BE之间的关系为DE=BE﹣AD.【点评】本题考查了三角形全等的判定与性质,关键是利用全等三角形对应线段相等,将有关线段进行转化.。
七年级下期中考试数学试卷一、精心选一选.(本大题共10个小题,每小题3分,共30分. 1.下列运算正确的是( ).A .a 5+a 5 =a 10B .a 6×a 4=a 24C .a 0÷a -1=aD .(a 2)3=a 5 2.下列关系式中,正确..的是( ) A.(a -b)2=a 2-b 2 B.(a +b)(a -b)=a 2-b 2 C.(a +b)2=a 2+b 2 D.(a +b)2=a 2+ab +b 23.大象是世界上最大的陆栖动物,它的体重的百万分之一相当于( )的体重A. 袋鼠B. 啄木鸟C. 蜜蜂D. 小鸡 4.如果一个角的补角是130°,那么这个角的余角的度数是( ) A. 20° B. 40° C . 70° D .130° 5. 下列哪组数能构成三角形 ( )A 、4,5,9B 、8,7,15C 、5,5,11D 、13,12,20 6.如果一个等腰三角形的一边为4㎝,另一边为5㎝,则它的周长为( )A 、14B 、13C 、14或13D 、、无法计算7.下列说法中,正确的是 ( )A.内错角相等.B.同旁内角互补.C.同角的补角相等.D.相等的角是对顶角.8.以长为3,5,7,10的四条线段中的三条为边,能构成三角形的个数为( ) A .1 B .2 C .3 D .4 9.如图1,下列条件中,能判定DE ∥AC 的是 ( ) A. ∠EDC=∠EFC B.∠AFE=∠ACD C. ∠1=∠2 D.∠3=∠410.已知x a =3,x b =5,则x 2a -b =( )A.53B.56C.59 D. 1二、细心填一填(每小题3分,共计24)11. 有两根长3㎝、4㎝的木棒,选择第三根木棒组成三角形,则第三根木棒第范围是____________________________。
12.若等腰三角形的一个角为40°,则另两个角为__________________。
(北师大版)七年级数学下册期中模拟检测试卷及答案(2)注意事项:1、全卷共4页,共计23题,考试时间90分钟,满分100分。
2、答题前,先在答题卡上填好班级、姓名、考号,不得在答题卡上作任何标记。
3、题目的答案必须填在答卷的指定位置,否则电脑扫描不到,不能得分。
一、选择题:(每小题只有一个选项,每小题3分,共36分)1.下列计算中正确的是A .623·a a a = B .()923a a = C .066=÷a a D .3332a a a =+2. 如图,1∠与2∠是对顶角的是3.如图 ,下列各组条件中,能一定得到a//b 的是A .∠1 +∠2 = 180ºB .∠1 =∠3C .∠2 +∠4 = 180ºD .∠1 =∠44.若(x -5)(x +2)= q px x ++2,则p 、q 的值是A.3,10B.-3,-10C.-3,10D.3,-10 5.设a m=8,a n=16,则anm +=( )A.24B.32C.64D.128 6.下列计算正确的个数是①② ③ ④ 22))((b a b a b a -=-+- ⑤ 249)32)(32(a a a -=--- ⑥222)(b a b a -=-A. 4个B. 3个C. 2个D. 1个 7.下列说法中正确的是A.相等的角是对顶角;B.同位角相等,两直线平行;C.同旁内角互补; C.两直线平行,对顶角相等。
8. 已知:如图AB ∥CD ,CE 平分∠ACD ,∠A=110°,则∠ECD 等于A.110°B.70°C.55°D.35° 9.等腰三角形的两边长分别为5和11,则这个三角形的周长为A .16B .21C . 27D .21或2710.如下图,用四个完全一样的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是196,小正方形的面积是4,若用,()x y x y >表示长方形的长和宽,则下列关系式中不正确的是1 34abcd第3题图2()222x y x y +=+()()22222x y x y x y +-=-()2222x y x xy y -+=-+CA BED第8题图A .14x y +=B .22196x y +=C .2x y -=D .48xy =11.如下图,△ABC 的高CD 、BE 相交于O ,如果∠A=55º, 那么∠BOC 的大小为A .125° B.135° C. 105° D.145°12. 如下图,直线l ∥m ,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为A .20°B .25°C .30°D .35°二、填空题:(每小题3分,共12分)13.雾霾(PM2.5)含有大量的有毒有害物质,对人体健康有很大的危害,被称为大气元凶。
富宁县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)用加减法解方程组时,下列解法错误的是()A. ①×3-②×2,消去xB. ①×2-②×3,消去yC. ①×(-3)+②×2,消去xD. ①×2-②×(-3),消去y【答案】D【考点】解二元一次方程组【解析】【解答】解:A、①×3-②×2,可消去x,故不符合题意;B、①×2-②×3,可消去y,故不符合题意;C、①×(-3)+②×2,可消去x,故不符合题意;D、①×2-②×(-3),得13x-12y=31,不能消去y,符合题意.故答案为:D【分析】若要消去x,可将①×3-②×2或①×(-3)+②×2;若消去y,可将①×2-②×3,观察各选项,就可得出解法错误的选项。
的2、(2分)在下列5个数中①②③④⑤ 2 ,是无理数的是()A. ①③⑤B. ①②⑤C. ①④D. ①⑤【答案】D【考点】无理数的认识【解析】【解答】解:无理数有:、2故答案为:D【分析】根据无限不循环的小数是无理数或开方开不尽的数是无理数,即可求解。
3、(2分)已知a2=25, =7,且|a+b|=a+b,则a﹣b的值为()A. 2或12B. 2或﹣12C. ﹣2或12D. ﹣2或﹣12【答案】D【考点】平方根【解析】【解答】∵a2=25, =7,∴a=±5,b=±7.又∵|a+b|=a+b,∴a=±5,b=7.∴当a=5,b=7时,a﹣b=﹣2;当a=﹣5,b=7时,a﹣b=﹣5﹣7=﹣12.故答案为:D.【分析】平方根是指如果一个数的平方等于a,则这个数叫作a的平方根。
(最新版)北师大版七年级下数学期中测试卷及答案一、选择题(每小题3分,共30分)1、下列计算正确的是()A、 B、 C、 D、2、下面每组数分别是三根小木棒的长度, 它们能摆成三角形的是()A、5, 1, 3B、2, 3, 4C、3, 3, 7D、2, 4, 23、如果两个不相等的角互为补角,那么这两个角()A、都是锐角B、都是钝角C、一个锐角,一个钝角D、以上答案都不对4、用科学计数法表示的结果正确的是()A、 B、 C、 D、5、如图,已知:∠1=∠2,那么下列结论正确的是()A.∠C=∠D B.AD∥BCC.AB∥CD D.∠3=∠46、下列各式中不能用平方差公式计算的是()A、 B、 C、D、7、给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(3)相等的两个角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离;其中正确的有()A 0个B 1个C 2个D 3个8、下列关系式中,正确的是()A. B.C. D.9、一定在△ABC内部的线段是()A.任意三角形的一条中线、二条角平分线、三条高B.钝角三角形的三条高、三条中线、一条角平分线C.锐角三角形的三条高、三条角平分线、三条中线D.直角三角形的三条高、三条角平分线、三条中线10、等腰三角形的一边长为5cm,另一边长为6cm,那么它的周长为()A.16cm ,17cm, D.11cm二、填空题(每小题3分,共30分)11、计算:12、若4a+ka +9是一个完全平方式,则k =13、14、一个角与它的补角之差是20º,则这个角的大小是 .15、.如图1,∠EAD=∠DCF,要得到AB 17、如图3,已知∠B=∠DEF,AB=DE,请添加一个条件使△ABC≌△DEF,则需添加的条件是18、五段线段长分别为1cm、2cm、3cm、4cm、5cm,以其中三条线段为边长共可以组成________个三角形.19、一个三角形的三个内角的度数的比是2:2:1,这个三角形是_________三角形.20、在三角形ABC中,∠A=400,O是∠ABC和∠ACB的角平分线的交点,则∠BOC=__________.三、解答题(共32分)21、计算(每小题4分,共12分)(1)(-1)+(-12)-2 -(-π)0(2)(3)(4)22、(6分)已知一个角的补角等于这个角的余角的4倍, 求这个角的度数。
2022-2023学年初中七年级下数学期中试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:115 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 计算,其结果正确的为( )A.B.C.D.2. 下列计算正确的是( )A.B.C.D.3. 如图,要测量两堵围墙形成的的度数,但人不能进入围墙,可先延长得到,然后测量的度数,再计算出的度数,其中依据的原理是( )A.同角的补角相等B.同角的余角相等C.等角的余角相等D.两点之间线段最短(−2)−2−44−1414⋅=a 2a 3a 6(=a 2)3a 6−=a 6a 2a 4+=a 5a 5a 10∠AOB BO ∠AOC ∠AOC ∠AOB4. 下列计算正确的是( )A.B.C.D.5. 如图所示,货车匀速通过的隧道长大于货车长时,货车从进入隧道至离开隧道的时间与货车在隧道内的长度之间的关系用图象描述大致是 A. B. C.D.6. 如图所示,为正方形的边延长线上一点,且,交于点,那么的度数为( )A.B.C.=+(x +y)2x 2y 2=−2xy −(x −y)2x 2y 2(x +1)(x −1)=−1x 2=−1(x −1)2x 2x y ()E ABCD BC CE =AC AE CDF ∠AFD 112.5∘45∘60∘67.5∘7. 当时,二次三项式的值等于,当时,这个二次三项式的值是( )A.B.C.D.8. 如图,已知直线,将一块含角的直角三角尺按图示位置放置.若,则的度数为( )A.B.C.D.9. 若,则,的值分别是( )A.,B.,C.,D.,10. 小明去超市购物,并按原路返回,往返均为匀速步行,小明离家的距离(单位:米)与他出发的时间(单位:分)之间的函数关系如图所示,则小明在超市内购物花费的时间为( )A.分B.分x =23+ax +8x 216x =−32941−27−13a //b 45∘ABC(∠C =)90∘∠1=30∘∠230∘45∘60∘75∘(x −7)(3x +n)=3+mx −21x 2m n −18−318−3−183183y x 2025D.分卷II (非选择题)二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )11. 水的质量为,用科学记数法表示为________.12. 当三角形中的一个内角是另一个内角的一半时,我们称此三角形为“特征三角形”,其中称为“特征角”.如果一个“特征角”所在的三角形为直角三角形.①当这个“特征角”的倍是直角时,则这个“特征角”的度数为________;②当这个“特征角”的倍不是直角时,则这个“特征角”的度数为________.13. 在正方形的面积公式中,随的增大,也________,其中自变量是________,因变量是________.14. 若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如,).已知智慧数按从小到大顺序结构成如下数列:,,,,,,,,,,,,,,,,,…,则第个“智慧数”是________.三、 解答题 (本题共计 9 小题 ,每题 5 分 ,共计45分 )15. 计算:;.16. 规定一种新运算“”:如果,那么;如果,那么试计算:;如果正整数,满足:,,且·,试求,的值.17. 已知一个角的补角是这个角余角的倍,则这个角的度数是多少?18. 有这样一道题:“先化简,再求值:,其中”,甲同学做题时把错抄成了 ,乙同学没抄错,但他们做出来的结果却一样,你能说明这是为什么吗?并求出这个结果.19. 如图,已知中, ,过点作,交的平分线于点,交于点.350.00204kg kg αβα22S =a 2a S 3=−221216=−5232357891112131516171920212324252021(1)⋅()x 52x 2(2)÷(−a)6(−a)5⊗a ≥b a ⊗b =10a a <b a ⊗b =.10b (1)(2⊗3)⋅(6⊗3)(2)m n m >2n >3(2⊗m)(3⊗n)=107m n 42(3−2x +4)−5(−x −1)−−x x 2x 2x 2x =100x =100x =10△ABC ∠ACB =90∘B BD//AC ∠ACB CD D CD AB E求证:;若,,求的长.20. 某剧院的观众席的座位为扇形,且按下列方式设置:排数…座位数…(1)按照上表所示的规律,当每增加时,如何变化?(2)写出座位数与排数之间的关系式;(3)按照上表所示的规律,某一排可能有个座位吗?说说你的理由. 21. “珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与离家的距离的关系示意图.根据图中提供的信息回答下列问题:小明家到学校的路程是________米;小明在书店停留了________分钟;本次上学途中,小明一共行驶了多少米?一共用了多少分钟?22. 图是一个长为、宽为的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图的形状拼成一个正方形.(1)你认为图中的阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图中阴影部分的面积.(3)观察图请写出,,三个代数式之间的等量关系并解决下列问题,,求的值.(1)BC =BD (2)AC =3AB =6CD (x)1234(y)50535659x 1y y x 90(1)(2)(3)12m 2n 2222(m +n)2(m −n)2mn x +y =6xy =3(x −y)223. 已知直线,点为,间的一点,连接,.如图①,若,,则的度数为________;如图②,若,,则的度数为________;如图③,若,,,则,与之间有何等量关系?并写出证明过程;如图④,若,平分,直接写出与的等量关系.AB//CD E AB CD AE CE (1)∠BAE =20∘∠C =40∘∠AEC (2)∠BAE =x ∘∠C =y ∘∠AEC (3)∠BAE =α∠C =β∠AEC =γαβγ(4)∠AEC =90∘AE ∠MAN ∠BAN ∠DCE参考答案与试题解析2022-2023学年初中七年级下数学期中试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】D【考点】零指数幂、负整数指数幂【解析】此题暂无解析【解答】解:.故选.2.【答案】B【考点】同底数幂的乘法合并同类项幂的乘方及其应用【解析】根据同底数幂的乘法,积的乘方以及合并同类项,熟练掌握运算法则是解本题的关键,根据同底数幂的乘法,积的乘方以及合并同类项法则计算判断即可。
初一第二学期数学期中考试试题考试时间:120分钟一、选择题(3分*10=30分)1. 下列图形不能够折叠成正方体的是( )A B C D2. 下列式子:,,,,,0中,整式有( )A. 6个B. 5个C. 4个D. 3个3. 若|m|=4,|n|=2,且m>n,则的值为( )A. 16B. 16或-16C. 8或-8D. 84. 某商品进价为元/件,商店的售价比进价高30%,在销售旺季过后,商店又以8折(即售价的80%)优惠开展促销活动,这时一件商品的售价为 ( ).A. 元B. 元C. 元D. 元5. 学校小卖部货架上摆放着某品牌方便面,从三个方向看到的形状图如图,则货架上的方便面至少有( )A. 7盒B. 8盒C. 9盒D. 10盒6. 观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )A. 43B. 45C. 51D. 537. 两个角的大小之比是7∶3,它们的差是72°,则这两个角的关系是( )A. 相等B. 互余C. 互补D. 无法确定8. 下列说法中正确的有( )①过两点有且只有一条直线;②连接两点的线段叫做两点的距离;③两点之间,线段最短;④若AB=AC,则点B是线段AC的中点.A. 1个B. 2个C. 3个D. 4个9. 如图,把一条绳子折成3折,用剪刀从中间剪断,得到的绳子条数是( )A. 3B. 4C. 5D. 610. 时钟10时15分时,时针与分针所成的角是( )A. 112°30'B. 127°30'C. 127°50'D. 142°30'二、填空题(3分*8=24分)11. “x的2倍与5的和”用代数式表示为.12. 一个圆锥的底面直径为6m,高为10cm,则这个圆锥的体积是.(结果保留π)13. 如果x=1时,代数式2ax3+3bx+4的值是5,那么x=-1时,代数式2ax3+3bx+4的值是________.14. 平面内三条直线两两相交,最多有a个交点,最少有b个交点,则a+b= ________.15. 已知点A,B,C三个点在同一条直线上,若线AB=8,BC=5,则线段AC= .16. 如图,将一副三角尺的直角顶点O重合,摆放在桌面上,若∠AOD=156°,则∠BOC= .17. 若∠AOB=45°,∠BOC=30°,则∠AOC= .18. 乘火车从A站出发,沿途经过3个车站方可到达B站,如果任意两站间的票价都不同,那么在A,B两站之间需要安排不同的车票种.三、解答题19. 化简求值(4分*2=8分)(1)ab 3+a 2b 3+2-2ab+3ab 3-a 2b 3+2ab-1,a=1,b=-1. (2)2,21),5238()5333(3122222=-=+-+-+-y x y xy x y xy x x 其中20. 已知一个长方体的长为4 cm,宽为3 cm,高为5 cm,请求出:(6分)(1)长方体所有棱长的和;(2)长方体的表面积.21. 若,求的值.(5分)22. 一个角的补角比它的余角的4倍还多15°,求这个角的大小.(5分)23. 关于x,y 的多项式不含二次项,求3a-5b 的值. (6分)24. 如图,试化简|c|-|c+b|+|c-a|-|b+a|.(6分)25. 如图,点C是线段AB的一个三等分点,点D在CB上,CD∶DB=17∶2,且CD-AC=3cm,求线段AB的长.(6分)26. 如图,由点O引出六条射线OA,OB,OC,OD,OE,OF,且AO⊥OB,OF平分∠BOC,OE 平分∠AOD,若∠EOF=170°,求∠COD的度数.(6分)27. 如图所示,OM是∠AOC的平分线,ON是∠BOC的平分线.(9分)(1)如果∠AOC=28°,∠MON=35°,求∠AOB的度数;(2)如果∠MON=n°(n>0),求∠AOB的度数;(3)如果∠MON的大小改变,∠AOB的度数是否随之改变?它们之间有怎样的关系?请写出来.28. 某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(9分)(1)若该客户按方案①购买,需付款多少元(用含x的代数式表示)?若该客户按方案②购买,需付款多少元(用含x的代数式表示)?(2)若x=30,通过计算说明此时按哪种方案购买较为合算?参考答案1. D2. C3. A4. D5. A6. C7. C8. B9. B 10. D11. 2x +5, 12. 30π cm3, 13. 3, 14. 4, 15. 13或3, 16. 24°17. 15°或75°,18. 2019. (1)原式=4ab3+1 当a=1,b=-1时,4×1×(-1)3+1=-3.(2)原式=-4xy+y2 ,原式=820.(1) 长方体所有棱长的和为(4+3+5)×4=48(cm).(2) 长方体的表面积为(4×5+3×5+3×4)×2=94(cm2).21. 因为,,又,所以,,解得,,所以.22. 设这个角为x,则它的补角为(180°-x),余角为(90°-x),由题意得:180°-x=4(90°-x)+15°,解得:x=65°,即这个角的度数为65°.23. 多项式不含有二次项,也就是二次项的系数为0.即3a +2=0,9a +10b=0,所以,所以3a-5b=-2-3=-5.24. 由题图可知c<b<0<a,且|c|>|a|>|b|,所以c+b<0,c-a<0,b+a>0,所以原式=-c+c+b-(c-a)-(b+a)=-c+c+b-c+a-b-a=-c.25. 设AC=x cm,因为点C是线段AB的三等分点,所以AB=3x cm, BC=2x cm,因为CD∶DB=17∶2,所以CD=BC=×2x=(cm),又因为CD-AC=3 cm,所以-x=3,解得x=,因此AB=3×=(cm).答:线段AB的长为cm.26. 因为OF平分∠BOC,OE平分∠AOD,所以∠EOF=∠COF+∠COD+∠EOD=∠BOC+∠AOD+∠COD,又因为AO⊥OB,所以∠AOB=90°,所以∠EOF=(∠BOC+∠AOD)+∠COD=(360°-90°-∠COD)+∠COD=170°,所以∠COD=70°.27.(1) 因为OM是∠AOC的平分线,∠AOC=28°,所以∠COM=∠AOC=14°.因为∠MON=35°,所以∠CON=∠MON-∠COM=35°-14°=21°.因为ON是∠BOC的平分线,所以∠BOC=2∠CON=2×21°=42°,所以∠AOB=∠AOC+∠BOC=28°+42°=70°.(2) 因为OM是∠AOC的平分线,ON是∠BOC的平分线,所以∠COM=∠AOC,∠CON=∠BOC,所以∠MON=∠COM+∠CON=∠AOC+∠BOC=(∠AOC+∠BOC)= ∠AOB.因为∠MON=n°,所以∠AOB=2∠MON=2n°.(3) 根据第2问的推导,如果∠MON的大小改变,∠AOB随之改变,∠AOB=2∠MON.28.(1) 若按方案①购买需付款:200×20+40(x-20)=(40x+3 200)(元);若按方案②购买需付款:(200×20+40x)×90%=(36x+3 600)(元).(2) 当x=30时,方案①:40x+3 200=40×30+3 200=4 400(元);方案②:36x+3 600=36×30+3 600=4 680(元).因为4 680元>4 400元,所以方案①较为合算.。
北 师 大 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题,满分30分,每小题3分) 1.计算2(2)x 的结果是( ) A .22xB .24xC .4xD .2x2.下列语句不是命题的是( ) A .连结ABB .对顶角相等C .相等的角是对顶角D .同角的余角相等3.下列运算不正确的是( ) A .235a a a =B .3412()y y =C .33(2)8x x -=-D .3362x x x +=4.已知α∠与β∠互补,150α∠=︒,则β∠的余角的度数是( ) A .30︒B .60︒C .45︒D .90︒5.当3x =时,函数2y x =-的值是( ) A .2-B .1-C .0D .16.某种商品的售价为每件150元,若按现售价的8折进行促销,设购买x 件需要y 元,则y 与x 间的函数表达式为( ) A .0.8y x =B .30y x =C .120y x =D .150y x =7.若2()(3)x px q x -+-展开后不含x 的一次项,则p 与q 的关系是( ) A .3p q =B .30p q +=C .30q p +=D .3q p =8.如图,已知//AB CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若145∠=︒,235∠=︒,则3(∠= )A .65︒B .70︒C .75︒D .80︒9.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y (元)与通话时间t (分钟)之间的函数图象是图中的( )A .B .C .D .10.运用乘法公式计算2(2)a -的结果是( ) A .244a a -+B .224a a -+C .24a -D .244a a --二.填空题(共7小题,满分28分,每小题4分) 11.已知2m a =,5n a =,则m n a += .12.某计算程序编辑如图所示,当输入x = 时,输出的3y =.13.如图,直线a ,b 被直线c 所截,若//a b ,1110∠=︒,240∠=︒,则3∠= ︒.14.甲骑自行车、乙骑摩托沿相同路线由A 地到B 地,行驶过程中路程与时间的函数关系的图象如图所示.根据图象可知:①先出发的是 (填“甲”或“乙” );②甲的行驶速度是 (公里/分); ③乙的行驶速度是 (公里/分).15.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则AOC DOB ∠+∠= .16.若22(3)16x m x +-+是完全平方式,则m 的值等于 .17.设2017a x =-,2019b x =-,2018c x =-,若2234a b +=,则2c 的值是 . 三.解答题(共3小题,满分18分,每小题6分) 18.计算:(1)96()()()x y y x x y -÷-÷-; (2)62543512()8(2)()2x x x x x --+÷-.19.若2210x x --=,先化简,后求出2(1)(2)x x x -+-的值. 20.一个角的补角加上10︒后等于这个角的余角的3倍,求这个角. 四.解答题(共3小题,满分24分,每小题8分)21.已知:如图,//AC BD ,A D ∠=∠,求证:E F ∠=∠.22.如图,某中学校园内有一块长为(3)a b +米,宽为(2)a b +米的长方形地块,学校计划在中间留一块边长为()a b +米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a 、b 的代数式表示) (2)当2a =,4b =时,求绿化的面积.23.如图,直线PQ 、MN 被直线EF 所截,交点分别为A 、C ,AB 平分EAQ ∠,CD 平分ACN ∠,如果//PQ MN ,那么AB 与CD 平行吗?为什么?五.解答题(共2小题,满分20分,每小题10分)24.某市A ,B 两个蔬菜基地得知四川C ,D 两个灾民安置点分别急需蔬菜240t 和260t 的消息后,决定调运蔬菜支援灾区,已知A 蔬菜基地有蔬菜200t ,B 蔬菜基地有蔬菜300t ,现将这些蔬菜全部调运C ,D 两个灾区安置点从A 地运往C ,D 两处的费用分别为每吨20元和25元,从B 地运往C ,D 两处的费用分别为每吨15元和18元.设从B 地运往C 处的蔬菜为x 吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x 的值:(2)设A ,B 两个蔬菜基地的总运费为w 元,求出w 与x 之间的函数关系式,并求总运费最小的调运方案; (3)经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(0)m >,其余线路的运费不变,试讨论总运费最小的调动方案.25.如图,已知//AB CD ,现将一直角三角形PMN 放入图中,其中90P ∠=︒,PM 交AB 于点E ,PN 交CD 于点F (1)当PMN ∆所放位置如图①所示时,则PFD ∠与AEM ∠的数量关系为 ; (2)当PMN ∆所放位置如图②所示时,求证:90PFD AEM ∠-∠=︒;(3)在(2)的条件下,若MN 与CD 交于点O ,且30DON ∠=︒,15PEB ∠=︒,求N ∠的度数.答案与解析一.选择题(共10小题,满分30分,每小题3分) 1.计算2(2)x 的结果是( ) A .22xB .24xC .4xD .2x[解析]2222(2)24x x x =⨯=.故选:B . 2.下列语句不是命题的是( ) A .连结ABB .对顶角相等C .相等的角是对顶角D .同角的余角相等[解析]A 、连结AB ,不是命题,符合题意;B 、对顶角相等,是命题,不符合题意; C 、相等的角是对顶角,是命题,不符合题意;D 、同角的余角相等,是命题,不符合题意;故选:A .3.下列运算不正确的是( ) A .235a a a =B .3412()y y =C .33(2)8x x -=-D .3362x x x +=[解析]A .23235a a a a +==,故本选项不合题意;B .343412()y y y ⨯==,故本选项不合题意; C .3333(2)(2)8x x x -=-=-,故本选项不合题意;D .3332x x x +=,故本选项符合题意.故选:D .4.已知α∠与β∠互补,150α∠=︒,则β∠的余角的度数是( ) A .30︒B .60︒C .45︒D .90︒[解析]α∠与β∠互补,180αβ∴∠+∠=︒,150α∠=︒,18030βα∴∠=︒-∠=︒,β∴∠的余角为:903060︒-︒=︒,故选:B .5.当3x =时,函数2y x =-的值是( ) A .2-B .1-C .0D .1[解析]当3x =时,函数2321y x =-=-=,故选:D .6.某种商品的售价为每件150元,若按现售价的8折进行促销,设购买x 件需要y 元,则y 与x 间的函数表达式为( ) A .0.8y x =B .30y x =C .120y x =D .150y x =[解析]每件商品的实际售价为:1500.8120⨯=(元),y ∴与x 间的函数表达式为:120y x =.故选:C . 7.若2()(3)x px q x -+-展开后不含x 的一次项,则p 与q 的关系是( ) A .3p q =B .30p q +=C .30q p +=D .3q p =[解析]232232()(3)333(3)(3)3x px q x x x px px qx q x p x p q x q -+-=--++-=+--++-, 结果不含x 的一次项,30q p ∴+=.故选:C .8.如图,已知//AB CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若145∠=︒,235∠=︒,则3(∠= )A .65︒B .70︒C .75︒D .80︒[解析]//AB CD ,145C ∴∠=∠=︒,3∠是CDE ∆的一个外角, 32453580C ∴∠=∠+∠=︒+︒=︒,故选:D .9.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y (元)与通话时间t (分钟)之间的函数图象是图中的( )A .B .C .D .[解析]由题意可知:当通话时间为0时,余额为4元;当通话时间为10时,余额为0元. 40.4(010)y t t ∴=-,故只有选项D 符合题意.故选:D .10.运用乘法公式计算2(2)a -的结果是( ) A .244a a -+B .224a a -+C .24a -D .244a a --[解析]原式244a a =-+,故选:A .二.填空题(共7小题,满分28分,每小题4分) 11.已知2m a =,5n a =,则m n a +=__________. [解析]5210m n m n a a a +==⨯=,故答案为:10.12.某计算程序编辑如图所示,当输入x =__________时,输出的3y =.[解析]当3x 时,3y =3=,解得12x =;当3x <时,3y =即353x +=,解得:23x =-.故答案为:12或23-.13.如图,直线a ,b 被直线c 所截,若//a b ,1110∠=︒,240∠=︒,则__________︒.[解析]//a b ,41110∴∠=∠=︒,342∠=∠-∠,31104070∴∠=︒-︒=︒,故答案为:70.14.甲骑自行车、乙骑摩托沿相同路线由A 地到B 地,行驶过程中路程与时间的函数关系的图象如图所示.根据图象可知:①先出发的是__________(填“甲”或“乙” ) ②甲的行驶速度是__________(公里/分) ③乙的行驶速度是__________(公里/分)[解析](1)甲先出发,10分钟后乙出发; (2)甲20分钟行驶了4公里,则甲的速度40.220==(公里/分);(3)乙10分钟行驶了4公里,则甲的速度40.410==(公里/分). 故答案为甲;0.2;0.4.15.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则AOC DOB ∠+∠=__________.[解析]设AOD a ∠=,90AOC a ∠=︒+,90BOD a ∠=︒-,所以9090180AOC BOD a a ∠+∠=︒++︒-=︒. 故答案为:180︒.16.若22(3)16x m x +-+是完全平方式,则m 的值等于__________.[解析]22(3)16x m x +-+是完全平方式,2(3)24m x x ∴-=±,解得:7m =或1-, 故答案为:7或1-.17.设2017a x =-,2019b x =-,2018c x =-,若2234a b +=,则2c 的值是__________. [解析]2017a x =-,2019b x =-,2234a b +=,22(2017)(2019)34x x ∴-+-=,22(20181)(20181)34x x ∴-++--=,22(2018)2(2018)1(2018)2(2018)134x x x x ∴-+-++---+=, 22(2018)32x ∴-=,2(2018)16x ∴-=,又2018c x =-,216c ∴=.故答案为:16.三.解答题(共3小题,满分18分,每小题6分) 18.计算:(1)96()()()x y y x x y -÷-÷- (2)62543512()8(2)()2x x x x x --+÷-[解析](1)原式96222()()()()2x y x y x y x y x xy y =-÷-÷-=-=-+; (2)原式62512567767128(8)()2282104x x x x x x x x x x =--+÷-=---=--. 19.若2210x x --=,先化简,后求出2(1)(2)x x x -+-的值. [解析]2(1)(2)x x x -+- 22212x x x x =-++- 2241x x =-+, 2210x x --=, 221x x ∴-=,∴原式222412(2)12113x x x x =-+=-+=⨯+=.20.一个角的补角加上10︒后等于这个角的余角的3倍,求这个角. [解析]设这个角为x ︒,则它的余角为90x ︒-︒,补角为180x ︒-︒, 根据题意,得180103(90)x x ︒-︒+︒=⨯︒-︒, 解得40x =,答:这个角为40度.四.解答题(共3小题,满分24分,每小题8分)21.已知:如图,//AC BD ,A D ∠=∠,求证:E F ∠=∠.[解析]证明://AC BD ,12∴∠=∠.又A D ∠=∠,1180A E ∠+∠+∠=︒,2180D F ∠+∠+∠=︒,E F ∴∠=∠.22.如图,某中学校园内有一块长为(3)a b +米,宽为(2)a b +米的长方形地块,学校计划在中间留一块边长为()a b +米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a 、b 的代数式表示) (2)当2a =,4b =时,求绿化的面积.[解析](1)依题意得:2(3)(2)()a b a b a b ++-+22226322a ab ab b a ab b =+++---2(53)a ab =+平方米.答:绿化面积是2(53)a ab +平方米;(2)当2a =,4b =时,原式202444=+=(平方米).答:绿化面积是44平方米.23.如图,直线PQ 、MN 被直线EF 所截,交点分别为A 、C ,AB 平分EAQ ∠,CD 平分ACN ∠,如果//PQ MN ,那么AB 与CD 平行吗?为什么?[解析]如果//PQ MN ,那么AB 与CD 平行.理由如下: 如图,//PQ MN ,EAQ ACN ∴∠=∠. 又AB 平分EAQ ∠,CD 平分ACN ∠,112EAQ ∴∠=∠,122ACN ∠=∠, 12∴∠=∠,//AB CD ∴,即AB 与CD 平行.五.解答题(共2小题,满分20分,每小题10分)24.某市A ,B 两个蔬菜基地得知四川C ,D 两个灾民安置点分别急需蔬菜240t 和260t 的消息后,决定调运蔬菜支援灾区,已知A 蔬菜基地有蔬菜200t ,B 蔬菜基地有蔬菜300t ,现将这些蔬菜全部调运C ,D 两个灾区安置点从A 地运往C ,D 两处的费用分别为每吨20元和25元,从B 地运往C ,D 两处的费用分别为每吨15元和18元.设从B 地运往C 处的蔬菜为x 吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x 的值:(2)设A ,B 两个蔬菜基地的总运费为w 元,求出w 与x 之间的函数关系式,并求总运费最小的调运方案; (3)经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(0)m >,其余线路的运费不变,试讨论总运费最小的调动方案.[解析](1)填表如下:依题意得:20(240)25(40)1518(300)x x x x -+-=+-解得:200x =两个蔬菜基地调运蔬菜的运费相等时x 的值为200.(2)w 与x 之间的函数关系为:20(240)25(40)1518(300)29200w x x x x x =-+-++-=+由题意得:240040003000x x x x -⎧⎪-⎪⎨⎪⎪-⎩,40240x ∴, 在29200w x =+中,20>,w ∴随x 的增大而增大,∴当40x =时,总运费最小,此时调运方案为:(3)由题意得(2)9200w m x =-+,02m ∴<<,(2)中调运方案总费用最小;2m =时,在40240x 的前提下调运方案的总费用不变;215m <<时,240x =总费用最小,其调运方案如下:25.如图,已知//AB CD ,现将一直角三角形PMN 放入图中,其中90P ∠=︒,PM 交AB 于点E ,PN 交CD 于点F(1)当PMN ∆所放位置如图①所示时,则PFD ∠与AEM ∠的数量关系为 90PFD AEM ∠+∠=︒ ;(2)当PMN ∆所放位置如图②所示时,求证:90PFD AEM ∠-∠=︒;(3)在(2)的条件下,若MN 与CD 交于点O ,且30DON ∠=︒,15PEB ∠=︒,求N ∠的度数.[解析](1)作//PG AB ,如图①所示:则//PG CD ,1PFD ∴∠=∠,2AEM ∠=∠,1290P ∠+∠=∠=︒,1290PFD AEM ∴∠+∠=∠+∠=︒, 故答案为:90PFD AEM ∠+∠=︒;(2)证明:如图②所示://AB CD ,180PFD BHF ∴∠+∠=︒,90P ∠=︒,290BHF ∴∠+∠=︒,2AEM ∠=∠,90BHF PHE AEM ∴∠=∠=︒-∠, 90180PFD AEM ∴∠+︒-∠=︒,90PFD AEM ∴∠-∠=︒;(3)如图③所示:90P ∠=︒,90901575PHE FEB ∴∠=︒-∠=︒-︒=︒, //AB CD ,75PFC PHE ∴∠=∠=︒,PFC N DON ∠=∠+∠,753045N ∴∠=︒-︒=︒.。
(北师大版)七年级数学下册期中模拟检测试卷及答案(2)注意事项:1、全卷共4页,共计23题,考试时间90分钟,满分100分。
2、答题前,先在答题卡上填好班级、姓名、考号,不得在答题卡上作任何标记。
3、题目的答案必须填在答卷的指定位置,否则电脑扫描不到,不能得分。
一、选择题:(每小题只有一个选项,每小题3分,共36分)1.下列计算中正确的是A .623·a a a = B .()923a a = C .066=÷a a D .3332a a a =+2. 如图,1∠与2∠是对顶角的是3.如图 ,下列各组条件中,能一定得到a//b 的是A .∠1 +∠2 = 180ºB .∠1 =∠3C .∠2 +∠4 = 180ºD .∠1 =∠44.若(x -5)(x +2)= q px x ++2,则p 、q 的值是A.3,10B.-3,-10C.-3,10D.3,-10 5.设a m=8,a n=16,则anm +=( )A.24B.32C.64D.128 6.下列计算正确的个数是①② ③ ④ 22))((b a b a b a -=-+- ⑤ 249)32)(32(a a a -=--- ⑥222)(b a b a -=-A. 4个B. 3个C. 2个D. 1个 7.下列说法中正确的是A.相等的角是对顶角;B.同位角相等,两直线平行;C.同旁内角互补; C.两直线平行,对顶角相等。
8. 已知:如图AB ∥CD ,CE 平分∠ACD ,∠A=110°,则∠ECD 等于A.110°B.70°C.55°D.35° 9.等腰三角形的两边长分别为5和11,则这个三角形的周长为A .16B .21C . 27D .21或2710.如下图,用四个完全一样的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是196,小正方形的面积是4,若用,()x y x y >表示长方形的长和宽,则下列关系式中不正确的是1 34abcd第3题图2()222x y x y +=+()()22222x y x y x y +-=-()2222x y x xy y -+=-+CA BED第8题图A .14x y +=B .22196x y +=C .2x y -=D .48xy =11.如下图,△ABC 的高CD 、BE 相交于O ,如果∠A=55º, 那么∠BOC 的大小为A .125° B.135° C. 105° D.145°12. 如下图,直线l ∥m ,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为A .20°B .25°C .30°D .35°二、填空题:(每小题3分,共12分)13.雾霾(PM2.5)含有大量的有毒有害物质,对人体健康有很大的危害,被称为大气元凶。
(北师大版)七年级数学下册期中模拟检测试卷及答案(2)注意事项:1、全卷共4页,共计23题,考试时间90分钟,满分100分。
2、答题前,先在答题卡上填好班级、姓名、考号,不得在答题卡上作任何标记。
3、题目的答案必须填在答卷的指定位置,否则电脑扫描不到,不能得分。
一、选择题:(每小题只有一个选项,每小题3分,共36分)1.下列计算中正确的是A .623·a a a = B .()923a a = C .066=÷a a D .3332a a a =+2. 如图,1∠与2∠是对顶角的是3.如图 ,下列各组条件中,能一定得到a//b 的是A .∠1 +∠2 = 180ºB .∠1 =∠3C .∠2 +∠4 = 180ºD .∠1 =∠44.若(x -5)(x +2)= q px x ++2,则p 、q 的值是A.3,10B.-3,-10C.-3,10D.3,-10 5.设a m=8,a n=16,则anm +=( )A.24B.32C.64D.128 6.下列计算正确的个数是①② ③ ④ 22))((b a b a b a -=-+- ⑤ 249)32)(32(a a a -=--- ⑥222)(b a b a -=-A. 4个B. 3个C. 2个D. 1个 7.下列说法中正确的是A.相等的角是对顶角;B.同位角相等,两直线平行;C.同旁内角互补; C.两直线平行,对顶角相等。
8. 已知:如图AB ∥CD ,CE 平分∠ACD ,∠A=110°,则∠ECD 等于A.110°B.70°C.55°D.35° 9.等腰三角形的两边长分别为5和11,则这个三角形的周长为A .16B .21C . 27D .21或2710.如下图,用四个完全一样的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是196,小正方形的面积是4,若用,()x y x y >表示长方形的长和宽,则下列关系式中不正确的是1 34abcd第3题图2()222x y x y +=+()()22222x y x y x y +-=-()2222x y x xy y -+=-+CA BED第8题图A .14x y +=B .22196x y +=C .2x y -=D .48xy =11.如下图,△ABC 的高CD 、BE 相交于O ,如果∠A=55º, 那么∠BOC 的大小为A .125° B.135° C. 105° D.145°12. 如下图,直线l ∥m ,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为A .20°B .25°C .30°D .35°二、填空题:(每小题3分,共12分)13.雾霾(PM2.5)含有大量的有毒有害物质,对人体健康有很大的危害,被称为大气元凶。
北 师 大 版 数 学 七 年 级 下 学 期期 中 测 试 卷一、选择题(本大题共14个小题.每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.14 的平方根是 A. 12 B. 12± C. 12-D. 116± 2.下列各点属于第三象限的点是 ( )A. (2,3)B. (2,-3)C. (-2,-3)D. (-2,3) 3.如图,下列能判定AB ∥CD 的条件的个数是( )①∠B +∠BCD =180°;②∠2=∠3;③∠1=∠4;④∠B =∠5.A. 1个B. 2个C. 3个D. 4个 4.下列命题中,是假命题的是( )A. 两点之间,线段最短B. 同旁内角互补C. 直角的补角仍然是直角D. 对顶角相等5.在3、1.414、2-、π、38中,无理数的个数有( )A. 1个B. 2个C. 3个D. 4个 6.下列说法正确是( ).A. 若24x =,则x =2B. 9的平方根是3C. -27的立方根是-9D. 164= 7.如图,能表示点到直线的距离的线段共有( )A. 2条B. 3条C. 4条D. 5条)8.下列图形中,哪个可以通过图1平移得到(A. B. C. D.9.估计6+1的值在()A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间10.点A(-3,5)关于x轴对称的点的坐标是()A. (-3,-5)B. (3,-5)C. (3,5)D. (-3,5)11.实数a、b在数轴上对应点的位置如图所示,则化简2a﹣|a+b|的结果为()A.﹣2a+bB. bC. 2a+bD. ﹣2a﹣b 12.点P在第三象限,点P到x轴的距离是5,到y轴的距离是3,则点P的坐标( ) A. (3,-5) B. (-5,-3) C. (-3,-5) D. (-3,5) 13.已知在同一平面内三条直线a、b、c,若a∥c,b∥c,则a与b的位置关系是()A. a⊥b B. a⊥b或a∥b C. a∥b D. 无法确定14.在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A. 如图1,展开后测得∠1=∠2B. 如图2,展开后测得∠1=∠2且∠3=∠4C. 如图3,测得∠1=∠2D. 在图④中,展开后测得∠1+∠2=180°二、填空题(本大题共4个小题,每小题3分,共12分)15.81的算术平方根是________.16.将命题“内错角相等”,写成“如果……,那么……”的形式:________________________________. 17.课间操时,小华、小军、小刚位置如图,小军对小华说,如果我的位置用(0,﹣2)表示,小刚的位置用(2,0)表示,那么你的位置可以表示为__________.18.如图,已知//AB DE ,135ABC ∠=︒,70CDE ∠=︒,则BCD ∠=__________.三.解答题(本大题共6个小题,共66分,解答应写出必要的文字说明,证明过程及演算步骤) 19.(1)计算:2(5)|32|6(13)-+---.(2)求式子(x +1)2=9中x 的值.20.如图,已知∠1+∠2﹦180°,∠3﹦∠B ,则DE ∥BC ,下面是王华同学的推导过程,请你帮他在括号内填上推导依据或内容.证明:∵∠1+∠2﹦180(已知)∠1﹦∠4 ( )∴∠2﹢_____﹦180°.∴EH∥AB()∴∠B﹦∠EHC()∵∠3﹦∠B(已知)∴∠3﹦∠EHC()∴DE∥BC()21.已知2a-1的平方根是±3,3a-b+2的算术平方根是4,求a+3b的立方根.22.在平面直角坐标中表示下面各点:A(0,3),B(1,﹣3),C(3,﹣5),D(﹣3,﹣5),E(3,5),F (5,7)(1)A点到原点O的距离是________;(2)将点C向x轴的负方向平移6个单位它与点________重合;(3)连接CE,则直线CE与y轴位置关系是________ ;(4)点F分别到x、y轴的距离分别是________.23.△ABC与△A'B'C'在平面直角坐标系中的位置如图所示(1)分别写出下列各点坐标:A_______ B_______ C_______(2)△ABC 由△A'B'C'经过怎样的平移得到?(3)若点P(x ,y)是△ABC 内部点,则A'B'C' 内部的对应点P'的坐标为(4)求△ABC 的面积24.如图,已知AB//DC ,AD//BG ,DCE 90?∠=,点E 在线段AB 上,FCG 90∠=︒,点F 在直线AD 上,AHG 90∠=︒.() 1若ECF 35∠=︒,求BCD ∠的度数;()2找出图中与FDC ∠相等的角,并说明理由;()3在()1的条件下,点C(不与点B 、H 重合)从点B 出发,沿射线BG 的方向移动,其他条件不变,请直接写出BAF ∠的度数(不必说明理由).答案与解析一、选择题(本大题共14个小题.每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.14的平方根是 A. 12 B. 12± C. 12- D. 116± 【答案】B【解析】【分析】根据平方根的定义求解. 【详解】∵211()24±=, ∴14的平方根是12±. 故选B.【点睛】考查了平方根的概念,解题关键是熟记平方根的定义.2.下列各点属于第三象限的点是 ( )A. (2,3)B. (2,-3)C. (-2,-3)D. (-2,3)【答案】C【解析】【分析】根据平面直角坐标系中各个象限的点的坐标的符号特点进行解答.【详解】解:∵第三象限的点的坐标特点是横纵坐标均小于0,∴结合四个选项中只有C (−2,−3 )符合条件.故选C .【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).3.如图,下列能判定AB ∥CD 的条件的个数是( )①∠B +∠BCD =180°;②∠2=∠3;③∠1=∠4;④∠B =∠5.A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据平行线的判定定理分别进行判断即可.【详解】解:①当∠B+∠BCD=180°,AB∥CD,故正确;②当∠3=∠2时,AB=BC,故错误;③当∠1=∠4时,AD=DC,故错误;④当∠B=∠5时,AB∥CD,故正确.所以正确的有2个故选:B.【点睛】本题主要考查平行线的判定,掌握平行线的判定方法是解题的关键.4.下列命题中,是假命题的是()A. 两点之间,线段最短B. 同旁内角互补C. 直角的补角仍然是直角D. 对顶角相等【答案】B【解析】【分析】根据线段、对顶角、补角、平行线的性质判断即可.【详解】A. 两点之间,线段最短是真命题;B. 如果两直线不平行,同旁内角不互补,所以同旁内角互补是假命题;C. 直角的补角仍然是直角是真命题;D. 对顶角相等是真命题;故选B【点睛】掌握线段、对顶角、补角、平行线的性质是解题的关键.5.3 1.414、2、π38)A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】 无理数就是无限不循环小数.理解无理数概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【详解】解:1.414是有理数,、、π是无理数,故无理数共3个,故选C.【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.下列说法正确的是( ). A. 若24x =,则x =2B. 9的平方根是3C. -27的立方根是-9 4=【答案】D【解析】【分析】 分别根据平方根以及算术平方根的定义、立方根的定义逐一判断即可.【详解】解:A 、若x 2=4,则x=±2,故选项不合题意; B 、9的平方根是±3,故选项不合题意;C 、-27的立方根是-3,故选项不合题意.D 4=,正确,故选项符合题意;故选D.【点睛】本题主要考查了平方根、算术平方根以及立方根的定义,熟记定义是解答本题的关键. 7.如图,能表示点到直线的距离的线段共有( )A. 2条B. 3条C. 4条D. 5条【答案】D【解析】根据点到直线的距离定义,可判断:AB表示点A到直线BC的距离;AD表示点A到直线BD的距离;BD 表示点B到直线AC的距离;CB表示点C到直线AB的距离;CD表示点C到直线BD的距离.共5条.故选D.8.下列图形中,哪个可以通过图1平移得到( )A. B. C. D.【答案】A【解析】试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A,故选A.考点:平移的性质.9.6+1的值在()A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间【答案】B【解析】【分析】利用”夹逼法“得出6的范围,继而也可得出6+1的范围.【详解】∵4 <6 <9 ,∴469<<,即263<<,∴36+14<<,故选B.10.点A(-3,5)关于x轴对称的点的坐标是()A. (-3,-5)B. (3,-5)C. (3,5)D. (-3,5)【答案】A【解析】解:点A(﹣3,5)关于x轴对称的点的坐标为(﹣3,﹣5).故选A.11.实数a、b在数轴上对应点的位置如图所示,则化简2a﹣|a+b|的结果为()A. ﹣2a+bB. bC. 2a+bD. ﹣2a﹣b 【答案】B【解析】【分析】直接利用数轴得出a<0,a+b<0,进而化简得出答案.【详解】解:由数轴可知:a<0,a+b<0,原式=-a-[-(a+b)]=-a+a+b=b.故选:B.【点睛】本题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键.12.点P在第三象限,点P到x轴的距离是5,到y轴的距离是3,则点P的坐标( )A. (3,-5)B. (-5,-3)C. (-3,-5)D. (-3,5) 【答案】C【解析】分析:根据第三象限内点的横坐标与纵坐标都是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.详解:∵点P在第三象限,点P到x轴的距离是5,到y轴的距离是3,∴点P的横坐标为−3,纵坐标为−5,∴点P的坐标为(−3,−5).故选C.点睛:考查了点的坐标特征,熟记到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值.13.已知在同一平面内三条直线a、b、c,若a∥c,b∥c,则a与b的位置关系是()A. a⊥bB. a⊥b或a∥bC. a∥bD. 无法确定【答案】C【解析】【分析】根据平行线的判定得出即可.【详解】解:∵同一平面内三条直线a、b、c,a∥c,b∥c,∴a∥b,故选C.【点睛】本题考查了平行线的性质和判定,平行公理及推理的应用,能熟记知识点(平行于同一直线的两直线平行)是解此题的关键.14.在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A. 如图1,展开后测得∠1=∠2B. 如图2,展开后测得∠1=∠2且∠3=∠4C. 如图3,测得∠1=∠2D. 在图④中,展开后测得∠1+∠2=180°【答案】C【解析】【分析】根据平行线的判定定理,进行分析,即可解答.【详解】A. 当∠1=∠2时,a∥b;B. 由∠1=∠2且∠3=∠4可得123490∠=∠=∠=∠=,∴a∥b;C.∠1=∠2不能判定a,b互相平行;D. 由∠1+∠2=180°可知a∥b;故选C.【点睛】考查平行线的判断,掌握平行线的判定定理是解题的关键.二、填空题(本大题共4个小题,每小题3分,共12分)________.【答案】3【解析】【分析】根据算术平方根的定义求解即可.=,93,故答案:3.【点睛】本题考查了算术平方根的定义,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a 的算术平方根.16.将命题“内错角相等”,写成“如果……,那么……”的形式:________________________________.【答案】如果两个角是内错角,那么这两个角相等【解析】【分析】根据命题的构成,题设是内错角,结论是这两个角相等写出即可.【详解】解:“内错角相等”改写为:如果两个角是内错角,那么这两个角相等.故答案为如果两个角是内错角,那么这两个角相等.【点睛】本题考查命题与定理,根据命题构成准确确定出题设与结论是解题的关键.17.课间操时,小华、小军、小刚的位置如图,小军对小华说,如果我的位置用(0,﹣2)表示,小刚的位置用(2,0)表示,那么你的位置可以表示为__________.【答案】(-2,-3)【解析】【分析】根据小军和小刚的坐标建立平面直角坐标系,据此可得答案.【详解】解:由小军和小华的坐标可建立如图所示平面直角坐标系:则小华的位置可表示为(-2,-3),故答案为:(-2,-3).【点睛】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征.18.如图,已知//AB DE ,135ABC ∠=︒,70CDE ∠=︒,则BCD ∠=__________.【答案】25︒【解析】【分析】延长AB 交CD 于F ,根据平行线的性质求出∠MFC=∠CDE=70°,求出∠BFC=110°,根据三角形外角性质得出∠BCD=∠ABC-∠BFC ,代入求出即可.【详解】解:延长AB交CD于F,∵AB∥DE,∠CDE=70°,∴∠MFC=∠CDE=70°,∴∠BFC=110°,∵∠ABC = ∠BFC+∠BCD,∴∠BCD=∠ABC-∠BFC=135°-110°=25°.故答案为25°.【点睛】本题考查三角形外角性质,平行线的性质,解题的关键是求出∠MFC的度数.三.解答题(本大题共6个小题,共66分,解答应写出必要的文字说明,证明过程及演算步骤)19.(1)计算:2+--.(5)|32|6(13)(2)求式子(x+1)2=9中x的值.【答案】(1)3;(2) x1=2,x2=﹣4【解析】【分析】(1)根据绝对值、平方根的运算法则计算即可;(2)先根据平方根的定义求出9的平方根,再求出x的值即可.【详解】(1)原式=5+23﹣33.(2)∵(x+1)2=9,∴x+1=±3,∴x1=2,x2=﹣4.【点睛】本题考查平方根及实数的运算,熟练掌握运算法则是解题关键.20.如图,已知∠1+∠2﹦180°,∠3﹦∠B,则DE∥BC,下面是王华同学的推导过程,请你帮他在括号内填上推导依据或内容.证明:∵∠1+∠2﹦180(已知)∠1﹦∠4 ()∴∠2﹢_____﹦180°.∴EH∥AB()∴∠B﹦∠EHC()∵∠3﹦∠B(已知)∴∠3﹦∠EHC()∴DE∥BC()【答案】对顶角相等;∠4;同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.【解析】【分析】根据对顶角相等,得出∠1=∠4,根据等量代换可知∠2+∠4=180°,根据同旁内角互补,两直线平行,得出EH∥AB,再由两直线平行,同位角相等,得出∠B=∠EHC,已知∠3=∠B,由等量代换可知∠3=∠EHC,再根据内错角相等,两直线平行,即可得出DE∥BC.【详解】解:∵∠1+∠2﹦180(已知),∠1﹦∠4 (对顶角相等)∴∠2﹢∠4﹦180°∴EH∥AB(同旁内角互补,两直线平行)∴∠B﹦∠EHC(两直线平行,同位角相等)∴∠3﹦∠EHC(等量代换)∴DE∥BC(内错角相等,两直线平行)故答案为:对顶角相等;∠4;同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.【点睛】本题主要考查了利用平行线的性质和平行线的判定解答,命题意图在于训练学生的证明书写过程,难度适中.21.已知2a-1的平方根是±3,3a-b+2的算术平方根是4,求a+3b的立方根.【答案】2.【解析】【分析】根据平方根与算术平方根的定义得到3a-b+2=16,2a-1=9,则可计算出a=5,b=1,然后计算a+b后利用立方根的定义求解.【详解】∵2a-1的平方根是±3∴2a-1=9,即a=5∵3a-b+2的算术平方根是4,a=5∴3a-b+2=16,即b=1∴a+3b =8∴a+3b的立方根是222.在平面直角坐标中表示下面各点:A(0,3),B(1,﹣3),C(3,﹣5),D(﹣3,﹣5),E(3,5),F (5,7)(1)A点到原点O的距离是________;(2)将点C向x轴的负方向平移6个单位它与点________重合;(3)连接CE,则直线CE与y轴位置关系是________ ;(4)点F分别到x、y轴的距离分别是________.【答案】画图见解析;①3;②D;③平行;④7;5【解析】【分析】先在平面直角坐标中描点.(1)根据两点的距离公式可得A点到原点O的距离;(2)找到点C向x轴的负方向平移6个单位的点即为所求;(3)横坐标相同的两点所在的直线与y轴平行;(4)点F分别到x、y轴的距离分别等于纵坐标和横坐标的绝对值.【详解】解:在平面直角坐标中表示下面各点如图,(1)A点到原点O的距离是3﹣0=3故答案为:3;(2)将点C向x轴的负方向平移6个单位它与点D重合.故答案为:D;(3)连接CE,则直线CE与y轴位置关系是平行.故答案为:平行;(4)点F分别到x、y轴的距离分别是7,5故答案为:7;5.【点睛】本题考查了坐标与图形变化-平移.23.△ABC与△A'B'C'在平面直角坐标系中的位置如图所示(1)分别写出下列各点的坐标:A_______ B_______ C_______(2)△ABC 由△A'B'C'经过怎样的平移得到?(3)若点P(x ,y)是△ABC 内部点,则A'B'C' 内部的对应点P'的坐标为(4)求△ABC 的面积【答案】(1)A(1,3):B(2,0):C(3,1);(2)见解析;(3) (x-4,y-2);(4)2【解析】【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对应点A 、A′的变化写出平移方法即可;(3)根据平移规律逆向写出点P′的坐标;(4)利用△ABC 所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【详解】解:(1)A (1,3); B (2,0);C (3,1);(2)先向右平移4个单位,再向上平移2个单位;或:先向上平移2个单位,再向右平移4个单位;(3)P′(x-4,y-2);(4)△ABC 的面积=2×3-12×1×3-12×1×1-12×2×2 =6-1.5-0.5-2=2.【点睛】本题考查利用平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键.24.如图,已知AB//DC ,AD//BG ,DCE 90?∠=,点E 在线段AB 上,FCG 90∠=︒,点F 在直线AD 上,AHG 90∠=︒.() 1若ECF 35∠=︒,求BCD ∠的度数;()2找出图中与FDC ∠相等的角,并说明理由;()3在()1的条件下,点C(不与点B 、H 重合)从点B 出发,沿射线BG 的方向移动,其他条件不变,请直接写出BAF ∠的度数(不必说明理由).【答案】(1)145°(2)与FDC ∠相等的角有:DCG ∠,ECF ∠,B ∠(3)35°或145°【解析】【分析】()1根据ECF 35∠=,DCE 90∠=,可得FCD 55∠=,再根据BCF 90∠=,即可得到BCD 5590145∠=+=;()2根据同角的余角相等以及平行线的性质,即可得到与D ∠相等的角;()3分两种情况讨论:当点C 在线段BH 上;点C 在BH 延长线上,根据平行线的性质,即可得到BAF ∠的度数为35或145.【详解】()1DCE 90∠=︒,ECF 35∠=︒,FCD 903555∠∴=︒-︒=︒,FCG 90∠=︒,BCF 90∠∴=︒,BCD BCF FCD 9055145∠∠∠∴=+=︒+︒=︒,()2与FDC ∠相等的角有:DCG ∠,ECF ∠,B ∠.理由:AD //BG ,DCG FDC(∠∠∴=两直线平行,内错角相等),DCE 90∠=︒,FCG 90∠=︒,ECF FCD 90∠∠∴+=︒,DCG FCD 90∠∠+=︒,ECF DCG(∠∠∴=同角的余角相等), ECF FDC ∠∠∴=, AB//DC ,B DCG(∠∠∴=两直线平行,同位角相等), B FDC.∠∠∴= ()3BAF 35∠=︒或145.︒ ①当点C 在线段BH 上时,点F 在点A 的左侧, 如图1:AD //BG ,BAF B 35(∠∠∴==︒两直线平行,内错角相等), ②当点C 在射线HG 上时,点F 在点A 的右侧, 如图2:AD //BG ,BAF B 180(∠∠∴+=︒两直线平行,同旁内角互补),B 35∠=︒,BAF 18035145∠∴=︒-︒=︒.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.。
(北师大版)七年级数学下册期中模拟检测试卷及答案(1)说明:本卷共六大题,全卷共24题,满分120分,考试时间为120分钟 一、选择题(本大题共6小题,每小题3分,共18分)每题只有一个正确的选项1.结果为 a 2的式子是(▲)A . a 6÷a 3B . a • aC .(a --1)2D . a 4-a 2=a 2 2.如图,AB ∥CD ,DB ⊥BC ,∠1=40°,则∠2的度数是(▲) A .40° B .50° C .60° D .140°3.已知三角形的两边长分别为4和9,则下列长度的四条线段中能作为第三边的是(▲)A .13B .6C .5D .44.如果(x ―5)(2x +m )的积中不含x 的一次项,则m 的值是(▲) A .5 B .-10 C .-5 D .105.若m +n =3,则2m 2+4mn +2n 2-6的值为( ) A .12 B .6C .3D .06.如图,过∠AOB 边OB 上一点C 作OA 的平行线,以C 为顶点的角与∠AOB 的关系是(▲)A .相等B .互补C .相等或互补D .不能确定二、填空题(本大题共8个小题,每小题3分,共24分) 7.已知∠α的余角的3倍等于它的补角,则∠α=_________;8.计 算:=_______________; 9.如果多项式x 2+mx +9是一个完全平方式,则m =_________;10.把一块含30°角的直角三角板放在两平行直线上,如图,则∠1+∠2=__________°;11.三角形的三边长为3、a 、7,且三角形的周长能被5整除,则a =__________; 12.如图,AB 与CD 相交于点O ,OA =OC ,还需增加一个条件:____________________, 可得△AOD ≌△COB (AAS ) ;13.AD 是△ABC 的边BC 上的中线,AB =12,AC =8,那么中线AD 的取值范围___________. 14.观察烟花燃放图形,找规律:B●OAC1210题ABDC O12题20201321)3()1(-⎪⎭⎫ ⎝⎛--π⨯-依此规律,第9个图形中共有_________个★. 三、解答题(本大题共4小题,每小题6分,共24分) 15.计 算:()2432a a a +÷解:16.计 算:)5)(14()32)(32(+--+-y y y y解:17.如图,∠ABC =∠BCD ,∠1=∠2,请问图中有几对平行线?并说明理由. 解:18.如图,C 、F 在BE 上,∠A =∠D ,AB ∥DE ,BF =EC .求证:AB =DE . 解:四、(本大题共2小题,每小题8分,共16分)19.先化简,再求值: , 其中2=x ,2-=y .解:()()[]x xy x y y y x 28422÷-+-+ AF CBED20.如图,直线CD 与直线AB 相交于点C ,根据下列语句画图(注:可利用三角尺画图,但要保持图形清晰)(1)过点P 作PQ ∥AB ,交CD 于点Q ;过点P 作PR ⊥CD ,垂足为R ; (2)若∠DCB =120°,则∠QPR 是多少度?并说明理由. 解:五、(本大题共2小题,每小题9分,共18分)21.如图,已知AB =AE ,BC =ED ,∠B =∠E ,AF ⊥CD ,F 为垂足, 求证:(1)AC =AD ; (2)CF =DF . 解:22.如图,在边长为1的方格纸中,△PQR 的三个顶点及A 、B 、C 、D 、E 五个点都在小方格的格点上,现以A 、B 、C 、D 、E 中的三个点为顶点画三角形. (1)请在图1中画出与△PQR 全等的三角形;(2)请在图2中画出与△PQR 面积相等但不全等的三角形;(3)顺次连结A 、B 、C 、D 、E 形成一个封闭的图形,求此图形的面积.CDBA ·P解:六、(本大题共2个小题,每小题10分,共20分)23.如图①是一个长为2a,宽为2b的长方形纸片,其长方形的面积显然为4ab,现将此长方形纸片沿图中虚线剪开,分成4个小长方形,然后拼成如图②的一个正方形.(1)图②中阴影正方形EFGH的边长为: _________________;(2)观察图②,代数式(a -b)2表示哪个图形的面积?代数式(a+b)2呢?(3)用两种不同方法表示图②中的阴影正方形EFGH的面积,并写出关于代数式(a+b)2、(a-b)2和4ab之间的等量关系;(4)根据(3)题中的等量关系,解决如下问题:若a+b=7,ab=5,求:(a -b)2的值.解:24.如图(1)线段AB、CD相交于点O,连接AD、CB.如图(2),在图(1)的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图(1)中,请直接写出∠A、∠B、∠C、∠D之间的等量关系;(2)在图(2)中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)(3)如果图(2)中,∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间数量关系.(直接写出结论即可)解:参考答案四、(本大题共2个小题,每小题各8分,共16分)19.解:原式=[4x2+4xy+y2-y2-4xy-8xy]÷2x=[4x2-8xy]÷2x=2x-4y 当x=2,y=-2时,原式=4+8=1220.解:(1)见图(2)∠QPR=300五、(本大题共2小题,每小题9分,共18分)21.解:(1) ∵AB=AE,BC=ED,∠B=∠E∴△ABC≌△AED∴AC=AD24.解: (1) ∠A+∠D=∠B+∠C (2) 由(1)可知,∠1+∠D=∠3+∠P, ∠2+∠P=∠4+∠B∴∠1-∠3=∠P-∠D,∠2-∠4=∠B-∠P 又∵AP、CP分别平分∠DAB和∠BCD∴∠1=∠2, ∠3=∠4 ∴∠P-∠D=∠B-∠P 即2∠P=∠B+∠D ∴∠P=(40°+30°)÷2=35°.(3)2∠P=∠B+∠D.CDBA·PQR。
云南省文山州富宁一中2014-2015学年七年级数学下学期期中试题一、选择题1.下列运算中正确的是()A.a2•(a3)2=a8B.a3•a3=2a3C.a3+a3=2a6D.(a2)3=a82.计算a5•(﹣a)3﹣a8的结果等于()A.0 B.﹣2a8C.﹣a16 D.﹣2a163.下列计算正确的是()A.(﹣4x)•(2x2+x﹣1)=﹣8x2﹣4x B.(x+y)(x2+y2)=x3+y3C.(﹣4a﹣1)(4a﹣1)=1﹣16a2D.(x﹣2y)2=x2﹣2xy+4y24.下列说法错误的是()A.对顶角相等B.同位角不相等,两直线不平行C.钝角大于它的补角D.锐角大于它的余角5.如图,下列条件不能判定直线a∥b的是()A.∠1=∠2 B.∠1=∠3 C.∠1+∠4=180°D.∠2+∠4=180°6.一个等腰三角形的两边长分别为2和5,则它的周长为()A.7 B.9 C.12 D.9或127.下列说法正确的是()A.面积相等的两个图形全等B.周长相等的两个图形全等C.形状相同的两个图形全等D.全等图形的形状和大小相同8.在△ABC中,∠A=∠B=40°,△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.以上都不对9.下列每组数分别是三根小木棒的长度,其中能摆成三角形的是()A.3cm;4cm;5cm B.7cm;8cm;15cmC.3cm;12cm;20cm D.5cm;5cm;11cm10.一辆公共汽车从车站开出,加速一段时间后开始匀速行驶,过了一段时间,发现没多少油了,开到加油站加了油,几分钟后,又开始匀速行驶.下面哪一幅图可以近似的刻画出该汽车在这段时间内的速度变化情况()A.B.C.D.二、填空题11.若x2+mx+9是一个完全平方式,则m的值是.12.如图,AB∥ED,则∠A+∠C+∠D= .13.如图:△ABD与△CDB,其中AB=CD,则需要加上条件,就可达到△ABD≌△CDB.14.在△ABC中,AD是角平分线,AE是高,若∠B=50°,∠C=70°,则∠DAE= .15.(x﹣1)0=1成立的条件是.16.如图,直线a、b被直线l所截,如果a∥b,∠1=120°,那么∠2= 度.17.计算:(1)(﹣2)3= ;(2)2﹣3= ;(3)(﹣2x2)3= .18.卫星绕地球运动的速度是7.9×103米/秒,则卫星绕地球运行3×105秒所行的路程是(结果用科学记数法表示)19.计算()0×2﹣2的结果是.20.请写出一个单项式,使系数是﹣2,次数是3.三、解答题(本大题共7个小题,共60分)21.计算:(1)(x﹣3y)2+(3y﹣x)(x+3y)(2)用公式计算:98×102.22.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.23.如图,EF∥AD,∠1=∠2,∠BAC=80°.将求∠AGD的过程填写完整.因为EF∥AD,所以∠2=(),又因为∠1=∠2,所以∠1=∠3(),所以AB∥(),所以∠BAC+=180°(),因为∠BAC=80°,所以∠AGD=.24.如图,在△ABC中,∠BAC为钝角,画出:(1)∠ABC的平分线;(2)AC边上的中线;(3)AC边上的高;(4)AB边上的高.25.2007年的夏天,湖南省由于持续高温和连日无雨,水库蓄水量普遍下降,如图是某水库的蓄水量V(万立方米)与干旱持续时间t(天)之间的关系图,请根据此图,回答下列问题:(1)该水库原蓄水量为多少万立方米?持续干旱10天后,水库蓄水量为多少万立方米?(2)若水库的蓄水量小于400万立方米时,将发出严重干旱警报,请问持续干旱多少天后,将发出严重干旱警报?(3)按此规律,持续干旱多少天时,水库将干涸?26.如图,在四边形ABCD中,已知BE平分∠ABC,∠AEB=∠ABE,∠D=70°.(1)说明:AD∥BC;(2)求∠C的度数.27.已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°;求∠AEC的度数.2014-2015学年云南省文山州富宁一中七年级(下)期中数学试卷参考答案与试题解析一、选择题1.下列运算中正确的是()A.a2•(a3)2=a8B.a3•a3=2a3C.a3+a3=2a6D.(a2)3=a8【考点】同底数幂的乘法;合并同类项;幂的乘方与积的乘方.【分析】根据幂的乘方与积的乘方、同底数幂的乘法以及合并同类项的相关知识对各选项分析判断后利用排除法求解.【解答】解:A、a2•(a3)2=a2•a6=a8,故本选项正确;B、应为a3•a3=a6,故本选项错误;C、应为a3+a3=2a3,故本选项错误;D、应为(a2)3=a6,故本选项错误.故选A.【点评】(1)本题综合考查了整式运算的多个考点,包括合并同类项、同底数幂的乘法、幂的乘方的性质,需熟练掌握且区分清楚,才不容易出错.(2)同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.2.计算a5•(﹣a)3﹣a8的结果等于()A.0 B.﹣2a8C.﹣a16 D.﹣2a16【考点】同底数幂的乘法;合并同类项.【分析】先根据同底数幂相乘,底数不变指数相加计算,再合并同类项.【解答】解:a5•(﹣a)3﹣a8=﹣a8﹣a8=﹣2a8.故选B.【点评】同底数幂的乘法的性质:底数不变,指数相加.合并同类项的法则:只把系数相加减,字母与字母的次数不变.3.下列计算正确的是()A.(﹣4x)•(2x2+x﹣1)=﹣8x2﹣4x B.(x+y)(x2+y2)=x3+y3C.(﹣4a﹣1)(4a﹣1)=1﹣16a2D.(x﹣2y)2=x2﹣2xy+4y2【考点】平方差公式;单项式乘多项式;多项式乘多项式;完全平方公式.【专题】计算题.【分析】根据单项式乘多项式,多项式的乘法,平方差公式,完全平方公式,对各选项分析判断后利用排除法求解.【解答】解:A、应为(﹣4x)(2x2+x﹣1)=﹣8x2﹣4x2+4x,故本选项错误;B、应为(x+y)(x2+y2)=x3+y3+yx2+xy2,故本选项错误;C、(﹣4a﹣1)(4a﹣1)=1﹣16a2,正确;D、应为(x﹣2y)2=x2﹣4xy+4y2,故本选项错误.故选C.【点评】本题考查单项式乘多项式,多项式乘多项式,平方差公式,完全平方公式,熟练掌握运算法则和公式是解题的关键.4.下列说法错误的是()A.对顶角相等B.同位角不相等,两直线不平行C.钝角大于它的补角D.锐角大于它的余角【考点】对顶角、邻补角;余角和补角;平行线的判定.【分析】根据平行线的判定与对顶角的性质,以及余角和补角的知识,即可求得答案.【解答】解:A.对顶角相等,本项正确;B.根据平行线的判定,同位角不相等,两直线不平行,本项正确;C.钝角的补角是锐角,钝角大于锐角,故本项正确;D.锐角大于它的余角,如锐角为30°,它的余角为60°,故本项错误.故选:D.【点评】本题主要考查了平行线的判定与对顶角的性质,以及余角和补角的知识.熟记定理与法则是解题的关键.5.如图,下列条件不能判定直线a∥b的是()A.∠1=∠2B.∠1=∠3C.∠1+∠4=180°D.∠2+∠4=180°【考点】平行线的判定.【分析】根据平行线的判定定理进行解答.【解答】解:A、∵∠1=∠2,∴a∥b(内错角相等,两直线平行);B、∵∠1=∠3,∴a∥b(同位角相等,两直线平行);C、∠1+∠4=180°与a,b的位置无关;D、∵∠2+∠4=180°,∴a∥b(同旁内角互补,两直线平行).故选C.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.6.一个等腰三角形的两边长分别为2和5,则它的周长为()A.7 B.9 C.12 D.9或12【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为5时,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;根据三角形三边关系可知:等腰三角形的腰长只能为5,这个三角形的周长是12.故选C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.7.下列说法正确的是()A.面积相等的两个图形全等B.周长相等的两个图形全等C.形状相同的两个图形全等D.全等图形的形状和大小相同【考点】全等图形.【分析】根据等形的概念:能够完全重合的两个图形叫做全等形进行分析即可.【解答】解:A、面积相等的两个图形全等,说法错误;B、周长相等的两个图形全等,说法错误;C、形状相同的两个图形全等,说法错误;D、全等图形的形状和大小相同,说法正确;故选:D.【点评】此题主要考查了全等形,关键是掌握全等形,形状和大小相等.8.在△ABC中,∠A=∠B=40°,△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.以上都不对【考点】三角形内角和定理.【分析】先根据三角形内角和定理求出∠C的度数,再判断出△ABC的形状即可.【解答】解:∵在△ABC中,∠A=∠B=40°,∴∠C=180°﹣∠A﹣∠B=180°﹣40°﹣40°=100°,∴△ABC是钝角三角形.故选C.【点评】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.9.下列每组数分别是三根小木棒的长度,其中能摆成三角形的是()A.3cm;4cm;5cm B.7cm;8cm;15cmC.3cm;12cm;20cm D.5cm;5cm;11cm【考点】三角形三边关系.【分析】根据在三角形中任意两边之和>第三边,任意两边之差<第三边.【解答】解:A、3+4>5能构成三角形,故正确;B、7+8=15,不能构成三角形,故错误;C、3+12=15<20,不能构成三角形,故错误;D、5+5=10<11,不能构成三角形,故错误.故选A.【点评】本题利用了三角形中三边的关系求解.10.一辆公共汽车从车站开出,加速一段时间后开始匀速行驶,过了一段时间,发现没多少油了,开到加油站加了油,几分钟后,又开始匀速行驶.下面哪一幅图可以近似的刻画出该汽车在这段时间内的速度变化情况()A.B.C.D.【考点】函数的图象.【分析】横轴表示时间,纵轴表示速度,根据加速、匀速、减速时,速度的变化情况,进行选择.【解答】解:公共汽车经历:加速﹣匀速﹣减速到站﹣加速﹣匀速,加速:速度增加,匀速:速度保持不变,减速:速度下降,到站:速度为0.观察四个选项的图象是否符合题干要求,只有B选项符合.故选B.【点评】主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二、填空题11.若x2+mx+9是一个完全平方式,则m的值是±6.【考点】完全平方式.【专题】计算题.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+9是一个完全平方式,∴m=±6,故答案为:±6.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.12.如图,AB∥ED,则∠A+∠C+∠D=360°.【考点】平行线的性质.【专题】计算题.【分析】过C作出AB、DE的平行线,再根据平行线的性质解答即可.【解答】解:过C作CF∥AB,∵AB∥ED,∴AB∥CF∥ED,∴∠1+∠A=180°,∠2+∠D=180°,∴∠1+∠A+∠2+∠D=360°,∵∠C=∠1+∠2,∴∠A+∠C+∠D=360°.【点评】本题考查的是平行线的性质,解答此题的关键是根据题意作出辅助线,再由平行线的性质解答.13.如图:△ABD与△CDB,其中AB=CD,则需要加上条件AD=BC或∠ABD=∠BDC等,就可达到△ABD≌△CDB.【考点】全等三角形的判定.【专题】开放型.【分析】探究性题型,判断两个三角形确定,题目现有条件AB=CD,BD=DB.根据SAS,SSS的判定定理,可以添加两边的夹角对应相等,也可以添加第三边对应相等.【解答】解:根据SAS,SSS的判定定理,可添加AD=BC或∠ABD=∠BDC等.故填AD=BC或∠ABD=∠BDC等.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.14.在△ABC中,AD是角平分线,AE是高,若∠B=50°,∠C=70°,则∠DAE=10°.【考点】三角形内角和定理.【分析】由三角形内角和定理可求得∠BA C的度数,在Rt△AEC中,可求得∠EAC的度数,AD是角平分线,有∠DAC=∠BAC,故∠EAD=∠DAC﹣∠EAC.【解答】解:∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=60°.∵AD是角平分线,∴∠DAC=∠BAC=30°.∵AE是高,∠C=70°,∴∠EAC=20°,∴∠DAE=∠DAC﹣∠EAC=30°﹣20°=10°.【点评】本题利用了三角形内角和定理、角的平分线的性质、直角三角形的性质求解.15.(x﹣1)0=1成立的条件是x≠1.【考点】零指数幂.【分析】根据零指数幂:a0=1(a≠0),求解即可.【解答】解:由题意得,x﹣1≠0,解得:x≠1.故答案为:x≠1.【点评】本题考查了零指数幂,解答本题的关键是掌握a0=1(a≠0).16.如图,直线a、b被直线l所截,如果a∥b,∠1=120°,那么∠2=60 度.【考点】平行线的性质;对顶角、邻补角.【专题】计算题.【分析】两直线平行,内错角相等以及根据邻补角概念即可解答.【解答】解:∵∠1和∠3互为邻补角,∠1=120°,∴∠3=180°﹣120°=60°;又∵a∥b,∴∠2=∠3=60°.【点评】本题应用的知识点为:“两直线平行,内错角相等”和邻补角定义.17.计算:(1)(﹣2)3= ﹣8 ;(2)2﹣3= ;(3)(﹣2x2)3= ﹣8x6.【考点】幂的乘方与积的乘方;有理数的乘方;负整数指数幂.【分析】(1)根据乘方,可得答案;(2)根据负整指数幂与正整指数幂互为倒数,可得答案;(3)根据积得乘方等于每个因式分别乘方,再把所得的幂相乘,可得答案.【解答】解::(1)(﹣2)3=﹣8;(2)2﹣3=;(3)(﹣2x2)3=﹣8x6;故答案为:﹣8,,﹣8x6.【点评】本题考查了幂的乘方与积的乘方,根据法则计算是解题关键.18.卫星绕地球运动的速度是7.9×103米/秒,则卫星绕地球运行3×105秒所行的路程是 2.37×109(结果用科学记数法表示)【考点】科学记数法—表示较大的数.【分析】利用速度乘以时间可得路程,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:7.9×103×3×105=2.37×109,故答案为:2.37×109.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.计算()0×2﹣2的结果是.【考点】负整数指数幂;零指数幂.【分析】分别根据零指数幂,负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1×=,故答案为:.【点评】本题主要考查了零指数幂,负指数幂的运算.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.20.请写出一个单项式﹣2ab2,使系数是﹣2,次数是3.【考点】单项式.【专题】开放型.【分析】根据单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式,求解即可.【解答】解:根据单项式的定义得:﹣2ab2.故答案为:﹣2ab2.【点评】本题考查了单项式的知识,解答本题的关键是掌握单项式的定义,属于基础题.三、解答题(本大题共7个小题,共60分)21.计算:(1)(x﹣3y)2+(3y﹣x)(x+3y)(2)用公式计算:98×102.【考点】平方差公式;完全平方公式.【专题】计算题.【分析】(1)原式利用完全平方公式及平方差公式化简,去括号合并即可得到结果;(2)原式变形后,利用平方差公式计算即可得到结果.【解答】解:(1)原式=x2﹣6xy+9y2+9y2﹣x2=18y2﹣6xy;(2)原式=(100﹣2)×(100+2)=1002﹣22=10000﹣4=9996.【点评】此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键.22.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.【考点】整式的混合运算—化简求值.【专题】计算题;压轴题.【分析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.【解答】解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当时,原式==﹣3﹣5=﹣8.【点评】此题主要考查了整式的化简求值,解题的关键是利用整式的乘法法则及平方差公式、完全平方公式化简代数式.23.如图,EF∥AD,∠1=∠2,∠BAC=80°.将求∠AGD的过程填写完整.因为EF∥AD,所以∠2=∠3(两直线平行,同位角相等),又因为∠1=∠2,所以∠1=∠3(等量代换),所以AB∥DG (内错角相等,两直线平行),所以∠BAC+∠AGD=180°(两直线平行,同旁内角互补),因为∠BAC=80°,所以∠AGD=100°.【专题】推理填空题.【分析】根据平行线的判定与性质填空.【解答】解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等);又∵∠1=∠2,∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补),∵∠BAC=80°,∴∠AGD=100°.【点评】本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.24.如图,在△ABC中,∠BAC为钝角,画出:(1)∠ABC的平分线;(2)AC边上的中线;(3)AC边上的高;(4)AB边上的高.【考点】作图—复杂作图.【分析】(1)角平分线的作法:用圆规以顶点为圆心,任意长为半径画一个弧(要保证有两个交点,不要太小),再以刚才画出的交点为顶点,以大于第一次的半径为半径画弧(左右各画一个弧),再取两道弧的交点,并连接这个交点的一开始最上面的顶点,这就是角平分线(2)中线的作法:先作BC的垂直平分线,交BC于一点,连接这点和A,所得线段就是AC边上的中线.(3)(4)中高的作法:用圆规以一顶点为圆心,两条邻边中较短的一边为半径做弧,交对边(或对边的延长线)于一点连接该交点和圆心,得到一等腰三角形然后作此等腰三角形底边的垂直平分线,所得垂直平分线就是三角形的高.【解答】解:(1)①以B为圆心,任意长为半径作圆交BA,BC于M,N;②分别以M,N为圆心,大于NM长为半径作弧,两弧相交于O;③连接BO,BO就是所求的角平分线.(图1)(2)①作AC的垂直平分线,交AC于Q;②连接BQ,BQ就是所求的中线.(3)①以B为圆心,BA为半径作弧,交CA的延长线于E;②作AE的垂直平分线,交AE于G;③连接BG,BG就是所求的高(如图3).(4)方法同(3).【点评】本题主要考查了学生用基本作图法作复杂图的能力.25.2007年的夏天,湖南省由于持续高温和连日无雨,水库蓄水量普遍下降,如图是某水库的蓄水量V(万立方米)与干旱持续时间t(天)之间的关系图,请根据此图,回答下列问题:(1)该水库原蓄水量为多少万立方米?持续干旱10天后,水库蓄水量为多少万立方米?(2)若水库的蓄水量小于400万立方米时,将发出严重干旱警报,请问持续干旱多少天后,将发出严重干旱警报?(3)按此规律,持续干旱多少天时,水库将干涸?【考点】函数的图象.【分析】(1)原蓄水量即t=0时v的值,持续干旱10天后的蓄水量即t=10时v的值;(2)即找到v=400时,相对应的t的值;(3)从第10天到第30天,水库下降了800﹣400=400万立方米,一天下降=20万立方米,第30天的400万立方米还能用=20天,即50天时干涸.【解答】解:(1)当t=0时,v=1000∴水库原蓄水量为1000万米3,当t=10时,v=800,∴水库原蓄水量为1 000万立方米,持续干旱10天后,蓄水量为800万立方米.(2)当v=400时,t=30,∴持续干旱30天后将发出严重干旱警报.(3)从第10天到第30天,水库下降了(800﹣400)万立方米,一天下降=20万立方米,故根据此规律可求出:30+=50天,那么持续干旱50天后水库将干涸.【点评】此题考查函数图象问题,解决本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,得到相应的点的意义.26.如图,在四边形ABCD中,已知BE平分∠ABC,∠AEB=∠ABE,∠D=70°.(1)说明:AD∥BC;(2)求∠C的度数.【考点】平行线的判定与性质.【分析】(1)根据角平分线定义和已知求出∠AEB=∠CBE,根据平行线的判定推出即可;(2)根据平行线的性质得出∠C+∠D=180°,代入求出即可.【解答】解:(1)∵BE平分∠ABC,∴∠ABE=∠CBE,∵∠AEB=∠ABE,∴∠AEB=∠CBE,∴AD∥BC;(2)∵AD∥BC,∴∠C+∠D=180°,∵∠D=70°,∴∠C=110°.【点评】本题考查了角平分线定义,平行线的性质和判定的应用,注意:①内错角相等,两直线平行,②两直线平行,同旁内角互补.27.已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°;求∠AEC的度数.【考点】三角形内角和定理.【分析】根据直角三角形两锐角互余求出∠BAD,然后求出∠DAC,再根据角平分线的定义求出∠DAE,然后求出∠BAE,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AEC=∠BAE+∠B代入数据计算即可得解.【解答】解:∵AD⊥BC,∠B=60°,∴∠BAD=90°﹣∠B=90°﹣60°=30°,∵∠BAC=80°,∴∠DAC=∠BAC﹣∠BAD=80°﹣30°=50°,∵AE平分∠DAC,∴∠DAE=∠DAC=×50°=25°,∴∠BAE=30°+25°=55°,∴∠AEC=∠BAE+∠B=55°+60°=115°.【点评】本题考查了三角形的内角和定理,角平分线的定义,是基础题,熟记概念与定理并准确识图,理清图中各角度之间的关系是解题的关键.。
北师大版七年级下册数学《期中》考试题(及参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-32.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球()A.12个B.16个C.20个D.30个3.如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是()A.∠4,∠2 B.∠2,∠6 C.∠5,∠4 D.∠2,∠4 4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.下列说法中,正确的是()A.从直线外一点到这条直线的垂线叫点到直线的距离B.在同一平面内,过一点有且只有一条直线与已知直线平行C .在同一平面内,过一点有且只有一条直线与已知直线垂直D .不相交的两直线一定互相平行6.如果23a b -=,那么代数式22()2a b a b a a b+-⋅-的值为( ) A .3 B .23 C .33 D .437.如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )A .B .C .D .8.1221()()n n x x +-=( )A .4n xB .43n x +C .41n x +D .41n x -9.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .l 1B .l 2C .l 3D .l 410.将一个四边形截去一个角后,它不可能是( )A .六边形B .五边形C .四边形D .三角形二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是________.2.观察下列各式:111233+=,112344+=,113455+=,……请你将发现的规律用含自然数n (n ≥1)的等式表示出来_______________.3.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________.6.已知x 2{y 1==是二元一次方程组mx ny 7{nx my 1+=-=的解,则m+3n 的立方根为________.三、解答题(本大题共6小题,共72分)1.解下列方程组(1)257320x y x y -=⎧⎨-=⎩ (2)33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩2.马虎同学在解方程13123x m m ---=时,不小心把等式左边m 前面的“﹣”当做“+”进行求解,得到的结果为x=1,求代数式m 2﹣2m+1的值.3.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC =63°,求∠DAC 的度数.4.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC (图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)求购买一个足球、一个篮球各需多少元?(2)根据学校实际情况,需从体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、C5、C6、A7、B8、A9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2.2(1)n n=+≥3、3 44、50°5、454353 x yx y+=⎧⎨-=⎩6、2三、解答题(本大题共6小题,共72分)1、(1)55xy⎧=⎨=⎩;(2)25xy⎧=⎪⎨=⎪⎩2、0.3、24°.4、(1)略;(2)MB=MC.略;(3)MB=MC还成立,略.5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)购买一个足球需要50元,购买一个篮球需要80;(2)30个.。
北师大版七年级(下册)期中考试数学试卷一、选择题(每小题3分,共30分)1.如图,∠1与∠2是对顶角的是()A.B.C.D.2.在下列各式中正确的是()A.=﹣2B.=3C.=8D.=23.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°4.平面直角坐标系中,点A(﹣2,a)位于x轴的上方,则a的值可以是()A.0B.﹣1C.D.±35.在0,,0.101001…,,,这6个数中,无理数有()A.1个B.2个C.3个D.4个6.的平方根等于()A.2B.﹣4C.±4D.±27.如果是a的相反数,那么a的值是()A.B.C.D.8.在平面直角坐标系中,点A(3,﹣5)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限9.已知点M(a,b)在第三象限,则点N(﹣b,a)在第()象限.A.一B.二C.三D.四10.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0)D.(0,12)或(0,﹣8)二、填空题(每小题3分,共15分)11.36的平方根是;的算术平方根是;=.12.如果两个角是对顶角,那么这两个角相等,是(真或假)命题,此命题的题设是,结论是.13.若≈44.90,≈14.20,则≈.14.已知点P在第四象限,且到x轴的距离是3,到y轴的距离是2,则点P的坐标为.15.如图所示第1个图案是由黑白两种颜色的正六边形的地面砖组成,第2个、第3个图案可以看作是第1个图案经过平移得到的,那么第4个图案中白色六边形地面砖块,第n个图案中白色地面砖块.三、解答题(共55分)16.(20分)解方程(1)x2=25 (2)﹣8(x﹣1)3+2=﹣25计算:(3)2++|| (4)(+)(5)+﹣|1﹣| (6)|1﹣|+×﹣17.(9分)如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系xOy,按要求解答下列问题:(1)写出△ABC三个顶点的坐标;(2)画出△ABC向右平移6个单位后的图形△A1B1C1;(3)求△ABC的面积.18.(6分)已知M=是m+3的算术平方根,N=是n﹣2的立方根,试求M ﹣N的值.19.(10分)如图,已知AD⊥BC于D,EG⊥BC于G,∠E=∠1.试说明:AD平分∠BAC.20.(10分)如图①,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+2)2+=0,过C作CB⊥x轴于B.(1)求三角形ABC的面积;(2)如图②,若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,求∠AED 的度数;(3)在y轴上是否存在点P,使得三角形ACP和三角形ABC的面积相等?若存在,求出P点的坐标;若不存在,请说明理由.参考答案一、选择题(每小题3分,共30分)1.如图,∠1与∠2是对顶角的是()A.B.C.D.【分析】根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角,依次判定即可得出答案.【解答】解:A、∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角,故A选项错误;B、∠1与∠2没有公共顶点,不是对顶角,故B选项错误;C、∠1与∠2的两边互为反向延长线,是对顶角,故C选项正确;D、∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角,故D选项错误.故选:C.【点评】本题主要考查了对顶角的定义,对顶角是相对与两个角而言,是指的两个角的一种位置关系.它是在两直线相交的前提下形成的.2.在下列各式中正确的是()A.=﹣2B.=3C.=8D.=2【分析】算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为a.【解答】解:A、=2,故A选项错误;B、=±3,故B选项错误;C、=4,故C选项错误;D、=2,故D选项正确.故选:D.【点评】考查了算术平方根,非负数a的算术平方根a 有双重非负性:①被开方数a是非负数;②算术平方根a 本身是非负数.3.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°【分析】根据平行线的判定分别进行分析可得答案.【解答】解:A、∠3=∠A,无法得到,AB∥CD,故此选项错误;B、∠1=∠2,根据内错角相等,两直线平行可得:AB∥CD,故此选项正确;C、∠D=∠DCE,根据内错角相等,两直线平行可得:BD∥AC,故此选项错误;D、∠D+∠ACD=180°,根据同旁内角互补,两直线平行可得:BD∥AC,故此选项错误;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.4.平面直角坐标系中,点A(﹣2,a)位于x轴的上方,则a的值可以是()A.0B.﹣1C.D.±3【分析】根据平面直角坐标系可得a为正数,进而可选出答案.【解答】解:∵点A(﹣2,a)位于x轴的上方,∴a为正数,故选:C.【点评】此题主要考查了点的坐标,关键是掌握x轴的上方的点的纵坐标为正,x轴的下方的点的纵坐标为负.5.在0,,0.101001…,,,这6个数中,无理数有()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:0.101001…,,共3个.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.的平方根等于()A.2B.﹣4C.±4D.±2【分析】原式利用算术平方根,平方根定义计算即可得到结果.【解答】解:=4,4的平方根是±2,故选:D.【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.7.如果是a的相反数,那么a的值是()A.B.C.D.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:是a的相反数,那么a的值是1﹣,故选:A.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.8.在平面直角坐标系中,点A(3,﹣5)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答.【解答】解:点A(3,﹣5)所在象限为第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.已知点M(a,b)在第三象限,则点N(﹣b,a)在第()象限.A.一B.二C.三D.四【分析】根据第三象限内点的横坐标与纵坐标都是负数确定出a、b的正负情况,然后进行判断即可.【解答】解:∵点M(a,b)在第三象限,∴a<0,b<0,∴﹣b>0,∴点N(﹣b,a)在第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0)D.(0,12)或(0,﹣8)【分析】根据B点的坐标可知AP边上的高为2,而△PAB的面积为5,点P在x轴上,说明AP=5,已知点A的坐标,可求P点坐标.【解答】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故选:C.【点评】本题考查了直角坐标系中,利用三角形的底和高及面积,表示点的坐标.二、填空题(每小题3分,共15分)11.36的平方根是±6;的算术平方根是2;=﹣3.【分析】根据平方根、算术平方根、立方根的定义,即可解答.【解答】解:36的平方根是±6,=4,4的算术平方根是2,=﹣3.故答案为:±6,2,﹣3.【点评】本题考查了平方根、立方根、算术平方根,解决本题的关键是熟记平方根、算术平方根、立方根的定义.12.如果两个角是对顶角,那么这两个角相等,是真(真或假)命题,此命题的题设是两个角是对顶角,结论是这两个角相等.【分析】根据对顶角相等得出是真命题,再根据命题分为题设和结论两部分,题设是已知事项,结论是由已知事项推出的事项,从而得出答案.【解答】解:如果两个角是对顶角,那么这两个角相等,是真命题,此命题的题设是两个角是对顶角,结论是这两个角相等;故答案为:是,两个角是对顶角,这两个角相等.【点评】本题考查了命题与定理:许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.也考查了命题的真假判断.13.若≈44.90,≈14.20,则≈ 4.490.【分析】先将2016写成20.16×100,再运用二次根式的性质进行化简计算.【解答】解:∵≈44.90∴≈44.90即×≈44.90∴×10≈44.90即≈4.490故答案为:4.490【点评】本题主要考查了算术平方根,解决问题的关键是根据二次根式的性质进行化简.解题时需要运用公式:=×(a≥0,b≥0).14.已知点P在第四象限,且到x轴的距离是3,到y轴的距离是2,则点P的坐标为(2,﹣3).【分析】根据第四象限内点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答即可.【解答】解:∵点P在第四象限,且到x轴的距离是3,到y轴的距离是2,∴点P的横坐标是2,纵坐标是﹣3,∴点P的坐标为(2,﹣3).故答案为:(2,﹣3).【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.15.如图所示第1个图案是由黑白两种颜色的正六边形的地面砖组成,第2个、第3个图案可以看作是第1个图案经过平移得到的,那么第4个图案中白色六边形地面砖18块,第n 个图案中白色地面砖4n+2块.【分析】根据所给的图案,发现:第一个图案中,有6块白色地砖,后边依次多4块,由此规律解决问题.【解答】解:第1个图案中有白色六边形地面砖有6块;第2个图案中有白色六边形地面砖有6+4=10(块);第3个图案中有白色六边形地面砖有6+2×4=14(块);第4个图案中有白色六边形地面砖有6+3×4=18(块);第n个图案中有白色地面砖6+4(n﹣1)=4n+2(块).故答案为:18,4n+2.【点评】此题考查图形的变化规律,结合图案发现白色地砖的规律是解题的关键.三、解答题(共55分)16.(20分)解方程(1)x2=25(2)﹣8(x﹣1)3+2=﹣25计算:(3)2++||(4)(+)(5)+﹣|1﹣|(6)|1﹣|+×﹣【分析】(1)方程利用平方根开方即可求出解;(2)方程整理后,利用立方根定义开立方即可求出解;(3)原式利用绝对值的代数意义化简,合并即可得到结果;(4)原式利用二次根式乘法法则计算即可求出值;(5)原式利用平方根、立方根定义,以及绝对值的代数意义计算即可求出值;(6)原式利用绝对值的代数意义,以及平方根、立方根定义计算即可求出值.【解答】解:(1)开方得:x=5或x=﹣5;(2)方程整理得:(x﹣1)3=,开立方得:x﹣1=,解得:x=;(3)原式=2++﹣=4﹣;(4)原式=3+2=5;(5)原式=5﹣4﹣+1=2﹣;(6)原式=﹣1﹣×﹣=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.(9分)如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系xOy,按要求解答下列问题:(1)写出△ABC三个顶点的坐标;(2)画出△ABC向右平移6个单位后的图形△A1B1C1;(3)求△ABC的面积.【分析】(1)根据坐标系得出各顶点坐标即可;(2)利用图形的平移性质得出对应点点坐标进而得出答案;(3)利用梯形的面积减去三角形的面积进而得出答案.【解答】解;(1)如图所示:A(﹣1,8),B(﹣5,3),C(0,6);(2)如图所示:(3)△ABC的面积为:×(5+1)×5﹣×1×2﹣×3×5=6.5.【点评】此题主要考查了图形的平移以及三角形的面积求法等知识,利用已知得出对应点坐标是解题关键.18.(6分)已知M=是m+3的算术平方根,N=是n﹣2的立方根,试求M ﹣N的值.【分析】根据算术平方根和立方根的定义得出方程组,求出m、n,再求出M、N,即可得出答案.【解答】解:∵M=是m+3的算术平方根,N=是n﹣2的立方根,∴n﹣4=2,2m﹣4n+3=3,解得:m=12,n=6,∴M==,N==,∴M﹣N=﹣.【点评】本题考查了算术平方根和立方根的定义,能根据算术平方根和立方根的定义求出m、n的值是解此题的关键.19.(10分)如图,已知AD⊥BC于D,EG⊥BC于G,∠E=∠1.试说明:AD平分∠BAC.【分析】先依据垂线的定义可得到∠ADC=∠EGC=90°,从而可证明AD∥EG,然后依据平行线的性质可得到∠1=∠2,∠E=∠3,通过等量代换可得到∠2=∠3,于是可得到问题的答案.【解答】解:∵AD⊥BC于D,EG⊥BC于G,∴∠ADC=∠EGC=90°,∴AD∥EG,∴∠1=∠2,∠E=∠3.又∵∠E=∠1,∴∠2=∠3,∴AD平分∠BAC.【点评】本题主要考查的是平行线的性质与判定,熟练掌握平行线的性质和判定定理是解题的关键.20.(10分)如图①,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+2)2+=0,过C作CB⊥x轴于B.(1)求三角形ABC的面积;(2)如图②,若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,求∠AED 的度数;(3)在y轴上是否存在点P,使得三角形ACP和三角形ABC的面积相等?若存在,求出P点的坐标;若不存在,请说明理由.【分析】(1)先依据非负数的性质可求得a、b的值,从而可得到点A和点C的坐标,接下来,再求得点B的坐标,最后,依据三角形的面积公式求解即可;(2)如图甲所示:过E作EF∥AC.首先依据平行线的性质可知∠ODB=∠6,∠CAB=∠5,接下来,依据平行公理的推理可得到BD∥AC∥EF,然后,依据平行线的性质可得到∠1=∠3,∠2=∠4,然后,依据角平分线的性质可得到∠3=∠CAB,∠4=∠ODB,最后,依据∠AED=∠1+∠2=∠3+∠4求解即可;(3)①当P在y轴正半轴上时,设点P(0,t),分别过点P,A,B作MN∥x轴,AN∥y轴,BM∥y轴,交于点M,N,然后,用含t的式子表示出AN,CM的长,然后依据S三角形ACP=S梯形MNAC ﹣S三角形ANP﹣S三角形CMP列出关于t的方程求解即可;②当P在y轴负半轴上时,如图丙分别过点P,A,B作MN∥x轴,AN∥y轴,BM∥y轴,交于点M,N,设点P(0,a),然后用含a的式子表示出AN、CM的长,最后,依据S三角形ACP =S梯形MNAC﹣S三角形ANP﹣S三角形CMP列方程求解即可.【解答】解:(1)∵(a+2)2+=0,∴a+2=0,b﹣2=0,∴a=﹣2,b=2,∴A(﹣2,0),C(2,2).∵CB⊥AB,∴B(2,0),∴AB=4,CB=2,则S三角形ABC=×4×2=4.(2)如图甲,过E作EF∥AC.∵CB⊥x轴,∴CB∥y轴,∠CBA=90°,∴∠ODB=∠6.又∵BD∥AC,∴∠CAB=∠5,∴∠CAB+∠ODB=∠5+∠6=180°﹣∠CBA=90°.∵BD∥AC,∴BD∥AC∥EF,∴∠1=∠3,∠2=∠4.∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠CAB,∠4=∠ODB,∴∠AED=∠1+∠2=∠3+∠4=(∠CAB+∠ODB)=45°.(3)①当P在y轴正半轴上时,如图乙.设点P(0,t),分别过点P,A,B作MN∥x轴,AN∥y轴,BM∥y轴,交于点M,N,则AN=t,CM=t﹣2,MN=4,PM=PN=2.∵S三角形ABC=4,∴S三角形ACP =S梯形MNAC﹣S三角形ANP﹣S三角形CMP=4,∴×4(t﹣2+t)﹣×2t﹣×2(t﹣2)=4,解得t=3,即点P的坐标为(0,3).②当P在y轴负半轴上时,如图丙,同①作辅助线.设点P(0,a),则AN=﹣a,CM=﹣a+2,PM=PN=2.∵S三角形ACP =S梯形MNAC﹣S三角形ANP﹣S三角形CMP=4,∴×4(﹣a+2﹣a)﹣×2•(﹣a)﹣×2(2﹣a)=4,解得a=﹣1,∴点P的坐标为(0,﹣1).综上所述,P点的坐标为(0,﹣1)或(0,3).【点评】本题主要考查的是三角形的综合应用,解答本题主要应用了非负数的性质、三角形的面积公式,平行线的性质,依据三角形的面积公式、梯形的面积公式依据图形中相关图形之间的面积关系列出关于a和t的方程是解题的关键.。
云南省文山州富宁一中2014-2015学年七年级数学下学期期中试题一、选择题1.下列运算中正确的是( )A .a 2•(a 3)2=a 8B .a 3•a 3=2a 3C .a 3+a 3=2a 6D .(a 2)3=a 82.计算a 5•(﹣a )3﹣a 8的结果等于( )A .0B .﹣2a 8C .﹣a 16D .﹣2a 163.下列计算正确的是( )A .(﹣4x )•(2x 2+x ﹣1)=﹣8x 2﹣4xB .(x+y )(x 2+y 2)=x 3+y 3C .(﹣4a ﹣1)(4a ﹣1)=1﹣16a 2D .(x ﹣2y )2=x 2﹣2xy+4y 24.下列说法错误的是( )A .对顶角相等B .同位角不相等,两直线不平行C .钝角大于它的补角D .锐角大于它的余角5.如图,下列条件不能判定直线a ∥b 的是( )A .∠1=∠2B .∠1=∠3C .∠1+∠4=180°D .∠2+∠4=180°6.一个等腰三角形的两边长分别为2和5,则它的周长为( )A .7B .9C .12D .9或127.下列说法正确的是( )A .面积相等的两个图形全等B .周长相等的两个图形全等C .形状相同的两个图形全等D .全等图形的形状和大小相同8.在△ABC 中,∠A=∠B=40°,△ABC 是( )A .直角三角形B .锐角三角形C .钝角三角形D .以上都不对9.下列每组数分别是三根小木棒的长度,其中能摆成三角形的是( )A .3cm ;4cm ;5cmB .7cm ;8cm ;15cmC .3cm ;12cm ;20cmD .5cm ;5cm ;11cm10.一辆公共汽车从车站开出,加速一段时间后开始匀速行驶,过了一段时间,发现没多少油了,开到加油站加了油,几分钟后,又开始匀速行驶.下面哪一幅图可以近似的刻画出该汽车在这段时间内的速度变化情况( )A .B .C .D .二、填空题11.若x 2+mx+9是一个完全平方式,则m 的值是 .12.如图,AB∥ED,则∠A+∠C+∠D= .13.如图:△ABD与△CDB,其中AB=CD,则需要加上条件,就可达到△ABD≌△CDB.14.在△ABC中,AD是角平分线,AE是高,若∠B=50°,∠C=70°,则∠DAE= .15.(x﹣1)0=1成立的条件是.16.如图,直线a、b被直线l所截,如果a∥b,∠1=120°,那么∠2= 度.17.计算:(1)(﹣2)3= ;(2)2﹣3= ;(3)(﹣2x2)3= .18.卫星绕地球运动的速度是7.9×103米/秒,则卫星绕地球运行3×105秒所行的路程是(结果用科学记数法表示)19.计算()0×2﹣2的结果是.20.请写出一个单项式,使系数是﹣2,次数是3.三、解答题(本大题共7个小题,共60分)21.计算:(1)(x﹣3y)2+(3y﹣x)(x+3y)(2)用公式计算:98×102.22.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.23.如图,EF∥AD,∠1=∠2,∠BAC=80°.将求∠AGD的过程填写完整.因为EF∥AD,所以∠2=(),又因为∠1=∠2,所以∠1=∠3(),所以AB∥(),所以∠BAC+=180°(),因为∠BAC=80°,所以∠AGD=.24.如图,在△ABC中,∠BAC为钝角,画出:(1)∠ABC的平分线;(2)AC边上的中线;(3)AC边上的高;(4)AB边上的高.25.2007年的夏天,湖南省由于持续高温和连日无雨,水库蓄水量普遍下降,如图是某水库的蓄水量V(万立方米)与干旱持续时间t(天)之间的关系图,请根据此图,回答下列问题:(1)该水库原蓄水量为多少万立方米?持续干旱10天后,水库蓄水量为多少万立方米?(2)若水库的蓄水量小于400万立方米时,将发出严重干旱警报,请问持续干旱多少天后,将发出严重干旱警报?(3)按此规律,持续干旱多少天时,水库将干涸?26.如图,在四边形ABCD中,已知BE平分∠ABC,∠AEB=∠ABE,∠D=70°.(1)说明:AD∥BC;(2)求∠C的度数.27.已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°;求∠AEC的度数.2014-2015学年云南省文山州富宁一中七年级(下)期中数学试卷参考答案与试题解析一、选择题1.下列运算中正确的是()A.a2•(a3)2=a8B.a3•a3=2a3C.a3+a3=2a6D.(a2)3=a8【考点】同底数幂的乘法;合并同类项;幂的乘方与积的乘方.【分析】根据幂的乘方与积的乘方、同底数幂的乘法以及合并同类项的相关知识对各选项分析判断后利用排除法求解.【解答】解:A、a2•(a3)2=a2•a6=a8,故本选项正确;B、应为a3•a3=a6,故本选项错误;C、应为a3+a3=2a3,故本选项错误;D、应为(a2)3=a6,故本选项错误.故选A.【点评】(1)本题综合考查了整式运算的多个考点,包括合并同类项、同底数幂的乘法、幂的乘方的性质,需熟练掌握且区分清楚,才不容易出错.(2)同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.2.计算a5•(﹣a)3﹣a8的结果等于()A.0 B.﹣2a8C.﹣a16 D.﹣2a16【考点】同底数幂的乘法;合并同类项.【分析】先根据同底数幂相乘,底数不变指数相加计算,再合并同类项.【解答】解:a5•(﹣a)3﹣a8=﹣a8﹣a8=﹣2a8.故选B.【点评】同底数幂的乘法的性质:底数不变,指数相加.合并同类项的法则:只把系数相加减,字母与字母的次数不变.3.下列计算正确的是()A.(﹣4x)•(2x2+x﹣1)=﹣8x2﹣4x B.(x+y)(x2+y2)=x3+y3C.(﹣4a﹣1)(4a﹣1)=1﹣16a2D.(x﹣2y)2=x2﹣2xy+4y2【考点】平方差公式;单项式乘多项式;多项式乘多项式;完全平方公式.【专题】计算题.【分析】根据单项式乘多项式,多项式的乘法,平方差公式,完全平方公式,对各选项分析判断后利用排除法求解.【解答】解:A、应为(﹣4x)(2x2+x﹣1)=﹣8x2﹣4x2+4x,故本选项错误;B、应为(x+y)(x2+y2)=x3+y3+yx2+xy2,故本选项错误;C、(﹣4a﹣1)(4a﹣1)=1﹣16a2,正确;D、应为(x﹣2y)2=x2﹣4xy+4y2,故本选项错误.故选C.【点评】本题考查单项式乘多项式,多项式乘多项式,平方差公式,完全平方公式,熟练掌握运算法则和公式是解题的关键.4.下列说法错误的是()A.对顶角相等B.同位角不相等,两直线不平行C.钝角大于它的补角D.锐角大于它的余角【考点】对顶角、邻补角;余角和补角;平行线的判定.【分析】根据平行线的判定与对顶角的性质,以及余角和补角的知识,即可求得答案.【解答】解:A.对顶角相等,本项正确;B.根据平行线的判定,同位角不相等,两直线不平行,本项正确;C.钝角的补角是锐角,钝角大于锐角,故本项正确;D.锐角大于它的余角,如锐角为30°,它的余角为60°,故本项错误.故选:D.【点评】本题主要考查了平行线的判定与对顶角的性质,以及余角和补角的知识.熟记定理与法则是解题的关键.5.如图,下列条件不能判定直线a∥b的是()A.∠1=∠2B.∠1=∠3C.∠1+∠4=180°D.∠2+∠4=180°【考点】平行线的判定.【分析】根据平行线的判定定理进行解答.【解答】解:A、∵∠1=∠2,∴a∥b(内错角相等,两直线平行);B、∵∠1=∠3,∴a∥b(同位角相等,两直线平行);C、∠1+∠4=180°与a,b的位置无关;D、∵∠2+∠4=180°,∴a∥b(同旁内角互补,两直线平行).故选C.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.6.一个等腰三角形的两边长分别为2和5,则它的周长为()A.7 B.9 C.12 D.9或12【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为5时,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;根据三角形三边关系可知:等腰三角形的腰长只能为5,这个三角形的周长是12.故选C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.7.下列说法正确的是()A.面积相等的两个图形全等B.周长相等的两个图形全等C.形状相同的两个图形全等D.全等图形的形状和大小相同【考点】全等图形.【分析】根据等形的概念:能够完全重合的两个图形叫做全等形进行分析即可.【解答】解:A、面积相等的两个图形全等,说法错误;B、周长相等的两个图形全等,说法错误;C、形状相同的两个图形全等,说法错误;D、全等图形的形状和大小相同,说法正确;故选:D.【点评】此题主要考查了全等形,关键是掌握全等形,形状和大小相等.8.在△ABC中,∠A=∠B=40°,△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.以上都不对【考点】三角形内角和定理.【分析】先根据三角形内角和定理求出∠C的度数,再判断出△ABC的形状即可.【解答】解:∵在△ABC中,∠A=∠B=40°,∴∠C=180°﹣∠A﹣∠B=180°﹣40°﹣40°=100°,∴△ABC是钝角三角形.故选C.【点评】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.9.下列每组数分别是三根小木棒的长度,其中能摆成三角形的是()A.3cm;4cm;5cm B.7cm;8cm;15cmC.3cm;12cm;20cm D.5cm;5cm;11cm【考点】三角形三边关系.【分析】根据在三角形中任意两边之和>第三边,任意两边之差<第三边.【解答】解:A、3+4>5能构成三角形,故正确;B、7+8=15,不能构成三角形,故错误;C、3+12=15<20,不能构成三角形,故错误;D、5+5=10<11,不能构成三角形,故错误.故选A.【点评】本题利用了三角形中三边的关系求解.10.一辆公共汽车从车站开出,加速一段时间后开始匀速行驶,过了一段时间,发现没多少油了,开到加油站加了油,几分钟后,又开始匀速行驶.下面哪一幅图可以近似的刻画出该汽车在这段时间内的速度变化情况()A.B.C.D.【考点】函数的图象.【分析】横轴表示时间,纵轴表示速度,根据加速、匀速、减速时,速度的变化情况,进行选择.【解答】解:公共汽车经历:加速﹣匀速﹣减速到站﹣加速﹣匀速,加速:速度增加,匀速:速度保持不变,减速:速度下降,到站:速度为0.观察四个选项的图象是否符合题干要求,只有B选项符合.故选B.【点评】主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二、填空题11.若x2+mx+9是一个完全平方式,则m的值是±6.【考点】完全平方式.【专题】计算题.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+9是一个完全平方式,∴m=±6,故答案为:±6.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.12.如图,AB∥ED,则∠A+∠C+∠D=360°.【考点】平行线的性质.【专题】计算题.【分析】过C作出AB、DE的平行线,再根据平行线的性质解答即可.【解答】解:过C作CF∥AB,∵AB∥ED,∴AB∥CF∥ED,∴∠1+∠A=180°,∠2+∠D=180°,∴∠1+∠A+∠2+∠D=360°,∵∠C=∠1+∠2,∴∠A+∠C+∠D=360°.【点评】本题考查的是平行线的性质,解答此题的关键是根据题意作出辅助线,再由平行线的性质解答.13.如图:△ABD与△CDB,其中AB=CD,则需要加上条件AD=BC或∠ABD=∠BDC等,就可达到△ABD≌△CDB.【考点】全等三角形的判定.【专题】开放型.【分析】探究性题型,判断两个三角形确定,题目现有条件AB=CD,BD=DB.根据SAS,SSS的判定定理,可以添加两边的夹角对应相等,也可以添加第三边对应相等.【解答】解:根据SAS,SSS的判定定理,可添加AD=BC或∠ABD=∠BDC等.故填AD=BC或∠ABD=∠BDC等.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.14.在△ABC中,AD是角平分线,AE是高,若∠B=50°,∠C=70°,则∠DAE=10°.【考点】三角形内角和定理.【分析】由三角形内角和定理可求得∠BA C的度数,在Rt△AEC中,可求得∠EAC的度数,AD是角平分线,有∠DAC=∠BAC,故∠EAD=∠DAC﹣∠EAC.【解答】解:∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=60°.∵AD是角平分线,∴∠DAC=∠BAC=30°.∵AE是高,∠C=70°,∴∠EAC=20°,∴∠DAE=∠DAC﹣∠EAC=30°﹣20°=10°.【点评】本题利用了三角形内角和定理、角的平分线的性质、直角三角形的性质求解.15.(x﹣1)0=1成立的条件是x≠1.【考点】零指数幂.【分析】根据零指数幂:a0=1(a≠0),求解即可.【解答】解:由题意得,x﹣1≠0,解得:x≠1.故答案为:x≠1.【点评】本题考查了零指数幂,解答本题的关键是掌握a0=1(a≠0).16.如图,直线a、b被直线l所截,如果a∥b,∠1=120°,那么∠2=60 度.【考点】平行线的性质;对顶角、邻补角.【专题】计算题.【分析】两直线平行,内错角相等以及根据邻补角概念即可解答.【解答】解:∵∠1和∠3互为邻补角,∠1=120°,∴∠3=180°﹣120°=60°;又∵a∥b,∴∠2=∠3=60°.【点评】本题应用的知识点为:“两直线平行,内错角相等”和邻补角定义.17.计算:(1)(﹣2)3= ﹣8 ;(2)2﹣3= ;(3)(﹣2x2)3= ﹣8x6.【考点】幂的乘方与积的乘方;有理数的乘方;负整数指数幂.【分析】(1)根据乘方,可得答案;(2)根据负整指数幂与正整指数幂互为倒数,可得答案;(3)根据积得乘方等于每个因式分别乘方,再把所得的幂相乘,可得答案.【解答】解::(1)(﹣2)3=﹣8;(2)2﹣3=;(3)(﹣2x2)3=﹣8x6;故答案为:﹣8,,﹣8x6.【点评】本题考查了幂的乘方与积的乘方,根据法则计算是解题关键.18.卫星绕地球运动的速度是7.9×103米/秒,则卫星绕地球运行3×105秒所行的路程是 2.37×109(结果用科学记数法表示)【考点】科学记数法—表示较大的数.【分析】利用速度乘以时间可得路程,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:7.9×103×3×105=2.37×109,故答案为:2.37×109.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.计算()0×2﹣2的结果是.【考点】负整数指数幂;零指数幂.【分析】分别根据零指数幂,负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1×=,故答案为:.【点评】本题主要考查了零指数幂,负指数幂的运算.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.20.请写出一个单项式﹣2ab2,使系数是﹣2,次数是3.【考点】单项式.【专题】开放型.【分析】根据单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式,求解即可.【解答】解:根据单项式的定义得:﹣2ab2.故答案为:﹣2ab2.【点评】本题考查了单项式的知识,解答本题的关键是掌握单项式的定义,属于基础题.三、解答题(本大题共7个小题,共60分)21.计算:(1)(x﹣3y)2+(3y﹣x)(x+3y)(2)用公式计算:98×102.【考点】平方差公式;完全平方公式.【专题】计算题.【分析】(1)原式利用完全平方公式及平方差公式化简,去括号合并即可得到结果;(2)原式变形后,利用平方差公式计算即可得到结果.【解答】解:(1)原式=x2﹣6xy+9y2+9y2﹣x2=18y2﹣6xy;(2)原式=(100﹣2)×(100+2)=1002﹣22=10000﹣4=9996.【点评】此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键.22.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.【考点】整式的混合运算—化简求值.【专题】计算题;压轴题.【分析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.【解答】解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当时,原式==﹣3﹣5=﹣8.【点评】此题主要考查了整式的化简求值,解题的关键是利用整式的乘法法则及平方差公式、完全平方公式化简代数式.23.如图,EF∥AD,∠1=∠2,∠BAC=80°.将求∠AGD的过程填写完整.因为EF∥AD,所以∠2=∠3(两直线平行,同位角相等),又因为∠1=∠2,所以∠1=∠3(等量代换),所以AB∥DG (内错角相等,两直线平行),所以∠BAC+∠AGD=180°(两直线平行,同旁内角互补),因为∠BAC=80°,所以∠AGD=100°.【专题】推理填空题.【分析】根据平行线的判定与性质填空.【解答】解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等);又∵∠1=∠2,∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补),∵∠BAC=80°,∴∠AGD=100°.【点评】本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.24.如图,在△ABC中,∠BAC为钝角,画出:(1)∠ABC的平分线;(2)AC边上的中线;(3)AC边上的高;(4)AB边上的高.【考点】作图—复杂作图.【分析】(1)角平分线的作法:用圆规以顶点为圆心,任意长为半径画一个弧(要保证有两个交点,不要太小),再以刚才画出的交点为顶点,以大于第一次的半径为半径画弧(左右各画一个弧),再取两道弧的交点,并连接这个交点的一开始最上面的顶点,这就是角平分线(2)中线的作法:先作BC的垂直平分线,交BC于一点,连接这点和A,所得线段就是AC边上的中线.(3)(4)中高的作法:用圆规以一顶点为圆心,两条邻边中较短的一边为半径做弧,交对边(或对边的延长线)于一点连接该交点和圆心,得到一等腰三角形然后作此等腰三角形底边的垂直平分线,所得垂直平分线就是三角形的高.【解答】解:(1)①以B为圆心,任意长为半径作圆交BA,BC于M,N;②分别以M,N为圆心,大于NM长为半径作弧,两弧相交于O;③连接BO,BO就是所求的角平分线.(图1)(2)①作AC的垂直平分线,交AC于Q;②连接BQ,BQ就是所求的中线.(3)①以B为圆心,BA为半径作弧,交CA的延长线于E;②作AE的垂直平分线,交AE于G;③连接BG,BG就是所求的高(如图3).(4)方法同(3).【点评】本题主要考查了学生用基本作图法作复杂图的能力.25.2007年的夏天,湖南省由于持续高温和连日无雨,水库蓄水量普遍下降,如图是某水库的蓄水量V(万立方米)与干旱持续时间t(天)之间的关系图,请根据此图,回答下列问题:(1)该水库原蓄水量为多少万立方米?持续干旱10天后,水库蓄水量为多少万立方米?(2)若水库的蓄水量小于400万立方米时,将发出严重干旱警报,请问持续干旱多少天后,将发出严重干旱警报?(3)按此规律,持续干旱多少天时,水库将干涸?【考点】函数的图象.【分析】(1)原蓄水量即t=0时v的值,持续干旱10天后的蓄水量即t=10时v的值;(2)即找到v=400时,相对应的t的值;(3)从第10天到第30天,水库下降了800﹣400=400万立方米,一天下降=20万立方米,第30天的400万立方米还能用=20天,即50天时干涸.【解答】解:(1)当t=0时,v=1000∴水库原蓄水量为1000万米3,当t=10时,v=800,∴水库原蓄水量为1 000万立方米,持续干旱10天后,蓄水量为800万立方米.(2)当v=400时,t=30,∴持续干旱30天后将发出严重干旱警报.(3)从第10天到第30天,水库下降了(800﹣400)万立方米,一天下降=20万立方米,故根据此规律可求出:30+=50天,那么持续干旱50天后水库将干涸.【点评】此题考查函数图象问题,解决本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,得到相应的点的意义.26.如图,在四边形ABCD中,已知BE平分∠ABC,∠AEB=∠ABE,∠D=70°.(1)说明:AD∥BC;(2)求∠C的度数.【考点】平行线的判定与性质.【分析】(1)根据角平分线定义和已知求出∠AEB=∠CBE,根据平行线的判定推出即可;(2)根据平行线的性质得出∠C+∠D=180°,代入求出即可.【解答】解:(1)∵BE平分∠ABC,∴∠ABE=∠CBE,∵∠AEB=∠ABE,∴∠AEB=∠CBE,∴AD∥BC;(2)∵AD∥BC,∴∠C+∠D=180°,∵∠D=70°,∴∠C=110°.【点评】本题考查了角平分线定义,平行线的性质和判定的应用,注意:①内错角相等,两直线平行,②两直线平行,同旁内角互补.27.已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°;求∠AEC的度数.【考点】三角形内角和定理.【分析】根据直角三角形两锐角互余求出∠BAD,然后求出∠DAC,再根据角平分线的定义求出∠DAE,然后求出∠BAE,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AEC=∠BAE+∠B代入数据计算即可得解.【解答】解:∵AD⊥BC,∠B=60°,∴∠BAD=90°﹣∠B=90°﹣60°=30°,∵∠BAC=80°,∴∠DAC=∠BAC﹣∠BAD=80°﹣30°=50°,∵AE平分∠DAC,∴∠DAE=∠DAC=×50°=25°,∴∠BAE=30°+25°=55°,∴∠AEC=∠BAE+∠B=55°+60°=115°.【点评】本题考查了三角形的内角和定理,角平分线的定义,是基础题,熟记概念与定理并准确识图,理清图中各角度之间的关系是解题的关键.。