聚合物的粘弹性变形
- 格式:ppt
- 大小:33.50 KB
- 文档页数:4
第7章聚合物的粘弹性7.1基本概念弹:外力→形变→应力→储存能量→外力撤除→能量释放→形变恢复粘:外力→形变→应力→应力松驰→能量耗散→外力撤除→形变不可恢复理想弹性:服从虎克定律σ=E·ε应力与应变成正比,即应力只取决于应变。
理想粘性:服从牛顿流体定律应力与应变速率成正比,即应力只取决于应变速率。
总结:理想弹性体理想粘性体虎克固体牛顿流体能量储存能量耗散形状记忆形状耗散E=E(σ.ε.T) E=E(σ.ε.T.t)聚合物是典型的粘弹体,同时具有粘性和弹性。
E=E(σ.ε.T.t)但是高分子固体的力学行为不服从虎克定律。
当受力时,形变会随时间逐渐发展,因此弹性模量有时间依赖性,而除去外力后,形变是逐渐回复,而且往往残留永久变形(γ∞),说明在弹性变形中有粘流形变发生。
高分子材料(包括高分子固体,熔体及浓溶液)的力学行为在通常情况下总是或多或少表现为弹性与粘性相结合的特性,而且弹性与粘性的贡献随外力作用的时间而异,这种特性称之为粘弹性。
粘弹性的本质是由于聚合物分子运动具有松弛特性。
7.2聚合物的静态力学松弛现象聚合物的力学性质随时间的变化统称为力学松弛。
高分子材料在固定应力或应变作用下观察到的力学松弛现象称为静态力学松弛,最基本的有蠕变和应力松弛。
(一)蠕变在一定温度、一定应力的作用下,聚合物的形变随时间的变化称为蠕变。
理想弹性体:σ=E·ε。
应力恒定,故应变恒定,如图7-1。
理想粘性体,如图7-2,应力恒定,故应变速率为常数,应变以恒定速率增加。
图7-3 聚合物随时间变化图聚合物:粘弹体,形变分为三个部分;①理想弹性,即瞬时响应:则键长、键角提供;②推迟弹性形变,即滞弹部分:链段运动③粘性流动:整链滑移注:①、②是可逆的,③不可逆。
总的形变:(二)应力松弛在一定温度、恒定应变的条件下,试样内的应力随时间的延长而逐渐减小的现象称为应力松弛。
理想弹性体:,应力恒定,故应变恒定聚合物:由于交联聚合物分子链的质心不能位移,应力只能松弛到平衡值。
第7章聚合物的粘弹性7.1基本概念弹:外力T 形变T 应力T 储存能量T 外力撤除T 能量释放T 形变恢复粘:外力T 形变T 应力T 应力松驰T 能量耗散T 外力撤除T 形变不可恢复理想弹性: 服从虎克定律CT= E •£应力与应变成正比,即应力只取决于应变理想粘性:服从牛顿流体定律cr= 7?— dt应力与应变速率成正比,即应力只取决于应变速率聚合物是典型的粘弹体,同时具有粘性和弹性。
E = E ( a . £ .T.t )但是高分子固体的力学行为不服从虎克定律。
当受力时,形变会随时间逐渐发展,因此弹性模量有时 间依赖性,而除去外力后,形变是逐渐回复,而且往往残留永久变形 (丫^),说明在弹性变形中有粘流形变发生。
高分子材料(包括高分子固体,熔体及浓溶液)的力学行为在通常情况下总是或多或少表现为弹性与粘 性相结合的特性,而且弹性与粘性的贡献随外力作用的时间而异,这种特性称之为粘弹性。
粘弹性的本质 是由于聚合物分子运动具有松弛特性。
7.2 聚合物的静态力学松弛现象聚合物的力学性质随时间的变化统称为力学松弛。
高分子材料在固定应力或应变作用下观察到的力学松 弛现象称为静态力学松弛,最基本的有蠕变和应力松弛。
(一)蠕变在一定温度、一定应力的作用下,聚合物的形变随时间的变化称为蠕变。
理想弹性体:a= E- S 应力恒定,故应变恒定,如图7-1总结:理想弹性体 虎克固体 能量储存 形状记忆E = E (「£ .T ) E理想粘性体牛顿流体 能量耗散 形状耗散=E ( a . £ .T.t )理想粘性体,如图7-2 ,应力恒定,故应变速率为常数,应变以恒定速率增加图7-3聚合物随时间变化图聚合物:粘弹体,形变分为三个部分;①理想弹性,即瞬时响应:则键长、键角提供;②推迟弹性形变,即滞弹部分:链段运动③粘性流动:整链滑移邑=—Z注:①、②是可逆的,③不可逆总的形变:匕氐讣+补―严)+ =(二)应力松弛在一定温度、恒定应变的条件下,试样内的应力随时间的延长而逐渐减小的现象称为应力松弛。
第七章聚合物的粘弹性一、概念1、蠕变在一定温度、一定应力的作用下,聚合物的形变随时间的变化称为蠕变。
2、应力松弛在固定的温度和形变下,聚合物的内部应力随时间的增加而衰减的现象称为应力松弛。
3、滞后现象与力学内耗滞后现象:聚合物在交变应力作用下,应变落后于应力的现象。
力学内耗:由于发生滞后现象,在每一循环变化中作为热损耗掉的能量与最大储存能量之比成为力学内耗。
4、时温等效原理从分子运动的松驰性质可知,同一力学松驰现象,既可在较高的温度下,较高的时间内观察到,也可以在较低的温度下,较长时间内观察到。
因此,升高温度与延长时间对分子运动是等效的,对聚合物的粘弹性也是等效的,这就是时温等效原理。
适用范围Tg ~ Tg+1005、Blotzmann叠加原理高聚物的力学松驰行为是其整个历史上诸松驰过程的线性加和的结果。
对于蠕变过程,每个负荷对高聚物的变形的贡献是独立的,总的蠕变是各个负荷起的蠕变的线性加和,对于应力松驰过程,每个应变对高聚物的应力松驰的贡献也是独立的,高聚物的总应力等于历史上诸应变引起的应力松驰过程的线性加和。
二、选择答案1、粘弹性是高聚物的重要特征,在适当外力作用下,(B )有明显的粘弹性现象。
A、T g以下很多B、T g附近C、T g以上很多D、f附近2、关于WLF方程,说法不正确的为(A )。
A、严格理论推导公式B、T g参考温度,几乎对所有聚合物普遍适用C、温度范围为T g~T g+100℃D、WLF方程是时温等效原理的数学表达式3、(C )模型基本上可用于模拟交联聚合物的蠕变行为。
A、Flory,B、Huggins,C、Kelvin,D、Maxwell4、(D )模型可以用于模拟线性聚合物的应力松弛行为。
A、Flory,B、Huggins,C、Kelvin,D、Maxwell三、填空题1、Maxwell模型可模拟线性聚合物的应力松弛现象,而Kelvin模型基本上可用来模拟交联聚合物的蠕变行为。
第5章聚合物的线性粘弹性前面我们讨论了四种模式来描述高聚物在一定条件下表现出的性状。
线弹性适用于在低于玻璃化温度下的高聚物,非线性弹性适用于高于Tg时的部分交联的高聚物。
在这两种模式的讨论中,线弹性的高聚物的形变是在应力作用时瞬时发生的不随时间而改变;对非线性弹性的橡胶,我们没有考虑其时间依赖性,而是考虑在平衡态时的应变,因而它也不随时间而变。
线性粘性及非线性粘性则适用于高聚物溶液及高聚物熔体。
这四种模式在一定的条件下可应用于高聚物性状的分析。
弹:外力→形变→应力→储存能量→外力撤除→能量释放→形变恢复粘:外力→形变→应力→应力松驰→能量耗散→外力撤除→形变不可恢复理想弹性:服从虎克定律σ=E·ε应力与应变成正比,即应力只取决于应变。
受外力时平衡应变瞬时达到,除去外力应变立即恢复。
理想粘性:服从牛顿流体定律应力与应变速率成正比,即应力只取决于应变速率。
受外力时应变随时间线形发展,除去外力应变不能恢复。
实质上,在一般情况下,高聚物的性状并不能用以上四种简单模式来表示,首先高聚物在应力作用下,可能同时表现出弹性和粘性;其次高聚物在一般情况下,在恒定应力作用下,应变是随时间而变化的,即应变的时间依赖性(或在应变一定时,应力随时间而变化,即应力的时间依赖性)。
高分子固体的力学行为不服从虎克定律。
当受力时,形变会随时间逐渐发展,因此弹性模量有时间依赖性,而除去外力后,形变是逐渐回复,而且往往残留永久变形(γ∞),说明在弹性变形中有粘流形变发生。
高分子液体,除了粘度特别大以外,其流动行为往往不服从牛顿定律,即η随γ而变化。
这是由于流动过程中伴随着构象的改变,η不再是常数;而当外力除去时,链分子重新卷曲(解取向)。
因此,高分子液体在流动过程中仍包含有熵弹性形变,即含有可回复的弹性形变。
高分子材料(包括高分子固体,熔体及浓溶液)的力学行为在通常情况下总是或多或少表现为弹性与粘性相结合的特性,而且弹性与粘性的贡献随外力作用的时间而异,这种特性称之为粘弹性。