大学概率论和数理统计复习资料全
- 格式:doc
- 大小:845.50 KB
- 文档页数:23
第一章 随机事件及其概率知识点:概率的性质 事件运算 古典概率事件的独立性 条件概率 全概率与贝叶斯公式常用公式)()()()()()2(加法定理AB P B P A P B A P -+= ),,()()(2111有限可加性两两互斥设n ni i ni i A A A A P A P ∑===),(0)()()()()(互不相容时独立时与B A AB P B A B P A P AB P ==)()()()()5(AB P A P B A P B A P -==-)()()()()(时当A B B P A P B A P B A P ⊂-==-))0(,,()()/()()()6(211>Ω=∑=i n ni i i A P A A A A B P A P B P 且的一个划分为其中全概率公式 ),,()](1[1)(2111相互独立时n ni i n i i A A A A P A P ∏==--=)/()()/()()()4(B A P B P A B P A P AB P ==)(/)()/()3(A P AB P A B P =)()/()()/()()/()7(1逆概率公式∑==ni iii i i A B P A P A B P A P B A P )(/)()(/)()1(S L A L AP nr A P ==应用举例1、已知事件,A B 满足)()(B A P AB P =,且6.0)(=A P ,则=)(B P ( )。
2、已知事件,A B 相互独立,,)(k A P =6.0)(,2.0)(==B A P B P ,则=k ( )。
3、已知事件,A B 互不相容,,3.0)(=A P ==)(,5.0)(B A P B P 则( )。
4、若,3.0)(=A P===)(,5.0)(,4.0)(B A B P B A P B P ()。
5、,,A B C 是三个随机事件,C B ⊂,事件()A C B -与A 的关系是( )。
概率论与数理统计要点复习.docx概率论与数理统计复习资料第⼀章随机事件与概率1.事件的关系AuB AuB AB A-B A Q AB =(/>(1)包含:若事件A发⽣,⼀定导致事件B发⽣,那么,称事件B包含事件A ,记作AuB(或Bz)A)?(2)相等:若两事件A与〃相互包含,即AnB且Bn A,那么,称事件A与B相等,记作A = B .(3)和事件:“事件A与事件B中⾄少有⼀个发⽣”这⼀事件称为A与B的和事件,记作AuB;“n个事件观出?…,⼈中⾄少有⼀事件发⽜”这⼀事HI J A件称为鱼…,⼈的和,记作Au⼊5??uA”(简记为* ').(4)积事件:“事件A与事件B同时发⽣”这⼀事件称为A与B的积事件,记作AcB(简记为AB);a n个事件观出,…,⼼同时发⽜”这⼀事件称为nA,⾎.…,⼈的积事件,记作(简记为A4??4或以').(5)互不相容:若事件A和B不能同时发⽣,即⼼?,那么称事件A与B互不相容(或互斥),若n个事件观出?…,⼈中任意两个事件不能同时发⽣,即A"⼴0(iwi(6)对⽴事件:若事件A和B互不相容、且它们中必有⼀事件发⽣,即AB = Q 且AuB⼆Q,那么,称A与B是对⽴的.事件A的对⽴事件(或逆事件)记作⼊(7)差事件:若事件A发⽣且事件B不发⽣,那么,称这个事件为事件A 与B的差事件,记作A-B(或⼈⽤)?2?运算规则(1)交换律:AuB = BuA AB = BA(2)结合律:(AuB)uC = Au(BuC) (AB)C = A(BC)(3)分配律(A u B)C = (AC) u (BC) (AB) uC = (Au C)(B u C)(4)德[摩根(DeMorgan)法则:AuB = AB AB = AuB3.概率P( A)满⾜的三条公理及性质:(1)0 < P(A) < 1 (2) P(Q) = 1(3)对互不相容的事件£,凡,…,有P(|J 4) = JP(A k) (n可以取co) k=[Bl(4)P(0) = O (5) P(A) = 1 - P(A)(6)P(A-B) = P(A)-P(AB),若AuB,则P(B-A) = P(B)-P(A), P(A)< P(B)(7)P(A u B) = P(A) + P(B) - P(AB)(8)P(AufiuC) = P(A) + P(B) + P(C) ⼀P( AB) - P(AC)⼀P(BC) + P(ABC)4.古典概型:基本事件有限且等可能5.⼏何概率:如果随机试验的样本空间是⼀个区域(可以是直线上的区间、平⾯或空间⼬的区域),且样本空间⼬每个试验结果的出现具有等可能性,那么规定事件A的概率为= A的长度(或⾯积、体积)(,⼀样本空间的的长度(或⾯积、体积)?6.条件概率(1)定义:若P(B)> 0,则P(A|B)⼆巴也P(B)(2)乘法公式:P(AB) = P(B)P(A | B)若⽿,场,3”为完备事件组,P(BJ>0,贝ij有(3)全概率公式:P(A) =》P(BJP(A | BJ/=!(4)Bayes 公式:P(B* | A) = £(拔)⼙(川伐)£P(BJP(A\BJ/=!(5)贝努⾥概型与⼆项概率设在每次试验中,随机事件A发⽣的概率P(A) = p(0复独⽴试验中?,事件A恰发⽣£次的概率为巳伙)⼆7 //(I —"1,20,1,…⼩k7.事件的独⽴性:A, 3独⽴o P(AB) = P(A)P(B)(注意独⽴性的应⽤)下列四个命题是等价的:(i)事件A与B相互独⽴;(ii)事件A与⽤相互独⽴;(iii)事件広与B相互独⽴;(iv)事件A与B相互独⽴.8、思考题1 . ⼀个⼈在⼝袋⾥放2盒⽕柴,每盒⽄⽀,每次抽烟时从⼝袋⼬随机拿出⼀盒(即每次每盒有同等机会被拿到)并⽤掉⼀⽀,到某次他迟早会发现:取出的那⼀盒已空了?问:“这时另⼀盒中恰好有加⽀⽕柴”的概率是多少?2?设⼀个居民区有〃个⼈,设有⼀个邮局,开c个窗⼝,设每个窗⼝都办理所有业务.c太⼩,经常排长队;c?太⼤⼜不经济.现设在每⼀指定时刻,这〃个⼈中每⼀个是否在邮局是独⽴的,每个⼈在邮局的概率是P?设计要求:“在每⼀时刻每窗⼝排队⼈数(包括正在被服务的那个⼈)不超过加”这个事件的概率要不⼩于Q (例如,Q = 0?&0?9或o.95),问⾄少须设多少窗⼝?3.设机器正常时,⽣产合格品的概率为9 5%,当机器有故障时,⽣产合格品的概率为5 0 %,⽽机器⽆故障的概率为9 5%.某天上班时,⼯⼈⽣产的第⼀件产品是合格品,问能以多⼤的把握判断该机器是正常的?第⼆章随机变量与概率分布1.离散随机变量:取有限或可列个值,P(X =xj = Pi满⾜(1) p,. > 0 , (2)⼯戸=1I(3)对任意DuR, P(X E D)= ^Pii: DJ+oof(x)dx = 1:-oo(2)P(aJu3.⼉个常⽤随机变量标准正态分布的分布函数记作①(X),即CX ] ----①⑴=I ——e 2 dt①(兀) '⼗问t ,当出“no时,①(%)可查表得到;当xvo时,①⑴可由下⾯性质得到①(I兀)=1 ⼀①(X)设X~N(“,k),则有F⑴=①(⼆)P(aer c ?4.分布函数F(x) = P(X(1)F(-oo) = 0, F(+oo) = l; (2)单调⾮降;(3)右连续;(4)P(a a) = l-F(a);特别的P(X = a) = F(a) - F(a -0)(5)对离散随机变量,F(Q =⼯⼙汀/:Xf(6)对连续随机变量,F(x) = f 为连续函数,且在.f(x)连续点上,F (x) = f(x)J—85.正态分布的概率计算以①(x)记标准正态分布2(0,1)的分布函数,则有(1)①(0) = 0.5; (2)①(⼀兀)=1 ⼀①⑴;(3)若X ?N(“Q2),则F(Q⼆①(^^);(7(4)以%记标准正态分布2(0,1)的上侧a分位数,则P(X >%) = a = l—①(⾎) 6.随机变量的函数Y = g(X)(1)离散时,求Y的值,将相同的概率相加;(2)X连续,g(x)在X的取值范围内严格单调,且有⼀阶连续导数,则/y(y) = /x (gT (y ))l (gT ()‘))'l ,若不单调,先求分布函数,再求导。
知识点:概率的性质事件运算古典概率常用公式(2)P(A BP P(A) P(B)- P(AB)(加法定理)nnP(U A) Y p(A)i d innP(U A)=l-n [1-P(A)]i di d(3) P(B/A)二 P(AB)/P(A) (4)P(AB)二 P(A)P(B/A)二P(B)P(A/B) P(AB)二 P(A)P(B) (A 与B 独立时)P(AB)二0(A,B 互不相容时)(5) P (A- Bp P(ABp P(A)- P(AB)P(A- B)二 P(AB)二 P(A) - P(B)(当B A 时)n(6) P (B)八 P(A i )P(B/A i )(全概率公式)i=1(其中A ,,A 2 A n 为"的一个划分,且P(A i 0)) (7) P (A /B) = nP(A)P(B/A)(逆概率公式)迟 P(A i )P(B/A)事件的独立性条件概率全概率与贝叶斯公式(1)P(Ap r/nP(AP L(A)/L(S)(设A,4…A 两两互斥,有限可加性)(A ,4, A 相互独立时)i =1应用举例1、已知事件A, B 满足P(AB) = P(AB),且P(A) = 0.6 ,贝卩P(B)=()。
2、已知事件A,B 相互独立,P(A) =k, P(B) =0.2, P(0 B)=0.6,贝k - ()。
3、已知事件A,B 互不相容,P(A) =0.3, P(B) = 0.5,则 P(A B)=()。
4、若P(A) =0.3, P(B)=0.4 ,P(AB) = 0.5, P(BA B)=( )。
5、A, B,C是三个随机事件,C B,事件AUC - B与A的关系是6、5张数字卡片上分别写着1, 2, 3, 4, 5,从中任取3张,某日他抛一枚硬币决定乘地铁还是乘汽车。
(1 )试求他在5:40〜5:50到家的概率;(2)结果他是5:47到家的。
试求他是乘地铁回家的概率。
《概率论与数理统计》综合复习资料《概率论与数理统计》综合复习资料⼀、填空题1.由长期统计资料得知,某⼀地区在4⽉份下⾬(记作事件A )的概率为4/15,刮风(记作事件B )的概率为7/15,刮风⼜下⾬(记作事件C )的概率为1/10。
则:=)|(B A P ;=)(B A P 。
2.⼀批产品共有8个正品2个次品,从中任取两次,每次取⼀个(不放回)。
则:(1)第⼀次取到正品,第⼆次取到次品的概率为;(2)恰有⼀次取到次品的概率为。
3.设随机变量)2,1(~2N X 、)3(~P Y (泊松分布),且相互独⽴,则:)2(Y X E += ; )2(Y X D + 。
4.设随机变量X 的概率分布为X -1 0 1 2 p k 0.1 0.2 0.3 p 则: =EX ;DX = ;Y X =-21的概率分布为。
5.设⼀批产品中⼀、⼆、三等品各占60%、30%、10%,从中任取⼀件,结果不是三等品,则取到的是⼆等品的概率为。
6.设Y X 、相互独⽴,且概率分布分别为 2)1(1)(--=x ex f π(-∞<<+∞x ) ; ?≤≤=其它,,0312/1)(y y ?则:)(Y X E += ; )32(2Y X E -= 。
7.已知随机变量X 的分布列为 X 0 1 2 P k 0.3 0.5 0.2 则:随机变量X 的期望EX = ;⽅差DX = 。
8.已知⼯⼚A B 、⽣产产品的次品率分别为2%和1%,现从由A B 、⼯⼚分别占30%和70%的⼀批产品中随机抽取⼀件,发现是次品,则该产品是B ⼯⼚的概率为。
9.设Y X 、的概率分布分别为≤≤=其它,,0514/1)(x x ?; ?()y e y y y =>≤-40004,,则:)2(Y X E += ;)4(2Y XE -= 。
10.设随机变量X 的概率密度为≤=其它,,02cos )(πx x A x f ,则:系数A = 。
《概率论与数理统计》复习大纲第一章随机事件与概率事件与集合论的对应关系表古典概型古典概型的前提是Ω={ω1, ω2,ω3,…, ωn,}, n为有限正整数,且每个样本点ωi出现的可能性相等。
例1设3个球任意投到四个杯中去,问杯中球的个数最多为1个的事件A1,最多为2个的事件A2的概率。
[解]:每个球有4种放入法,3个球共有43种放入法,所以|Ω|=43=64。
(1)当杯中球的个数最多为1个时,相当于四个杯中取3个杯子,每个杯子恰有一个球,所以|A1|= C433!=24;则P(A1)=24/64 =3/8. (2) 当杯中球的个数最多为2个时,相当于四个杯中有1个杯子恰有2个球(C41C32),另有一个杯子恰有1个球(C31C11),所以|A2|= C41C32C31C11=36;则P(A2)=36/64 =9/16例2从1,2,…,9,这九个数中任取三个数,求:(1)三数之和为10的概率p1;(2)三数之积为21的倍数的概率p2。
[解]:p1=4C93=121, p2=C31C51+C32C93=314P(A)=A包含样本总个数样本点总数=|A||Ω|几何概型前提是如果在某一区域Ω任取一点,而所取的点落在Ω中任意两个度量相等的子区域的可能性是一样的。
若A⊂Ω,则P(A)=A的度量Ω的度量例1把长度为a的棒任意折成三段,求它们可以构成一个三角形的概率。
[解]:设折得的三段长度分别为x,y和a-x-y,那么,样本空间,S={(x,y)|0≤x≤a,0≤y≤a,0≤a-x-y≤a}。
而随机事件A:”三段构成三角形”相应的区域G应满足两边之和大于第三边的原则,得到联立方程组,⎩⎪⎨⎪⎧a-x-y<x+yx<a-x-y+yy<a-x-y+x解得0<x<a2, 0<y<a2,a2<x+y<a 。
即G={(x,y)| 0<x<a2, 0<y<a2,a2<x+y<a }由图中计算面积之比,可得到相应的几何概率P(A)=1/4。
概率论与数理统计复习资料### 概率论与数理统计复习资料#### 第一章:概率论基础1. 概率的定义与性质- 事件的概率定义- 概率的公理化体系- 概率的加法和乘法规则2. 条件概率与事件独立性- 条件概率的计算- 事件独立性的定义与性质- 贝叶斯定理3. 随机变量及其分布- 离散型随机变量及其分布律- 连续型随机变量及其概率密度函数- 随机变量的期望值与方差4. 多维随机变量及其分布- 联合分布函数- 边缘分布函数- 协方差与相关系数5. 大数定律与中心极限定理- 切比雪夫不等式- 伯努利大数定律- 中心极限定理的应用#### 第二章:数理统计基础1. 样本与统计量- 样本均值、方差与标准差- 样本矩- 顺序统计量2. 参数估计- 点估计与区间估计- 估计量的优良性准则- 极大似然估计3. 假设检验- 假设检验的基本原理- 单样本假设检验- 双样本假设检验4. 方差分析- 单因素方差分析- 双因素方差分析- 方差分析的计算步骤5. 回归分析- 一元线性回归- 多元线性回归- 回归模型的诊断#### 第三章:概率分布与随机过程1. 常见概率分布- 二项分布- 泊松分布- 正态分布2. 随机过程的基本概念- 随机过程的定义- 马尔可夫链- 泊松过程3. 随机过程的参数估计- 随机过程的均值与方差估计- 随机过程的回归分析4. 随机过程的模拟- 蒙特卡洛方法- 随机模拟的应用5. 随机过程的统计推断- 随机过程的假设检验- 随机过程的参数估计#### 第四章:统计决策与贝叶斯统计1. 统计决策理论- 损失函数- 风险函数- 决策规则2. 贝叶斯统计- 贝叶斯后验概率- 贝叶斯估计- 贝叶斯决策3. 贝叶斯网络- 贝叶斯网络的结构- 贝叶斯网络的推理- 贝叶斯网络的应用4. 统计推断的贝叶斯方法- 贝叶斯假设检验- 贝叶斯参数估计5. 贝叶斯模型选择- 贝叶斯信息准则- 交叉验证通过以上内容的复习,可以对概率论与数理统计的基本概念、理论及其应用有一个系统的理解。
《概率论与数理统计》第一章 随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则 (1)BA AB A B B A =⋃=⋃(2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率 6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用)第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
第一章 随机事件及其概率知识点:概率的性质 事件运算 古典概率事件的独立性 条件概率 全概率与贝叶斯公式常用公式)()()()()()2(加法定理AB P B P A P B A P -+= ),,()()(2111有限可加性两两互斥设n ni i ni i A A A A P A P ∑===),(0)()()()()(互不相容时独立时与B A AB P B A B P A P AB P ==)()()()()5(AB P A P B A P B A P -==-)()()()()(时当A B B P A P B A P B A P ⊂-==-))0(,,()()/()()()6(211>Ω=∑=i n ni i i A P A A A A B P A P B P 且的一个划分为其中全概率公式 ),,()](1[1)(2111相互独立时n ni i n i i A A A A P A P ∏==--=)/()()/()()()4(B A P B P A B P A P AB P ==)(/)()/()3(A P AB P A B P =)()/()()/()()/()7(1逆概率公式∑==ni iii i i A B P A P A B P A P B A P )(/)()(/)()1(S L A L A P nr A P ==应用举例1、已知事件满足,且,则( ,A B ()(B A P AB P =6.0)(=A P =)(B P )。
2、已知事件相互独立,,则,A B ,)(k A P =6.0)(,2.0)(==B A P B P ()。
=k 3、已知事件互不相容,( ,A B ,3.0)(=A P ==)(,5.0)(B A P B P 则)。
4、若 ()。
,3.0)(=A P ===)(,5.0)(,4.0)(B A B P B A P B P 5、是三个随机事件,,事件与的关系,,A B C C B ⊂()A C B - A 是( )。
《概率论与数理统计》总复习资料概率论部分1.古典概型中计算概率用到的基本的计数方法。
例1:袋中有4个白球,5个黑球,6个红球,从中任意取出9个球,求取出的9个球中有1个白球、3个黑球、5个红球的概率.解:设B ={取出的9个球中有1个白球、3个黑球、5个红球}样本空间的样本点总数:915C n ==5005事件B 包含的样本点:563514C C C r ==240,则P (B )=240/5005=0.048例2:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少?解:考虑次序.基本事件总数为:410A =5040,设B ={能排成一个四位偶数}。
若允许千位数为0,此时个位数可在0、2、4、6、8这五个数字中任选其一,共有5种选法;其余三位数则在余下的九个数字中任选,有39A 种选法;从而共有539A =2520个。
其中,千位数为0的“四位偶数”有多少个?此时个位数只能在2、4、6、8这四个数字中任选其一,有4种选法;十位数与百位数在余下的八个数字中任选两个,有28A 种选法;从而共有428A =224个。
因此410283945)(A A A B P -==2296/5040=0.4562.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质。
例1:事件A 与B 相互独立,且P (A )=0.5,P (B )=0.6,求:P (AB ),P (A -B ),P (A B )解:P (AB )=P (A )P (B )=0.3,P (A -B )=P (A )-P (AB )=0.2,P (A B )=P (A )+P (B )-P (AB )=0.8例2:若P (A )=0.4,P (B )=0.7,P (AB )=0.3,求:P (A -B ),P (A B ),)|(B A P ,)|(B A P ,)|(B A P 解:P (A -B )=0.1,P (A B )=0.8,)|(B A P =)()(B P AB P =3/7,)|(B A P =)()()()()(B P AB P B P B P B A P -==4/7,|(B A P =)(1)()()(B P B A P B P B A P -==2/33.准确地选择和运用全概率公式与贝叶斯公式。
《概率论与数理统计》综合复习资料一、填空题1、一个盒子中有10 个球,其中有 3 个红球, 2 个黑球, 5 个白球,从中取球两次,每次取一个(无放回),则:第二次取到黑球的概率为;取到的两只球至少有一个黑球的概率为。
2、 X 的概率密度为 f ( x)1 e x2 2 x 1(x) ,则DX。
3、已知随机变量X ~N(1,1),Y~N(3,1) 且 X 与Y 相互独立,设随机变量Z 2X Y 5,则EX;DX。
4、已知随机变量X 的分布列为X-102P k0.40.2p则: EX=;DX =。
5、设X与Y独立同分布,且X~N(2,22) ,则D( 3X2Y) =。
6、设对于事件A、B、 C有 P(A)P(B)1,P(ABC)1P(C),412P( AB) P( BC )P(AC)1。
,则 A 、 B、 C 都不发生的概率为87、批产品中一、二、三等品各占60% 、30%、 10%,从中任取一件,结果不是三等品,则取到的是二等品的概率为。
8、相互独立,且概率分布分别为1,1 y 3f (x)e ( x 1)x) ;( y)(,其它则:E(X Y)=;E(2X3 2 )=。
Y9 、已知工厂A、 B 生产产品的次品率分别为2%和1%,现从由A、 B 工厂分别占30%和70%的一批产品中随机抽取一件,发现是次品,则该产品是 B 工厂的概率为。
10、设X、Y的概率分布分别为, 1 x 54e4 y,y01/ 4( x);( y),,其它0y0则: E(X 2Y) =;(X 2 4 ) =。
E Y二、选择题1、设X 和 Y 相互独立,且分别服从N(1,22) 和N (1,1),则。
A .P{ X Y 1}1/ 2B.P{ X Y0}1/ 2C .P{ X Y0}1/ 2D.P{ X Y 1}1/ 22、已知P( A)0.4,P(B)0.6,P(B | A)0.5 ,则P( A B)。
A .1B.0.7C .0.8D .0.53、设某人进行射击,每次击中的概率为1/3,今独立重复射击10 次,则恰好击中 3 次的概率为。
非常全面的《概率论与数理统计》复习材料一、基本概念1、随机事件随机事件是指在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。
例如,掷一枚骰子,出现点数为 6就是一个随机事件。
2、样本空间样本空间是指随机试验的所有可能结果组成的集合。
例如,掷一枚骰子的样本空间就是{1, 2, 3, 4, 5, 6}。
3、概率概率是用来衡量随机事件发生可能性大小的数值。
概率的取值范围在 0 到 1 之间,0 表示不可能事件,1 表示必然事件。
4、条件概率条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
二、随机变量1、离散型随机变量离散型随机变量是指其取值可以一一列举的随机变量。
例如,掷一枚骰子出现的点数就是一个离散型随机变量。
2、连续型随机变量连续型随机变量是指其取值充满某个区间的随机变量。
例如,某地区一天的气温就是一个连续型随机变量。
3、随机变量的分布函数分布函数是描述随机变量取值概率分布的函数。
4、常见的离散型分布(1)二项分布:描述 n 次独立重复试验中成功的次数。
(2)泊松分布:常用于描述在一定时间或空间内稀有事件发生的次数。
5、常见的连续型分布(1)正态分布:在自然界和社会现象中广泛存在,具有重要的地位。
(2)均匀分布:在某个区间内取值的概率相等。
三、数字特征1、数学期望数学期望反映了随机变量取值的平均水平。
2、方差方差衡量了随机变量取值的离散程度。
3、协方差和相关系数用于描述两个随机变量之间的线性关系程度。
四、大数定律和中心极限定理1、大数定律表明随着试验次数的增加,样本均值趋近于总体均值。
2、中心极限定理指出大量独立随机变量的和近似服从正态分布。
五、抽样分布1、样本均值和样本方差的分布了解样本均值和样本方差在不同条件下的分布规律。
2、 t 分布、F 分布和χ²分布这三种分布在假设检验和参数估计中经常用到。
六、参数估计1、点估计通过样本数据估计总体参数的值。
第一章 随机事件及其概率知识点:概率的性质 事件运算 古典概率事件的独立性 条件概率 全概率与贝叶斯公式常用公式)()()()()()2(加法定理AB P B P A P B A P -+= ),,()()(2111有限可加性两两互斥设n ni i ni i A A A A P A P ∑===),(0)()()()()(互不相容时独立时与B A AB P B A B P A P AB P ==)()()()()5(AB P A P B A P B A P -==-)()()()()(时当A B B P A P B A P B A P ⊂-==-))0(,,()()/()()()6(211>Ω=∑=i n ni i i A P A A A A B P A P B P 且的一个划分为其中全概率公式 ),,()](1[1)(2111相互独立时n ni i n i i A A A A P A P ∏==--=)/()()/()()()4(B A P B P A B P A P AB P ==)(/)()/()3(A P AB P A B P =)()/()()/()()/()7(1逆概率公式∑==ni iii i i A B P A P A B P A P B A P )(/)()(/)()1(S L A L AP nr A P ==应用举例1、已知事件,A B 满足)()(B A P AB P =,且6.0)(=A P ,则=)(B P ( )。
2、已知事件,A B 相互独立,,)(k A P =6.0)(,2.0)(==B A P B P ,则=k ( )。
3、已知事件,A B 互不相容,,3.0)(=A P ==)(,5.0)(B A P B P 则( )。
4、若,3.0)(=A P ===)(,5.0)(,4.0)(B A B P B A P B P ( )。
5、,,A B C 是三个随机事件,C B ⊂,事件()A C B -与A 的关系是( )。
6、5张数字卡片上分别写着1,2,3,4,5,从中任取3张,排成3位数,则排成3位奇数的概率是( )。
某日他抛一枚硬币决定乘地铁还是乘汽车。
(1)试求他在5:40~5:50到家的概率;(2)结果他是5:47到家的。
试求他是乘地铁回家的概率。
解(1)设1A ={他是乘地铁回家的},2A ={他是乘汽车回家的},i B ={第i 段时间到家的},4,3,2,1=i 分别对应时间段5:30~5:40,5:40~5:50,5:50~6:00,6:00以后 则由全概率公式有)|()()|()()(2221212A B P A P A B P A P B P +=由上表可知4.0)|(12=A B P ,3.0)|(22=A B P ,5.0)()(21==A P A P35.05.03.04.05.0)(2=⨯+⨯=B P (2)由贝叶斯公式7435.04.05.0)()()|(22121=⨯==B P B A P B A P 8、盒中12个新乒乓球,每次比赛从中任取3个来用,比赛后仍放回盒中,求:第三次比赛时取到3个新球的概率。
看作业习题1: 4, 9, 11, 15, 16第二章 随机变量及其分布知识点:连续型(离散型)随机变量分布的性质连续型(离散型)随机变量分布(包括随机变量函数的分布) 常用分布重要内容)(R x x f ∈≥0)()()()(12121x F x F x x x F ≤⇒<单调递增,即)(1)(lim )(0)(lim )(2==+∞==-∞+∞→-∞→x F F x F F x x )()()0()(3x F x F x F =+右连续,即)(Rx x F ∈≤≤10)4()(1=∑iip2.分布律的性质...)2,1(,10=≤≤i p i 1.分布函数的性质(1)非负性 (2)规范性3.分布密度函数的性质⎰+∞=1)(dx x f (1)非负性(2)规范性4. 概率计算5.常用分布)(或泊松分布λλπP X X ~)(~)0,...;1,0(,!)(>===-λλλk e k k X P k1221()()()P x X x P X x P X x ∴<≤=≤-≤)()(a F a X P =≤)0()()(--==a F a F a X P ⎰=≤<21)()(21x x dxx f x X x P 0)0()()(=--==a Fa F a X P ⎰+∞=<adx x f X a P )()(⎰∞-=≤adx x f a X P )()(为连续型随机变量:X ),(~,~p n b X p n B X )或(记为 二项分布: ),...1,0(,)(n k qp C k X P kn k k n ===-泊松定理)(,!)1(np e k p p C kkn kkn=≈---λλλ%73.991)3(2}3|{|%45.951)2(2}2|{|%27.681)1(2}1|{|=-Φ=⋅<-=-Φ=⋅<-=-Φ=⋅<-∴σμσμσμX P X P X P⎪⎩⎪⎨⎧≤≤-=,其他均匀分布0,1)(),(~b x a a b x f b a U X ⎩⎨⎧>≥=-,其他指数分布0)0(,0,)()(~λλλλx e x f E X x ),(,21)(),(~222)(2+∞-∞∈⋅=--x ex f N X x σμσπσμ正态分布⎪⎭⎫⎝⎛-Φ=σμx x F )(5.0)0()1(=Φ)(1)()2(x x Φ-=-Φ73.99}3|{|%45.95}2|{|%27.68}1|{|=⋅<-=⋅<-=⋅<-∴σμσμσμX P X P X P应用举例1、设2()(0)x f x ke x -=>是某随机变量的密度函数,则k =( )。
2、设随机变量X 的概率密度为)22(,cos 21)(ππ+≤≤-=x x x f ,则)01(<<-X P =( )。
3、设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=.,1,1,ln ,1,0)(e x e x x x x F 则 )2(>X P =( )。
4、设),(~2σμN X,满足)1()1(-≤=->X P X P 的参数μ=( )。
5、离散型随机变量X 的分布律为11()(1,2,3)!P X k k c k ===,则c =( )。
6、土地粮食亩产量(单位:kg ))60,360(~2N X.按亩产量高低将土地分成等级.若亩产量高于420kg 为一级,在360~420kg 间为二级,在315~360kg 间为三等,低于315kg 为四级.求等级Y 的概率分布。
(5.0)0(=Φ,8413.0)1(=Φ,7734.0)75.0(=Φ) 解⎪⎪⎩⎪⎪⎨⎧≤≤<≤<<=3154360315342036024201X X X XY7、110在长度为t 的时间(单位:h)间隔内收到的紧急呼救的次数X 服从参数为t 21的泊松分布,而与时间间隔的起点无关.求某一天中午12时至下午3时至少收到1次呼救的概率。
解 X 的分布律为),2,1,0(!)2()(2===-k k t e k X P kt中午12时到下午3时,表明3=t 求)1(≥X P8、一批产品由8件正品、2件次品组成。
若随机地从中每次抽取一件产品后,无论抽出的是正品还是次品总用一件正品放回去,直到取到正品为止,求抽取次数X 的分布律。
解 X 所有可能的取值为1,2,3 i A ={第i 次取到正品}(3,2,1=i )看作业习题2: 4,7, 17,20,24,26, 27,28第三章 多维随机变量及其分布知识点:二维连续型(离散型)随机变量分布的性质 二维连续型(离散型)随机变量的分布(包括边际分布) 随机变量的独立性 二维常用分布 内容提要1.概率分布的性质2.二维概率计算3.边际密度函数计算4.常用分布,2,1,,0=≥j i p ij 离散型非负性111=∑∑∞=∞=i j ijp归一性1),(=⎰⎰+∞∞-+∞∞-dxdy y x f 连续型归一性⎰+∞∞-=;),()(dy y x f x f X ⎰+∞∞-=dxy x f y f Y ),()({(,)}(,)GP X Y G f x y dxdy∈=⎰⎰⎪⎩⎪⎨⎧∈=其他),(),(均匀分布01Dy x Ay x f二维正态分布5.随机变量的独立性6.正态分布的可加性)()(),(y F x F y x F Y X ⋅=),2,1,( =⨯=⋅⋅j i p p p ji ij )()(),(y f x f y x f Y X ⨯=21221211~(,)(1,2),,,~(,)i i in nnn i ii i N i n N ξμσξξξξξξμσ===++∑∑设且相互独立则),(~),,(~222211σμσμN Y N X ),,,,(~),(222121ρσσμμN Y X应用举例1、设()Y X ,的密度函数()⎩⎨⎧>>=--其他,00,0,,2y x ke y x f y x 则k =( )。
2、设离散型随机变量(,)XY 的联合分布律为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)1/61/91/181/3X Y Pαβ且Y X ,相互独立,则( )。
3、某箱中有100件产品,其中一、二、三等品分别为70、20、10件,现从中随机的抽取一件,记⎩⎨⎧=等品抽到其它i X i 10,3,2,1=i 求(1)1X 和2X 的联合分布律;(2)并求)(21X X P ≠。
4、设随机变量),(Y X 在曲线x y =,xy =围成的区域D 里服从均匀分布,求联合概率密度和边缘概率密度。
5、设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧≤≤=其它01421),(22y x y x y x f 求)(X Y P < 6、设随机变量321,,X X X 相互独立,并且均服从正态分布3,2,1),,(~2=i N X ii i σμ,则∑=+=31~)(i i i i b X a X ( )。
看作业习题3: 1,2,3,4,5,6,7,9,10,11,12,13,18第四章 随机变量的数字特征知识点:随机变量的数学期望的性质与计算随机变量的方差(协方差、相关系数)的性质与计算 主要内容1、数学期望的计算⎰∑∞+∞-==dxx xf X E px X E X E X iii )()()().(,1连续型离散型求的分布已知)(⎰∑∞+∞-===dxx f x g Y E px g Y E Y E X g Y X iii)()()()()().(),(,2连续型离散型求且的分布已知)(dydx y x yf Y E p yY E dydx y x xf X E px X E Y E X E Y X R jiijjR ij iji⎰⎰∑∑⎰⎰∑∑====22),()()(),()()(:1).()(,),(4连续型离散型连续型离散型方法或求的联合分布已知)(dydx y x f y x g Z E py x g Z E Z E Y X g Z Y X R ijijji⎰⎰∑∑===2),(),()(),()().(),,(),(3连续型离散型求,且的联合分布已知)(⎰∑∞+∞-==dxx xf X E px X E X i i i )()()(,:2.连续型离散型连续型离散型则先求出边际分布方法2、性质当随机变量相互独立时3、方差的计算4,、方差性质5、协方差与相关系数协方差的计算EXEY EXY Y X COV -=),(DY DXY X COV XY ρ=),()()()()(2121n n X E X E X E X X X E +++=+++ 1212()()();()()()().n n E XY E X E Y E X X X E X E X E X =⋅=⋅2()()D X E X EX =-即22()()[()]D XE X E X =-易证2(2)()()D aX b a D X +=2,()()D aX a D X =特别地(3)()()()2{[()][()]}DX Y D X D Y E X E X Y E Y ±=+±--(1)()0D c =,,()()()X Y D X Y D X D Y ±=+特别地当与独立时12:,,n X X X 推广当相互独立时有∑∑===ni in i i DX X D 11)((,)[()][()]Cov X Y E X E X Y E Y =--相关系数的计算DYDXY X COV XY ),(=ρ应用举例1. 某农产品的需求量X(单位:吨)服从区间[1200,3000]上的均匀分布。