解三角形测试
- 格式:doc
- 大小:471.00 KB
- 文档页数:8
三角函数及解三角形测试题(含答案)三角函数及解三角形1.在锐角三角形ABC中,角A的对边为a,角B的对边为b,角C的对边为c。
根据正弦定理,$\frac{a}{\sinA}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$,其中R为三角形外接圆的半径。
根据余弦定理,$c^2=a^2+b^2-2ab\cos C$。
根据正切的定义,$\tan A=\frac{a}{b}$。
根据余切的定义,$\cotA=\frac{b}{a}$。
根据正割的定义,$\sec A=\frac{c}{a}$。
根据余割的定义,$\csc A=\frac{c}{b}$。
2.选择题:1.设$\alpha$是锐角,$\tan(\frac{\pi}{4}+\alpha)=3+\sqrt{22}$,则$\cos\alpha=\frac{2\sqrt{22}}{36}$。
2.一艘船向XXX,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时5海里。
4.已知函数$f(x)=3\sin\omega x+\cos\omega x$,$y=f(x)$的图象与直线$y=2$的两个相邻交点的距离等于$\pi$,则$f(x)$的单调递增区间是$(\frac{k\pi}{2}-\frac{\pi}{12},\frac{k\pi}{2}+\frac{5\pi}{12})$,其中$k\in Z$。
5.圆的半径为4,$a,b,c$为该圆的内接三角形的三边,若$abc=162$,则三角形的面积为$22$。
6.已知$\cos\alpha=-\frac{4}{\pi}$,且$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,则$\tan(\alpha+\frac{\pi}{4})=-\frac{7}{7}$。
高一数学解三角形单元测试及答案解三角形本章测试本次测试共有12道选择题,每题5分,总分60分。
在每道题中,只有一个选项是正确的,请将正确选项填涂在答题卡上。
1.在三角形ABC中,已知a=2,b=2,B=π/6,则A=()A。
3π/4 B。
π/3 C。
4π/3 D。
π/42.在三角形ABC中,已知a²=b²+c²+bc,则角A为()A。
30° B。
45° C。
120° D。
150°3.已知三角形ABC中,A:B:C=11:4,则a:b:c的比值为()A。
1:1:3 B。
2:2:3 C。
1:1:2 D。
1:1:44.在三角形ABC中,a、b、c分别为三个内角A、B、C的对边,若a=2,b=1,B=29°,则此三角形的解为()A。
无解 B。
有一解 C。
有两解 D。
有无数解5.在三角形ABC中,∠C=90°,0<A<45°,则下列各式中,正确的是()A。
sinA>XXX>XXX<XXX<sinB6.一艘船自西向东航行,上午10时到达灯塔的南偏西75°、距塔68海里的M处,下午2时到达这座灯塔的东南方向的N 处,则这艘船航行的速度为()A。
176/22海里/时 B。
346海里/时 C。
22海里/时 D。
342/22海里/时7.已知三角形ABC的面积为S,三个内角A、B、C的对边分别为a、b、c,若4S=a²-(b-c)²,bc=4,则S=()A。
2 B。
4 C。
3 D。
15/28.已知三角形ABC的内角A、B、C所对的边分别为a、b、c,若cosC=1/4,4bcosA+acosB=3,则三角形ABC外接圆的半径为()A。
2/3 B。
2√2 C。
4 D。
69.在三角形ABC中,已知asinA/bsinB=(a²+c²-b²)/(b²+c²-a²),则三角形ABC的形状为()A。
一、选择题1.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若()sin sin sin c C a A b a B =+-,角C 的角平分线交AB 于点D ,且3CD =,3a b =,则c 的值为( )A .72B .473C .3D .232.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S ,且24cos cos tan Sb C bc B C=+,2a b +=,3c =,则S =( ) A .3 B .36C .16D .3 3.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知()()sin sin 3sin 2B A B A A -++=,且7c =,3C π=,则a =( )A .1B .221C .1或221D .21 4.ABC ∆中,角,,A B C 所对的边分别为,,a b c .若13,3,60a b A ===︒,则边c =( ) A .1 B .2C .4D .65.ABC 的内角,,A B C 的对边分别为,,a b c ,分别根据下列条件解三角形,其中有两解的是( )A .2,4,120a b A ===︒B .3,2,45a b A ===︒C . 6,43,60b c C ===︒D .4,3,30b c C ===︒6.如图,某船在A 处看见灯塔P 在南偏东15方向,后来船沿南偏东45的方向航行30km 后,到达B 处,看见灯塔P 在船的西偏北15方向,则这时船与灯塔的距离是:A .10kmB .20kmC .D .7.在ABC 中,内角A ,B ,C 的对边是a ,b ,c ,若sin sin CA=22b a -=,则cos C 等于( )A .12B .13C .14D .158.在△ABC 中,已知点D 在BC 边上,且0AD AC ⋅=,sin 3BAC ∠=,AB =BD =, 则cos C ( )A .63B .3C .3D .139.在ABC ∆中,角A B C ,,的对边分别是a b c ,,,若sin cos 0b A B -=,且三边a b c ,,成等比数列,则2a cb +的值为( )A .4B .2C .1D .210.已知锐角ABC ,角A ,B ,C 所对的边分别为a ,b ,c ,若22sin sin sin sin B A A C -=⋅,3c =,则a 的取值范围是( )A .2,23⎛⎫⎪⎝⎭B .()1,2C .()1,3D .3,32⎛⎫ ⎪⎝⎭11.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2sin sin sin B A C =,1a cc a+=+,则B = ( ) A .56π B .6π C .3π D .2π 12.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos a C ,cos b B ,cos c A 成等差数列,且8a c +=,则AC 边上中线长的最小值是( )A .2B .4C .D .二、填空题13.如图,点A 是半径为1的半圆O 的直径延长线上的一点,OA =B 为半圆上任意一点,以AB 为一边作等边ABC ,则四边形OACB 的面积的最大值为___________.14.已知ABC 中,内角、、A B C 的对边分别为a b c 、、,且222sin 2a b c c B a a+--=,则B =___________.15.在△ABC 中,∠ABC 为直角,点M 在线段BA 上,满足BM =2MA =2,记∠ACM =θ,若对于给定的θ,这样的△ABC 是唯一确定的,则BC =_____.16.锐角ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且()12cos c a B =+,则ba的取值范围是______. 17.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222a b =,sin 3sin C B =,则cos A =________.18.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4A π=,22212b c a -=,则tan B =________.19.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin :sin :sin 3:5:7A B C =,则ABC 的最大角的大小是________.20.某环保监督组织为了监控和保护洞庭湖候鸟繁殖区域,需测量繁殖区域内某湿地A 、B 两地间的距离(如图),环保监督组织测绘员在(同一平面内)同一直线上的三个测量点D 、C 、E ,从D 点测得67.5ADC ∠=,从点C 测得45ACD ∠=,75BCE ∠=,从点E 测得60BEC ∠=,并测得23DC =,2CE =(单位:千米),测得A 、B 两点的距离为___________千米.三、解答题21.已知在△ABC 3sin (A +B )=1+2sin 22C . (1)求角C 的大小;(2)若∠BAC 与∠ABC 的内角平分线交于点Ⅰ,△ABC 的外接圆半径为2,求△ABI 周长的最大值.22.在①π2=+A C ,②5415cos -=c a A ,③ABC 的面积3S =这三个条件中任选两个,补充在下面问题中,然后解答补充完整的题目.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知3b =,且______,______,求c .注:如果选择多个条件分别解答,按第一个解答计分.23.ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .已知)cos cos A c a C =.(1)求c b;(2)若cos 2c A b =,且ABC 的面积为4,求a . 24.在ABC 中,,,a b c 分别为内角,,A B C 的对边,且2sin (2)sin (2)sin a A b c B c b C =+++.(1)求A 的大小;(2)若sin sin 1B C +=,试判ABC 断的形状.25.请从下面三个条件中任选一个,补充在下面的横线上,并解答.()cos cos sin A c B b C a A +=; ②2cos 2b cC a-=③tan tan tan tan A B C B C ++=.已知ABC 的内角,,A B C 的对应边分别为,,a b c , . (1)求A ;(2)若2,a b c =+=ABC 的面积.26.已知a ,b ,c 分别为锐角ABC 内角A ,B ,C 2sin 0b A -=. (1)求角B ;(2)若b =,5a c +=,求ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用正弦定理边角互化以及余弦定理求出角C 的值,由ABC ACD BCD S S S =+△△△可得出ab a b =+,结合3a b =可求得a 、b 的值,再利用余弦定理可求得c 的值.【详解】()sin sin sin c C a A b a B =+-,由正弦定理可得()22c a b a b =+-,可得222a b c ab +-=,由余弦定理可得:2221cos 22a b c C ab +-==,0C π<<,所以3C π=,由ABC ACD BCD S S S =+△△△,有111sin sin sin 232626ab a CD b CD πππ=⋅+⋅,得ab a b =+,所以234b b =,0b >,43b ∴=,34a b ==, 由余弦定理可得221616471692cos 33c a b ab C =+--==+. 故选:B. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.2.D解析:D 【分析】由24cos cos tan Sb C bc B C=+,利用面积公式和和差角公式求出角C ,用余弦定理求出ab ,求出面积. 【详解】因为24cos cos cos sin S Cb C bc B C⋅=+,所以22cos cos cos ab C b C bc B =+,所以2sin cos sin cos sin cos A C B C C B =+,所以13cos ,sin 2C C ==.由22221()32cos 222a b c a b abC ab ab+-+--===,得13ab =,所以1sin 212S ab C ==故选:D 【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.3.C解析:C 【分析】由题意得3sinBcosA sinAcosA =,分0cosA =和0cosA ≠两种情况求解,可得结果. 【详解】∵()()32sin B A sin B A sin A -++=, ∴3sinBcosA sinAcosA =.①当0cosA =时,ABC 为直角三角形,且2A π=.∵c =3C π=,∴sin3a ==②当0cosA ≠时,则有3sinB sinA =, 由正弦定理得3b a =.由余弦定理得2222c a b abcosC =+-, 即()()22173232a a a a =+-⋅⋅, 解得1a =. 综上可得,a =1故选:C . 【点睛】本题考查正余弦定理在解三角形中的应用,考查三角恒等变换,考查学生分类讨论思想,属于中档题.4.C解析:C 【解析】试题分析:2222cos a c b cb A =+-213923cos60c c ⇒=+-⨯⨯︒,即2340c c --=,解得4c =或1c =-(舍去). 考点:余弦定理,正弦定理.5.D解析:D 【分析】运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除. 【详解】A. 2,4,120a b A ===︒,由,a b <A B ⇒<所以不存在这样的三角形.B. 3,2,45a b A ===︒,由sin sin sin a b B A B =⇒=,a b >所以只有一个角BC. 6,60b c C ===︒中,同理也只有一个三角形.D. 4,3,30b c C ===︒中2sin sin sin 3c b B C B =⇒=此时b c >,所以出现两个角符合题意,即存在两个三角形. 所以选择D 【点睛】在直接用正弦定理求另外一角中,求出 sin θ后,记得一定要去判断是否会出现两个角.6.C解析:C 【分析】在ABP ∆中,利用正弦定理求出BP 得长,即为这时船与灯塔的距离,即可得到答案. 【详解】由题意,可得30PAB PBA ∠=∠=,即30,120AB APB =∠=,在ABP ∆中,利用正弦定理得30sin 30sin120PB ==即这时船与灯塔的距离是km ,故选C . 【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.7.A解析:A 【分析】由已知利用正弦定理可得c =,结合已知22b a -=,可求得2b a =,进而根据余弦定理可求cos C 的值. 【详解】sinsin CA=∴由正弦定理可得:ca=c =,又22b a -=,2223b a a ∴-=,可得2b a =,222222431cos 2222a b c a a a C ab a a +-+-∴===⨯,故选:A . 【点睛】本题主要考查了正弦定理,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.8.A解析:A 【分析】求出90BAC BAD ∠=∠+︒,代入利用诱导公式化简sin BAC ∠,求出cos BAD ∠的值,根据余弦定理求出AD 的长度,再由正弦定理求出BC 的长度,求得sin C ,再利用同角三角函数基本关系式即可计算求得结果 【详解】0AD AC ⋅=,可得AD AC ⊥90DAC ∴∠=︒,90BAC BAD DAC BAD ∠=∠+∠=∠+︒()sin sin 90cos 3BAC BAD BAD ∴∠=∠+︒=∠=在ABC 中,AB =BD =根据余弦定理可得22222cos 1883BD AB AD AB AD BAD AD AD =+-∠=+-=解得3AD =或5AD =当5AD =时,AD AB >,不成立,故设去 当3AD =时,在ABD 中,由正弦定理可得:sin sin BD ABBAD ADB=∠∠又cos BAD ∠=,可得1sin 3BAD ∠=,则sin ABsin BAD ADB BD ∠∠==ADB DAC C ∠=∠+∠,90DAC ∠=︒cosC =故选A 【点睛】本题是一道关于三角函数的题目,熟练运用余弦定理,正弦定理以及诱导公式是解题的关键,注意解题过程中的计算,不要计算出错,本题有一定综合性9.C解析:C 【分析】先利用正弦定理边角互化思想得出3B π=,再利余弦定理1cos 2B =以及条件2b ac =得出a c =可得出ABC ∆是等边三角形,于此可得出2a cb+的值. 【详解】sin cos 0b A B =,由正弦定理边角互化的思想得sin sin cos 0A B A B =,sin 0A >,sin 0B B ∴=,tan B ∴=,则3B π=.a 、b 、c 成等比数列,则2b ac =,由余弦定理得222221cos 222a cb ac ac B ac ac +-+-===,化简得2220a ac c -+=,a c ∴=,则ABC ∆是等边三角形,12a cb+∴=,故选C . 【点睛】本题考查正弦定理边角互化思想的应用,考查余弦定理的应用,解题时应根据等式结构以及已知元素类型合理选择正弦定理与余弦定理求解,考查计算能力,属于中等题.10.D解析:D 【分析】由正弦定理可得三边的关系,再由余弦定理可得312cos a B=+,结合三角形为锐角三角形可得a 的取值范围. 【详解】∵22sin sin sin sin B A A C -=⋅, ∴由正弦定理可得22b a ac -=,∵由余弦定理2222cos b a c ac B =+-,可得2222cos a c ac B a ac +-=+, 又3c =,∴可得312cos a B=+,∵锐角ABC 中,若B 是最大角,则B 必须大于 3π,所以,3B ππ⎛⎫∈ ⎪⎝⎭, 所以1cos 02B ⎛⎫∈ ⎪⎝⎭,,所以3,32a ⎛⎫∈ ⎪⎝⎭, 故选:D.【点睛】本题主要考查三角形的正余弦定理的应用,及锐角三角形的性质,属于中档题.11.B解析:B 【分析】根据正弦定理,边角互化可得2b ac =,再根据2221a c a c b c a ac+-+-=,利用余弦定理求角.【详解】∵2sin sin sin B A C =,∴21b ac=,∴2221a c a c b c a ac+-+-==∴cos B =,又()0,πB ∈∴6B π=.故选:B . 【点睛】本题考查正弦定理和余弦定理解不等式,重点考查转化的思想,计算能力,属于基础题型.12.C解析:C 【分析】根据等差中项的性质,结合正弦定理化简可得3B π=,设AC 中点为D ,再利用平面向量的线性运算可得1||||2BD BA BC =+,再平方利用基本不等式求解即可. 【详解】cos a C ,cos b B ,cos c A 成等差数列,2cos cos cos b B a C c A ∴=+,根据正弦定理有2sin cos sin cos sin cos sin()B B A C C A A C =+=+,2sin cos sin B B B ∴=,又sin 0B ≠,1cos 2B ∴=,可得3B π=,设AC 中点为D ,则AC 边上中线长为1||||2BD BA BC =+, 平方可得()()2222221112()444BD BA BC BA BC c a ac a c ac ⎡⎤=++⋅=++=+-⎣⎦ 2221()3()()124416a c a c a c ⎡⎤+≥+-=+=⎢⎥⎣⎦,当且仅当4a c ==时取等号,故2BD 的最小值为12,即AC 边上中线长的最小值为 故选:C. 【点睛】本题主要考查了正弦定理边角互化的运用,同时也考查了利用基本不等式求最值的问题,同时在处理三角形中线的时候可以用平面向量表示从而简化计算,属于中档题.二、填空题13.【分析】设表示出的面积及的面积进而表示出四边形的面积并化简所得面积的解析式为正弦函数形式再根据三角函数的有界性进行求解【详解】四边形的面积的面积的面积设则的面积的面积四边形的面积故当即时四边形的面积解析:【分析】设AOB θ∠=,表示出ABC 的面积及OAB 的面积,进而表示出四边形OACB 的面积,并化简所得面积的解析式为正弦函数形式,再根据三角函数的有界性进行求解. 【详解】四边形OACB 的面积OAB =△的面积ABC +△的面积,设AOB θ∠=,2222cos 31214AB OA OB OA OB θθθ∴=+-⋅⋅=+-⨯=-则ABC 的面积213sin 60cos 22AB AC θ=⋅⋅︒=OAB 的面积11sin 122OA OB θθθ=⋅⋅=⨯=,四边形OACB 的面积3cos 2θθ=13(sin )60)2θθθ=-=-︒,故当6090θ-︒=︒,即150θ=︒时,四边形OACB =故答案为: 【点睛】方法点睛:应用余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60︒︒︒等特殊角的三角函数值,以便在解题中直接应用.14.(或)【分析】利用余弦定理和正弦定理边角互化整理已知条件最后变形为求角的值【详解】根据余弦定理可知所以原式变形为根据正弦定理边角互化可知又因为则原式变形整理为即因为所以(或)故答案为(或)【点睛】方解析:135︒(或34π) 【分析】利用余弦定理和正弦定理边角互化,整理已知条件,最后变形为tan 1B =-,求角B 的值. 【详解】根据余弦定理可知2222cos a b c ab C +-=,所以原式222sin 2a b c c B a a+--=,变形为cos sin b C c B a -=,根据正弦定理边角互化,可知sin cos sin sin sin B C C B A -=, 又因为()sin sin sin cos cos sin A B C B C B C =+=+, 则原式变形整理为sin cos B B -=, 即tan 1B =-,因为()0,180B ∈,所以135B =(或34π) 故答案为135(或34π) 【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到;(2)解题中注意三角形内角和定理的应用及角的范围限制.15.【分析】由题意利用直角三角形中的边角关系求出的值再利用两角差的正切公式求得从而求出的值【详解】解:设则为锐角∴∴依题意若对于给定的是唯一的确定的可得解得即的值为故答案为:【点睛】本题主要考查直角三角【分析】由题意利用直角三角形中的边角关系求出tan ACB ∠、tan NCB ∠的值,再利用两角差的正切公式求得tan tan()ACB MCB θ=∠-∠,从而求出BC 的值. 【详解】解:设BC x =,ACM θ∠=,则θ为锐角,∴3tan ACB x ∠=,2tan MCB x∠=, ∴tan tan()ACB MCB θ=∠-∠232132661x x x x x x x x -===+++, 依题意,若对于给定的ACM ∠,ABC ∆是唯一的确定的, 可得6x x=, 解得6x =BC 6,6. 【点睛】本题主要考查直角三角形中的边角关系,两角差的正切公式,属于中档题.16.【分析】利用正弦定理和两角和的正弦公式得出角的关系由为锐角三角形得到角的范围进而利用二倍角公式得出的取值范围【详解】由已知得即为锐角三角形故答案为:【点睛】本题考查正弦定理的应用考查两角和与差的正弦 解析:23),【分析】利用正弦定理和两角和的正弦公式得出角A ,B 的关系,由ABC 为锐角三角形得到角A 的范围,进而利用二倍角公式得出ba的取值范围. 【详解】由已知sin sin()sin (12cos )C A B A B =+=+sin cos cos sin sin 2sin cos A B A B A A B ∴+=+得sin()sin B A A -=B A A ∴-=,即2B A =ABC 为锐角三角形 2,322B AC A B A ππππ∴=<=--=-<23,cos ()64A A ππ∴<<∴∈ sin 2sin cos 2cos (2,3)sin sin b B A A A a A A∴===∈故答案为: 【点睛】本题考查正弦定理的应用,考查两角和与差的正弦公式,考查二倍角公式,属于中档题.17.【分析】由根据正弦定理边化角可得根据余弦定理结合已知联立方程组即可求得角【详解】根据正弦定理:根据余弦定理:又故可联立方程:解得:故答案为:【点睛】本题主要考查了求三角形的一个内角解题关键是掌握由正【分析】由sin C B =,根据正弦定理“边化角”,可得=c ,根据余弦定理2222cos a b c bc A =+-,结合已知联立方程组,即可求得角cos A .【详解】sin C B =,根据正弦定理:sin sin b cB C=,∴=c , 根据余弦定理:2222cos a b c bc A =+-,又222a b =,故可联立方程:222222cos 2c a b c bc A a b ⎧=⎪=+-⎨⎪=⎩,解得:cos A =.故答案为:3. 【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.18.3【分析】由题意结合余弦定理得进而可得再由余弦定理即可求得利用平方关系求得进而求得【详解】由余弦定理可得即又所以所以所以所以所以所以故答案为:3【点睛】本题考查了余弦定理的综合应用考查了同角三角函数解析:3 【分析】由题意结合余弦定理得c =,进而可得a =,再由余弦定理即可求得cos B =,利用平方关系求得sin B =,进而求得sin tan 3cos B B B ==. 【详解】4A π=,∴由余弦定理可得2222cos a b c bc A =+-即222b a c -=-,又22212b a c -=,所以2212c c =-,所以3c =, 222222145299a b c b b b =-=-=,所以a =,所以22222258cos 233b b ba cb B ac +-+-===,所以sin B ==, 所以sin tan 3cos BB B==, 故答案为:3. 【点睛】本题考查了余弦定理的综合应用,考查了同角三角函数关系式,考查了运算求解能力与转化化归思想,属于中档题.19.【分析】根据设根据大角对大边确定角C 是最大角再利用余弦定理求解【详解】因为所以设所以角C 是最大角因为所以则的最大角是故答案为:【点睛】本题主要考查正弦定理余弦定理的应用还考查了运算求解的能力属于中档题 解析:23π 【分析】根据sin :sin :sin 3:5:7A B C =,设()3,5,7,0a t b t c t t ===>,根据大角对大边,确定角C 是最大角,再利用余弦定理求解. 【详解】因为sin :sin :sin 3:5:7A B C =, 所以设()3,5,7,0a t b t c t t ===>,所以角C 是最大角2221cos 22a b c C ab +-==-,因为()0,C π∈,所以23C π=, 则ABC 的最大角是23π. 故答案为:23π 【点睛】本题主要考查正弦定理,余弦定理的应用,还考查了运算求解的能力,属于中档题.20.【分析】在中分析边角关系可得在中由正弦定理可求得的值然后在中利用余弦定理可求得的长【详解】在中则在中则由正弦定理得可得在中由余弦定理得因此(千米)故答案为:【点睛】本题考查距离的测量问题考查了利用正 解析:3【分析】在ACD △中,分析边角关系可得AC CD ==BCE 中,由正弦定理可求得BC 的值,然后在ABC 中,利用余弦定理可求得AB 的长. 【详解】在ACD △中,45ACD ∠=,67.5ADC ∠=,CD =67.5CAD ∴∠=,则AC CD ==在BCE 中,60BEC ∠=,75BCE ∠=,CE 45CBE ∠=,由正弦定理得sin 45sin 60CE BC=,可得2sin 60sin 45CE BC ===在ABC 中,AC =BC =,18060ACB ACD BCE ∠=-∠-∠=, 由余弦定理得2222cos609AB AC BC AC BC =+-⋅=,因此,3AB =(千米). 故答案为:3. 【点睛】本题考查距离的测量问题,考查了利用正弦定理和余弦定理解三角形,考查计算能力,属于中等题.三、解答题21.(1)3π;(2) 【分析】(1)利用降幂公式、两角和的正弦公式变形可得sin (C +6π)=1,再根据角的范围可得解;(2)利用正弦定理求出AB ,求出AIB ∠,设出ABI ∠,将,AI BI 用ABI ∠表示,根据三角函数知识求出AI BI +的最大值可得解. 【详解】 (1)∵(A +B )=1+2sin 22C,且A +B +C =π, ∴C =1+1﹣cos C =2﹣cos C C +cos C =2,∴sin (C +6π)=1.∵C ∈(0,π),∴C +6π∈(6π,76π),∴C +6π=2π,即C =3π.(2)∵△ABC 的外接圆半径为2,∴由正弦定理知,sin ABACB∠=sin 3AB π=2×2=4,∴AB =23, ∵∠ACB =3π,∴∠ABC +∠BAC =23π,∵∠BAC 与∠ABC 的内角平分线交于点Ⅰ, ∴∠ABI +∠BAI =3π,∴∠AIB =23π,设∠ABI =θ,则∠BAI =3π﹣θ,且0<θ<3π, 在△ABI 中,由正弦定理得,sin()3BIπθ-=sin AI θ=sin ABAIB ∠=232sin3π=4, ∴BI =4sin (3π﹣θ),AI =4sin θ, ∴△ABI 的周长为3+4sin (3π﹣θ)+4sin θ=33θ﹣12sin θ)+4sin θ =33θ+2sin θ=4sin (θ+3π)3 ∵0<θ<3π,∴3π<θ+3π<23π,∴当θ+3π=2π,即6πθ=时,△ABI 的周长取得最大值,最大值为3,故△ABI 的周长的最大值为3. 【点睛】关键点点睛:将,AI BI 用ABI ∠表示,根据三角函数知识求出AI BI +的最大值是解题关键.22.答案见解析. 【分析】选条件①②.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,3sin 5B =,再结合π2=+A C ,得π22B C =-,故3cos25C =,进而得sin C =最后利用正弦定理求解.选条件①③.结合已知由面积公式得sin 2a C =,结合π2=+A C ,得π22B C =-,故由正弦定理得sin 3cos sin cos2b A Ca B C==,所以3sin24cos2C C =,再根据π0π2A C <=+<02πC <<,进一步结合同角三角函数关系得3cos25C =,利用二倍角公式得sin C =最后由正弦定理得sin sin b Cc B=选条件②③.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,再根据面积公式得10ac =,由余弦定理得2225a c +=,联立方程解得c =c =.【详解】解:方案一:选条件①②.因为5415cos -=c a A ,3b =,所以545cos c a b A -=, 由正弦定理得5sin 4sin 5sin cos C A B A -=. 因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以5cos sin 4sin B A A =. 因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为π2=+A C ,πABC ++=,所以π22B C =-, 所以π3cos 2cos sin 25C B B ⎛⎫=-== ⎪⎝⎭,所以21cos21sin 25C C -==. 因为()0,πC ∈,所以sin C =, 在ABC中,由正弦定理得3sin 53sin 5b Cc B===方案二:选条件①③.因为1sin 32S ab C ==,3b =,所以sin 2a C =. 因为π2=+A C ,πABC ++=,所以π22B C =-. 在ABC 中,由正弦定理得π3sin sin 3cos 2πsin cos 2sin 22C b A C a B CC ⎛⎫+ ⎪⎝⎭===⎛⎫- ⎪⎝⎭, 所以3sin cos 2cos2C CC=,即3sin24cos2C C =.因为π0π,20π,A C C ⎧<=+<⎪⎨⎪<<⎩所以π02C <<,02πC <<, 所以sin20C >,所以cos20C >. 又22sin 2cos 21C C +=,所以3cos25C =, 所以21cos21sin 25C C -==,所以sin C = 在ABC中,由正弦定理得3sin sin sin 53πsin cos 2sin 252b Cb C b Cc BC C ====⎛⎫- ⎪⎝⎭.方案三:选条件②③.因为5415cos -=c a A ,3b =,所以545cos c a b A -=, 由正弦定理得5sin 4sin 5sin cos C A B A -=, 因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以5cos sin 4sin B A A =. 因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为1sin 32S ac B ==,所以10ac =.(ⅰ) 在ABC 中,由余弦定理得2222cos b a c ac B =+-, 所以2225a c +=.(ⅱ) 由(ⅰ)(ⅱ)解得c =c =.【点睛】试题把设定的方程与三角形内含的方程(三角形的正、余弦定理,三角形内角和定理等)建立联系,从而求得三角形的部分定量关系,体现了理性思维、数学探索等学科素养,考查逻辑思维能力、运算求解能力,是中档题.本题如果选取②5415cos -=c a A ,则需根据3b =将问题转化为545cos c a b A -=,再结合边角互化求解.23.(1)3;(2) 【分析】(1)根据正弦定理边角互化以及两角和的正弦公式可求得结果; (2)根据三角形的面积公式以及余弦定理可求得结果. 【详解】(1)因为)cos cos A c a C =,cos sin sin cos C A C A C -=,()sin cos sin cos sin C C A A C A C =+=+,而()sin sin A C B +=b =,故3c b =.(2)由(1)知cos 6A =,则sin 6A =,又ABC 的面积为21sin 244bc A c ==,则3c =,b =由余弦定理得2222cos 2792327a b c bc A =+-=+-⨯=,解得a =. 【点睛】关键点点睛:利用正余弦定理以及三角形的面积公式求解是解题关键. 24.(1)120︒;(2)等腰钝角三角形. 【分析】(1)根据2sin (2)sin (2)sin a A b c B c b C =+++,利用正弦定理转化为222b c a bc +-=-,再利用余弦定理求解.(2)根据(1)利用两角差的正弦公式和辅助角公式转化为sin sin B C +=()sin 601B +=求解.【详解】(1)因为2sin (2)sin (2)sin a A b c B c b C =+++, 所以22(2)(2)a b c b c b c =+++, 即222b c a bc +-=-,所以2221cos 22b c a A bc +-==-, 因为()0,A π∈,所以120A =.(2)由(1)知()sin sin sin sin 60B C B B +=+-,()1cos sin sin 60122B B B =+=+=, 因为()0,60B ∈,所以6090B +=,解得30,30B C ==,所以ABC 是等腰三角形.【点睛】方法点睛:有关三角形形状的判断方法:灵活运用正、余弦定理实现边角转化,合理运用三角函数公式,如同角三角函数的基本关系、两角和与差的正弦、余弦公式、二倍角公式辅助角公式等,通过边或角进行判断.25.(1)3A π=;(2 【分析】第(1)小问:方案①中是利用正弦定理将边转化为角的关系,化简后求得3A π=; 方案②首先利用正弦定理将边长之比转化为角的正弦之比,再化简求得3A π=;方案③利用两角和的正切公式将tan tan tan A B C ++化成tan tan()(1tan tan )A B C B C ++⋅-,再利用tan()tan B C A +=-对式子进行化简得到3A π=;第(2)小问:由余弦定理2222cos ,2,3a b c bc A a A π=+-==可以得到关于,b c的关系式,再结合b c +=2bc =,最后求得三角形的面积即可.【详解】()1方案①()2sin cos sin cos sin A C B B C A +=()2sin sin A C B A +=,2sin sin A A A =又()0,A π∈,所以sin 0A ≠,所以tan A = 所以3A π=方案②:由已知正弦定理得()2cos sin 2sin sin 2sin sin 2sin cos 2cos sin sin C A B C A C C A C A C C=-=+-=+-所以2cos sin sin 0,A C C -=即2cos sin sin ,A C C =又()0,C π∈,所以sin 0,C ≠ 所以1cos 2A =所以3A π=方案③:因为tan tan tan tan A B C B C ++=所以tan tan tan tan tan tan()(1tan tan )A B C B C A B C B C ++==++⋅- ()tan tan 1tan tan tan tan tan A A B C A B C =--=tan tan tan tan B C A B C =又()0A B C π∈,,,,所以tan 0,tan 0B C ≠≠,所以1tan ,2A A ==所以3A π=()2由余弦定理2222cos ,2,3a b c bc A a A π=+-==,得224b c bc =+- 即()243b c bc +=+,又因为b c +=所以2bc =所以1sin 22ABC S bc A == 【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.26.(1)3B π=;(2)2. 【分析】(12sin 0b A -=2sin sin 0A B A -=求解.(2)根据b =5a c +=,由余弦定理得到6ac =,代入三角形的面积公式求解. 【详解】(1)∵2sin 0b A -=, ∴2sin sin 0A B A -=,∵sin 0A ≠,∴sin 2B =, ∵B 为锐角, ∴3B π=.(2)由余弦定理得2222cos3=+-b a c ac π,整理得2()37a c ac +-=,∵5a c +=,∴6ac =,∴ABC 的面积1sin 2S ac B ==. 【点睛】 方法点睛:三角形面积问题的求解方法:(1)灵活运用正、余弦定理实现边角转化;(2)合理运用三角函数公式,如同角三角函数的基本关系、两角和与差的正弦、余弦公式、二倍角公式等.。
解三角形单元测试题 一、选择题:1. 在△ABC 中,c=3,B=300,则a 等于( ) AB .CD .22.在ABC ∆中,已知三边a 、b 、c 满足()()3a b c a b c ab +++-=,则C =( ) A .15 B .30 C .45 D .603. 已知△ABC 的周长为9,且4:2:3sin :sin :sin =C B A ,则cosC 的值为( )A .41-B .41C .32-D .324. 在△ABC 中,A =60°,b =1,其面积为3,则CB A cb a sin sin sin ++++等于( )A .33B .3392C .338D .2395. 在△ABC 中,AB =5,BC =7,AC =8,则BC AB ⋅的值为( ) A .79B .69C .5D .-56.△ABC 中,根据下列条件,确定△ABC 有两解的是( ) A.a=18,b=20,A=120° B.a=60,c=48,B=60° C.a=3,b=6,A=30° D.a=14,b=16,A=45°7. 设m 、m+1、m+2是钝角三角形的三边长,则实数m 的取值范围是( ) A.0<m <3 B.1<m <3C.3<m <4D.4<m <68. △ABC 中,若c=ab b a ++22,则角C 的度数是( ) A.60° B.120° C.60°或120° D.45°9.在△ABC 中,A B B A 22sin tan sin tan ⋅=⋅,那么△ABC 一定是( ) A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形10. 在ABC △中,cos cos sin sin A B A B >,则ABC △是( ) A.锐角三角形 B.直角三角形C.钝角三角形D.正三角形二、填空题13.在△ABC 中,有等式:①asinA=bsinB ;②asinB=bsinA ;③acosB=bcosA ;④sin sin sin a b cA B C+=+. 其中恒成立的等式序号为______________14. 在等腰三角形 ABC 中,已知sinA ∶sinB=1∶2,底边BC=10,则△ABC 的周长是 .15. 在△ABC 中,已知sinA ∶sinB ∶sinC=3∶5∶7,则此三角形的最大内角的度数等于___________.16. 在ABC △中,若12057A AB BC ∠===,,,则ABC △的面积S =_____________.三、解答题17. 已知在△ABC 中,A=450,BC=2,求解此三角形.18. 在△ABC 中,已知a-b=4,a+c=2b ,且最大角为120°,求△ABC 的三边长.19. 如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的 两个测点C 与D ,测得75BCD ︒∠=,60BDC ︒∠=,60CD =米, 并在点C 测得塔顶A 的仰角为60︒,求塔高20. 如图所示,我艇在A 处发现一走私船在方位角45°且距离为12海里的B 处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立 即以14海里/小时的速度追击,求我艇追上走私船所需要的时间.21.在ABC △中,已知222sin sin sin A B C +=,求证:ABC △为直角三角形.22. 在△ABC 中,已知3cos 2cos a C c A =,且1tan 3A =,求B.23.已知ABC △中,AD 为BAC ∠的平分线,利用正弦定理证明AB BDAC DC=.222222442-41(4)(4) cos 222(4)100()14 10 6a b a b a c b c b A b c a b b b A bc b b b b -=⇒=++=⇒=+-+--+=⇒-=-==,代入 故易知:为最大角 解方程得:或舍去故三角形的三边长分别为:, ,正余弦定理单元测试参考答案 CDABD DBBDC13. ②④ 14.50, 15.120017. 已知在△ABC 中,A=450,BC=2,求解此三角形. 解答:作图观察,12060 232226sin sin sin sin 或故==⨯==⇒=C a A c C A a C c ,15180012,7518060=--===--==C A B C C A B C 时,当时,当13624645cos 2cos 2222±=-+=⇒-+=b b b bc a c b A 解方程得:将余弦定理作为方程来用!15120==B C ,故,三角形的解为:,1-3=AC 或 5706==B C ,,13+=AC 18. 在△ABC 中,已知a-b=4,a+c=2b ,且最大角为120°,求△ABC 的三边长. 解答:19.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,测得75BCD ︒∠=,60BDC ︒∠=,60CD =米,并在点C 测得塔顶A 的仰角为60︒,求塔高解答:63022236060sin 45sin =⨯=⇒=CB CBCD290363060tan 60tan =⨯==⇒=CB AB CBAB答:塔高为290米。
解三角形测试卷(5.9) 一、选择题1.在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是 ( ) A. 0,6π⎛⎤⎥⎝⎦B. ,6ππ⎡⎤⎢⎥⎣⎦C. 0,3π⎛⎤⎥⎝⎦D. ,3ππ⎡⎫⎪⎢⎣⎭2.在△ABC 中,若a=角A=30°,则c 等于 ( )以上都不对3. △ABC 的三内角A 、B 、C 的对应边的长分别为a 、b 、c.设向量p =(a+c,b ),q =(b-a,c-a)若p ∥q,则角C 的大小为 ( ) A.6π B.3π C.2π D.23π4.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若ac b c a 3222=-+,则角B 的值为()A.6π B. 3π C. 566ππ或 D. 233ππ或5.在△ABC 中,a,b,c 分别为内角A ,B ,C 的对边,如果2b=a+c ,B=6π,△ABC 的面积为32,那么b 等于 ( )1 D.26. 如图,在一幢20 m 高的楼顶测得对面一塔吊顶部的仰角为60°,塔基的俯角为45°,那么该塔吊的高是 ( )A.201⎛⎝⎭mB.20(1mC.10mD.20m7.已知△ABC 的内角A 、B 、C 所对边的长分别为a 、b 、c ,若向量m =(a+b,-c),n =(sin A+sin B,sin C),且n m∙=3asin B,则角C 的值为 ( )A.6π B.3π C.23π D.56π8.在△ABC 中,内角A ,B ,C 的对边分别是a,b,c ,若22,sin a b C B -=,则A=A.30°B.60°C.120°D.150°9.在△ABC 中,∠B=60°,最大边与最小边的比为12,则三角形的最大角为 ( ) A.60° B.75° C.90° D.115° 10.若A 、B 是锐角ABC ∆的两个内角,则点(cos sin ,sin cos )P B A B A --在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 二、填空题11.在△ABC 中,角A=60°,AB=2,2ABC S ∆=,则BC= . 12.在△ABC 中,若b=5,∠B=4π,sin A=13,则a= .13.在△ABC 中,三个角A 、B 、C 的对边边长分别为a=3,b=4,c=6,则bccos A+cacos B+abcos C 的值为 .14.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c.)cos A= acos C,则cos A= .15.在△ABC 中,D 为BC 边上一点,BC=3BD ,AD=2,∠ADB=135°,若则BD= .二、填空题11、 12、 13、 14、 15、 三、解答题16.在△ABC 中,角A ,B ,C 所对的边分别为a,b,c ,且满足csin A=acos C. (1)求角C 的大小.(2cos 4A B π⎛⎫-+ ⎪⎝⎭的最大值,并求取得最大值时角A 、B 的大小.17.已知△ABC ,且(1)求边AB 的长; (2)若△ABC 的面积为16sin C ,求角C 的度数.18.如图,甲船以每小时直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距.问乙船每小时航行多少海里?19.在ABC ∆中 ,已知1sin sin 4=C B ,bc a c b =-+222,且C B > ,求C B A ,,.20.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知向量m=(3cos 2A ,3sin 2A ),n =(cos 2A ,sin 2A ),且满足|n m(1)求角A 的大小;(2)若试判断△ABC 的形状.21.如图,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB=90°,BD 交AC 于E ,AB=2. (1)求cos ∠CBE 的值; (2)求AE .。
三角函数与解三角形 测试题(有解析、答案)(时间120分钟,满分150分) 第Ⅰ卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一 项是符合题目要求的)1.已知α∈(π2,π),sin α=35,则tan(α+π4)等于 ( )A.17 B .7 C .-17 D .-7 解析:由α∈(π2,π),sin α=35,得tan α=-34,tan(α+π4)=1+tan α1-tan α=17.答案:A2.sin45°·cos15°+cos225°·sin15°的值为 ( )A .-32 B .-12 C.12 D.32解析:sin45°cos15°+cos225°sin15°=sin45°cos15°-cos45°sin15°=sin(45°-15°)=sin30° =12. 答案:C3.要得到y =sin(2x -π3)的图像,只要将y =sin2x 的图像 ( )A .向左平移π3个单位B .向右平移π3个单位C .向左平移π6个单位D .向右平移π6个单位解析:∵y =sin(2x -π3)=sin2(x -π6),∴只要将y =sin2x 的图像向右平移π6个单位便得到y =sin(2x -π3)的图像.答案:D4.在△ABC 中,若sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3 解析:∵sin 2A +sin 2B -sin A sin B =sin 2C , ∴a 2+b 2-ab =c 2,∴cos C =a 2+b 2-c 22ab =12,∴C =60°,∴S △ABC =12ab sin C =12×4×32= 3.答案:D5.有一种波,其波形为函数y =sin(π2x )的图像,若在区间[0,t ]上至少有2个波峰(图像的最高点),则正整数t 的最小值是 ( ) A .3 B .4 C .5 D .6 解析:由T =2πω=2ππ2=4,可知此波形的函数周期为4,显然当0≤x ≤1时函数单调递增, x =0时y =0,x =1时y =1,因此自0开始向右的第一个波峰所对的x 值为1,第二个 波峰对应的x 值为5,所以要区间[0,t ]上至少两个波峰,则t 至少为5. 答案:C6.若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为 ( )A .1B .2 C.3+1 D.3+2 解析:f (x )=(1+3tan x )cos x =cos x +3sin x =2sin(x +π6),∵0≤x <π2,∴f (x )max =2.答案:B7.使奇函数f (x )=sin(2x +θ)+3cos(2x +θ)在[-π4,0]上为减函数的θ 值为 ( )A .-π3B .-π6 C.5π6 D.2π3解析:由已知得:f (x )=2sin(2x +θ+π3),由于函数为奇函数,故有θ+π3=kπ⇒θ=kπ-π3(k ∈Z),可淘汰BC 选项,然后分别将A和D 选项代入检验,易知当θ=2π3时,f (x )=-2sin2x 其在区间[-π4,0]上递减. 答案:D8.若向量a =(sin(α+π6),1),b =(4,4cos α-3),若a ⊥b ,则sin(α+4π3)等于 ( )A .-34 B.34 C .-14 D.14解析:∵a ⊥b ,∴a ·b =0, ∴4sin(α+π6)+4cos α-3=0,∴sin αcos π6+cos αsin π6+cos α=34,∴12sin α+32cos α=14,∴sin(α+π3)=14,∴sin(α+4π3)=-sin(α+π3)=-14.答案:C9.函数y =sin(ωx +φ)(x ∈R ,ω>0,0≤φ<2π)的部分图像如图,则 ( )A .ω=π2,φ=π4B .ω=π3,φ=π6C .ω=π4,φ=π4D .ω=π2,φ=5π4解析:T 4=3-1=2,∴T =8,ω=2πT =π4令π4×1+φ=π2,得φ=π4. 答案:C10.设函数f (x )=A sin(ωx +φ),(A ≠0,ω>0,-π2<φ<π2)的图像关于直线x =2π3对称,它的周期是π,则 ( ) A .f (x )的图像过点(0,12)B .f (x )的图像在[5π12,2π3]上递减C .f (x )的最大值为AD .f (x )的一个对称中心是点(5π12,0)解析:T =π,∴ω=2.∵图像关于直线x =2π3对称,∴sin(2π3ω+φ)=±1即2π3×2+φ=π2+kπ,k ∈Z 又∵-π2<φ<π2∴φ=π6∴f (x )=A sin(2x +π6).再用检验法.答案:D第Ⅱ卷(非选择题,共100分)二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知α是第二象限角,sin α=12,则sin2a 等于________解析:由已知得cos α=-32,则sin2α=2sin αcos α=2×12×(-32)=-32.答案:-3212.已知函数f (x )=2sin(ωx +φ)的图像如下图所示,则f (7π12)=________.解析:由图像知,函数的周期为32×T =π,∴T =2π3.∵f (π4)=0,∴f (7π12)=f (π4+π3)=f (π4+T 2)=-f (π4)=0.答案:013.计算:cos10°+3sin10°1-cos80°=________.解析:cos10°+3sin10°1-cos80°=2cos(10°-60°)2sin 240°=2cos50°2sin40°= 2. 答案: 214.设函数y =2sin(2x +π3)的图像关于点P (x 0,0)成中心对称,若x 0∈[-π2,0],则x 0=________.解析:因为图像的对称中心是与x 轴的交点,所以由y =2sin(2x +π3)=0,x 0∈[-π2,0]得x 0=-π6.答案:-π615.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c 且a cos B -b cos A =35c .则tan A tan B的值为________.解析:由a cos B -b cos A =35c 及正弦定理可得sin A cos B -sin B cos A =35sin C ,即sin A cos B-sin B cos A =35sin(A +B ),即5(sin A cos B -sin B cos A )=3(sin A cos B +sin B cos A ),即sin A cos B =4sin B cos A ,因此tan A =4tan B ,所以tan Atan B=4. 答案:4三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分12分)已知:0<α<π2<β<π,cos(β-π4)=13,sin(α+β)=45.(1)求sin2β的值;(2)设函数f (x )=cos x -sin x ,试求f (α)的值.解:(1)∵cos(β-π4)=13,∴cos(2β-π2)=2cos 2(β-π4)-1=2×19-1=-79,即sin2β=-79.(2)∵0<α<π2<β<π,∴π4<β-π4<3π4,π2<α+β<3π2,∴sin(β-π4)>0,cos(α+β)<0,∴sin(β-π4)=223,cos(α+β)=-35.∴f (α)=cos α-sin α=2cos(α+π4) =2cos[(α+β)-(β-π4)]=2[cos(α+β)cos(β-π4)+sin(α+β)sin(β-π4)]=2(-35×13+45×223)=16-3215.17.(本小题满分12分)如图,点A ,B 是单位圆上的两点,A ,B点分别在第一、二象限,点C 是圆与x 轴正半轴的交点,△AOB 是正三角形,若点A 的坐标为(35,45),记∠COA =α.(1)求1+sin2α1+cos2α的值;(2)求|BC |2的值.解:(1)∵A 的坐标为(35,45),根据三角函数的定义可知,sin α=45,cos α=35,∴1+sin2α1+cos2α=1+2sin αcos α2cos 2α=4918.(2)∵△AOB 为正三角形,∴∠AOB =60°.∴cos ∠COB =cos(α+60°)=cos αcos60°-sin αsin60°=35×12-45×32=3-4310, ∴|BC |2=|OC |2+|OB |2-2|OC |·|OB |cos ∠COB =1+1-2×3-4310=7+435. 18.(本题满分13分)(2010·黄冈模拟)△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且lg a-lg b =lgcos B -lgcos A ≠0. (1)判断△ABC 的形状;(2)设向量m =(2a ,b ),n =(a ,-3b ),且m ⊥n ,(m +n )·(-m +n )=14,求a ,b ,c . 解:由题lg a +lgcos A =lg b +lgcos B ,故a cos A =b cos B . 由正弦定理sin A cos A =sin B cos B ,即sin2A =sin2B . 又cos A >0,cos B >0,故A ,B ∈(0,π2),2A,2B ∈(0,π)因a ≠b ⇒A ≠B ,故2A =π-2B . 即A +B =π2,故△ABC 为直角三角形.(2)由于m ⊥n ,所以2a 2-3b 2=0 ① 且(m +n )·(-m +n )=n 2-m 2=14,即8b 2-3a 2=14 ② 联立①②解得a 2=6,b 2=4,故在直角△ABC 中,a =6,b =2,c =10.19.(本小题满分12分)已知a =(sin x ,32),b =(cos x ,-1).(1)当a 与b 共线时,求2cos 2x -sin2x 的值; (2)求f (x )=(a +b )·b 在[-π2,0]上的值域.解:(1)∵a 与b 共线, ∴32cos x +sin x =0.∴tan x =-32. 故2cos 2x -sin2x =2cos 2x -2sin x cos x sin 2x +cos 2x=2-2tan x 1+tan 2x =2013. (2)∵a +b =(sin x +cos x ,12),∴f (x )=(a +b )·b =(sin x +cos x ,12)·(cos x ,-1).∴sin x cos x +cos 2x -12=12(sin2x +cos2x )=22sin(2x +π4). ∵-π2≤x ≤0,∴-3π4≤2x +π4≤π4, ∴-1≤sin(2x +π4)≤22,∴f (x )的值域为[-22,12]. 20.(本小题满分13分)已知函数f (x )=A sin(ωx +φ)+B (A >0,ω>0)的一系列对应值如下表:(1)根据表格提供的数据求函数f (x )的一个解析式; (2)根据(1)的结果,若函数y =f (kx )(k >0)周期为2π3,当x ∈[0,π3]时,方程f (kx )=m 恰 有两个不同的解,求实数m 的取值范围. 解:(1)设f (x )的最小正周期为T ,得 T =11π6 -(-π6)=2π, 由T =2πω,得ω=1.又⎩⎪⎨⎪⎧ B +A =3B -A =-1,解得⎩⎪⎨⎪⎧A =2B =1. 令ω·5π6+φ=π2,即5π6+φ=π2,解得φ=-π3,∴f (x )=2sin(x -π3)+1.(2)∵函数y =f (kx )=2sin(kx -π3)+1的周期为2π3,又k >0,∴k =3. 令t =3x -π3,∵x ∈[0,π3],∴t ∈[-π3,2π3]如图sin t =s 在[-π3,2π3]上有两个不同的解的充要条件是s ∈[32,1),∴方程f (kx )=m 在x ∈[0,π3]时恰好有两个不同的解的充要条件是m ∈[3+1,3),即实数m 的取值范围是[3+1,3). 21.(本小题满分13分)已知函数y =|cos x +sin x |.(1)画出函数在x ∈[-π4,7π4]上的简图;(2)写出函数的最小正周期和在[-π4,3π4]上的单调递增区间;试问:当x 在R 上取何值时,函数有最大值?最大值是多少?(3)若x 是△ABC 的一个内角,且y 2=1,试判断△ABC 的形状. 解:(1)∵y =|cos x +sin x |=2|sin(x +π4)|,∴当x ∈[-π4,7π4]时,其图像如图所示.(2)函数的最小正周期是π,在[-π4,3π4]上的单调递增区间是[-π4,π4];由图像可以看出,当x =kπ+π4(k ∈Z)时,该函数有最大值,最大值是 2.(3)若x 是△ABC 的一个内角,则有0<x <π, ∴0<2x <2π.由y 2=1,得|cos x +sin x |2=1⇒1+sin2x =1. ∴sin2x =0,∴2x =π,x =π2,故△ABC 为直角三角形.。
三角函数与解三角形 测试题(时间120分钟,满分150分) 第Ⅰ卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一 项是符合题目要求的)1.已知α∈(π2,π),sin α=35,则tan(α+π4)等于 ( )A.17 B .7 C .-17D .-7 2.sin45°·cos15°+cos225°·sin15°的值为 ( )A .-32 B .-12 C.12 D.323.要得到y =sin(2x -π3)的图像,只要将y =sin2x 的图像 ( )A .向左平移π3个单位B .向右平移π3个单位C .向左平移π6个单位D .向右平移π6个单位4.在△ABC 中,若sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3 5.有一种波,其波形为函数y =sin(π2x )的图像,若在区间[0,t ]上至少有2个波峰(图像的最高点),则正整数t 的最小值是 ( ) A .3 B .4 C .5 D .6 6.若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为 ( )A .1B .2 C.3+1 D.3+2 7.使奇函数f (x )=sin(2x +θ)+3cos(2x +θ)在[-π4,0]上为减函数的θ 值为 ( )A .-π3B .-π6 C.5π6 D.2π38.若向量a =(sin(α+π6),1),b =(4,4cos α-3),若a ⊥b ,则sin(α+4π3)等于 ( )A .-34 B.34 C .-14 D.149.函数y =sin(ωx +φ)(x ∈R ,ω>0,0≤φ<2π)的部分图像如图,则 ( )A .ω=π2,φ=π4B .ω=π3,φ=π6C .ω=π4,φ=π4D .ω=π2,φ=5π410.设函数f (x )=A sin(ωx +φ),(A ≠0,ω>0,-π2<φ<π2)的图像关于直线x =2π3对称,它的周期是π,则 ( ) A .f (x )的图像过点(0,12)B .f (x )的图像在[5π12,2π3]上递减C .f (x )的最大值为AD .f (x )的一个对称中心是点(5π12,0)二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上) 11.已知α是第二象限角,sin α=12,则sin2a 等于________12.已知函数f (x )=2sin(ωx +φ)的图像如下图所示,则f (7π12)=________.13.计算:cos10°+3sin10°1-cos80°=________.14.设函数y =2sin(2x +π3)的图像关于点P (x 0,0)成中心对称,若x 0∈[-π2,0],则x 0=________.15.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c 且a cos B -b cos A =35c .则tan A tan B的值为________. 答案:4三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分12分)已知:0<α<π2<β<π,cos(β-π4)=13,sin(α+β)=45.(1)求sin2β的值;(2)设函数f (x )=cos x -sin x ,试求f (α)的值.17.(本小题满分12分)如图,点A ,B 是单位圆上的两点,A ,B点分别在第一、二象限,点C 是圆与x 轴正半轴的交点,△AOB 是正三角形,若点A 的坐标为(35,45),记∠COA =α.(1)求1+sin2α1+cos2α的值;(2)求|BC |2的值.18.(本题满分13分)(2010·黄冈模拟)△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且lg a-lg b =lgcos B -lgcos A ≠0. (1)判断△ABC 的形状;(2)设向量m =(2a ,b ),n =(a ,-3b ),且m ⊥n ,(m +n )·(-m +n )=14,求a ,b ,c .19.(本小题满分12分)已知a =(sin x ,32),b =(cos x ,-1).(1)当a 与b 共线时,求2cos 2x -sin2x 的值; (2)求f (x )=(a +b )·b 在[-π2,0]上的值域.20.(本小题满分13分)已知函数f (x )=A sin(ωx +φ)+B (A >0,ω>0)的一系列对应值如下表:(1)根据表格提供的数据求函数f(x)的一个解析式;(2)根据(1)的结果,若函数y=f(kx)(k>0)周期为2π3,当x∈[0,π3]时,方程f(kx)=m恰有两个不同的解,求实数m的取值范围.21.(本小题满分13分)已知函数y=|cos x+sin x|.(1)画出函数在x∈[-π4,7π4]上的简图;(2)写出函数的最小正周期和在[-π4,3π4]上的单调递增区间;试问:当x在R上取何值时,函数有最大值?最大值是多少?(3)若x是△ABC的一个内角,且y2=1,试判断△ABC的形状.。
浙教版初中数学九年级下册第一单元《解直角三角形》(标准难度)(含答案解析)考试范围:第一单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1. 如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是( )A. sinA=√32B. tanA=12C. cosB=√32D. tanB=√32. 如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=35,DF=5,则BC的长为( )A. 8B. 10C. 12D. 163. 如图,在Rt△BAD中,延长斜边BD到点C,使DC=12BD,连接AC,若tan B=53,则tan∠CAD的值为( )A. √33B. √35C. 13D. 154. 在实数π,13,√2,sin30°中,无理数的个数为( )A. 1B. 2C. 3D. 45. 如图,△ABC的三个顶点分别在正方形网格的格点上,下列三角函数值错误的是( )A. sinB=35B. cosB=45C. tanB=34D. tanA=436. 如图,CD是平面镜,光线从点A出发,经CD上点E反射后照射到点B.若入射角为α,AC⊥CD,BD⊥CD,垂足分别为点C,D,且AC=3,BD=6,CD=11,则tanα的值为( )A. 113B. 311C. 911D. 1197. 在Rt△ABC中,∠C=90∘,cosA=√32,∠B的平分线BD交AC于点D,若AD=16,则BC的长为( )A. 6B. 8C. 8√3D. 128. 如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为( )A. ①②;B. ②③;C. ①②③;D. ①③;9. 某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为( )A. 95sinα米B. 95cosα米C. 59sinα米D. 59cosα米10. 如图,在△ABC中,∠B=45°,∠C=60°,AD⊥BC于点D,BD=√3.若E,F分别为AB,BC的中点,则EF的长为( )A. √33B. √32C. 1D. √6211. 如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=α,则点A到OC的距离等于( )A. a⋅sinα+b⋅sinαB. a⋅cosα+b⋅cosαC. a⋅sinα+b⋅cosαD. a⋅cosα+b⋅sinα12. 如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸点A处,测得河的北岸边点B在其北偏东45∘方向然后向西走80米到达C点,测得点B在点C的北偏东60∘方向,则这段河的宽度为( )A. 80(√3+1)米B. 40(√3+1)米C. (120−40√3)米D. 40(√3−1)米第II卷(非选择题)二、填空题(本大题共4小题,共12分)13. 在Rt△ABC中,∠C=90°,AB=3,BC=2,则cosA的值是.14. 在菱形ABCD中,DE⊥AB,垂足是E,DE=6,sin A=3,则菱形ABCD的周长是.515. 若锐角α满足cosα<√2且tanα<√3,则α的范围是.216. 如图,在△ABC中,AB=AC=5cm,cosB=3.如果⊙O的半径为√10cm,且经过点B,5C,那么线段AO=cm.三、解答题(本大题共9小题,共72分。
高中数学必修五第一章《解三角形》单元测试卷及答案(2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中) 1.在ABC △中,::1:2:3A B C =,则::a b c 等于( )A .1:2:3B .3:2:1C .2D .22.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且A >B ,则一定有( ) A .cos A >cos BB .sin A >sin BC .tan A >tan BD .sin A <sin B3.△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,2sin sin cos a A B b A +,则ba =( )A .B .C D4.在△ABC 中,∠A =60°,a =,b =4.满足条件的△ABC ( ) A .无解B .有一解C .有两解D .不能确定5.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222a b c =-, 则角B 的大小是( ) A .45°B .60°C .90°D .135°6.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若22a b -,sin C B =,则A =( ) A .30°B .60°C .120°D .150°7.在△ABC 中,∠A =60°,b =1,△ABC sin aA为( )A B C D .8.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( )A .0,6π⎛⎤ ⎥⎝⎦B .,6π⎡⎫π⎪⎢⎣⎭C .0,3π⎛⎤ ⎥⎝⎦D .,3π⎡⎫π⎪⎢⎣⎭9.在△ABC 中,已知B =45°,c =,b =A 的值是( ) A .15°B .75°C .105°D .75°或15°10.在锐角三角形ABC 中,b =1,c =2,则a 的取值范围是( )A .1<a <3B .1a <<C a <D .不确定11.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 22A b cc+=,则 △ABC 的形状为( ) A .直角三角形B .等腰直角三角形C .等腰或直角三角形D .等边三角形12.如图所示,在△ABC 中,已知∠A ∶∠B =1∶2,角C 的平分线CD 把三角形面积分为3∶2两部分,则cos A 等于( )A .13B .12C .34D .0二、填空题(本大题共4个小题,每空5分,共20分,把正确答案填在题中横线上) 13.等腰三角形的底边长为6,腰长为12,其外接圆的半径为________. 14.在△ABC 中,若a 2+b 2<c 2,且3sin C ,则∠C =________. 15.在△ABC 中,a =3,26b =B =2∠A ,则cos A =________.16.某人在C 点测得塔AB 在南偏西80°,仰角为45°,沿南偏东40°方向前进10 m 到O ,测得塔A 仰角为30°,则塔高为________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .已知()cos cos 3sin cos 0C A A B +=.(1)求角B 的大小;(2)若a +c =1,求b 的取值范围.18.(12分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .(1)若sin 2cos 6A A π⎛⎫+= ⎪⎝⎭,求A 的值;(2)若1cos 3A =,b =3c ,求sin C 的值.19.(12分)在△ABC 中,角A 、B 、C 对应的边分别是a 、b 、c ,已知cos2A -3cos(B +C )=1.(1)求角A 的大小;(2)若△ABC 的面积S =b =5,求sin B sin C 的值.20.(12分)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且222a b c +=. (1)求C ;(2)设cos cos A B =,()()2cos cos cos A B ααα++,求tan α的值.21.(12分)在△ABC 中,2C A π-=,1sin 3B =. (1)求sin A 的值;(2)设6AC =,求△ABC 的面积.22.(12分)如图,已知扇形AOB ,O 为顶点,圆心角AOB 等于60°,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 相交于点C ,设∠AOP =θ,求△POC 面积的最大值及此时θ的值.答 案一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中) 1.【答案】C 【解析】6A π=,3B π=,2C π=,132::sin :sin :sin 3222a b c A B C ===,故选C . 2.【答案】B【解析】∵A B >,∴a b >,由正弦定理,得sin sin A B >,故选B .3.【答案】D【解析】本小题考查内容为正弦定理的应用.∵2sin sin cos a A B b A +=,∴22sin sin sin cos A B B A A +=,sin B A =,∴b =,∴ba.故选D . 4.【答案】A【解析】4sin 60⨯︒=<a <b sin A ,∴△ABC 不存在. 故选A . 5.【答案】A【解析】∵222a b c =-,∴222a c b +-=,由余弦定理,得222cos 2a c b B ac +-===0°<B <180°,所以B =45°. 故选A . 6.【答案】A【解析】由sin C B =及正弦定理,得c =,∴2226a b b -=, 即a 2=7b 2.由余弦定理,2222222cos2b c a A bc +-===,又∵0°<A <180°,∴A =30°.故选A . 7.【答案】B【解析】由1sin 2bc A =c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =13,故a =sin a A ==B . 8.【答案】C【解析】本题主要考查正余弦定理,∵sin 2A ≤sin 2B +sin 2C -sin B sin C , ∴由正弦定理得:a 2≤b 2+c 2-bc ,即b 2+c 2-a 2≥bc ,由余弦定理得:2221cos 222b c a bc A bc bc +-==≥=,∴03A π<≤,故选C .9.【答案】D 【解析】∵sin sin b cB C =,∴sin sin c B C b ==. ∵0°<C <180°.∴C =60°或120°,∴A =75°或15°.故选D . 10.【答案】C【解析】∵b <c ,△ABC 为锐角三角形,∴边c 与边a 所对的角的余弦值大于0,即b 2+a 2-c 2>0且b 2+c 2-a 2>0,∴22140140a a ⎧+->⎪⎨+->⎪⎩.∴3<a 2<5,∴35a <<. 故选C . 11.【答案】A【解析】由21cos cos 222A A b c c ++==,整理得cos bA c=.又222cos 2b c a A bc +-=, 联立以上两式整理得c 2=a 2+b 2,∴C =90°.故△ABC 为直角三角形.故选A . 12.【答案】C【解析】在△ABC 中,设∠ACD =∠BCD =β,∠CAB =α,由∠A ∶∠B =1∶2,得∠ABC =2α.∵∠A <∠B ,∴AC >BC ,∴S △ACD >S △BCD ,∴S △ACD ∶S △BCD =3∶2,∴1sin 3212sin 2AC DC BC DC ββ⋅⋅⋅=⋅⋅⋅,∴32AC BC =.由正弦定理得sin sin AC BC B A =,sin 2sin 2sin cos sin AC BC AC BCααααα=⇒=, ∴133cos 2224AC BC α==⨯=,即3cos 4A =.故选C .二、填空题(本大题共4个小题,每空5分,共20分,把正确答案填在题中横线上) 13.815【解析】设△ABC 中,AB =AC =12,BC =6,由余弦定理222222121267cos 2212128AB AC BC A AB AC +-+-===⋅⨯⨯.∵()0,A ∈π,∴15sin A =,∴外接圆半径8152sin BC r A == 14.【答案】23π【解析】∵a 2+b 2<c 2,∴a 2+b 2-c 2<0,即cos C <0.又3sin C ,∴23C π∠=. 15.6【解析】∵a =3,26b =,∠B =2∠A ,由正弦定理326sin sin 2A A=, ∴2sin cos 26sin 3A A A =,∴6cos 3A =. 16.【答案】10 m【解析】画出示意图,如图所示,CO =10,∠OCD =40°,∠BCD =80°,∠ACB =45°, ∠AOB =30°,AB ⊥平面BCO ,令AB =x ,则BC =x ,3BO x ,在△BCO 中,由余弦定理得)()223100210cos 8040xx x =+-⨯⨯︒+︒,整理得25500x x -=-,解得10x =,5x =-(舍去),故塔高为10 m .三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.【答案】(1)3B π=;(2)112b ≤<. 【解析】(1)由已知得()cos cos cos 3cos 0A B A B A B -++-=, 即有sin sin 3sin cos 0A B A B =. 因为sin A ≠0,所以sin 30B B =. 又cos B ≠0,所以tan 3B =.又0<B <π,所以3B π=. (2)由余弦定理,有b 2=a 2+c 2-2ac cos B . 因为a +c =1,1cos 2B =,有2211324b a ⎛⎫=-+ ⎪⎝⎭.又0<a <1,于是有2114b ≤<,即有112b ≤<. 18.【答案】(1)3A π=;(2)1sin 3C =. 【解析】(1)由题设知sin cos cos sin 2cos 66A A A ππ+=.从而sin 3A A ,所以cos A ≠0,tan A =.因为0<A <π,所以3A π=. (2)由1cos 3A =,b =3c 及a 2=b 2+c 2-2bc cos A ,得a 2=b 2-c 2, 故△ABC 是直角三角形,且2B π=.所以1sin cos 3C A ==. 19.【答案】(1)3A π=;(2)5sin sin 7B C =. 【解析】(1)由cos2A -3cos(B +C )=1,得2cos 2A +3cos A -2=0, 即(2cos A -1)(cos A +2)=0,解得1cos 2A =或cos A =-2(舍去). 因为0<A <π,所以3A π=.(2)由11sin sin 223S bc A bc π====bc =20,又b =5,知c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a =. 又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.20.【答案】(1)34C π=;(2)tan α=1或tan α=4.【解析】(1)因为222a b c +=,由余弦定理有222cos 2a b c C ab +-===34C π=. (2)由题意得()()2sin sin cos cos sin sin cos cos cos A A B B ααααα--,因此()()tan sin cos tan sin cos A A B B αα--=,()2tan sin sin tan sin cos cos sin cos cos A B A B A B A B αα-++=,()2tan sin sin tan sin cos cos A B A B A B αα-++=因为34C π=,4A B π+=,所以()sin A B +=因为cos(A +B )=cos A cos B -sin A sin B ,即sin sin 52A B -=,解得sin sin 5210A B =-=.由①得tan 2α-5tan α+4=0,解得tan α=1或tan α=4. 21.【答案】(1)sin A ;(2)ABC S =△. 【解析】(1)由2C A π-=和A +B +C =π,得22A B π=-,04A π<<. ∴cos2A =sinB ,即2112sin 3A -=,∴sin A =.(2)由(1)得cos A sin sin BC AC A B =,∴sin 31sin 3AC ABC B===∵2C A π-=,∴2C A π=+,∴sin sin cos 2C A A π⎛⎫=+== ⎪⎝⎭,∴11sin 22ABC S AC BC C =⋅⋅==△. 22.【答案】当θ=30°时,S (θ). 【解析】∵CP ∥OB ,∴∠CPO =∠POB =60°-θ,∠OCP =120°. 在△OCP 中,由正弦定理,得sin sin OP CP OCP θ=∠,即2sin120sin CPθ=︒,∴CP θ.又()2sin 60sin120CO θ=︒-︒,∴()60OC θ=︒-.故△POC 的面积是()1sin1202S CP CO θ=⋅⋅︒()()160sin si 2n 60θθθθ=︒-︒-()1sin sin 21cos 2602θθθθ⎫⎤=-︒=-⎪-⎥⎪⎝⎦⎭,()0,60θ∈︒︒, ∴当θ=30°时,S (θ)单元测试题二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.在ABC △中,若90C =︒,6a =,30B =︒,则c b -等于( )A .1B .1-C .D .-2.在ABC △中,3AB =,2AC =,BC =BA ·AC 等于( )A .32-B .23-C .23D .323.在△ABC 中,已知a =,b =A =30°,则c 等于( )A .BC .D .以上都不对4.根据下列情况,判断三角形解的情况,其中正确的是( ) A .a =8,b =16,A =30°,有两解 B .b =18,c =20,B =60°,有一解 C .a =5,c =2,A =90°,无解 D .a =30,b =25,A =150°,有一解5.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为( )A B C D .6.在△ABC 中,2cos 22A b cc+⋅=(a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为( ) A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形D .正三角形7.已知△ABC 中,A 、B 、C 的对边分别为a 、b 、c .若a c =A =75°,则b 等于( )A .2B -C .4-D .4+8.在△ABC 中,已知b 2-bc -2c 2=0,a =7cos 8A =,则△ABC 的面积S 为( )A B C D .9.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于( )A B C D10.若sin cos cos A B Ca b c==,则△ABC 是( ) A .等边三角形 B .有一内角是30°的直角三角形 C .等腰直角三角形D .有一内角是30°的等腰三角形11.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若()222tan 3a c b B ac +-=,则角B 的值为( ) A .6π B .3π C .6π或56π D .3π或23π12.△ABC 中,3A π=,BC =3,则△ABC 的周长为( ) A .43sin 33B π⎛⎫++ ⎪⎝⎭B .43sin 36B π⎛⎫++ ⎪⎝⎭C .6sin 33B π⎛⎫++ ⎪⎝⎭D .6sin 36B π⎛⎫++ ⎪⎝⎭二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.在△ABC 中,2sin sin sin a b cA B C--=________. 14.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若2223a c b ac +-=, 则角B 的值为________.15.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,3b =, A +C =2B ,则sin C =________.16.钝角三角形的三边为a ,a +1,a +2,其最大角不超过120°,则a 的取值范围是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)如图所示,我艇在A 处发现一走私船在方位角45°且距离为12海里的B 处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立即以14海里/小时的速度追击,求我艇追上走私船所需要的时间.18.(12分)在△ABC 中,角A 、B 、C 所对的边长分别是a 、b 、c ,且4cos 5A =. (1)求2sin cos22B CA ++的值; (2)若b =2,△ABC 的面积S =3,求a .19.(12分)如图所示,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2. (1)求cos ∠CBE 的值; (2)求AE .20.(12分)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,3cos 5B =. (1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值.21.(12分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.22.(12分)已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(),a b m =, ()sin ,sin B A =n ,()2,2b a --p =.(1)若m ∥n ,求证:△ABC 为等腰三角形; (2)若m ⊥p ,边长c =2,角3C π=,求△ABC 的面积.答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.【答案】C【解析】tan 30ba=︒,tan30b a =︒=2c b ==,c b -= 故选C . 2.【答案】A【解析】由余弦定理得22294101cos 2124AB AC BC A AB AC +-+-===⋅.∴13cos 3242AB AC AB AC A ⋅=⋅⋅=⨯⨯=.∴32BA AC AB AC ⋅=-⋅=-.故选A .3.【答案】C【解析】∵a 2=b 2+c 2-2bc cos A ,∴2515c c =+-. 化简得:2100c -+=,即(0c c -=,∴c =c = 故选C . 4.【答案】D 【解析】A 中,因sin sin a b A B =,所以16sin30sin 18B ⨯︒==,∴90B =︒,即只有一解;B 中,20sin 60sin 18C ︒==c b >,∴C B >,故有两解; C 中,∵A =90°,a =5,c =2,∴b = 故A 、B 、C 都不正确.故选D . 5.【答案】C【解析】设另一条边为x ,则2221232233x =+-⨯⨯⨯,∴29x =,∴3x =.设1cos 3θ=,则sin θ=.∴32sinR θ==,R =C . 6.【答案】A【解析】由2cos cos 22A b c b A c c+⋅=⇒⋅=,又222cos 2b c a A bc +-⋅=, ∴b 2+c 2-a 2=2b 2⇒a 2+b 2=c 2,故选A . 7.【答案】A【解析】()sin sin 75sin 3045A =︒=︒+︒, 由a =c 知,C =75°,B =30°.1sin 2B =.由正弦定理:4sin sin b aB A===.∴b =4sin B =2.故选A .8.【答案】A【解析】由b 2-bc -2c 2=0可得(b +c )(b -2c )=0. ∴b =2c ,在△ABC 中,a 2=b 2+c 2-2bc cos A ,即22276448c c c =+-⋅.∴c =2,从而b =4.∴11sin 4222ABCS bc A ==⨯⨯△A . 9.【答案】B【解析】设BC =a ,则2aBM MC ==. 在△ABM 中,AB 2=BM 2+AM 2-2BM ·AM ·cos ∠AMB ,即22217424cos 42aa AMB =+-⨯⨯⋅∠ ①在△ACM 中,AC 2=AM 2+CM 2-2AM ·CM ·cos ∠AMC即22216424cos 42aa AMB =++⨯⨯⋅∠ ②①+②得:22222176442a +=++,∴a =B .10.【答案】C 【解析】∵sin cos A Ba b=,∴a cos B =b sin A , ∴2R sin A cos B =2R sin B sin A,2R sin A ≠0.∴cos B =sin B ,∴B =45°.同理C =45°,故A =90°.故C 选项正确. 11.【答案】D【解析】∵()222tan a c b B +-,∴222tan 2a c b B ac +-⋅=,即cos tan sin B B B ⋅=0<B <π,∴角B 的值为3π或23π.故选D . 12.【答案】D 【解析】3A π=,BC =3,设周长为x ,由正弦定理知2sin sin sin BC AC ABR A B C ===, 由合分比定理知sin sin sin sin BC AB BC ACA ABC ++=++,=,∴()sin sin B A B x ⎤+++=⎥⎦,即3sin sin 3sin sin cos cos sin 333x B B B B B π⎤ππ⎛⎫⎫=+++=+++ ⎪⎪⎥⎝⎭⎭⎦133sin sin 3sin 22B B B B B ⎫⎫=+++=++⎪⎪⎪⎪⎭⎭136cos 36sin 26B B B ⎫π⎛⎫=++=++⎪ ⎪⎪⎝⎭⎝⎭.故选D .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】0 14.【答案】6π【解析】∵222a cb +-=,∴222cos 2a c b B ac +-==6B π=. 15.【答案】1【解析】在△ABC 中,A +B +C =π,A +C =2B .∴3B π=. 由正弦定理知,sin 1sin 2a B A b ==.又a <b .∴6A π=,2C π=.∴sin 1C =. 16.【答案】332a ≤< 【解析】由()()()()()()22222212120121212a a a a a a a a a a a ⎧⎪++>+⎪⎪++-+<⎨⎪++-+⎪≥-⎪+⎩,解得332a ≤<.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】2小时.【解析】设我艇追上走私船所需时间为t 小时, 则BC =10t ,AC =14t ,在△ABC 中, 由∠ABC =180°+45°-105°=120°,根据余弦定理知:(14t )2=(10t )2+122-2·12·10t cos 120°,∴2t =. 答:我艇追上走私船所需的时间为2小时. 18.【答案】(1)5950;(2)a = 【解析】(1)()221cos 1cos 59sin cos2cos22cos 122250B C B C A A A A -++++=+=+-=. (2)∵4cos 5A =,∴3sin 5A =.由1sin 2ABC S bc A =△,得133225c =⨯⨯,解得c =5.由余弦定理a 2=b 2+c 2-2bc cos A ,可得24425225135a =+-⨯⨯⨯=,∴a = 19.【答案】(1;(2)AE=.【解析】(1)∵∠BCD =90°+60°=150°,CB =AC =CD , ∴∠CBE =15°.∴()cos cos 4530CBE ∠=︒-︒= (2)在△ABE 中,AB =2,由正弦定理得sin sin AE ABABE AEB=∠∠, 即()()2sin 4515sin 9015AE =︒-︒︒+︒,故122sin 30cos15AE ⨯︒===︒20.【答案】(1)2sin 5A =;(2)b =5c =. 【解析】(1)∵3cos 05B =>,且0<B <π,∴4sin 5B ==. 由正弦定理得sin sin a bA B=,42sin 25sin 45a B Ab ⨯===. (2)∵1sin 42ABC S ac B ==△,∴142425c ⨯⨯⨯=,∴5c =.由余弦定理得2222232cos 25225175b a c ac B =+-=+-⨯⨯⨯=,∴b =21.【答案】(1)120A =︒;(2)△ABC 为等腰钝角三角形. 【解析】(1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A ,故1cos 2A =-,120A =︒.(2)方法一 由(1)得sin 2A =sin 2B +sin 2C +sin B sin C , 又A =120°,∴223sin sin sin sin 4B C B C ++=, ∵sin B +sin C =1,∴sin C =1-sin B . ∴()()223sin 1sin sin 1sin 4B B B B +-+-=, 即21sin sin 04B B -+=.解得1sin 2B =.故1sin 2C =.∴B =C =30°. 所以,△ABC 是等腰的钝角三角形.方法二 由(1)A =120°,∴B +C =60°,则C =60°-B , ∴sin B +sin C =sin B +sin(60°-B) 11sin sin sin 22B B B B B =-==sin(B +60°)=1, ∴B =30°,C =30°.∴△ABC 是等腰的钝角三角形.22.【答案】(1)见解析;(2)ABC S =△ 【解析】(1)证明 ∵m ∥n ,∴a sin A =b sin B ,即22a ba b R R⋅=⋅, 其中R 是△ABC 外接圆半径,∴a =b .∴△ABC 为等腰三角形. (2)解 由题意知m ·p =0,即a (b -2)+b (a -2)=0.∴a +b =ab .由余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab , 即(ab )2-3ab -4=0.∴ab =4(舍去ab =-1),∴11sin 4sin 223ABC S ab C π==⨯⨯=△.。
解三角形测试卷1.设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定2.在△ABC 中, ,3,4AB BC ABC π∠===则sin BAC ∠ = ( )3.在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=且a b >,则B ∠=( )A.6πB.3πC.23πD.56π4.在锐角中ABC ∆,角,A B 所对的边长分别为,a b .若2sin ,a B A =则角等于( )A.12π B.6π C.4π D.3π5.在ABC ∆中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cos C= ( )A .725B .725-C .725±D .24256.△ABC 的三个内角A 、B 、C 所对的边分别为a ,b ,c ,asin AsinB+bcos 2则ba=( )(A)(B)(C)7.若ABC ∆的内角,,A B C 所对的边,,a b c 满足22()-4a b c +=,且060C =,则ab 的值为( )(A )43(B) 3-238.在ABC ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=( )(A)- 12 (B) 12(C) -1 (D) 1 9.如图,在△ABC 中,D 是边AC 上的点,且,2,2AB AD AB BC BD ===,则sin C 的值为( )A.3 B.6 C.3 D.610.在∆ABC 中.222sin sin sin sin sin A B C B C ≤+-.则A 的取值范围是( )(A)(0,6π] (B)[ 6π,π) (C)(0,3π] (D) [ 3π,π)12.如图ABC ∆中,已知点D 在BC 边上,AD ⊥AC,sin 3BAC AB AD ∠===则BD 的长为_______________13.已知△ABC 的内角A 、B 、C 所对应边分别为a 、b 、c,若22232330a ab b c ++-=,则角C 的大小是_______________(结果用反三角函数值表示)14.在ABC ∆中,角 A B C 、、所对边长分别为 a b c 、、,若05,8,60a c B ===,则b=_______15.设ABC ∆的内角,,A B C 所对边的长分别为,,a b c .若2b c a +=,则3sin 5sin ,A B =则角C =_____.16.设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且35cos ,cos ,3,513A B b ===则c =______ 17.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . 若()()a b c a b c ab +-++=,则角C =____. 18.在△ABC 中,若2a =,7b c +=,1cos 4B =-,则b =_______. 19.在ABC ∆中。
若b=5,4B π∠=,tanA=2,则a=___ ___20.在ABC ∆中,60,B AC ==2AB BC +的最大值为 21.△ABC 中B=120°,AC=7,AB=5,则△ABC 的面积为_______22.在相距2千米的A 、B 两点处测量目标点C ,若75,60CAB CBA ∠=∠=,则A 、C 两点之间的距离为 千米.23.如图,ABC ∆中,2AB AC ==,BC =D 在BC 边上,045ADC ∠=,则AD 的长度等于___________.24.若△ABC 的面积为3,BC=2,C=︒60,则边AB 的长度等于__________解三角形测试卷填空题11._________ 12._________ 13.__________ 14.__________ 15.__________ 16.__________ 17._________ 18._________ 19.__________ 20.__________ 21.__________ 22.__________ 23._________ 24._________25.在△ABC 中,a =3,b ,∠B =2∠A .(I)求cos A 的值; (II)求c 的值.26.设ABC ∆的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=.(I)求B ; (II)若sin sin A C =,求C .27.设△ABC 的内角,,A B C 所对的边分别为,,a b c ,且6a c +=,2b =,7cos 9B =.(Ⅰ)求,a c 的值; (Ⅱ)求sin()A B -的值.28..如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲.乙两位游客从A 处下山,甲沿AC 匀速步行,速度为m in /50m .在甲出发min 2后,乙从A 乘缆车到B ,在B 处停留min 1后,再从匀速步行到C .假设缆车匀速直线运动的速度为m in /130m ,山路AC 长为m 1260,经测量,1312cos =A ,53cos =C .(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?29.在ABC ∆中,角A ,B ,C 对应的边分别是a ,b ,c .已知()cos23cos 1A B C -+=. (I)求角A 的大小;C BA(II)若ABC ∆的面积S =5b =,求sin sin B C 的值.30.如图,在△ABC中,∠ABC=90°,AB= 3 ,BC=1,P 为△ABC内一点,∠BPC=90°(1)若PB=12,求PA;(2)若∠APB=150°,求tan∠PBA解三角形测试卷答案BCADA DADDC 11.12.13. 1arccos3C π=-14. 7;15. π3216.145c =;17. 22212223a b c C ab π+-=-⇒=;18. 4;19. ;20. 21. ;22. ;23.;24. 2;25. 解:(I)因为a =3,b =2,∠B =2∠A . 所以在△ABC 中,由正弦定理得3sin sin 2A A=.所以2sin cos sin A A A =.故cos A =.(II)由(I)知cos A =,所以s i n o A ==.又因为∠B=2∠A,所以21c o s 2c o s 13B A =-=.所以sin B ==.在△ABC 中,sin sin()sin cos cos sin 9C A B A B A B =+=+=. 所以sin 5sin a Cc A==.26.27. 解:(Ⅰ)由余弦定理2222cos b a c ac B =+-,得()222(1cos )b ac ac B =+-+,又6a c +=,2b =,7cos 9B =,所以9ac =,解得3a =,3c =.(Ⅱ)在△ABC 中,sin 9B ==, 由正弦定理得sin sin 3a B A b ==, 因为a c =,所以A 为锐角,所以1cos 3A ==因此sin()sin cos cos sin A B A B A B -=-=.28. 解:(1)∵1312cos =A ,53cos =C ∴),(、20π∈C A ∴135sin =A ,54sin =C ∴[]6563sin cos cos sin sin sin sin =+=+=+-=C A C A C A C A B )()(π 根据sinB sinC AC AB =得m C AC AB 1040sin sinB==(2)设乙出发t 分钟后,甲.乙距离为d,则1312)50100(1302)50100()130(222⨯+⨯⨯-++=t t t t d ∴)507037(20022+-=t t d 13010400≤≤t 即80≤≤t ∴3735=t 时,即乙出发3735分钟后,乙在缆车上与甲的距离最短. (3)由正弦定理sinBsinA ACBC =得50013565631260sin sinB ===A AC BC (m) 乙从B 出发时,甲已经走了50(2+8+1)=550(m),还需走710 m 才能到达C 设乙的步行速度为V m in /m ,则350710500≤-v ∴3507105003≤-≤-v ∴14625431250≤≤v ∴为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在⎥⎦⎤⎢⎣⎡14625,431250范围内 法二:解:(1)如图作BD ⊥CA 于点D , 设BD =20k ,则DC =25k ,AD =48k , AB =52k ,由AC =63k =1260m,知:AB =52k =1040m.(2)设乙出发x 分钟后到达点M , 此时甲到达N 点,如图所示. :AM =130x ,AN =50(x +2),由余弦定理得:MN 2=AM 2+AN 2-2 AM ·AN cos A =7400 x 2-14000 x +10000,其中0≤x ≤8,当x =3537 (min)时,MN 最小,此时乙在缆车上与甲的距离最短.(3)由(1)知:BC =500m,甲到C 用时:126050 =1265(min).若甲等乙3分钟,则乙到C 用时:1265 +3=1415 (min),在BC 上用时:865 (min) .此时乙的速度最小,且为:500÷865 =125043m/min.若乙等甲3分钟,则乙到C 用时:1265 -3=1115 (min),在BC 上用时:565 (min) .此时乙的速度最大,且为:500÷565 =62514 m/min.故乙步行的速度应控制在[125043 ,62514 ]范围内.29.解:(I)由已知条件得:cos23cos 1A A +=22cos 3cos 20A A ∴+-=,解得1cos 2A =,角60A =︒(II)1sin 2S bc A ==4c ⇒=,由余弦定理得:221a =,()222228sin a R A == 25sin sin 47bc B C R ∴== 30. (Ⅰ)由已知得,∠P BC=o60,∴∠PBA=30o,在△PBA中,由余弦定理得2PA=o 1132cos3042+-=74; (Ⅱ)设∠PBA=α,由已知得,PB=sin α,在△PBA 中,由正弦定理得osin sin(30)αα=-,化简得4sin αα=, ∴tan α,∴tan PBA ∠CBADMN。