第2章半导体二极管及其基本电路
- 格式:ppt
- 大小:610.00 KB
- 文档页数:53
第二章半导体二极管及其基本电路2-1.填空(1)N型半导体是在本征半导体中掺入;P型半导体是在本征半导体中掺入。
(2)当温度升高时,二极管的反向饱和电流会。
(3)PN结的结电容包括和。
(4)晶体管的三个工作区分别是、和。
在放大电路中,晶体管通常工作在区。
(5)结型场效应管工作在恒流区时,其栅-源间所加电压应该。
(正偏、反偏)答案:(1)五价元素;三价元素;(2)增大;(3)势垒电容和扩散电容;(4)放大区、截止区和饱和区;放大区;(5)反偏。
2-2.判断下列说法正确与否。
(1)本征半导体温度升高后,两种载流子浓度仍然相等。
()(2)P型半导体带正电,N型半导体带负电。
()(3)结型场效应管外加的栅-源电压应使栅-源间的耗尽层承受反向电压,才能保证R GS大的特点。
()(4)只要在稳压管两端加反向电压就能起稳压作用。
()(5)晶体管工作在饱和状态时发射极没有电流流过。
()(6)在N型半导体中如果掺入足够量的三价元素,可将其改型为P型半导体。
()(7)PN结在无光照、无外加电压时,结电流为零。
()(8)若耗尽型N沟道MOS场效应管的U GS大于零,则其输入电阻会明显减小。
()答案:(1)对;温度升高后,载流子浓度会增加,但是对于本征半导体来讲,电子和空穴的数量始终是相等的。
(2)错;对于P型半导体或N型半导体在没有形成PN结时,处于电中性的状态。
(3)对;结型场效应管在栅源之间没有绝缘层,所以外加的栅-源电压应使栅-源间的耗尽层承受反向电压,才能保证R GS大的特点。
(4)错;稳压管要进入稳压工作状态两端加反向电压必须达到稳压值。
(5)错;晶体管工作在饱和状态和放大状态时发射极有电流流过,只有在截止状态时没有电流流过。
(6)对;N型半导体中掺入足够量的三价元素,不但可复合原先掺入的五价元素,而且可使空穴成为多数载流子,从而形成P型半导体。
(7)对;PN结在无光照、无外加电压时,处于动态平衡状态,扩散电流和漂移电流相等。
二极管原理及其基本电路二极管是一种最简单的半导体器件,它具有非常重要的功能和应用。
本文将介绍二极管的原理以及其基本电路。
一、二极管的原理二极管是由一种带有p型半导体和n型半导体的材料组成的。
在p-n 结的区域内,因为半导体的材料特性,会形成一个电势垒。
当外加电压的极性与电势垒形成的方向相反时,电势垒将变得更大,称为反向偏置;当外加电压的极性与电势垒形成的方向一致时,电势垒将变得更小,称为正向偏置。
在二极管的工作中,主要有以下几个重要的特性。
1.正向电压特性:当二极管处于正向偏置状态时,在两端加上正向电压时,电势垒逐渐缩小,直到消失。
在这个过程中,二极管的导电性变得很好。
正向电压越大,二极管导通越好。
2.反向电压特性:当二极管处于反向偏置状态时,在两端加上反向电压时,电势垒逐渐增加。
当反向电压超过反向击穿电压时,二极管就会发生击穿,电流急剧增大,此时二极管就会损坏。
3.导通和截止特性:当二极管处于正向偏置状态时,正向电压不超过一定限制时,二极管会导通。
当正向电压超过这个限制时,二极管截止,不导通。
而当二极管处于反向偏置状态时,无论外加电压的大小,其表现都是开路状态,不导通。
二、二极管的基本电路二极管广泛地应用于各种电路中,下面介绍几个常见的二极管基本电路。
1.正向电压特性测试电路:这是一个测试二极管正向电压特性的电路。
它由一个电压源、一个限流电阻和一个二极管组成。
通过改变电压源的电压,可以测量二极管在不同电压下的电流。
当电压逐渐增加时,电流也逐渐增加,直到达到二极管的最大电流。
2.整流电路:整流电路主要用于将交流电转换为直流电。
它由一个二极管和负载组成。
当二极管处于正向偏置状态时,它允许正向电流通过,从而将正半周期的交流信号变为直流信号。
而当二极管处于反向偏置状态时,它阻止反向电流通过。
3.限流电路:限流电路主要用于限制电流的大小。
它由一个电压源、一个电阻和一个二极管组成。
二极管起到了稳压和限流的作用。
模拟电子技术基础第三版课后答案王远【篇一:模电资料】术基础是高等院校电气、信息类(包括原自动化、电气类、电子类)专业知识平台重要核心课程,是学生在电子技术入门阶段的专业基础课。
课程涉及模拟信号的产生、传输及处理等方面的内容,工程实践性很强。
课程任务是使学生获得适应信息时代电子技术的基本理论、基本知识及基本分析方法。
旨在培养学生综合应用能力、创新能力和电子电路计算机分析、设计能力。
课程学习完成能为学生以后深入学习电子技术及其在专业中的应用打好两方面的基础;其一是正确使用电子电路特别是集成电路的基础;其二是为将来进一步学习设计集成电路专用芯片打好基础。
《模拟电子技术基础》是电气电子类各专业的一门重要的技术基础课。
其作用与任务是使学生获得低频电子线路方面的基本理论,基本知识和基本技能。
本课程在介绍半导体器件的基础上,重点要求掌握放大器的各种基本单元电路、放大器中的负反馈、运算放大器及其应用、直流电源等低频电子线路电路的工作原理、分析方法和设计方法,使学生具有一定的实践技能和应用能力。
培养学生分析问题、解决问题的能力和创新思维能力,为后续课程和深入学习这方面的内容打好基础。
教学大纲一、课程名称模拟电子技术基础 analog electronics二、学时与学分本课程学时: 60学时(课内) 本课程学分: 3.5学分三、授课对象电类本科生、专科生四、先修课程电路理论、电路测试与实验技术五、教学目的《模拟电子技术基础》是电子类等专业入门性质的课程,是实践性很强的技术基础课。
课程的任务是使学生获得电子技术方面的基本理论、基本知识和基本技能,培养学生分析问题和解决问题的能力。
通过本课程的学习,使学生具备应用电子技术的能力,为学习后续课程和电子技术在专业中的应用打好基础。
六、主要内容、基本要求及学时分配第一章绪论主要内容基本要求学时数 2第二章半导体二极管及其基本电路主要内容基本要求学时数 4第三章半导体三极管及放大电路基础主要内容基本要求学时数 18第四章场效应管放大电路主要内容基本要求学时数 4第五章功率放大电路主要内容基本要求学时数 4第六章集成电路运算放大器主要内容基本要求学时数 6第七章反馈放大电路主要内容基本要求学时数 8第八章信号的运算与处理电路主要内容基本要求【篇二:模拟电子技术课程标准】t>电子与信息工程系(院)课程教学标准课程名称模拟电子技术课程类型理论+实践授课对象三年制大专学生课程学分 4 总学时722009年 12 月《模拟电子技术》教学标准课程名称:模拟电子技术课时:72适用专业:应用电子技术、电子信息工程技术、通信技术、汽车电子技术 1.课程定位模拟电子技术是电类专业的一门重要岗位能力课程,是培养生产一线高级技术应用型人才硬件能力的基本入门课程,是十分强调应用实践的工程性质的课程,对人才培养有着至关重要的作用。