当前位置:文档之家› 氧化石墨烯薄膜的光电化学性质

氧化石墨烯薄膜的光电化学性质

氧化石墨烯薄膜的光电化学性质
氧化石墨烯薄膜的光电化学性质

2011年第69卷化学学报V ol. 69, 2011第21期, 2539~2542 ACTA CHIMICA SINICA No. 21, 2539~2542

* E-mail: kzwang@https://www.doczj.com/doc/0b10865235.html,

Received April 2, 2011; revised May 25, 2011; accepted June 3, 2011.

国家自然科学基金(Nos. 90922004, 20971016)、中央高校基本科研业务费专项资金、北京市大学生科学研究与创业行动计划和北京师范大学分析测试

2540化学学报V ol. 69, 2011

器有限责任公司); 冷场发射扫描电镜(S-4800 日立高新技术株式会社); FZ-A型辐照计(北京师范大学光电仪器厂); KQ-50B型超声波清洗器(昆山市超声仪器有限公司); 采用三电极系统, 覆盖有自组装膜的氧化铟-氧化硒(ITO)玻璃为工作电极, 铂片为对电极, 饱和甘汞电极为参比电极, 0.1 mol?L-1的Na2SO4溶液为支持电解质; 配有红外和紫外截止滤光片的500 W高压氙灯光源系统(北京畅拓科技有限公司). 试剂均为分析纯.

1.2 GO及其静电自组装薄膜的制备

在傅玲等[9]将Hummers法制备氧化石墨分为低温、中温、高温反应三个阶段的基础上, 延长中温反应时间至8 h; 充分超声剥离后, 通过脱脂棉抽滤和渗析的方法除去少量沉淀和杂质离子, 得到均一稳定的GO水溶胶, 放置7个月后无沉淀. GO的静电自组装薄膜的制备: 将按文献[10]报道的方法清洗和表面硅烷化的石英和ITO导电玻璃放入pH 3的HCl溶液中质子化处理, 使基片表面带有正电荷. 然后此基片浸入GO溶液中(1 mg?mL-1) 10 min, 取出并用去离子水清洗, 空气吹干.

1.3 光电化学性质

所有光电化学研究均以GO膜修饰的电极为工作电极, 其有效光照面积为0.28 cm2. 光电流的测量在电化学工作站上进行, 入射光的强度用辐照计测定. 不同波长的入射光是在氙灯光路上加具有所需带宽的滤光片得到.

2 结果与讨论

2.1 紫外-可见吸收光谱

图1为GO水溶液(a)和石英基片上单层薄膜(b)的紫外-可见光谱图的对比. GO在231 nm处有1个C—C键上的π-π*跃迁吸收峰, 在298 nm处有1个C=O键上的n-π* 跃迁肩峰[11], 这与在石英片上单层薄膜在30 nm 处的吸收峰吻合, 表明GO已成功组装到基片上. 处理后的基片浸泡在1 mg?mL-1 GO溶液, 利用紫外-可见光谱对浸泡时间进行了监测(图2). 结果表明: 当在GO水溶液的浸泡时间达10 min时, 吸光度基本达最大值. 2.2 冷场发射扫描电镜

我们制备的GO水溶液具有明显的丁达尔效应, 与文献[12]报道的结果吻合. GO水溶液在铝箔上流沿. 待液体干燥后, 剪取部分于样品台上经磁控溅射镀膜(喷金)处理后, 用冷场发射扫描电镜研究其形貌(图 3). 氧化石墨因超声剥离, 脱落成许多大小为几十纳米的片状GO. 这与氧化石墨烯是一种二维结构材料及其水溶液具有明显的丁达尔效应吻合

. 图1 (a) GO水溶液和(b)石英片上GO薄膜的紫外-可见光谱Figure 1 UV-Vis spectra of (a) GO aqueous solution and (b)

GO film on quartz substrate

图2基片在230 nm处的吸光度随其在GO溶胶中浸泡不同时间的变化图

Figure 2Changes in absorbance at 230 nm of protonated quartz

substrate at varied immersion time in GO aqueous solution

图3GO冷场发射扫描电镜图

Figure 3 Cold-field emission scanning electron microscope image of GO

2.3 GO修饰的ITO电极的光电响应

在0.1 mol?L-1的Na2SO4溶液中, 当用100 mW/cm2的白光照射GO膜修饰的ITO电极时, 所得光电流随偏

No. 21

王纪学等:氧化石墨烯薄膜的光电化学性质

2541

压(-0.4~0.4 V)变化示于图4. 当加上正偏压时, 光电流变化很小; 当偏压越负时, 光电流越大. 说明所加偏压方向与光电流的方向一致, 光生电子是由ITO 片传输到薄膜, 然后传输到电解液中, 产生阴极光电流

.

图4 100 mW/cm 2的光照下裸露ITO 电极(a)和覆盖有单层GO 的ITO 电极(b)在不同偏压下的光电流密度

Figure 4 Changes in photocurrent densities of bare ITO (a) and single-layer GO film-covered ITO with varied bias voltages un-der white light irradiation at 100 mW/cm 2

图5为偏压-0.4 V 时的i -t 关系图, 可以看出: 光照的同时, 有光电流迅速生成, 光电流密度达 3.72 μA/cm 2; 而挡光时, 光电流迅速下降并趋于饱合. 经过多次开关, 光电响应信号几乎无明显的衰减

.

图5 100 mW/cm 2的光照下裸露GO 单层膜的ITO 电极在偏压-0.4 V 时的光电流-光照时间关系图

Figure 5 A plot of photocurrents vs. light irradiation time for single-layer GO film on ITO biased at ?0.4 V vs. SCE

Supporting electrolyte: 0.1 mol?L -

1 Na 2SO 4. Applied potential =Area of the

electrode ≈0.28 cm 2. Light intensity =100 mW/cm

2

在相同的测定条件下, 改用不同波长的单色入射光(400~750 nm)照射GO 薄膜修饰的ITO 电极, 测定了光电流密度的大小. 由波长为λ、光强为P inc 的单色光照射膜电极产生的光电流密度I , 按公式(1)

[13,14]

计算出薄膜

入射的单色光光电转化效率IPCE %, IPCE %对λ作图得光电流工作谱(图6). 光电流工作谱与GO 单层膜在ITO 基片上的可见吸收光谱相吻合, 表明薄膜修饰的ITO 电极上的光电响应来自GO.

22inc 1240 (μA/cm )

IPCE%(nm) (W/m )

I P λ=

(1)

图6 GO 薄膜的光电流工作谱

Figure 6 Photocurrent action spectrum of GO film

2.4 外加因素对光电响应的影响

为进一步验证电子传递机理, 我们研究了在体系中引入氧气或氮气、氢醌、抗坏血酸这些电子给体和受体对光电流产生的影响. 当向电解质溶液中通入氮气以除去溶解的氧时, 光电流和暗电流都明显减小(图7), 说明溶解氧在电子传递过程中起着重要的作用. 因为溶解氧可以接收一个电子形成超氧自由基, 是一个潜在的电子接受体, 浓度增加有利于电子从薄膜向电解质的传递. 当通N 2除去氧气或加入电子给体氢醌时, 薄膜产生的光电流随氢醌浓度增加而迅速减小, 进一步证实为阴极光电流.

当向除去氧气的电解质溶液中加入少量的抗坏血酸(VC)时, 光电流随浓度的增加先增大后减小(图8). 因为抗坏血酸又是一个酸, 它的加入可使电解质的pH 值降低, 从而使ITO 的平带电势负移, 在浓度不大时酸度对ITO 的平带电势的影响占主导, 有利于光电流的增加[12]. 当坏血酸的浓度超过3×10-5 mol?L -1时, 它作为电子给体的作用占主导, 浓度增加, 对电子从ITO 电极流向溶液不利, 阴极光电流减小.

3 结论

通过增加中温反应时间和超声时间, 制备出大小在几十个纳米范围内的GO 片, 其水溶液可以持续7个月

2542化学学报V ol. 69, 2011

图7通氮前(a)后(b)薄膜的光电流-时间曲线

Figure 7 Photocurrent-light irradiation time curve for GO film prior to (a) and after (b) degassing with N2

Supporting electrolyte 0.1 mol?L-1 Na2SO4. Applied potential=?0.1 V vs. SCE. Area of the electrode≈0.28 cm2. Light intensity=100 mW/cm2

图8不同浓度VC对光电流密度的影响

Figure 8Effects of VC concentrations on photocurrent genera-tion from GO film

Supporting electrolyte 0.1 mol?L-1 Na2SO4. Applied potential=-0.1 V vs. SCE. Area of the electrode≈0.28 cm2. Light intensity=100 mW/cm2

以上不沉淀. GO能形成稳定的自组装薄膜, 光电化学性质优异, 最大光电流密度高达3.72 μA/cm2, 较我们最近报道的WO3/半菁静电自组装膜的光电信号大得多[15]. References

1 Matsui, J.; Abe, K.; Mitsuishi, M. Langmuir2009, 25,

11061.

2 Feng, X. M.; Huang, X. W.; Huang, H. Acta Chim. Sinica

2010, 68, 1123 (in Chinese).

(冯小明, 黄先威, 黄辉, 化学学报, 2010, 68, 1123.)

3 Fan, S. H.; Wang, K. Z.; Gan, L. B. Chin. J. Inorg. Chem.

2008, (8), 1206 (in Chinese).

(凡素华, 王科志, 甘良兵, 无机化学学报, 2008, (8), 1206.)

4 Zheng, L. P.; Zhou, Q. M.; Wang, F. Acta Chim. Sinica

2004, 62, 88 (in Chinese).

(郑立平, 周清梅, 王飞, 化学学报, 2004, 62, 88.)

5 Acik, M.; Mattevi, C.; Gong, C. ACS Nano2010, 4, 5861.

6 Chang, L. M.; Wu, S.; Chen, S. N.; Li, X. J. Mater. Sci.

2011, 46, 2024.

7 Zhang, Y. P.; Pan, C. X. J. Mater. Sci. 2011, 46, 2622.

8 Yao, H. B.; Wu, L. H.; Cui, C. H. J. Mater. Chem. 2010, 20,

5190.

9 Fu, L.; Liu, H. B.; Zou, Y. H. Carbon2005, (4), 10 (in

Chinese).

(傅玲, 刘洪波, 邹艳红, 炭素, 2005, (4), 10.)

10 Cooper, T. M.; Campbell, A. L.; Crane, R. L. Langmuir

1995, 11, 2713.

11 Paredes, J. I.; Villar-Rodil, S.; Martinez-Alonso, A.

Langmuir2008, 24, 10560.

12 Lang, A. D.; Huang, C. H.; Gan, L. B. Chem. J. Chin. Univ.

1998, 12, 1881 (in Chinese).

(郎爱东, 黄春辉, 甘良兵, 高等学校化学学报, 1998, 12,

1881.)

13 Maria, A.; Cyr, P.; Klem, E.; Levina, L.; Sargent, E. H.

Appl. Phys. Lett. 2005, 87, 213112.

14 Fan, S. H.; Zhang, A. G.; Ju, C. C.; Gao, L. H.; Wang, K. Z.

Inorg. Chem. 2010, 49, 3752.

15 Zou, X.; Fan, Y.; Zhuang, M. Y.; Peng, J.; Gao, L. H.;

Wang, K. Z. Acta Chim. Sinica2010, 68, 2250 (in Chinese).

(邹旭, 范娅, 庄敏阳, 彭景, 高丽华, 王科志, 化学学报,

2010, 68, 2250.)

(A1104022 Qin, X.)

石墨烯介绍

1石墨烯概述-结构及性质 1.1 石墨烯的结构 石墨烯是一种由碳原子以sp2杂化连接形成的单原子层二维晶体,碳原子规整的排列于蜂窝状点阵结构单元之中,如图1所示。每个碳原子除了以σ键与其他三个碳原子相连之外,剩余的π电子与其他碳原子的π电子形成离域大π键,电子可在此区域内自由移动,从而使石墨烯具有优异的导电性能。同时,这种紧密堆积的蜂窝状结构也是构造其他碳材料的基本单元,如图2所示,单原子层的石墨烯可以包裹形成零维的富勒烯,单层或者多层的石墨烯可以卷曲形成单壁或者多壁的碳纳米管。 图1 石墨烯的结构示意图 图2石墨烯:其他石墨结构碳材料的基本构造单元,可包裹形成零维富勒烯,卷曲形成一维 碳纳米管,也可堆叠形成三维的石墨 1.2石墨烯的性质 石墨烯独特的单原子层结构,决定了其拥有许多优异的物理性质。如前所述,石墨烯中的每个碳原子都有一个未成键的π 电子,这些电子可形成与平面垂直的π轨道,π 电子可在这种长程π 轨道中自由移动,从而赋予了石墨烯出色的导电性能。研究表明室温下载流子在石墨烯中的迁移率可达到15000cm2/(V·s),相当于光速的1/300,在特定条件,如液氦的温度下,更是可达到250000cm2/(V·s),远远超过其他半导体材料,如锑化铟、砷化镓、硅半

导体等。这使得石墨烯中的电子的性质和相对论性的中微子非常相似。并且电子在晶格中的移动是无障碍的,不会发生散射,使其具有优良的电子传输性质。同时,石墨烯独特的电子结构还使其表现出许多奇特的电学性质,比如室温量子霍尔效应等。由于石墨烯中的每个碳原子均与相邻的三个碳原子结合成很强的σ 键,因此石墨烯同样表现出优异的力学性能。最近,哥伦比亚大学科学家利用原子力显微镜直接测试了单层石墨烯的力学性能,发现石墨烯的杨氏模量约为1100GPa,断裂强度更是达到了130GPa,比最好的钢铁还要高100 倍。石墨烯同样是一种优良的热导体。因为在未掺杂石墨中载流子密度较低,因此石墨烯的传热主要是靠声子的传递,而电子运动对石墨烯的导热可以忽略不计。其导热系数高达5000W/(m·K), 优于碳纳米管,更是比一些常见金属,如金、银、铜等高10 倍以上。除了优异的传导性能及力学性能之外,石墨烯还具有一些其他新奇的性质。由于石墨烯边缘及缺陷处有孤对电子,使石墨烯具有铁磁性等磁性能。由于石墨烯单原子层的特殊结构,使石墨烯的理论比表面积高达2630m2/g。石墨烯也具备独特的光学性能,单层石墨烯在可见光区的透过率达97%以上。这些特性使石墨烯在纳米器件、传感器、储氢材料、复合材料、场发射材料等重要领域有着广泛的应用前景。 图3石墨烯的应用 2石墨烯聚酯复合材料的制备方法 由于石墨烯优异的性质以及低的成本,石墨烯作为聚合物纳米填料被广泛报道。为了获得优异性能的聚合物/石墨烯复合材料,首先要保证石墨烯在聚合物基体中均匀分散。石墨烯的分散与制备方法、石墨烯表面化学、橡胶种类以及石墨烯-橡胶界面有着密切关系。聚合物/石墨烯复合材料的制备方法主要有溶液共混、熔体加工、原位聚合和乳液共混四种方法。 2.1 溶液共混法 溶液共混法主要是采用聚合物本身聚合体系的有机溶剂,充分分散石墨烯于体系中,随着体系聚合反应进行,最后石墨烯均匀分散并充分结合于聚合物基体中,得到石墨烯/聚合物复合材料的一种方法。通常先制备氧化石墨烯作为前驱体,对其进行功能化改性使之能在聚合体系溶剂中分散,还原后与聚合物进行溶液共混,从而制备石墨烯/聚合物复合材料。通过溶液共混制备复合材料的关键是将石墨烯及其衍生物均匀分散在能溶解聚合物的溶剂中。

石墨烯基本特性

2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用高度定向的热解石墨首次获得了独立存在的高质量石墨烯,打破了传统的物理学观点:二维晶体在常温下不能稳定存在。两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯是一种碳原子分布在二维蜂巢晶体点阵上的单原子层晶体。被认为是构建所有其他维数石墨材料的基本单元,它可以包裹成零维的富勒烯,卷曲成一维的碳纳米管或者堆垛成三维的石墨,如图所示。石墨烯晶体C-C键长为0.142nm,每个碳原子4 个价电子中的3 个通过σ键与临近的3个碳原子相连,S、Px 和Py3个杂化轨道形成强的共价键合,组成sp2杂化结构。这些σ键赋予了石墨烯极其优异的力学性质和结构刚性。拉伸强度高达130Gpa,破坏强度为42N/m,杨氏模量为1.0TPa,断裂强度为125Gpa 与碳纳米管相当。石墨烯的厚度仅为0.35nm左右,是世界上最薄的二维材料。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。(百度百科)石墨烯的硬度比最好的钢铁强100倍,甚至还要超过钻石,是已知的世上最薄、最坚硬的纳米材料。

石墨烯结构示意图(10) 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。传统的半导体和导体,例如硅和铜,由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,2013年一般的电脑芯片以这种方式浪费了72%-81%的电能。而在石墨烯中,每个碳原子都有一个垂直于碳原子平面的σz轨道的未成键的p电子,在晶格平面两侧如苯环一样形成高度巡游的大π键,可以在晶体中自由高效的迁移,且运动速度高达光速的1/300,电子能量不会被损耗,赋予了石墨烯良好的导电性。晶格平面两侧高度巡游的大π键电子又使其具有零带隙半导体和狄拉克载流子特性宽

选择性还原氧化石墨烯

文章编号: 1007?8827(2014)01?0061?06 选择性还原氧化石墨烯 徐 超1, 员汝胜1, 汪 信2 (1.福州大学光催化研究所福建省重点实验室?国家重点实验室培育基地,福建福州350002; 2.南京理工大学教育部软化学与功能材料重点实验室,江苏南京210094) 摘 要: 还原氧化石墨烯已被广泛用于制备基于石墨烯的材料三目前,还原处理方法均是尽可能地将氧化石墨烯中的功能团去除,恢复石墨烯的电子结构三由于氧化石墨烯中氧基功能团(如羟基二羧基及环氧基)不同的反应活性,氧化石墨烯是可能通过分步的方法进行还原三利用醇溶剂如乙醇二乙二醇二丙三醇还原氧化石墨烯,并采用不同分析手段对样品进行表征三结果发现,在一定条件下这些醇可选择性地还原氧化石墨烯三经这些醇的处理后,氧化石墨烯中环氧功能团被大部分去除,而其他的功能团如羟基和羧基仍被保留三这种选择性去除氧化石墨烯表面功能团的方法可利于有效地控制氧化石墨烯的还原程度二获得具有特定功能团的石墨烯衍生物,从而扩大这类材料的使用范围三 关键词: 氧化石墨烯;氧化功能团;醇;选择性还原 基金项目:国家自然科学基金(21201036,21077023);福建省自然科学基金(2010J01035,2012J01039). 作者简介:徐 超,博士,讲师.E?mail:cxu@https://www.doczj.com/doc/0b10865235.html, Selective reduction of graphene oxide XU Chao1, YUAN Ru?sheng1, WANG Xin2 (1.Research Institute of Photocatalysis,Fujian Provincial Key Laboratory of Photocatalysis??State Key Laboratory Breeding Base,Fuzhou University,Fuzhou350002,China; 2.Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education,Nanjing University of Science and Technology,Nanjing210094,China) Abstract: The reduction of graphene oxide has been widely used to control the properties of graphene?based materials.Traditional methods thoroughly remove oxygenated functional groups in graphene oxides.We show that ethanol,ethylene glycol and glycerol can se?lectively reduce epoxy groups in graphene oxide while hydroxyl and carboxyl groups remain unchanged.Hydrazine hydrate can reduce ox?ygen functional groups except carboxyl groups.These selective removals can be used to control the reduction degree of graphene oxides and their properties.The electrical conductivity of the reduced graphene oxides with different types of oxygen functional groups varied sig?nificantly and increased with the degree of reduction. Keywords: Graphene oxide;Oxygenated functional groups;Alcohols;Selective reduction CLC number: TQ127.1+1Document code: A Received date:2013?07?10; Revised date:2013?12?22 Corresponding author:XU Chao,Ph.D,Lecturer.E?mail:cxu@https://www.doczj.com/doc/0b10865235.html, Foundation items:National Natural Science Foundation of China(21201036,21077023);Natural Science Foundation of Fujian Province (2010J01035,2012J01039). English edition available online ScienceDirect(http:∕∕https://www.doczj.com/doc/0b10865235.html,∕science∕journal∕18725805). DOI:10.1016/S1872?5805(14)60126?8 1 Introduction Graphene oxide(GO),utilized as precursor for a large?scale production of graphene?based materials,has attracted a great deal of attention in recent years[1?5]. GO sheets are electrically insulating,owing to their oxygenated functional groups(hydroxyl,carboxyl and epoxy groups)on surface,which usually need further treatments to restore the electrical conductivity for spe?cific applications[6].A lot of methods,such as chemi?cal reduction[7?9],laser irradiation[10,11],microwave ir?radiation[12,13],photocatalysis[14,15],solvothermal re?duction[16,17],have been explored to remove these atta?ched groups thoroughly and to recover graphene net?works of sp2bonds. Actually,researchers recently have found that the reduction degree of graphene oxide or oxidation degree of graphene has certain influences on their properties,such as electrical conductivity,catalysis activity and semi?conductive band positions[18?20]. Among these research work,the reduction degree of  第29卷 第1期 2014年2月新 型 炭 材 料 NEW CARBON MATERIALS Vol.29 No.1 Feb.2014

氧化石墨烯薄膜的光电化学性质

2011年第69卷化学学报V ol. 69, 2011第21期, 2539~2542 ACTA CHIMICA SINICA No. 21, 2539~2542 * E-mail: kzwang@https://www.doczj.com/doc/0b10865235.html, Received April 2, 2011; revised May 25, 2011; accepted June 3, 2011. 国家自然科学基金(Nos. 90922004, 20971016)、中央高校基本科研业务费专项资金、北京市大学生科学研究与创业行动计划和北京师范大学分析测试

2540化学学报V ol. 69, 2011 器有限责任公司); 冷场发射扫描电镜(S-4800 日立高新技术株式会社); FZ-A型辐照计(北京师范大学光电仪器厂); KQ-50B型超声波清洗器(昆山市超声仪器有限公司); 采用三电极系统, 覆盖有自组装膜的氧化铟-氧化硒(ITO)玻璃为工作电极, 铂片为对电极, 饱和甘汞电极为参比电极, 0.1 mol?L-1的Na2SO4溶液为支持电解质; 配有红外和紫外截止滤光片的500 W高压氙灯光源系统(北京畅拓科技有限公司). 试剂均为分析纯. 1.2 GO及其静电自组装薄膜的制备 在傅玲等[9]将Hummers法制备氧化石墨分为低温、中温、高温反应三个阶段的基础上, 延长中温反应时间至8 h; 充分超声剥离后, 通过脱脂棉抽滤和渗析的方法除去少量沉淀和杂质离子, 得到均一稳定的GO水溶胶, 放置7个月后无沉淀. GO的静电自组装薄膜的制备: 将按文献[10]报道的方法清洗和表面硅烷化的石英和ITO导电玻璃放入pH 3的HCl溶液中质子化处理, 使基片表面带有正电荷. 然后此基片浸入GO溶液中(1 mg?mL-1) 10 min, 取出并用去离子水清洗, 空气吹干. 1.3 光电化学性质 所有光电化学研究均以GO膜修饰的电极为工作电极, 其有效光照面积为0.28 cm2. 光电流的测量在电化学工作站上进行, 入射光的强度用辐照计测定. 不同波长的入射光是在氙灯光路上加具有所需带宽的滤光片得到. 2 结果与讨论 2.1 紫外-可见吸收光谱 图1为GO水溶液(a)和石英基片上单层薄膜(b)的紫外-可见光谱图的对比. GO在231 nm处有1个C—C键上的π-π*跃迁吸收峰, 在298 nm处有1个C=O键上的n-π* 跃迁肩峰[11], 这与在石英片上单层薄膜在30 nm 处的吸收峰吻合, 表明GO已成功组装到基片上. 处理后的基片浸泡在1 mg?mL-1 GO溶液, 利用紫外-可见光谱对浸泡时间进行了监测(图2). 结果表明: 当在GO水溶液的浸泡时间达10 min时, 吸光度基本达最大值. 2.2 冷场发射扫描电镜 我们制备的GO水溶液具有明显的丁达尔效应, 与文献[12]报道的结果吻合. GO水溶液在铝箔上流沿. 待液体干燥后, 剪取部分于样品台上经磁控溅射镀膜(喷金)处理后, 用冷场发射扫描电镜研究其形貌(图 3). 氧化石墨因超声剥离, 脱落成许多大小为几十纳米的片状GO. 这与氧化石墨烯是一种二维结构材料及其水溶液具有明显的丁达尔效应吻合 . 图1 (a) GO水溶液和(b)石英片上GO薄膜的紫外-可见光谱Figure 1 UV-Vis spectra of (a) GO aqueous solution and (b) GO film on quartz substrate 图2基片在230 nm处的吸光度随其在GO溶胶中浸泡不同时间的变化图 Figure 2Changes in absorbance at 230 nm of protonated quartz substrate at varied immersion time in GO aqueous solution 图3GO冷场发射扫描电镜图 Figure 3 Cold-field emission scanning electron microscope image of GO 2.3 GO修饰的ITO电极的光电响应 在0.1 mol?L-1的Na2SO4溶液中, 当用100 mW/cm2的白光照射GO膜修饰的ITO电极时, 所得光电流随偏

化学还原氧化石墨烯及其衍生物的制备、性质和应用研究

目录 第一章绪论 (1) 1.1石墨烯的结构特征与性质 (2) 1.1.1结构特征 (2) 1.1.2电学性质 (3) 1.1.3光学性质 (3) 1.1.4力学性质 (4) 1.1.5热学性质 (5) 1.2石墨烯的制备方法 (6) 1.2.1微机械剥离法(Micromechanical Exfoliation) (6) 1.2.2化学气相沉积法(Chemical Vapor Deposition, CVD) (6) 1.2.3外延生长法(Epitaxial Growth) (7) 1.2.4氧化石墨烯溶液还原法(Reduction of Graphene Oxide Solution) (8) 1.2.4.1氧化石墨烯的化学还原法 (8) 1.2.4.2氧化石墨烯的其它还原方法 (10) 1.2.5有机合成法(Organic Synthesis) (10) 1.3石墨烯的表征方法 (12) 1.3.1光学显微法(Optical Microscopy) (12) 1.3.2扫描探针显微法(Scanning Probe Microscopy) (13) 1.3.3透射电子显微法(Transmission Electron Microscopy, TEM) (15) 1.3.4拉曼光谱法(Raman Spectroscopy) (15) 1.4石墨烯的应用 (16) 1.4.1场效应晶体管 (17) 1.4.2传感器 (18) 1.4.2.1化学传感器 (18) VI

1.4.2.2生物传感器 (18) 1.4.3储能器件 (19) 1.4.4复合材料 (20) 1.5本论文的研究目的和研究内容 (22) 1.5.1研究目的 (22) 1.5.2研究内容 (23) 第二章氧化石墨烯的制备 (25) 2.1引言 (25) 2.2实验 (26) 2.2.1GO的制备 (26) 2.2.2GO的结构表征 (27) 2.3结果与讨论 (28) 2.3.1GO制备条件的优化 (28) 2.3.1.1低温反应下,高锰酸钾加入方式对产物形貌的影响 (28) 2.3.1.2高温反应下,反应温度对产物形貌的影响 (29) 2.3.1.3后处理过程中,干燥温度对产物结构的影响 (30) 2.3.2GO的光谱学性质 (31) 2.3.3GO的结晶状态和形貌 (33) 2.3.3.1GO的XRD谱图分析 (33) 2.3.3.2GO的TEM结果分析 (34) 2.3.4单层GO的电学性质 (34) 2.3.5GO碎片二维尺寸的控制 (35) 2.4本章小结 (36) 第三章化学还原氧化石墨烯的制备 (37) 3.1引言 (37) 3.2实验 (38) 3.2.1在有机溶剂/水两相体系中制备CRG (38) VII

石墨烯基础知识简介

1.石墨烯(Graphene)的结构 石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢状晶格的平面薄膜,是一种只有一个原子层厚度的二维材料。如图1.1所示,石墨烯的原胞由晶格矢量a1和a2定义每个原胞内有两个原子,分别位于A和B的晶格上。C原子外层3个电子通过sp2杂化形成强σ键(蓝),相邻两个键之间的夹角120°,第4个电子为公共,形成弱π键(紫)。石墨烯的碳-碳键长约为0.142nm,每个晶格内有三个σ键,所有碳原子的p轨道均与sp2杂化平面垂直,且以肩并肩的方式形成一个离域π键,其贯穿整个石墨烯。 如图1.2所示,石墨烯是富勒烯(0维)、碳纳米管(1维)、石墨(3维)的基本组成单元,可以被视为无限大的芳香族分子。形象来说,石墨烯是由单层碳原子紧密堆积成的二维蜂巢状的晶格结构,看上去就像由六边形网格构成的平面。每个碳原子通过sp2杂化与周围碳原子构成正六边形,每一个六边形单元实际上类似一个苯环,每一个碳原子都贡献一个未成键的电子,单层石墨烯的厚度仅为0.335nm,约为头发丝直径的二十万分之一。 图 1.1(a)石墨烯中碳原子的成键形式(b)石墨烯的晶体结构。 图1.2石墨烯原子结构图及它形成富勒烯、碳纳米管和石墨示意图石墨烯按照层数划分,大致可分为单层、双层和少数层石墨烯。前两类具有

相似的电子谱,均为零带隙结构半导体(价带和导带相较于一点的半金属),具有空穴和电子两种形式的载流子。双层石墨烯又可分为对称双层和不对称双层石墨烯,前者的价带和导带微接触,并没有改变其零带隙结构;而对于后者,其两片石墨烯之间会产生明显的带隙,但是通过设计双栅结构,能使其晶体管呈示出明显的关态。 单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。 双层石墨烯(Bilayer or double-layer graphene):指由两层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括AB堆垛,AA堆垛,AA‘堆垛等)堆垛构成的一种二维碳材料。 少层石墨烯(Few-layer or multi-layer graphene):指由3-10层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC 堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。 石墨烯(Graphenes):是一种二维碳材料,是单层石墨烯、双层石墨烯和少层石墨烯的统称。 由于二维晶体在热力学上的不稳定性,所以不管是以自由状态存在或是沉积在基底上的石墨烯都不是完全平整,而是在表面存在本征的微观尺度的褶皱,蒙特卡洛模拟和透射电子显微镜都证明了这一点。这种微观褶皱在横向上的尺度在8~10nm 范围内,纵向尺度大概为 0.7~1.0nm。这种三维的变化可引起静电的产生,所以使石墨单层容易聚集。同时,褶皱大小不同,石墨烯所表现出来的电学及光学性质也不同。 图1.3 单层石墨烯的典型构象 除了表面褶皱之外,在实际中石墨烯也不是完美存在的,而是会有各种形式的缺陷,包括形貌上的缺陷(如五元环,七元环等)、空洞、边缘、裂纹、杂原子等。这些缺陷会影响石墨烯的本征性能,如电学性能、力学性能等。但是通过一些人为的方法,如高能射线照射,化学处理等引入缺陷,却能有意的改变石墨烯的本征性能,从而制备出不同性能要求的石墨烯器件。 2.石墨烯的性质 2.1 力学特性

石墨烯性能简介

第一章石墨烯性能及相关概念 1 石墨烯概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子。但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜。单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构。完美的石墨烯具有理想的二维晶体结构,由六边形晶格组成,理论比表面积高达2.6×102m2 /g。石墨烯具有优异的导热性能(3×103W/(m?K))和力学性能(1.06×103 GPa)。此外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电子迁移率高达1.5×104 cm2 / (V·s)。石墨烯特殊的结构、突出的导热导电性能和力学性能,引起科学界巨大兴趣,成为材料科学研究热点。 石墨烯结构图

2 石墨烯结构 石墨烯指仅有一个原子尺度厚单层石墨层片,由 sp2 杂化的碳原子紧密排列而成的蜂窝状晶体结构。石墨烯中碳 -碳键长约为 0.142nm。每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。 形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。在单层石墨烯中,每个碳原子通过 sp2 杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一。 石墨烯的结构非常稳定,碳原子之间连接及其柔韧。受到外力时,碳原子面会发生弯曲变形,使碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性。 石墨烯是有限结构,能够以纳米级条带形式存在。纳米条带中电荷横向移动时会在中性点附近产生一个能量势垒,势垒随条带宽度的减小而增大。因此,通过控制石墨烯条带的宽度便可以进一步得到需要的势垒。这一特性是开发以石墨烯为基础的电子器件的基础。

石墨烯在光电子器件中的应用

石墨烯在光电子器件中的应用 摘要:石墨烯是目前发现的唯一存在的二维自由态原子晶体,有着优异的机械性能、超高的热导率和载流子迁移率、超宽带的光学响应谱,以及极强的非线性光学特性。且因其卓越的光学与电学性能及其与硅基半导体工艺的兼容性,石墨烯受到了各领域学科的高度关注。本文重点综述了石墨烯在超快脉冲激光器、光调制器、光探测器、表面等离子体等光电子器件领域的应用研究进展,并对其未来发展趋势进行了进一步的分析。 关键字:石墨烯;光调制器;光探测器;超快脉冲激光器;表面等离子体; 1、前言 石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,具有独特的零带隙能带结构,是一种半金属薄膜材料。石墨烯不仅有特殊的二维平面结构,还有着优良的力学、热学、电学、光学性质。其机械强度很大,断裂强度比优质的钢材还要高,同时又具备良好的弹性、高效的导热性以及超强的导电性。石墨烯又是一种禁带宽度几乎为零的特殊材料,其电子迁移速率达到了1/300光速。由于石墨烯几乎是透明的,因此光的透过率可高97.7%。此外,石墨烯的加工制备可与现有的半导体CMOS(Complementary metal-oxide-semiconductor transistor)工艺兼容,器件的构筑、加工、集成简单易行,在新型光电器件的应用方面具有得天独厚的优势。 目前,人们已利用石墨烯开发出一系列新型光电器件,并显示出优异的性能和良好的应用前景。 2、石墨烯的基本性质 石墨烯具有独特的二维结构,并且能分解为零维富勒烯,也可以卷曲成一维碳纳米管,或堆积成为三维石墨。石墨烯力学性质高度稳定,碳原子连接比较柔韧,当施加外力时,碳原子面就会发生弯曲形变。 在理想的自由状态下,单层石墨烯并非完美的平面结构,表面不完全平整,在薄膜边缘处出现明显的波纹状褶皱,而在薄膜内部褶皱并不显,多层石墨烯边缘处的起伏幅度要比单层石墨烯稍小。这也说明了石墨烯在受到拉伸、弯曲等外力作用时仍能保持高效的力学稳定性。 在一定能量范围内,石墨烯中的电子能量与动量呈线性关系,所以电子可视为无质量的相对论粒子即狄拉克费米子。通过化学掺杂或电学调控的手段,可以有效地调节石墨烯的化学势,使得石墨烯的光学透过性由“介质态”向“金属态”转变。 石墨烯的功函数与铝的功函数相近,约为4.3eV,因此在有机光电器件中有望取代铝来做透明电极。近年来所观测到的显著的量子霍尔效应和分数量子霍尔效应,证实了石墨烯是未来纳米光电器件领域极有前景的材料。 3、基于石墨烯的光调制器 3.1 直波导结构石墨烯光调制器 光学调制是改变光的一个或多个特征参数,并通过外界各种能量形式实现编码光学信号的过程。对光学调制器件的评价有调制带宽、调制深度、插入损耗、比特能耗以及器件尺寸等性能指标。大多数情况下,光在

一步合成还原氧化石墨烯-MnO2复合材料及其电化学性能

第30卷 第8期 无 机 材 料 学 报 Vol. 30 No. 8 2015年8月 Journal of Inorganic Materials Aug., 2015 收稿日期: 2015-01-05; 收到修改稿日期: 2015-05-19 基金项目: 国家自然科学基金(51164026); 包头市科技局园区建设科技发展项目(2010Y2004) National Natural Science Foundation of China (51164026); Science and Technology Development Project of Baotou for Industrial Park construction (2010Y2004) 作者简介: 侯 渊(1985–), 男, 硕士研究生. E-mail: hyuanhy@https://www.doczj.com/doc/0b10865235.html, 通讯作者: 张邦文, 教授. E-mail: bangwenz@https://www.doczj.com/doc/0b10865235.html, 文章编号: 1000-324X(2015)08-0855-06 DOI: 10.15541/jim20150004 一步合成还原氧化石墨烯/MnO 2复合材料及其电化学性能 侯 渊, 张邦文, 邢瑞光, 布林朝克 (内蒙古科技大学 材料与冶金学院, 内蒙古014010) 摘 要: 通过水热法, 利用氧化石墨烯(GO)和二价锰盐, 一步合成了还原氧化石墨烯/MnO 2(RGO/M)复合电极材料。采用X 射线衍射(XRD)、X 射线光电子能谱(XPS)、拉曼光谱(RS)、傅里叶红外光谱(FTIR)和场发射扫描电镜(FESEM)等测试电极材料的物性, 通过循环伏安、交流阻抗和恒流充放电等方法研究电极材料的电化学性能。结果表明, 在一定水热反应条件下, 通过控制GO 与二价锰盐配比, 可以调节RGO/M 的结构及其电化学性能。在1 A/g 电流密度下, 所得RGO/M 复合电极的比电容可达277 F/g, 经过500次循环后, 保持率达到98%。 关 键 词: 还原氧化石墨烯; 二氧化锰; 水热法; 比电容; 超级电容器 中图分类号: O646 文献标识码: A One-step Synthesis and Electrochemical Properties of Reduced Graphene Oxide/MnO 2 Composites HOU Yuan, ZHANG Bang-Wen, XING Rui-Guang, BULIN Chao-Ke (College of Material and Metallurgy, Inner Mongolia University of Science & Technology, Inner Mongolia 014010, China) Abstract: Reduced graphene oxide/MnO 2 (RGO/M) composites were successfully prepared via one-step hydrothermal routine, in which graphene oxide serviced as the oxidant and Mn 2+ as the reducer. The morphology and microstructure of the nanocomposites were characterized by X-ray diffraction (XRD) analysis, X-ray Photoelectron Spectroscope (XPS), Raman spectra (RS), Fourier transform infrared (FTIR) spectroscope and field emission scanning electron mi-croscope (FESEM). In addition, the electrochemical properties of the composite were evaluated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy techniques for supercapacitor applications. The results indicate that the RGO/M composites displayed controllable specific capacitance in acidic electrolytes by adjusting the molar ratio of GO to manganous chloride at a specific hydrothermal reaction condition. In the optimal case, a specific capacitance of 277 F/g can be obtained in 1 mol/L H 2SO 4 at a scan current density of 1 A/g, with a ca-pacitance retention of 98% after 500 cycles. Key words: reduced graphene oxide; manganese dioxide; hydrothermal; specific capacitance; supercapacitor 作为一种新型储能装置, 超级电容器具有循环 次数多和功率密度大等优点, 被广泛应用于军事、 通信和交通等诸多领域[1-3]。电极材料是超级电容器 的核心, 主要有三大类: 碳材料、金属氧化物和导电 聚合物。部分过渡金属氧化物因其价廉、易得和赝电容高等优势, 引起了广泛关注[4-8]。其中, 锰氧化物(MnO x )的研究尤为普遍。但是, 纯MnO x 存在比表面积小和电阻大等缺点, 直接影响了其作为电极

石墨烯介绍

获奖者2010年10月5日,2010年诺贝尔物理学奖被授予英国曼彻斯特大学的安德烈·海姆和康斯坦丁·诺沃肖洛夫,以表彰他们在石墨烯材料方面的研究。 PPT1安德烈·海姆,1958年10月出生于俄罗斯,拥有荷兰国籍,父母为德国人。1987 年在俄罗斯科学院固体物理学研究院获得博士学位。他于2001年加入曼彻斯特大学,现任物理学 教授和纳米科技中心主任。之前拥有此荣誉头衔的人包括卢瑟福爵士,卢瑟福于1907-1919年在曼 彻斯特大学工作。 他至今发表了超过150篇的文章,其中有发表在自然和科学杂志上的。他获得的奖项包括2007 年的Mott Prize和2008年的Europhysics Prize。2010年成为皇家学会350周年纪念荣誉研究教授。 在2000年他还获得“搞笑诺贝尔奖”——通过磁性克服重力,让一只青蛙悬浮在半空中。10年 后的2010年他获得诺贝尔物理学奖。 2010年医学奖:荷兰的两位科学家发现哮喘症可用过山车治疗。 和平奖:英国研究人员证实诅咒可以减轻疼痛。 PPT2康斯坦丁·诺沃肖洛夫,1974年出生于俄罗斯,具有英国和俄罗斯双重国籍。2004年在荷兰奈梅亨大学获得博士学位。是安德烈·海姆的博士生。 曼彻斯特大学目前任教的诺贝尔奖得主人数增加到4名,获得诺贝尔奖的历史总人数为25位。发现 石墨属于混晶,为片层结构,层内由共价键相连,层间由分子间作用力相连。共价键是比较牢固的,但分子间作用力(范德华力)小得多。因此,石墨的单层是牢固的,而层间作用力很小,极易脱落。 2004年,他们发现了一种简单易行的新途径。他们强行将石墨分离成较小的碎片,从碎片中剥离出较薄的石墨薄片,然后用一种特殊的塑料胶带粘住薄片的两侧,撕开胶带,薄片也随之一分为二。不断重复这一过程,就可以得到越来越薄的石墨薄片,而其中部分样品仅由一层碳原子构成——他们制得了石墨烯。 结构

石墨烯光电探测器

石墨烯光电探测器 第一节纯石墨烯光电探测器 2.1.1 石墨烯光电探测的相关原理 有关石墨烯光电探测和光电子应用的关键原理已经被报道。这里包括光伏效应,光的热效应,热辐射效应,光选择效应和等离子体波辅助机制。 (a)(b) (c)(d) 图2.1 石墨烯光电探测原理(a)光伏效应;(b)光热电效应;(c)测辐射热效应;(d) 辅助的等离子体波机制(引自[27]) 光伏效应 光伏电流来源于由不同掺杂区域连接处内部电场或外置电场所产生的光生电子分离。石墨烯是半导体,自身会产生了大量的暗电流,不适于外置电路。内置区域可以用本身的化学掺杂,通过选通脉冲产生静电效应或者通过利用好在石墨烯和金属接触点的功函数差别来引入。石墨烯通道可为P型或N型。光电流的

方向仅依赖于电场,而非整体的掺杂程度。因而其可从p-n到n-p,或者从p-p+到p+-p之间转换信号。 光热电效应 辅助热载流子输运在石墨烯中扮演重要地位。由于这种强烈的电子-电子相互作用,光激电子对可以给载流子快速(~10-50fs)加热。因为光频声子能量(~200meV)在石墨烯中很大,辐射产生的热载流子可以保持在一个温度 上。最终热电子会与晶格之间得到平衡。 光生热电子通过光热电效应(即PTE或塞贝克效应)产生光电压=(-),其中(在V )是不同掺杂石墨烯区域的热电动力(温差电势率),是不同区域电子温度差。 辐射热效应 辐射热效应与由入射光子产热导致的输运电导率变化相关。一个辐射热计可以通过吸收入射辐射dP,并读出导致的温度变化量dT来测量电磁辐射的强度。辐射热计的关键常数有电阻=dT/dP,还有热容量,其决定了响应时间=[28]。石墨烯有很小的体积和很低的态密度,因而得到很低的和一个很高的响应度。这里不直接产生的光电流,而要求有外置的偏压,不需要引进p-n结。 由入射光引起的电导率变化可归于以下两种机制:⑴由于相关温度改变引起载流子迁移率的改变;⑵对电流有贡献的载流子数目的改变(如PV效应)。 光门效应 光门效应是基于GRM载流子浓度n引起的光诱导的改变,因而其电导率=。第一,电子-空穴对的生成发生在GRM 中,随后其中之一被复合(例如在陷阱电荷中或者附近纳米粒子的分子中)。第二,电子-空穴对生成发生在GRM附近的纳米粒子中,分子,或者陷阱电荷中。接着,一种载流子转移到GRM,同时其他的载流子待在微粒,分子或者陷阱中。 通过运用高迁移率的导体和长的响应时间,提高光电导的增益。同时,长的减慢了运行速度。因而这类探测器可以被用在低的暂时频带宽度上,例如视频图像电流。所以合适的评估不仅来自响应度,还有其噪声等效功率(NEP)和特殊的探测能力。 辅助的等离子体波机制 Dyakonov和Shur提出了一个光电探测的方案,即通过凭借场效应晶体管

与石墨烯相关的特征

1 拓扑绝缘体 自然界的材料根据其电学输运性质,可分为导体,半导体和绝缘体。一般的导体中存在着费米面(如图a所示),半导体和绝缘体的费米面存在于禁带之中(如图b所示)。拓扑绝缘体在边界上存在着受到拓扑保护的稳定的低维金属态,这些无能隙的边缘激发处在禁带之中,并且连接价带顶和导带底(如图c,d所示)。从这个意义上讲,拓扑绝缘体是介于普通绝缘体和低维金属之间的一种新物态。根据能带理论,费米能落在晶体材料的带隙中时,材料表现为绝缘体。拓扑绝缘体的材料的能带结构类似于一般绝缘体,存在全局的能隙。但不同于一般的绝缘体,当考虑存在边界的拓扑绝缘体时,将出现贯穿整个能隙的边界态,这些特殊的边界态和体系的拓扑性质(由体系的拓扑数决定)严格对应,因而只要不改变体系的拓扑性质,这些边界态就不会被破坏。 拓扑绝缘体的典型特征是体内元激发存在能隙,但边界上或表面具有受拓扑保护的无能隙边缘激发。拓扑绝缘体的内部的电子能带结构和一般绝缘体相似,它的费米能级位于导带和价带之间,而在其表面存在一些特殊量子态,这些量子态位于块体能带结构的带隙之中,从而允许导电。拓扑绝缘体表面或边界导电是有材料电子态的拓扑结构决定,与表面的具体结构无关。也正是因为其表面金属态的出现由拓扑结构对称性所决定,所以它的存在非常稳定,基本不会受到杂志与无序的影响。 从广义上讲,可分为两大类:一类是破坏时间反演的量子霍尔体系;另一类是最近发现的时间反演不变的拓扑绝缘体。 2半金属 semimetal halfmetal 半金属:介于金属和非金属之间的物质。从能带结构来看,金属中被电子填充的最高能带是半满的或部分填充的,电子能自由运动,有较高的电导率。绝缘体中被电子填充的最高能带是满带(又称价带),价带与导带之间的禁带宽度较大。

氧化石墨烯的绿色还原方法

龙源期刊网 https://www.doczj.com/doc/0b10865235.html, 氧化石墨烯的绿色还原方法 作者:肖祖萍 来源:《学校教育研究》2018年第14期 石墨烯是一种单原子层的碳二维纳米材料,它是由碳六元环组成的二维蜂窝状点阵结构,碳原子的排列与石墨原子层排列相同。地球上不缺少石墨材料,为制备石墨烯材料提供了充足的原材料。目前常用的石墨烯只要由两大类方法制备,一种是将石墨氧化为氧化石墨烯,再通过化学方法将氧化石墨烯还原为石墨烯。另一种是通过化学方法或某些操作将石墨直接转化为石墨烯。在本文主要研究第一种方法中的绿色还原方法。本文中的石墨烯都是由氧化石墨烯通过还原得到的。石墨烯是由碳原子按六边形晶格整齐排布而成的碳单质,结构非常稳定。因为石墨烯的晶格结构,常会被误认为它很僵硬,但实际上却并非如此。例如,石墨烯作为目前已知的力学强度最高的材料,并有可能作为添加剂广泛应用于新型高强度复合材料之中;石墨烯良好的导电性及其对光的高透过性又让它在透明导电薄膜的应用中独具优势,而这类薄膜在液晶显示以及太阳能电池等领域的应用至关重要。 一、氧化石墨烯的制备 氧化石墨烯即石墨烯的氧化物,它是由石墨粉末经化学氧化及剥离后的产物。氧化石墨烯一般由石墨经强酸氧化而得。主要有三种制备氧化石墨的方法:Brodie法、Staudenmaier法和Hummers法。其中Hummers法的制备过程的时效性相对较好而且制备过程中也比较安全。目前最常用的制取氧化石墨烯的方法是由一个修改过的Hummer方法制备的。 二、氧化石墨烯的还原 1.绿色还原法 随着社会的发展和人们都环境的关注,我们越来越需要研究一些绿色的还原方法。绿色的还原方法即在还原氧化石墨烯的过程中不使用有毒的还原剂或不产生对环境产生危害的物质。绿色还原法对环境不会有危害或危害几乎可以不计,并可以得到较好的石墨烯。但有些绿色还原法还存在无法大规模生产的弊端,无法在应用到工业生产中去。目前常见的绿色还原方法有水热热还原氧化石墨烯、电化学还原氧化石墨烯、柠檬酸钠还原氧化石墨烯法、超声辅助镍粉绿色还原制备石墨烯、氧化石墨热解膨胀氢气还原法等。下面我们对这几种绿色还原方法做一个介绍。 (1)水热热还原氧化石墨烯 水热热还原氧化石墨烯是指在密封的压力容器中,以水为溶剂,在高温、高压的条件下进行的化学反应。将氧化石墨烯溶解于溶剂中,在液相或超临界条件下,反应物分散且变得活

相关主题
文本预览
相关文档 最新文档