初三数学第一学期基础题练习(1)
- 格式:doc
- 大小:183.50 KB
- 文档页数:2
辅仁中学2023-2024学年上学期10月九年级数学初三数学练习一、选择题1.下列方程中是一元二次方程的是()A.2221x x x +=- B.20ax bx c ++=C.223250x xy y --= D.()()121x x ++=2.下列命题:①在同圆或等圆中,相等的圆周角所对的弧相等;②相等的弧所对的圆周角相等;③经过圆内任意一点可以作一条直径;④弧分为优弧和劣弧,其中真命题的个数为()A.1个B.2个C.3个D.4个3.点P 为半径为3的O 上一点,若PQ 3=,则点Q 与O 的位置关系为()A.在⊙O 外B.在⊙O 上C.在⊙O 内D.都有可能4.如图,AB 是⊙O 的直径,若∠BAC=35°,则∠ADC=()A.35°B.55°C.70°D.110°5.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x ,那么x 满足的方程是A.50(1+x 2)=196B.50+50(1+x 2)=196C.50+50(1+x )+50(1+x )2=196D.50+50(1+x )+50(1+2x )=1966.半径为2的圆中,弦AB AC 、的长分别2和22,则BAC ∠的度数是()A.15︒B.15︒或45︒C.15︒或75︒D.15︒或105︒7.如图,AB 是半圆直径,半径OC AB ⊥于点O ,AD 平分CAB ∠交弧BC 于点D ,连接CD 、OD .下列结论:①AC OD ∥;②CE OE =;③OED AOD ∠=∠;④CD DE =.其中正确的结论的个数有()A.1个B.2个C.3个D.4个8.如图,AB 是⊙O 的直径,点C,D,E 在⊙O 上,若∠AED=20°,则∠BCD 的度数为()A.100°B.110°C.115°D.120°9.如图,E 是O 的直径AB 上一点,10AB =,2BE =,过点E 作弦CD AB ⊥,P 是弧AB 上一动点,连接DP ,过点A 作AQ PD ⊥,垂足为Q ,则OQ 的最小值为()A.5 B.25 C.352 D.35410.已知在扇形OAB 中,90AOB ∠=︒,4OB =,C 为弧AB 的中点,D 为半径OB 上一动点,点B 关于直线CD 的对称点为M ,若点M 落在扇形OAB 内(不含边界),则OD 长的取值范围是()A.42422OD << B.2242OD <<C.022OD << D.4224OD -<<二、填空题:11.方程223x x =的解是______.12.已知P 为O 内一点,1OP =,如果O 的半径是2,那么过P 点的最短弦长是______.13.已知正方形的周长为8,那么该正方形的外接圆的半径长为______.14.圆内接四边形ABCD 的内角::2:3:4A B C ∠∠∠=,则D ∠=________度.15.在半径为13的O 中,弦AB CD ,弦AB 和CD 间的距离为7,若24AB =,则CD 的长为_____________.16.如图,AB 为O 的直径,点E 是BA 延长线上的一点,EC 交O 于点D 、C ,20E ∠=︒,50DBC ∠=︒,则DOE ∠的度数为______.17.如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动,如果Q 点从A 点出发,沿图中所示方向按A B C D A →→→→滑动到A 止,同时点R 从B 点出发,沿图中所示方向按B C D A B →→→→滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路径长为______.18.如图,已知矩形ABCD 中,4AB =,5BC =,点E 在CD 边上,点F 为BE 的中点,将EF 绕点E 逆时针旋转90︒得EG ,当CE =______时,点A 、C 、G 三点共线.三、解答题19.解方程:(1)()219x +=;(2)2210x x +-=;(3)24280x x -+=;(4)()()233340x x +++-=.20.已知一元二次方程()22420k x x --+=有两个不相等的实数根.(1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程240x x k -+=与210x mx +-=有一个相同的根,求此时m 的值.21.(1)如图1,AB 是O 的直径、C 、D 是O 上的两点,若20BAC =︒∠,弧AD =弧CD .求:①ADC ∠的度数;②求DAC ∠的度数;(2)如图2,O 的弦AB 垂直平分半径OC ,若O 的半径为4,求弦AB 的长.22.(1)如图①,用尺规作图作出圆的一条直径EF (不写作法,保留作图痕迹);(2)如图②,A 、B 、C 、D 为圆上四点,AB ∥CD ,AB <CD ,请只用无刻度的直尺,画出圆的一条直径EF (不写画法,保留画图痕迹).23.如图,某地欲搭建圆弧形拱桥,设计要求跨度32AB =米,拱高8CD =米.(1)求该圆弧所在圆的半径;(2)在距离桥的一端点B 的4米处欲立一桥墩EF 支撑,求桥墩EF 高度.24.某厂家授权一淘宝卖家销售该厂生产的儿童写字台,双方就每套写字台的进价与销售达成如下协议:若当月仅售出1套写字台,则写字台的进价为800元/套,在此基础上,每多售出1套,进价就降低10元/套(即售出2套时、进价为790元/套,依此类推)但每套进价不低于500元.月底厂家将一次性返利付给淘宝实家,当月所售写字台可返利50元/套.(1)若该淘宝卖家当月售出5套,则每套写字台的进价为______元,若该淘宝卖家当月售出35套,则每套写字台的进价为______元;(2)如果写字台的销售价为1200元,该卖家计划当月盈利9600元,那么要卖出多少套写字台?(盈利=销售利润+返利)25.如图,在ABC 中,AC BC =,D 是AB 上一点,⊙O 经过点A 、C 、D ,交BC 于点E ,过点D 作//DF BC ,交⊙O 于点F ,求证:(1)四边形DBCF 是平行四边形(2)AF EF =26.如图1、在直角坐标系中,()5,0A ,()0,8B ,P 是y 轴的正半轴上一动点,(1)C 是直线AP 上一动点,连接BC ,若点C 在第二象限,且ABC 为等腰直角三角形,求出所有满足条件的点C 的坐标;(2)如图2,作点O 关于直线AP 的对称点Q ,连接AQ PQ 、,过直线AB 上一点D 作x 轴的平行线,交y 轴于点E ,已知点D 的横坐标为52①连接BQ ,BQ 的最小值为______.②当点Q 落在直线DE 上时,求APQ △的面积.27.图,在Rt ABC 中,90CAB ∠=︒,AC =3,AB =4,AD ⊥BC 于点D ,射线CE 平行AB 交AD 的延长线于点E ,P 是射线CE 上一点(在点E 的右侧),连结AP 交BC 于点F .(1)求证:~ACE BAC .(2)若35CE EP =,求PF AF 的值;(3)以PF 为直径的圆经过△BDE 中的某一个顶点时,求所有满足条件的EP 的长.答案部分一、选择题【1题答案】【答案】D【2题答案】【答案】A【3题答案】【答案】D【4题答案】【答案】B【5题答案】【答案】C【6题答案】【答案】D【7题答案】【答案】B【8题答案】【答案】B【9题答案】【答案】A【10题答案】【答案】A二、填空题:【11题答案】【答案】10x =,232x =【12题答案】【答案】【13题答案】【答案】【14题答案】【15题答案】【答案】10或【16题答案】【答案】20︒【17题答案】【答案】2π【18题答案】【答案】2514三、解答题【19题答案】【答案】(1)12x =,24x =-(2)11x =-+21x =-(3)12x x ==(4)17x =-,22x =-【20题答案】【答案】(1)4k <且2k ≠(2)0或83-【21题答案】【答案】(1)①110ADC ∠=︒;35DAC ∠=︒;(2)【22题答案】【答案】见解析【23题答案】【答案】(1)20米(2)4m【24题答案】【答案】(1)760;500(2)要卖出16套写字台【答案】(1)证明见解析;(2)证明见解析【26题答案】【答案】(1)点C 的坐标为()8,3-或33,22⎛⎫-⎪⎝⎭(25-;②APQ △的面积为258或25【27题答案】【答案】(1)证明过程见解析(2)32(3)8128或4或0。
人教版九年级上册第1课时用一元二次方程解决传播问题与数字等问题(153)1.为了宣传环保,小明写了一篇倡议书,决定用微博转发的方式传播,他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发倡议书,每个好友转发倡议书之后,又邀请n个互不相同的好友转发倡议书,依此类推,已知经过两轮传播后,共有111人参与了该传播活动,则n=.2.三个连续的正奇数,最大数与最小数的积比中间的一个数的6倍多3,求这三个数.3.某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过进价的30%.(1)根据物价局的规定,此商品每件售价最高可定为多少元?(2)若每件商品售价定为x元,则可卖出(170−5x)件.如果商店预期盈利280元,那么每件商品的售价应定为多少元?4.某剧场共有1161个座位,已知每行的座位数都相同,且每行的座位数比总行数少16,求这个剧场每行有多少个座位.5.根据题意解答如下题目(1)从n边形(n>3)的一个顶点出发的对角线有条;(2)若一个凸多边形共有14条对角线,那么它是几边形?(3)是否存在有21条对角线的凸多边形?如果存在,它是几边形?如果不存在,请说明理由.6.一个两位数,个位数字比十位数字大3,且个位数字的平方刚好等于这个两位数,求这个两位数.7.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,那么比赛组织者应邀请多少个队参赛?解题方案:设比赛组织者应邀请x个队参赛.(1)用含x的代数式表示:那么每个队要与其他个队各赛一场.又因为甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以一共有场比赛;(2)根据题意,列出相应方程:;(3)解这个方程,得;(4)检验:当时,不符合题意,舍去;(5)答:比赛组织者应邀请个队参赛.8.一次同学聚会,每两人都相互握了一次手,小芳统计这次聚会上所有人一共握了28次手,则这次聚会的人数是()A.5B.6C.7D.89.一个小组有若干人,新年时互送贺卡,若全组共送贺卡72张,则这个小组共有多少人?10.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场()A.4个B.5个C.6个D.7个11.已知一个两位数,个位上的数字比十位上的数字小4,将这个两位数的十位数字和个位数字交换位置后,得到的新两位数与原两位数的积为1612,那么这两个两位数中较大的两位数是()A.95B.59C.26D.6212.有一人患了流感,经过两轮传染后共有49人患了流感.设每轮传染中平均一个人传染了x人,则可列方程为()A.x2=49B.(x+1)2=49C.x(x+1)=49D.(x−1)2=4913.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出()A.2个小分支B.3个小分支C.4个小分支D.5个小分支14.某生物实验室需培育一群有益菌.现有60个活体样本,经过两轮培植后,总和达到24000个,其中每个有益菌每一次可分裂出相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后共有多少个有益菌?15.若两个连续奇数的积为63,则这两个数的和为()A.16B.17C.±16D.±1716.如图是某月的月历表,在此月历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为.参考答案1.【答案】:10【解析】:由题意,得n+n2+1=111,解得n1=−11(舍去),n2=102.【答案】:设这三个连续的正奇数分别为2n−1,2n+1,2n+3.(n为正整数) 根据题意,得(2n+3)(2n−1)−6(2n+1)=3,解这个方程,得n1=3,n2=−1(舍去).当n=3时,2n−1=5,2n+1=7,2n+3=9.即这三个数分别为5,7,9【解析】:设出三个连续正奇数,利用等量关系:最大数与最小数的积比中间的一个数的6倍多3列出方程,解决问题3(1)【答案】16×(1+30%)=20.8(元).答:此商品每件售价最高可定为20.8元【解析】:进价加上进价的30%即为最高售价(2)【答案】根据题意,得(x−16)(170−5x)=280.整理,得x2−50x+600=0.解得x1=20,x2=30.∵此商品每件售价最高不得高于20.8元,∴x=30不合题意,应舍去.答:每件商品的售价应定为20元【解析】:根据:每件盈利×销售件数=总盈利额;其中,每件盈利=每件售价−每件进价.建立等量关系.4.【答案】:设这个剧场每行有x个座位.根据题意,得x(x+16)=1161,解这个方程,得x1=27,x2=−43(舍去).答:这个剧场每行有27个座位【解析】:设每行有x个座位,则总行数为x+16.根据:总座位数=每行的座位数×总行数,建立等量关系列方程求解5(1)【答案】(n−3)【解析】:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.从四边形的一个顶点出发的对角线有1条;从五边形的一个顶点出发的对角线有2条;从六边形的一个顶点出发的对角线有3条;⋯从n边形的一个顶点出发的对角线有(n−3)条(2)【答案】设这个凸多边形是n边形,由题意,得n(n−3)=14.2解得n1=7,n2=−4(不合题意,舍去).答:这个凸多边形是七边形.【解析】:从n边形的一个顶点出发有n−3条对角线,共有n个顶点,所以乘以n,由于每条对角线有两个端点,这样每条对角线都多算一次,除以2,条对角线,由此列出方程求解即n边形共有n(n−3)2(3)【答案】不存在.理由:假设存在n边形有21条对角线.=21.由题意,得n(n−3)2.解得n=3±√1772不是正整数,故不合题意.因为多边形的边数为正整数,而3±√1772所以不存在有21条对角线的凸多边形条对角线,由此列出方程求解,由于解出的n不【解析】:根据n边形共有n(n−3)2是正整数,故不合题意,不存在.6.【答案】:设这个两位数的个位数字为x,则十位数字为x−3.由题意,得x2=10(x−3)+x.解得x1=6,x2=5.当x=6时,x−3=3;当x=5时,x−3=2.答:这个两位数是36或25【解析】:设个位数字为x,则十位数字为x−3,这个两位数是10(x−3)+x. 然后根据个位数字的平方刚好等于这个两位数,列出方程求解7.【答案】:(x−1);12x(x−1);12x(x−1)=28;x1=8,x2=−7x1=−7,x2=8;x=−7;8【解析】:根据题意填空,并列出一元二次方程,求解,舍去小于0的值,得出结果8.【答案】:D【解析】:设这次聚会的人数是x.根据题意,得12x(x−1)=28,解得x1=8,x2=−7(舍去).故选 D9.【答案】:设这个小组共有x人.根据题意,得x(x−1)=72.解得x1=9,x2=−8(不合题意,舍去).答:这个小组共有9人【解析】:每个人都要送给他自己以外的其余人,等量关系为:人数×(人数−1)=72,然后把相关数值代入计算10.【答案】:B【解析】:飞机场可以看作是点,航线可以看作过点画的线段.设共有n个飞机场,则n(n−1)2=10,解得n1=5,n2=−4(舍去).故选B.11.【答案】:D【解析】:设原来的数个位上的数字为x,则原来的数十位上的数字就是x+4,由题意可列方程[10(x+4)+x](10x+x+4)=1612,解出方程得x1=−6(舍去),x2=2,所以这两个数分别为62和26,较大的两位数是62.12.【答案】:B【解析】:根据题意,得x+1+x(x+1)=49,即(x+1)2=49.故选 B13.【答案】:B【解析】:设每个支干长出x个小分支,根据题意,得1+x+x·x=13,整理,得x2+x−12=0,解得x1=3,x2=−4(舍去).故每个支干长出3个小分支14(1)【答案】设每轮分裂中平均每个有益菌可分裂出x个有益菌.根据题意,得60x2=24000.解得x1=20,x2=−20(不合题意,舍去).答:每轮分裂中平均每个有益菌可分裂出20个有益菌【解析】:细菌分裂后,原细菌就不存在了,由此得第一轮培植后,细菌总和为60x,第二轮培植后,细菌总和为60x2,由此列方程求解(2)【答案】60×203=480000(个).答:按照这样的分裂速度,经过三轮培植后共有480000个有益菌【解析】:由(1)可知经过三轮培植后,共有60x3个有益菌,将x的值代入计算15.【答案】:C【解析】:设较小的奇数为x,则另一个奇数为x+2.根据题意,得x(x+2)=63,解得x1=7,x2=−9,则另一个奇数为9或−7,所以这两个数的和为±16.故选C.16.【答案】:144【解析】:设最小数为x,则最大数为x+16.根据题意,得x(x+16)=192,解得x1=8,x2=−24(不合题意,舍去).故第一行的三个数为8,9,10,下面一行的数为15,16,17,再下面一行的三个数为22,23,24,所以这9个数的和为8+9+10+15+16+17+22+23+24=144。
人教版九年级上册第1课时变化率问题与一元二次方程(353)1.某校九年级组织一次篮球比赛,每两个班之间都赛一场,共进行了55场比赛,则该校九年级共有个班2.一条直线上有n个点,共有190条线段,求n的值.3.在印度古算术书中有这样一首诗:“一群猴子分两队,高高兴兴在游戏;八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮;告我总数共多少,两队猴子在一起.”大意是说:一群猴子分成两队,一队猴子数是猴子总数的1的平方,另一队猴子数是12,那么猴子总数是多少?84.《九章算术》“勾股”章中有一题:“今有户高多于广六尺八寸,两相去适一丈.问户高,广各几何.”大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?5.某楼盘2014年房价为每平方米8100元,经过两年连续降价后,2016年房价为每平方米7600元.设该楼盘这两年房价平均每年的降低率为x,根据题意可列方程为.6.某地区2014年投入教育经费2900万元,2016年投入教育经费3509万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)按照《义务教育法》规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2018年需投入教育经费4250万元,如果按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费是否能达到4250万元?请说明理由.7.一个两位数比它的个位数字的平方小2,并且个位数字比十位数字大3.下列各数中,符合要求的两位数是()A.25B.36C.47D.598.相邻的两个自然数,它们的平方和比这两数中较小数的2倍大51,则这两个自然数分别为9.三个连续的正奇数,最大数与最小数的积比中间的一个数的6倍多3,求这三个数.10.新年里,一个小组有若干个人,若每人给小组的其他成员赠送一张贺年卡,则全组共赠送贺年卡72张,此小组的人数为()A.7B.8C.9D.1011.近年来某县加大了对教育经费的投入,2014年投入2500万元,2016年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500B.2500(1+x)2=3500C.2500(1+x%)2=3500D.2500(1+x)+2500(1+x)2=350012.有一人患了流感,经过两轮传染后共有49人患了流感,设每轮传染中平均一人传染了x人,则x的值为()A.5B.6C.7D.813.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是73,则每个支干又长出多少个小分支?如果设每个支干又长出x个小分支,那么依题意可列方程为14.某学校机房有100台学生用电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都被感染?15.某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2015年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2017年投资7.2亿元人民币,那么每年投资的增长率为()A.20%B.40%C.−220%D.30%16.电脑病毒传播非常快,如果一台电脑被感染,经过两轮传染后就会有81台电脑被感染,若每轮感染中平均一台电脑会感染x台电脑,则下列方程正确的是()A.x(x+1)=81B.1+x+x2=81C.1+x+x(x+1)=81D.1+(x+1)2=81参考答案2.【答案】:解:根据题意,得12n(n−1)=190, 解这个方程,得n1=20,n2=−19(舍去).∴n=203.【答案】:解:设共有x只猴子,根据题意,得(18x)2+12=x,解这个方程,得x1=16,x2=48.答:猴子总数为16或48.4.【答案】:设门的高为x尺,则宽为(x−6.8)尺.根据题意,得x2+(x−6.8)2=102,即2x2−13.6x−53.76=0,解得x1=9.6,x2=−2.8(不合题意,舍去),∴x−6.8=2.8.答:门的高是9.6尺,宽是 2.8尺.【解析】:本题涉及到古代数学的一道应用型题,注意直角三角形的三边关系符合勾股定理.5.【答案】:8100(1−x)2=76006(1)【答案】设年平均增长率为x,根据题意2015年投入教育经费2900(1+x)万元,2016年投入教育经费2900(1+x)2万元.则2900(1+x)2=3509,解得x=0.1=10%或x=−2.1(不合题意,舍去).答:2014年至2016年该地区投入教育经费的年平均增长率为10%(2)【答案】不能.理由:2018年该地区投入的教育经费是3509×(1+10%)2=4245.89(万元).因为4245.89<4250,所以如果按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费不能达到4250万元7.【答案】:C【解析】:设这个两位数的十位数字为x,则个位数字为(x+3).根据题意,得10x+x+3=(x+3)2−2,解得x1=1,x2=4.这个两位数为14或47.8.【答案】:5,6【解析】:设较小的自然数为x,则较大的自然数为(x+1).根据题意,得x2+(x+1)2=2x+51,解得x1=5,x2=−5(舍去).即这两个自然数分别为5,6.9.【答案】:设这三个连续的正奇数分别为2n−1,2n+1,2n+3.(n为正整数) 根据题意,得(2n+3)(2n−1)−6(2n+1)=3,解这个方程,得n1=3,n2=−1(舍去).当n=3时,2n−1=5,2n+1=7,2n+3=9.即这三个数分别为5,7,9【解析】:设出三个连续正奇数,利用等量关系:最大数与最小数的积比中间的一个数的6倍多3列出方程,解决问题10.【答案】:C【解析】:设此小组的人数为x,根据题意,得x(x−1)=72,解这个方程,得x1=9,x2=−8(舍去)11.【答案】:B【解析】:求平均变化率的方法:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“-”)12.【答案】:B【解析】:根据题意,得1+x+x(x+1)=49,解得x1=6,x2=−8(舍去)13.【答案】:x2+x+1=73【解析】:设每个支干又长出x个小分支,根据题意,得x2+x+1=7314(1)【答案】解:设每轮感染中平均一台电脑会感染x台电脑.根据题意,得1+x+x(1+x)=16,解得x1=3,x2=−5(舍去).答:每轮感染中平均一台电脑会感染3台电脑(2)【答案】三轮感染后,被感染的电脑台数为16+16×3=64,四轮感染后,被感染的电脑台数为64+64×3=256>101.答:四轮感染后机房内所有电脑都被感染15.【答案】:A【解析】:设每年投资的增长率为x.根据题意,得5(1+x)2=7.2,解得x1=0.2=20%,x2=−2.2(舍去).故每年投资的增长率为20%16.【答案】:C。
人教版九年级上册数学第21章《一元二次方程实际应用》能力提升练习题基础题训练(一):限时30分钟1.风筝又称“纸鸢”、“鸢儿”,放风筝是民间传统游戏之一,也是清明时节人们所喜爱的活动.小李打算抓住这一机遇,以每个20元的成本制作了30个风筝,再以每个40元的价格售出,很快就被一抢而空,于是小李计划加紧制作第二批风筝.(1)预计第二批风筝的成本是每个15元,仍以原价出售,若两批风筝的总利润不低于2850元,则第二批至少应该制作多少个风筝?(2)在实际制作过程中,小李按照(1)中风筝的最低数量进行制作,但制作风筝的成本比预期的15元多了a%(a>10),于是小李决定将售价也提高a%,附近的商户受到小李的启发,也纷纷卖起了风筝,在市场冲击下,小李实际还剩下a%的风筝没卖出去,但仍然比第一次获利多1668元,求a的值.2.新能源汽车投放市场后,有效改善了城市空气质量.经过市场调查得知,某市去年新能源汽车总量已达到3250辆,预计明年会增长到6370辆.(1)求今、明两年新能源汽车数量的平均增长率;(2)为鼓励市民购买新能源汽车,该市财政部门决定对今年增加的新能源汽车给予每辆0.8万元的政府性补贴.在(1)的条件下,求该市财政部门今年需要准备多少补贴资金?3.我市某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲产品或1件乙产品,根据市场需求和生产经验甲产品每件可获利15元,乙产品每件可获利120元,而实际生产中,生产乙产品需要额外支出一定的费用,经过核算,每生产1件乙产品,当天平均每件获利减少2元,设每天安排x人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲65﹣x15乙x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多650元,试问:该企业每天生产甲、乙产品可获得总利润是多少元?4.毎年6月,学校门口的文具店都会购进毕业季畅销商品进行销售.已知校门口“小光文具店“在5月份就售出每本8元的A种品牌同学录90本,每本10元的B种品牌同学录175本.(1)某班班长帮班上同学代买A种品牌和B种品牌同学录共27本,共花费246元,请问班长代买A种品牌和B种品牌同学录各多少本?(2)该文具店在6月份决定将A种品牌同学录每本降价3元后销售,B种品牌同学录每本降价a%(a>0)后销售.于是,6月份该文具店A种品牌同学录的销量比5月份多了a%,B种品牌同学录的销量比5月份多了(a+20)%,且6月份A、B两种品牌的同学录的销售总额达到了2550元,求a的值.5.重庆不仅是网红城市,更是拥有长安,力帆等大型车企的一座汽车城,为了更好的推广和销售汽车,每年都会在悦来会展中心举办大型车展.去年该车展期间大众旗下两品牌汽车迈腾和途观L共计销售240辆,迈腾销售均价为每辆20万元,途观L销售均价为每辆30万元,两种车型去年车展期间销售额共计5600万元.(1)这两种车型在去年车展期间各销售了多少辆?(2)在今年的该车展上,各大汽车经销商纷纷采取降价促销手段,而途观L坚持不降价,与去年相比,销售均价不变,销量比去年车展期间减少了a%,而迈腾销售均价比去年降低了a%,销量较去年增加了2a%,两种车型今年车展期间销售总额与去年相同,求a的值.基础题训练(二):限时30分钟6.小王开了一家便利店.今年1月份开始盈利,2月份盈利5000元,4月份的盈利达到7200元,且从2月到4月,每月盈利的平均增长率都相同.(1)求每月盈利的平均增长率;(2)按照这个平均增长率,预计5月份这家商店的盈利将达到多少元?7.如图,在矩形ABCD中,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?(2)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?8.如图,在宽为20m,长为32m的矩形地面上,修筑同样宽的道路(即图中阴影部分),余下的部分种上草坪,要使草坪的面积为540m2,求道路的宽.9.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤.通过调查发现,这种水果每斤的售价每降低1元,每天可多售出200斤.为了保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?10.某服装店销售一批衬衫,每件进价150元,开始以每件200元的价格销售,每星期能卖出20件,后来因库存积压,决定降价销售,经两次降价后的每件售价162元,每星期能卖出96件.(1)已知两次降价百分率相同,求每次降价的百分率;(2)聪明的店主在降价过程中发现,适当的降价既可增加销售又可增加收入,且每件衬衫售价每降低1元,销售会增加2件,若店主想要每星期获利1750元,应把售价定为多少元?参考答案1.解:(1)设第二批制作x个风筝,(40﹣15)x+(40﹣20)×30≥2850,解得,x≥90,答:第二批至少应该制作90个风筝;(2)[40(1+a%)﹣15(1+a%)]×90(1﹣a%)﹣15(1+a%)×90×a%﹣(40﹣20)×30=1668,解得,a=20或a=5(舍去),答:a的值是20.2.解:(1)设今、明两年新能源汽车数量的平均增长率为x,由题意,得3250(1+x)2=6370.解得,x1=0.4=40%,x2=﹣2.4(舍去).答:今、明两年新能源汽车数量的平均增长率为40%;(2)3250×40%×0.8=1040(万元).答:该市财政部门今年需要准备1040万元补贴资金.3.解:(1)设每天安排x人生产乙产品,则每天安排(65﹣x)人生产甲产品,每天可生产x件乙产品,每件的利润为(120﹣2x)元,每天可生产2(65﹣x)件甲产品.故答案为:2(65﹣x);120﹣2x.(2)依题意,得:15×2(65﹣x)﹣(120﹣2x)•x=650,整理,得:x2﹣75x+650=0解得:x1=10,x2=65(不合题意,舍去),∴15×2(65﹣x)+(120﹣2x)•x=2650.答:该企业每天生产甲、乙产品可获得总利润是2650元.4.解:(1)设班长代买A种品牌同学录x本,B种品牌同学录y本,依题意,得:,解得:.答:班长代买A种品牌同学录12本,B种品牌同学录15本.(2)依题意,得:(8﹣3)×90(1+a%)+10(1﹣a%)×175[1+(a+20)%]=2550,整理,得:a2﹣20a=0,解得:a1=20,a2=0(舍去).答:a的值为20.5.解:(1)设去年车展期间迈腾销售了x辆,途观L销售了y辆,依题意,得:,解得:.答:去年车展期间迈腾销售了160辆,途观L销售了80辆.(2)依题意,得:20(1﹣a%)×160(1+2a%)+30×80(1﹣a%)=5600,整理,得:8a﹣0.64a2=0,解得:a1=12.5,a2=0(舍去).答:a的值为12.5.6.解:(1)设每月盈利平均增长率为x,根据题意得:5000(1+x)2=7200.解得:x1=20%,x2=﹣220%(不符合题意舍去)答:每月盈利的平均增长率为20%;(2)7200(1+20%)=8640,答:按照这个平均增长率,预计5月份这家商店的盈利将达到8640元.7.解:(1)过点P作PE⊥CD于E.则根据题意,得设x秒后,点P和点Q的距离是10cm.(16﹣2x﹣3x)2+62=102,即(16﹣5x)2=64,∴16﹣5x=±8,∴x1=,x2=;∴经过s或sP、Q两点之间的距离是10cm;(2)连接BQ .设经过ys 后△PBQ 的面积为12cm 2.①当0≤y ≤时,则PB =16﹣3y , ∴PB •BC =12,即×(16﹣3y )×6=12,解得y =4; ②当<x ≤时,BP =3y ﹣AB =3y ﹣16,QC =2y ,则BP •CQ =(3y ﹣16)×2y =12,解得y 1=6,y 2=﹣(舍去); ③<x ≤8时,QP =CQ ﹣PQ =22﹣y ,则QP •CB =(22﹣y )×6=12,解得y =18(舍去).综上所述,经过4秒或6秒△PBQ 的面积为 12cm 2.8.解:设道路的宽x 米,则(32﹣x )(20﹣x )=540,解得:x =2,x =50(舍去),答:道路的宽是2米.9.解:(1)∵售价每降低1元,每天可多售出200斤,∴售价降低x 元时,每天销售量为:100+200x .故答案为:200x +100.(2)由已知得:(4﹣2﹣x )(200x +100)=300,整理得:2x 2﹣3x +1=0,解得:x1==0.5,x2=1,当x=0.5时,200x+100=200,∵200<260,∴x=0.5不合适.∴销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低1元.10.解:(1)设每次降价的百分率为x,200(1﹣x)2=162解得,x1=0.1,x2=1.9(舍去),即每次降价的百分率是10%;(2)设店主将售价降价x元,(200﹣150﹣x)(20+2x)=1750解得,x1=15,x2=25∴200﹣15=185,200﹣25=175,即应把售价定为185元或175元.。
一、选择题1.用配方法解方程x 2﹣6x ﹣3=0,此方程可变形为( )A .(x ﹣3)2=3B .(x ﹣3)2=6C .(x+3)2=12D .(x ﹣3)2=12D 解析:D【分析】先移项,再把方程两边同时加上一次项系数一半的平方,最后配方即可得新答案.【详解】由原方程移项得:x 2﹣6x =3,方程两边同时加上一次项系数一半的平方得:x 2﹣6x+9=12,配方得;(x ﹣3)2=12.故选:D .【点睛】此题主要考查配方法的运用,配方法的一般步骤为:移项、二次项系数化为1、两边同时加上一次项系数一半的平方、配方完成;熟练掌握配方法的步骤并熟记完全平方公式是解题关键.2.用配方法解方程x 2﹣4x ﹣7=0,可变形为( )A .(x+2)2=3B .(x+2)2=11C .(x ﹣2)2=3D .(x ﹣2)2=11D 解析:D【分析】方程常数项移到右边,两边加上4变形得到结果即可.【详解】解:x 2﹣4x ﹣7=0,移项得:247x x -=配方得:24474x x -+=+ ,即2()211x -=故答案为:D .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.3.x=-2是关于x 的一元二次方程2x 2+3ax -2a 2=0的一个根,则a 的值为( ) A .1或4B .-1或-4C .-1或4D .1或-4D解析:D【分析】根据一元二次方程的解的定义知,x=-2满足关于x 的一元二次方程2x 2+3ax -2a 2=0,可得出关于a 的方程,通过解方程即可求得a 的值.【详解】解:将x=-2代入一元二次方程2x 2+3ax -2a 2=0,得:()()222-23-2-20a a ⨯+⋅=,化简得:2+340a a -=,解得:a=1或a=-4.故选:D .【点睛】本题考查了一元二次方程的解的定义.一元二次方程ax 2+bx+c=0(a≠0)的所有解都满足该一元二次方程的关系式.4.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根A 解析:A【分析】直接把已知数据代入进而得出c 的值,再利用根的判别式求出答案.【详解】∵小刚在解关于x 的方程20ax bx c ++=(0a ≠)时,只抄对了1a =,4b =,解出其中一个根是1x =-,∴()()21410c -+⨯-+=, 解得:3c =,∵核对时发现所抄的c 比原方程的c 值小2,故原方程中5c =,则224441540b ac =-=-⨯⨯=-<,则原方程的根的情况是不存在实数根.故选:A .【点睛】本题主要考查了根的判别式,正确利用方程的解得出c 的值是解题关键.5.若整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根,并且使得关于y 的分式 方程32133ay y y y -+=--有整数解,则符合条件的整数a 的个数为( ) A .2B .3C .4D .5B 解析:B【分析】对于关于x 的一元二次方程()2210a x -+=有两个实数根,利用判别式的意义得到a-2≠0且2a+3≥0且△=2-4(a-2)≥0,解不等式组得到整数a 为:-1,0,1,3,4,5;接着解分式方程得到y=61a -,而y≠3,则61a -≠3,解得a≠3,从而得到当a=-1,0,4时,分式方程有整数解,然后求符合条件的所有a 的个数.解:∵整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根, ∴a-2≠0且2a+3≥0且△=2-4(a-2)≥0, ∴31122a -≤≤且a≠2, ∴整数a 为:-1,0,1,3,4,5;去分母得3-ay+3-y=-2y ,解得y=61a -, 而y≠3,则61a -≠3,解得a≠3, 当a=-1,0,4时,分式方程有整数解,∴符合条件的所有a 的个数是3.故选:B .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.6.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为( )A .12B .15C .12或15D .18B 解析:B【分析】首先求出方程的根,再根据三角形三边关系定理列出不等式,确定是否符合题意.【详解】解:解方程x 2-9x+18=0,得x 1=3,x 2=6,当3为腰,6为底时,不能构成等腰三角形;当6为腰,3为底时,能构成等腰三角形,周长为6+6+3=15.故选:B .【点睛】本题考查了解一元二次方程,从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.7.若关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根,则a 的取值范围是( )A .a <-2B .a >-2C .-2<a <0D .-2≤a <0C 解析:C由关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根可得2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭,解不等式即可求出a 的取值范围. 【详解】∵关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根, ∴2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭, 解得:a >−2,∵a <0,∴−2<a <0.故选C .【点睛】本题考查一元二次方程根的判别式,掌握根的判别式的应用为解题关键.8.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .x 2+65x-350=0B .x 2+130x-1400=0C .x 2-130x-1400=0D .x 2-65x-350=0A解析:A【分析】 本题可设长为(80+2x ),宽为(50+2x ),再根据面积公式列出方程,化简即可.【详解】解:依题意得:(80+2x )(50+2x )=5400,即4000+260x+4x 2=5400,化简为:4x 2+260x-1400=0,即x 2+65x-350=0.故选:A .【点睛】本题考查的是一元二次方程的应用,解此类题目要注意运用面积的公式列出等式再进行化简.9.已知关于x 的一元二次方程()22210x m x m -+=-有实数根,则m 的取值范围是( )A .0m ≠B .14mC .14m <D .14m >B 解析:B【分析】 由方程有实数根即△=b 2﹣4ac ≥0,从而得出关于m 的不等式,解之可得.【详解】解:根据题意得,△=b 2﹣4ac =[﹣(2m ﹣1)]2﹣4m 2=﹣4m +1≥0,解得:14m, 故选:B .【点睛】本题主要考查根的判别式,熟练掌握一元二次方程的根与判别式间的关系是解题的关键. 10.实数,m n 分别满足方程2199910m m ++=和219990n n ++=,且1mn ≠,求代数式41mn m n++的值( ) A .5-B .5C .10319-D .10319A 解析:A【分析】 由219990n n ++=可得211199910n n⋅+⋅+=,进而可得1,m n 是方程2199910x x ++=的两个根,然后根据一元二次方程的根与系数的关系可求解.【详解】 解:由219990n n ++=可得211199910n n ⋅+⋅+=, ∴1,m n是方程2199910x x ++=的两个根, ∴19911,1919m m n n +=-⋅=, ∴4119914451919mn m m m n n n ++=+⋅+=-+⨯=-; 故选A .【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.二、填空题11.方程2(3)30x x -+=的二次项系数为________,一次项系数为________,常数项为________.该方程判别式的值为_________,由此可以判断它的根的情况为___________.2-6312有两个不相等的实数根【分析】先将方程化为一般形式再计算出判别式的值根据结果判断根的情况【详解】解:化简可得:二次项系数为2一次项系数为-6常数项为3该方程判别式的值为由此可以判断它的根的 解析:2 -6 3 12 有两个不相等的实数根【分析】先将方程化为一般形式,再计算出判别式的值,根据结果判断根的情况.【详解】解:化简可得:22630x x -+=,二次项系数为2,一次项系数为-6,常数项为3, 该方程判别式的值为()2642312--⨯⨯=,由此可以判断它的根的情况为:有两个不相等的实数根,故答案为:2;-6;3;12;有两个不相等的实数根.【点睛】本题考查了一元二次方程,解题的关键是掌握定义和根的判别式.12.对于实数m ,n ,定义一种运算“*”为:*m n mn n =+.如果关于x 的方程()**1x a x 4=-有两个相等的实数根,则a =_______.0【分析】由于定义一种运算*为:m*n=mn+n 所以关于x 的方程x*(a*x )=变为(a+1)x2+(a+1)x+=0而此方程有两个相等的实数根所以根据判别式和一元二次方程的一般形式的定义可以得到关解析:0【分析】由于定义一种运算“*”为:m*n=mn+n ,所以关于x 的方程x*(a*x )=14-变为(a+1)x 2+(a+1)x+14=0,而此方程有两个相等的实数根,所以根据判别式和一元二次方程的一般形式的定义可以得到关于a 的关系式,即可解决问题.【详解】解:由x*(a*x )=14-得(a+1)x 2+(a+1)x+14=0, 依题意有a+1≠0,△=(a+1)2-(a+1)=0,解得,a=0,或a=-1(舍去).故答案为:0.【点睛】此题考查了新定义,一元二次方程的判别式,解题时首先正确理解新定义的运算法则得到关于x 的方程,然后根据判别式和一元二次方程的定义得到关系式解决问题. 13.一元二次方程 x ( x +3)=0的根是__________________.【分析】用因式分解法解方程即可【详解】解:x(x+3)=0x =0或x+3=0;故答案为:【点睛】本题考查了一元二次方程的解法掌握两个数的积为0这两个数至少有一个为0是解题关键解析:12x 0x -3==,【分析】用因式分解法解方程即可.【详解】解:x ( x +3)=0,x =0或 x +3=0,12x 0x -3==,;故答案为:12x 0x -3==,.【点睛】本题考查了一元二次方程的解法,掌握两个数的积为0,这两个数至少有一个为0是解题关键.14.一元二次方程(x +1)(x ﹣3)=3x +4化为一般形式可得_________.x2﹣5x ﹣7=0【分析】利用多项式乘多项式的法则展开再利用等式的性质进行移项合并进行计算【详解】(x +1)(x ﹣3)=3x +4x2﹣2x ﹣3=3x +4x2﹣5x ﹣7=0故答案是:x2﹣5x ﹣7=0解析:x 2﹣5x ﹣7=0 .【分析】利用多项式乘多项式的法则展开,再利用等式的性质进行移项、合并,进行计算.【详解】(x +1)(x ﹣3)=3x +4,x 2﹣2x ﹣3=3x +4,x 2﹣5x ﹣7=0.故答案是:x 2﹣5x ﹣7=0.【点睛】本题考查一元二次方程的变形,属于基础题型.15.某农场的粮食产量在两年内从增加3000t 到3630,t 则平均每年增产的百分率是______________.【分析】此题是平均增长率问题一般用增长后的量=增长前的量×(1+增长率)参照本题如果设平均每年增产的百分率为x 根据粮食产量在两年内从3000吨增加到3630吨即可得出方程求解【详解】解:设平均每年增 解析:10%【分析】此题是平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均每年增产的百分率为x ,根据“粮食产量在两年内从3000吨增加到3630吨”,即可得出方程求解.【详解】解:设平均每年增产的百分率为x ;第一年粮食的产量为:3000(1+x );第二年粮食的产量为:3000(1+x )(1+x )=3000(1+x )2;依题意,可列方程:3000(1+x )2=3630;解得:x=-2.1(舍去)或x=0.1=10%故答案为:10%.【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b . 16.对于任意实数a 、b ,定义:a ◆b =a 2+ab +b 2.若方程(x ◆2)﹣5=0的两根记为m 、n ,则(m +2)(n +2)=_____.-1【分析】根据新定义可得出mn 为方程x2+2x−1=0的两个根利用根与系数的关系可得出m +n =−2mn =−1变形(m +2)(n +2)得到mn +2(m +n )+4然后利用整体代入得方法进行计算【详解】 解析:-1【分析】根据新定义可得出m 、n 为方程x 2+2x−1=0的两个根,利用根与系数的关系可得出m +n =−2、mn =−1,变形(m +2)(n +2)得到mn +2(m +n )+4然后利用整体代入得方法进行计算.【详解】解:∵(x ◆2)﹣5=x 2+2x +4﹣5,∴m 、n 为方程x 2+2x ﹣1=0的两个根,∴m +n =﹣2,mn =﹣1,∴(m +2)(n +2)=mn +2(m +n )+4=﹣1+2×(﹣2)+4=﹣1.故答案为﹣1.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系:若方程两根为x 1,x 2,则x 1+x 2=b a -,x 1•x 2=c a. 17.等腰三角形ABC 中,8BC =,AB 、AC 的长是关于x 的方程2100x x m -+=的两根,则m 的值是___.或【分析】等腰三角形ABC 中边可能是腰也可能是底应分两种情况进行讨论分别利用根与系数的关系三角形三边关系定理求得方程的两个根进而求得答案【详解】解:∵关于x 的方程∴∴∵是等腰三角形的长是关于x 的方程解析:25或16【分析】等腰三角形ABC 中,边BC 可能是腰也可能是底,应分两种情况进行讨论,分别利用根与系数的关系、三角形三边关系定理求得方程的两个根,进而求得答案.【详解】解:∵关于x 的方程2100x x m -+=∴1a =,10b =-,c m = ∴1210b x x a +=-=,12c x x m a == ∵ABC 是等腰三角形,AB 、AC 的长是关于x 的方程2100x x m -+=的两根 ∴①当8BC =为底、两根AB 、AC 均为等腰三角形的腰时,有1210AB AC x x +=+=且AB AC =即5AB AC ==,此时等腰三角形的三边分别为5、5、8,根据三角形三边关系定理可知可以构成三角形,则1225m x x AB AC ==⋅=;②当8BC =为腰、两根AB 、AC 中一个为腰一个为底时,有122810x x x +=+=,即22x =,此时此时等腰三角形的三边分别为2、8、8,根据三角形三边关系定理可知可以构成三角形,则1216m x x AB AC ==⋅=.∴综上所述,m 的值为25或16.故答案是:25或16【点睛】本题考查了一元二次方程根与系数的关系、等腰三角形的性质、三角形三边关系定理等,熟练掌握相关知识点是解题的关键.18.已知1x ,2x 是关于x 的一元二次方程260x x a -+=的两个实数根,且221212x x -=,则a =________.8【分析】由一元二次方程根与系数的关系得:解方程可得进一步可得结论【详解】解:由一元二次方程根与系数的关系得:又∴∴∴解得故答案为:8【点睛】本题考查了根与系数的关系牢记两根之和等于-两根之积等于是解析:8【分析】由一元二次方程根与系数的关系得:126x x +=,12x x a =,解方程221212x x -=可得122x x -=,进一步可得结论.【详解】解:由一元二次方程根与系数的关系得:126x x +=,12x x a =,又221212x x -=,∴1212()()12x x x x +-=∴122x x -=,∴22121212()()43644x x x x x x a -=+-=-=解得,8a =,故答案为:8.【点睛】本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于c a ”是解题的关键. 19.若t 是一元二次方程()200++=≠ax bx c a 的根,则判别式24b ac =-△与完全平方式()22M at b =+的大小关系为___________相等【分析】由t 是一元二次方程()的根利用公式法解一元二次方程即可得出t 的值将其代入完全平方式中即可得出M 的值由此即可得出结论【详解】∵t 是一元二次方程()的根∴或当时则;当时则;∴故答案为:相等【解析:相等【分析】由t 是一元二次方程20ax bx c ++=(0a ≠)的根利用公式法解一元二次方程即可得出t 的值,将其代入完全平方式()22M at b =+中即可得出M 的值,由此即可得出结论.【详解】∵t 是一元二次方程20ax bx c ++=(0a ≠)的根,∴t =t =当t =()224M b b b ac =-=-;当t =时,则()224M b b b ac =-=-; ∴24b ac M =-=.故答案为:相等.【点睛】本题考查了根的判别式、完全平方式以及利用公式法解一元二次方程,利用公式法解一元二次方程求出t 值是解题的关键.20.为解决民生问题,国家对某药品价格分两次降价,该药品的原价是48元,降价后的价格是30元,若平均每次降价的百分率均为x ,可列方程.为____________.48(1-x)2=30【分析】本题的等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30由此即可求解【详解】解:设平均每次降价的百分率为x 则第一次降价后的价格为48(1-x)第二次降解析:48(1-x)2=30【分析】本题的等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30,由此即可求解.【详解】解:设平均每次降价的百分率为x ,则第一次降价后的价格为48(1-x),第二次降价后的价格为48(1-x)(1-x),由题意,可列方程为:48(1-x)2=30.故答案为:48(1-x)2=30.【点睛】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到相应的等量关系,注意第二次降价后的价格是在第一次降价后的价格的基础上得到的.三、解答题21.某口罩生产厂生产的口罩1月份平均日产量为30000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,厂决定从2月份起扩大产量,3月份平均日产量达到36300个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?解析:(1)口罩日产量的月平均增长率为10%;(2)预计4月份平均日产量为39930个.【分析】(1)根据题意设口罩日产量的月平均增长率为x ,根据题意列出方程即可求解;(2)结合(1)按照这个增长率,根据3月份平均日产量为36300个,即可预计4月份平均日产量.【详解】(1)设口罩日产量的月平均增长率为x ,根据题意,得30000(1+x )2=36300,解得x 1=−2.1(舍去),x 2=0.1=10%,答:口罩日产量的月平均增长率为10%;(2)36300(1+10%)=39930(个).答:预计4月份平均日产量为39930个.【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握增长率问题应用题的等量关系. 22.某商场销售一批衬衫,每件进价是120元,当每件衬衫售价为160元时,平均每天可售出20件,为了扩大销售,尽快清库,增加盈利,商场经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件,据此规律,请回答:(1)当每件衬衫降价5元时,每天可销售多少件衬衫?商场获得的日盈利是多少? (2)若商场平均每天想盈利1200元,则每件衬衫应降价多少元?解析:(1)当每件衬衫降价5元时,每天可销售30件衬衫,商场获得的日盈利是1050元;(2)每件衬衫应降价20元【分析】(1)利用日销售量202=+⨯每件衬衫降低的价格,即可求出每天可销售衬衫的数量,利用日盈利额=销售每件衬衫的利润×日销售量,即可求出日盈利额;(2)设每件衬衫应降价x 元,则每天可销售()202x +件衬衫,根据日盈利额=销售每件衬衫的利润×日销售量,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.【详解】(1)根据题意得,降价后,可售出:205230+⨯=(件)∴()1605120301050--⨯=(元)∴当每件衬衫降价5元时,每天可销售30件衬衫,商场获得的日盈利是1050元; (2)设每件衬衫应降价x 元,则每天可销售()202x +件衬衫依题意,得:()()1601202021200x x --+=,∴2302000x x -+=解得:110x =,220x =∵要尽快清库∴20x∴每件衬衫应降价20元.【点睛】本题考查了一元二次方程、有理数混合运算的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.23.解方程:2420x x ++=.解析:12x =-22x =-【分析】方程利用配方法求出解即可.【详解】∵2420x x ++=,∴242x x +=-,∴24424x x ++=-+,∴()222x +=, ∴2x =-±∴12x =-22x =-【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键. 24.用配方法解方程:22450x x +-=.解析:121,122x x =-+=-- 【分析】 利用完全平方公式进行配方解一元二次方程即可得.【详解】22450x x +-=,2245x x +=,2522x x +=, 252112x x ++=+, ()2712x +=,12x +=±,12x =-±,即1211x x =-+=--. 【点睛】 本题考查了利用配方法解一元二次方程,熟练掌握配方法是解题关键.25.某玩具店购进一批甲、乙两款乐高积木,它们的进货单价之和是720元.甲款积木零售单价比进货单价多80元.乙款积木零售价比进货单价的1.5倍少120元,按零售单价购买甲款积木4盒和乙款积木2盒,共需要2640元.(1)分别求出甲乙两款积木的进价.(2)该玩具店平均一个星期卖出甲款积木40盒和乙款积木24盒,经调查发现,甲款积木零售单价每降低2元,平均一个星期可多售出甲款积木4盒,商店决定把甲款积木的零售价下降()0m m >元,乙款积木的零售价和销量都不变.在不考虑其他因素的条件下,为了顾客能获取更多的优惠,当m 为多少时,玩具店一个星期销售甲、乙两款积木获取的总利润恰为5760元.解析:(1)(1)甲款每盒400元,乙款每盒320元;(2)40.【分析】(1)设甲款积木的进价为每盒x 元,乙款积木的进价为每盒y 元,列出二元一次方程组计算即可;(2)根据题意得出()()8040224405760m m -++⨯=,计算即可;【详解】(1)设甲款积木的进价为每盒x 元,乙款积木的进价为每盒y 元,则()()72048021.51202640x y x y +=⎧⎨++-=⎩, 解得:400320x y =⎧⎨=⎩. 答:甲款积木的进价为每盒400元,乙款积木的进价为每盒320元.(2)由题可得:()()8040224405760m m -++⨯=,解得120m =,240m =,因为顾客能获取更多的优惠,所以40m =.【点睛】本题主要考查了一元二次方程的应用,结合二元一次方程组求解计算是解题的关键. 26.已知关于x 的一元二次方程x 2-2x+k=0.(1)若方程有实数根,求k 的取值范围;(2)在(1)的条件下,如果k 是满足条件的最大的整数,且方程x 2-2x+k=0一根的相反数是一元二次方程(m-1)x 2-3mx-7=0的一个根,求m 的值.解析:(1)k≤1;(2)2【分析】(1)结合题意,根据判别式的性质计算,即可得到答案;(2)结合(1)的结论,可得k 的值,从而计算得方程x 2-2x+k=0的根,并代入到()21370m x mx ---=,通过求解一元一次方程方程,即可得到答案.【详解】(1)由题意知:44k ∆=-且0∆≥即:4-4k≥0∴k≤1(2)k≤1时,k 取最大整数1当k=1时,221x x -+的解为:121x x ==根据题意,1x =是方程()21370m x mx ---=的一个根 ∴()()()2113170m m -⨯--⨯--= ∴m=2.【点睛】本题考查了一元二次方程、一元一次方程的知识;解题的关键是熟练掌握一元二次方程判别式、一元一次方程的性质,从而完成求解.27.计算题(1)解方程:2690x x ++= (2)解不等式组:3152(2)7x x x ->⎧⎨+<+⎩解析:(1)123x x ==-; (2)23x <<【分析】(1)利用因式分解法求解即可.(2)分别求出两个不等式的解集,最后找出公共部分即可.【详解】解:(1)2690x x ++=因式分解得:()230x +=解得:123x x ==-.(2)()31512272x x x ->⎧⎨+<+⎩ 解不等式1得:2x >解不等式2得:3x <∴不等式组的解集是23x <<.【点睛】本题考察解一元二次方程和一元一次不等式组,解题的关键是:(1)用因式分解法求解一元二次方程(2)不等式组解集的确定,原则是“同大取大,同小取小,大小小大中间找,大大小小找不到”.28.解方程(1)2420x x -+=(2)()255210x x ++= (3)2560x x -+=(4)()3133x x x +=+解析:(1)1222x x ==2)121x x ==-;(3)1232x x ==,;(4)1211x x =-=, 【分析】(1)直接利用配方法解方程得出答案即可;(2)方程整理后,利用利用配方法解方程得出答案即可;(3)利用分解因式法解方程即可;(4)方程整理后,利用提取公因式法分解因式进而解方程即可.【详解】(1)2420x x -+=,移项得:242x x -=-,配方得:24424x x -+=-+,即2(2)2x -=,开方得:2x -=,解得:1222x x ==(2)()255210x x ++=, 整理得:2210x x ++=,即2(1)0x +=,∴121x x ==-;(3)2560x x -+=,因式分解得:()()320x x --=,∴30x -=,20x -=,∴1232x x ==,;(4)()3133x x x +=+,整理得:()()110x x x +-+=,因式分解得:()()110x x +-=,∴10x +=,10x -=,∴1211x x =-=,. 【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.。
初三年级2024学年第一学期数学测试卷一.选择题(每小题3分,10小题,共30分)1.下列给出的四组线段中,是成比例线段的是()A.a=1,b=,c=,d=2B.a=,b=,c=2,d=3C.a=2,b=4,c=6,d=9D.a=1,b=2,c=3,d=42.菱形和矩形都具有的性质是()A.对角线互相垂直B.对角线长度相等C.对角线平分一组对角D.对角线互相平分3.如果方程(m﹣3)x m2−7−x+3=0,是关于x的一元二次方程,那么m的值为()A.±3B.3C.﹣3 D.04.校园里一片小小的树叶(图1),也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP >PB),如果AB的长度为10cm,那么AP的长度为()cm.A.﹣1B.2﹣2C.5﹣5D.10﹣105.在估算一元二次方程x2+2x﹣4=0的根时,小晗列表如表:x1 1.1 1.2 1.3 1.4 x2+2x﹣4﹣1﹣0.59﹣0.160.290.76由此可估算方程x2+2x﹣4=0的一个根x的范围是()A.1<x<1.1B.1.1<x<1.2C.1.2<x<1.3D.1.3<x<1.46.如图2,一块矩形ABCD绸布的长AB=a,宽AD=3,按照图中的方式将它裁成相同的三面矩形彩旗,如果裁出的每面彩旗与矩形ABCD绸布相似,则a的值等于()A.3B.2C.3D.27.如图3,从一个大正方形中截去面积为3cm2和12cm2的两个小正方形,若随机向大正方形内投一粒米,则米粒落在图中阴影部分的概率为()A.B.C.D.图1 图2 图38.如图4,AC、BD是四边形ABCD的两条对角线,顺次连接四边形ABCD各边中点得到四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A.AC⊥BD B.AB=CD C.AB∥CD D.AC=BD9.某市从2018年开始大力发展旅游产业.据统计,该市2018年旅游收入约为2亿元.预计2020年旅游收入约达到2.88亿元,设该市旅游收入的年平均增长率为x,下面所列方程正确的是()A.2(1+x)2=2.88B.2x2=2.88C.2(1+x%)2=2.88D.2(1+x)+2(1+x)2=2.8810.如图5,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③∠GDE=45°;④S=.在以上4个结论中,正确的有()个.△BEFA.1B.2C.3D.4图4 图5 图6二.填空题(每小题3分,5小题,共15分)11.方程4x2+x=0的根为.12.若,且b+d+f=3,则a+c+e=.13.不透明的口袋中装有8个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到白球的频率稳定在0.6附近,估计口袋中白球大约有个.14.已知m是一元二次方程x2+x﹣6=0的一个根,则代数式m2+m的值等于.15.如图6,在矩形ABCD中,E、F分别是BC和CD的中点,连接AE交对角线BD于点G,连接BF交AE于点H.则=.三.解答题(8小题,共75分)16.(8分)解方程:(1)(x+2)2=3(x+2)(2)2x2﹣7x﹣2=0.17.(10分)小明正在参加全国“数学竞赛”,只要他再答对最后两道单选题就能顺利过关,其中第一道题有3个选项,第二道题有4个选项,而这两道题小明都不会,不过小明还有一次“求助”没有使用(使用“求助”可让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,随机选择一个选项,那么小明答对第一道题的概率是多少?(2)如果小明将“求助”留在第二题使用,请用画树状图或列表法求小明能顺利过关的概率.(3)请你从概率的角度分析,建议小明在第几题使用“求助”,才能使他过关的概率较大.18.(6分)已知如图,正方形ABCD中,等边△AEF的顶点E,F分别在边BC和CD上,求证:∠CEF=∠CFE.19.(8分)已知关于x的一元二次方程x2+2mx+m2+m=0有实数根.(1)求m的取值范围;(2)若该方程的两个实数根分别为x1、x2,且+=12,求m的值.20.(8分)如图,点B为线段AC上一点,满足∠A=∠EBD=∠C=90°,AE=1,AB=BC=2.(1)求CD长度;(2)求证:△ABE∽△BDE.21.(10分)2023年杭州亚运会吉祥物一开售,就深受大家的喜爱.某商店以每件35元的价格购进某款亚运会吉祥物,以每件58元的价格出售.经统计,4月份的销售量为256件,6月份的销售量为400件.(1)求该款吉祥物4月份到6月份销售量的月平均增长率;(2)从7月份起,商场决定采用降价促销的方式回馈顾客,经试验,发现该吉祥物每降价1元,月销售量就会增加20件.当该吉祥物售价为多少元时,月销售利润达8400元?22.(11分)在正方形ABCD 外侧作直线AP ,点B 关于直线AP 的对称点为E ,连接BE ,DE ,其中DE 交直线AP 于点F .(1)依题意补全图1;(2)若∠P AB =20°,求∠ADF 的度数;(3)如图2,若45°<∠P AB <90°,用等式表示线段AB ,FE ,FD 之间的数量关系,并证明.23.(14分)在△ABC 中,∠ACB =45°.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB =AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB >AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =,BC =3,CD =x ,求线段CP 的长.(用含x 的式子表示)A B C D P 图2。
2022—2023学年第一学期九年级数学期末考试题参考答案一、选择题:本大题共10小题,每小题3分,共30分.在每小题列出的四个选项中只有一个是符合题目要求的.1-10.BDDCD AABBC二、填空题:本大题共5小题,每小题3分,共15分.11.x1=4,x2=﹣312.2:313.4914.28°15.6三、解答题(一):本大题共3小题,每小题8分,共24分.16.解:方程整理得:x2+2x﹣4=0,…………..1分这里a=1,b=2,c=﹣4,…………..2分∵Δ=22﹣4×1×(﹣4)=4+16=20>0,…………..4分∴x=−2±2√52=−1±√5,…………..7分解得:x1=﹣1+√5,x2=﹣1−√5.…………..8分17.解:四边形AEDF是菱形。
…………..1分理由:∵EF垂直平分AD交AB于E,∴AE=ED,AF=FD,AO=DO,…………..3分∵DE∥AC,∴∠FAD=∠EDA,…………..4分在△EDO和△FAO中{∠FAO=∠EDO AO=DO∠AOF=∠EOD,∴△EDO≌△FAO(ASA),…………..6分∴AF=ED,∴AE=AF=ED=DF,…………..7分∴四边形AEDF是菱形.…………..8分20222023学年第一学期九年级期末考试题—数学参考答案第1页(共7页)20222023学年第一学期九年级期末考试题—数学参考答案 第2页(共7页)18.解:由已知可得:∠AEB =∠CED , …………..1分又∵∠ABE =∠CDE =90°, ∴△ABE ∽△CDE , …………..3分∴AB CD =BE DE ,即1.5CD=158,…………..5分 解得:CD =87,…………..6分∴87÷2.9=30(层), 答:这栋楼房有30层.…………..8分四、解答题(二):本大题共3小题,每小题9分,共27分. 19.(1)证明:∵Δ=(k +6)2﹣4(3k +9)=k 2≥0, ∴方程总有两个实数根.…………..4分(2)解:当x =4时,原方程为:16﹣4(k +6)+3k +9=0, 解得k =1,…………..5分当k =1时,原方程为x 2﹣7x +12=0, ∴x 1=3,x 2=4.…………..6分由三角形的三边关系,可知3、4、4能围成等腰三角形, ∴k =1符合题意;…………..7分当Δ=k 2=0时,k=0,原方程为x 2﹣6x +9=0,解得:x 1=x 2=3. 由三角形的三边关系,可知3、3、4能围成等腰三角形, ∴k =0符合题意.…………..8分 综上所述:k 的值为1或0. …………..9分 20.解:(1) 120,99;…………..2分(2)条形统计图中,选修“厨艺”的学生人数为:120×54°360°=18(名), 则选修“园艺”的学生人数为:120﹣30﹣33﹣18﹣15=24(名), 补全条形统计图如下:20222023学年第一学期九年级期末考试题—数学参考答案 第3页(共7页)…………..5分(3)把“礼仪”“陶艺”“园艺”“厨艺”及“编程”等五门校本课程分别记为A 、B 、C 、D 、E , 画树状图如下:…………..7分共有25种等可能的结果,其中小刚和小强两人恰好选到同一门课程的结果有5种, ∴小刚和小强两人恰好选到同一门课程的概率为525=15.…………..9分21.解:(1)如图1,FO=6.65-1.65=5m AC=BD=12m CO=DE=18-12=6m ∵∠GAO =∠FCO =α, ∴CF ∥AG …………..2分∴GF FO=AC CO即GF 5=126解得GF =10m ∴条幅GF 的长度为10m.…………..4分(2)设经过t 秒后,以F 、C 、O 为顶点的三角形与△GAO 相似。
北京一零一中教育集团2023-2024学年度第一学期初三练习数 学 答 案 2023.9一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9. ( -3,2) 10. 1b = 11. y =-x 2+3(答案不唯一). 12. 75° 13. m =2 14. > 15. 2.05+2.05(1+x)+2.05(1+x)2=10.53 16. ①②④ 三、解答题(本题共68分,第17题8分、18-20题4分、21、22题5分,23-25、27题6分,26题、28题7分) 17. (1)x 2=49……………..2分x 1=23,x 2=−23.…………….4分(2)x 2-x -6=0,(x +2)(x -3)=0,……………..2分 x +2=0或x -3=0,解得:x 1=−2,x 2=3.……………..4分(其他方法均可酌情给分) 18. (1)图略 A 1的坐标为(−4,1) ……………..2分(2)图略……………..4分 19. 解:(a -2)2-3 a (a +1)=-2a 2- 7a +4 . ……………..1分 ∵ a 是方程2x 2+7x ﹣1=0的根,∴ 2a 2+7a -1=0. ……………..2分∴ 2a 2+7a =1.∴ 原式 = 3. ……………..4分 20. (1)证明:依题意,得Δ=(k +3)2−4⋅3⋅k =k 2−6k +9=(k −3)2.∵(k −3)2≥0,∴0∆≥.∴ 该方程总有两个实数根. ……………..2分 (2)解:解方程,得x 1=1,x 2=k3. ∵该方程有一个根大于2,∴ k3>2,∴ k >6. ……………..4分 21.(1)解:∵抛物线y =2x 2+bx +c 过点(1,3)和(0,4),∴{2+b +c =3c =4, 解得{b =−3c =4,∴该二次函数的解析式为y =2x 2−3x +4.……………..3分 (2)该抛物线的顶点坐标为323(,)48……………..5分(横纵坐标各1分) 22. 解:(1)如图所示;……………..2分(2)∵AB =5,BC =3,∠C =90°, ∴AC =√ AB 2−BC 2=4.……………..3分 ∵△DCE 由△ABC 旋转而成, ∴CE =AC =4,……………..4分 ∵∠DCE =∠ACB =90° ∴B 、C 、E 共线∴BE =BC +CE =3+4=7. …………….5分23. (1)图略 ………..2分(2)-4≤y≤5 ………..4分(3)x <0或x >3…….6分 24. (1)建系略 ……………..1分 (4,4).……………..2分 (2)设抛物线解析式为y =a (x ﹣4)2+4(a ≠0),∵A (0,2)在抛物线上,∴2=a (0﹣4)2+4,解得,a =﹣,∴y =﹣(x ﹣4)2+4,……………..4分 将y =0代入,得﹣(x ﹣4)2+4=0, 解得,x 1=4﹣4(舍去)或x 2=4+4,……………..6分∴CD =4+4.答:该同学把实心球扔出米.25. (1)证明:∵△DAE 绕点D 逆时针旋转90°得到△DCM , ∴DE =DM ,∠EDM =90°.……………..1分∵正方形ABCD 中∠ADC =90°,∠EDF =45°,∴∠ADE +∠FDC =90°−∠EDF =45° ∴∠CDM +∠FDC =45°即∠FDM =45°.∴∠EDF =∠MDF .…………….2分 在△DFE 和△DFM 中,{DF =DF,∠EDF =∠MDF,DE =DM,∴△DFE ≌△DFM(SAS).∴EF =FM .……………..3分(2)解:设FC =x ,则FM =x +2=EF . 在Rt △BEF 中,BE =6−2=4,BF =6−x ,∴42+(6−x)2=(x +2)2.……………..5分 解得x =3. ∴EF =3+2=5.……………..6分26.解:(1)∵点(1,m )在抛物线2y x bx =−+上,m =1 ∴11b −+=. ∴2b =.∴该抛物线的对称轴为1x =. ……………..2分 (2)①11.2t <<……………..4分 ②213y y y >>.…………..5分 理由如下:由题意可知,抛物线过原点.设抛物线与x 轴另一交点的横坐标为x ´. ∵抛物线经过点(1,m ),(2,n ),mn <0 ∴1<x ´<2.∴112t <<. 设点(-2,y 1)关于抛物线的对称轴x t =的对称点为01(,)x y . ∵点(-2,y 1)在抛物线上, ∴点01(,)x y 也在抛物线上. 由0(2)x t t −=−− 得022x t =+. ∵112t <<,∴1<2t <2.∴3<2t +2<4.∴034x <<. 由题意可知,抛物线开口向下.∴当x t >时,y 随x 的增大而减小.∵点(32,y 2),01(,)x y ,(4,y 3)在抛物线上,且0342t x <<<, ∴213y y y >>.……………..7分(本题论证要严谨完备才可以满分) 27. 解:(1) 相等;1800-2α;……………..2分(2) 成立.证明:①先证BF =EF延长CB 至M ,使得BM =CB 连接AM , MD ; 延长DE 至N ,使得EN =DE 连接AN , CN.如图∵∠ABC =90° ∴AB ⊥MC又∵BM=CB ∴AM =AC ,∠MAC =2α 同理 AD =AN ,∠DAN =2α∴∠MAC +∠DAC =∠DAC +∠DAN 即 ∠MAD =∠NAC ∴△AMD ≌△CAN∴MD =CN, ∠AMD =∠ACN ∵BM =CB ∴B 为MC 的中点 又∵F 为CD 的中点∴12BF MD =, BF// MD同理12EF NC =, EF// NC∵MD =CN ∴BF =EF; ②再证∠BFE =1800-2α延长MD 分别交EF 、CN 于点T 、K 如图,∵BF// MD, EF// NC∴∠BFE =∠MTE =∠MKN∵∠MKN =∠KMC +∠KCM =∠KMC +∠NCA +∠ACM=∠KMC +∠AMD +∠ACM =∠AMC +∠ACM =2∠ACM =2(900-α)=1800-2α ∴∠BFE =1800-2α 或如图由△AMD ≌△CAN 得∠3=∠4 又∵∠1=∠2∴∠MKC =∠MAC =2α ∴∠BFE =1800-2α法二:取AC 的中点P ,取AD 的中点Q, 连接QE,QF ,BP ,PF可证△BPF ≌△FQE 得BF =EF ∠BFE =∠BFP +∠PFQ+∠QFE=∠BFP +∠PBF +∠PFQ =1800-∠BPF +∠PFQ=1800-∠BPC -∠C PF +∠PFQ =1800-∠BPC =1800-2α…………….6分28.(1)2P 和3P ;………2分 (2)312m −≤≤−;………4分 (3)抛物线c bx x y ++=2的顶点坐标为(-1,n ),可设解析式为2(1)y x n =++, 其关于原点对称的抛物线解析式为2(1)y x n =−−−.ABC 以O 逆时旋转90︒得到A B C ’’’,其中(1,1),(1,3),(2,3)AB C −−−’’’.……5分 当2(1)y x n =−−−过A ’,得到n 的最大值-5.……6分当2(1)y x n =−−−过C ’,得到n 的最小值-12.……7分BAC。
练习一【22.1 一元二次方程】一、选择题1.在下列方程中,一元二次方程的个数是().①3x2+7=0 ②a x2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5x=0A.1个 B.2个 C.3个 D.4个2.方程2x2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为(). A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,63.px2-3x+p2-q=0是关于x的一元二次方程,则().A.p=1 B.p>0 C.p≠0 D.p为任意实数4.方程x(x-1)=2的两根为().A.x1=0,x2=1 B.x1=0,x2=-1 C.x1=1,x2=2 D.x1=-1,x2=25.方程ax(x-b)+(b-x)=0的根是().A.x1=b,x2=a B.x1=b,x2=1aC.x1=a,x2=1aD.x1=a2,x2=b26.已知x=-1是方程a x2+bx+c=0的根(b≠0)().A.1 B.-1 C.0 D.2二、填空题1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.2.一元二次方程的一般形式是_____ _____.3.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________.4.如果x2-81=0,那么x2-81=0的两个根分别是x1=________,x2=__________.5.已知方程5x2+mx-6=0的一个根是x=3,则m的值为________.6.方程(x+1)2(x+1)=0,那么方程的根x1=______;x2=________.三、综合提高题1.a满足什么条件时,关于x的方程a(x2+x)(x+1)是一元二次方程?2.如果x=1是方程a x2+bx+3=0的一个根,求(a-b)2+4ab的值.练习二【22.2.1-2 直接开平方法及配方法】一、选择题1.若x2-4x+p=(x+q)2,那么p、q的值分别是().A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-2 2.方程3x2+9=0的根为().A.3 B.-3 C.±3 D.无实数根3.用配方法解方程x2-23x+1=0正确的解法是().A.(x-13)2=89,x=13±3B.(x-13)2=-89,原方程无解C.(x-23)2=59,x1=23+3,x2=23D.(x-23)2=1,x1=53,x2=-134.将二次三项式x2-4x+1配方后得().A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-35.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是().A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1 C.x2+8x+42=1 D.x2-4x+4=-11 6.如果m x2+2(3-2m)x+3m-2=0(m≠0)的左边是一个关于x的完全平方式,则m等于(). A.1 B.-1 C.1或9 D.-1或97.配方法解方程2x2-43x-2=0应把它先变形为().A.(x-13)2=89B.(x-23)2=0 C.(x-13)2=89D.(x-13)2=1098.下列方程中,一定有实数解的是().A.x2+1=0 B.(2x+1)2=0 C.(2x+1)2+3=0 D.(12x-a)2=a9.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z的值是().A.1 B.2 C.-1 D.-2二、填空题1.若8x2-16=0,则x的值是_________.2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.3.如果a、b b2-12b+36=0,那么ab的值是_______. 4.如果x2+4x-5=0,则x=_______.5.无论x、y取任何实数,多项式x2+y2-2x-4y+16的值总是_______数.6.方程x 2+4x-5=0的解是________.7.代数式2221x x x ---的值为0,则x 的值为________. 8.已知(x+y )(x+y+2)-8=0,求x+y 的值,若设x+y=z ,则原方程可变为_______,•所以求出z 的值即为x+y 的值,所以x+y 的值为______.9.如果16(x-y )2+40(x-y )+25=0,那么x 与y 的关系是________.三、综合提高题1.解关于x 的方程(x+m )2=n . 2.如果x 2-4x+y 2,求(xy )z 的值.3.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m ),•另三边用木栏围成,木栏长40m .(1)鸡场的面积能达到180m 2吗?能达到200m 吗?(2)鸡场的面积能达到210m 2吗?4.已知三角形两边长分别为2和4,第三边是方程x 2-4x+3=0的解,求这个三角形的周长.5.用配方法解方程.(1)9y 2-18y-4=0 (2)x 26.已知:x 2+4x+y 2-6y+13=0,求222x y x y -+的值.练习三【22.2.3-4 公式法及判别根的情况】一、选择题1.用公式法解方程4x2-12x=3,得到().A... D.2x2=0的根是().A.x1,x2 B.x1=6,x2 C.x1,x2.x1=x23.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是().A.4 B.-2 C.4或-2 D.-4或24.以下是方程3x2-2x=-1的解的情况,其中正确的有().A.∵b2-4ac=-8,∴方程有解 B.∵b2-4ac=-8,∴方程无解C.∵b2-4ac=8,∴方程有解 D.∵b2-4ac=8,∴方程无解5.一元二次方程x2-ax+1=0的两实数根相等,则a的值为().A.a=0 B.a=2或a=-2 C.a=2 D.a=2或a=06.已知k≠1,一元二次方程(k-1)x2+kx+1=0有根,则k的取值范围是().A.k≠2 B.k>2 C.k<2且k≠1 D.k为一切实数7.下列命题①方程k x2-x-2=0是一元二次方程;②x=1与方程x2=1是同解方程;③方程x2=x与方程x=1是同解方程;④由(x+1)(x-1)=3可得x+1=3或x-1=3,其中正确的命题有().A.0个 B.1个 C.2个 D.3个8.如果不为零的n是关于x的方程x2-mx+n=0的根,那么m-n的值为().A.-12B.-1 C.12D.1二、填空题1.一元二次方程a x2+bx+c=0(a≠0)的求根公式是________,条件是________.2.当x=______时,代数式x2-8x+12的值是-4.3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.4.已知方程x2+px+q=0有两个相等的实数,则p与q的关系是________.5.不解方程,判定2x2-3=4x的根的情况是__ ____6.已知b≠0,试判定关于x的一元二次方程x2-(2a+b)x+(a+ab-2b2)•=0的根的情况是________.7.x2-5x因式分解结果为____ ___;2x(x-3)-5(x-3)因式分解的结果是_ _____.8.方程(2x-1)2=2x-1的根是________.三、综合提高题1.用公式法解关于x的方程:x2-2ax-b2+a2=0. 2.已知(x+y)(x+y-1)=0,求x+y的值.2.设x1,x2是一元二次方程a x2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=-ba,x1·x2=ca;(2)•求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.4.不解方程,试判定下列方程根的情况.(1)2+5x=3x2(2)x2-()(3)x2-2kx+(2k-1)=05.当c<0时,判别方程x2+bx+c=0的根的情况.6.用因式分解法解下列方程.(1)3y2-6y=0 (2)25y2-16=0 (3)x2-12x-28=0 (4)x2-12x+35=0练习四【22.3 实际问题与一元二次方程】一、选择题1.2005年一月份越南发生禽流感的养鸡场100家,后来二、•三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x,依题意列出的方程是().A.100(1+x)2=250 B.100(1+x)+100(1+x)2=250C.100(1-x)2=250 D.100(1+x)22.一台电视机成本价为a元,销售价比成本价增加25%,因库存积压,•所以就按销售价的70%出售,那么每台售价为().A.(1+25%)(1+70%)a元 B.70%(1+25%)a元C.(1+25%)(1-70%)a元 D.(1+25%+70%)a元3.某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成本,•售价的折扣(即降低的百分数)不得超过d%,则d 可用p 表示为( ).A .100p p +B .pC .1001000p p -D .100100p p+ 4.直角三角形两条直角边的和为7,面积为6,则斜边为( ).A B .5 C .7二、填空题1.某农户的粮食产量,平均每年的增长率为x ,第一年的产量为6万kg ,•第二年的产量为_______kg ,第三年的产量为_______,三年总产量为_______.2.某糖厂2002年食糖产量为at ,如果在以后两年平均增长的百分率为x ,•那么预计2004年的产量将是________.3.•我国政府为了解决老百姓看病难的问题,•决定下调药品价格,•某种药品在1999年涨价30%•后,•2001•年降价70%•至a•元,•则这种药品在1999•年涨价前价格是__________.4.矩形的周长为1,则矩形的长和宽分别为________.练习五【22.3 实际问题与一元二次方程】一、选择题1.从正方形铁片,截去2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁片的面积是( ).A .8cmB .64cmC .8c m 2D .64cm 22.一个两位数等于它的个位数的平方,且个位数字比十位数字大3,•则这个两位数为( ).A .25B .36C .25或36D .-25或-363.某种出租车的收费标准是:起步价7元(即行驶距离不超过3km 都需付7元车费);超过3km 以后,每增加1km ,加收2.4元(不足1km 按1km 计),某人乘出租车从甲地到乙地共支付车费19元,则此人从甲地到乙地经过的路程( ).A .正好8kmB .最多8kmC .至少8kmD .正好7km4.一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共( ).A .12人B .18人C .9人D .10人5.某一商人进货价便宜8%,而售价不变,那么他的利润(按进货价而定)可由目前x 增加到(x+10%),则x 是( ).A .12%B .15%C .30%D .50%6.育才中学为迎接香港回归,从1994年到1997年四年内师生共植树1997棵,已知该校1994年植树342棵,1995年植树500棵,如果1996年和1997年植树的年增长率相同,那么该校1997年植树的棵数为().A.600 B.604 C.595 D.605二、填空题1.长方形的长比宽多4cm,面积为60cm2,则它的周长为________.2.一个产品原价为a元,受市场经济影响,先提价20%后又降价15%,现价比原价多_______%.3.甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,乙而后又将这手股票返卖给甲,但乙损失了10%,•最后甲按乙卖给甲的价格的九折将这手股票卖出,在上述股票交易中,甲盈了_________元.4.一个容器盛满纯药液63L,第一次倒出一部分纯药液后用水加满,•第二次又倒出同样多的药液,再加水补满,这时容器内剩下的纯药液是28L,设每次倒出液体xL,•则列出的方程是________.。
专题21.25 解一元二次方程100题(基础篇)(专项练习)1.解下列方程.(1)x 2+2x =0; (2)2x 2-3x -1=0.2.解下列方程(1)220x x -= (2)2690x x -+=3.解方程: 21142x x x =--+.4.用适当的方法解下列方程:(1)()22242x x x -=- (2)()()124x x -+=5.解方程(1)x 2+4x ﹣2=0; (2)3(x ﹣2)2=x (x ﹣2).6.解方程(1)()242-9x = (2)()32180x -+=7.用适当的方法解方程:(1)()()215140x x ---+= (2)21x +=8.解方程. (1)3x 2﹣1=4x ; (2)(x +4)2=5(x +4).9.解方程: (1)222(3)9x x -=- (2)22310x x +-=(公式法)10.解方程(1)配方法解方程2x 2﹣12x ﹣12=0; (2)(x +2)(x +3)=111.解下列一元二次方程. (1)2247x x +=(2)()22239x x -=-12.解方程:(1)x 2+4x ﹣1=0 (2)x (x -2)+x -2=013.解下列方程: (1)x 2+4x +3=0; (2)3x 2﹣x ﹣1=0.14.用适当的方法解下列方程 (1)2(x -1)2=18; (2)x 2-2x =2x +115.用适当的方法解方程: (1)2430x x -+=; (2)23110x x -=16.用适当的方法解方程: (1)()231250x --= (2)2260x x --=17.解方程: (1)2314x x -=(2)()2(21)321x x +=+18.解方程: (1)2x 2﹣3x ﹣1=0. (2)x 2﹣7x =﹣10.19.解方程:(1)用配方法解方程:2640x x -+=;(2)解方程:2(3)2(3)x x x -=-.20.解方程:(1)解方程:9x 2﹣1=3. (2)用配方法解方程:x 2﹣10x +22=0.21.解方程: (1)2430x x --= (2)2450x x -=+22.用适当的方法解下列方程:①2x 2﹣2x ﹣1=0; ①x (2x ﹣5)=4x ﹣10;23.解方程: (1)22980x x -+=;(2)()()223423x x +=+.24.用适当的方法解方程 (1)2230x x +-= (2)2250x x -=25.解方程(1)()()22120211x -=-, (2)2450x x --=,(3)()72y 140y y -+-=,(4)22530x x --=26.解方程: (1)x 2+x ﹣1=0;(2)()()2424x x -=-.27.解方程(1)2560x x ++=.(2)2240x x --=28.解下列方程: (1) x 2 =2x(2)x 2-4x +1=0(用配方法求解)29.解下列方程: (1)(x +3)2-9=0; (2)x 2+2x -3=0.30.解下列一元二次方程: (1)2280x x -=;(2)()()21321x x x -=-;(3)()234x +=.31.解一元二次方程 (1)x 2﹣4x =0; (2)3x 2﹣x ﹣1=0.32.解方程: (1)x 2﹣4x ﹣5=0; (2)2x (x +1)=x +1.33.解方程: (1)2430x x -+=;(2)()()226280x x ---+=34.解方程(1)()2190x --= (2)2250x x --=35.解方程:(1)2280x x --=(2)()221160x --=(3)()()23530x x x ---=36.用适当的方法解下列一元二次方程 (1)()229x -=(2)()33x x x -+=(3)2314x x -=(4)()()22311-=-x x37.用公式法解下列方程: (1)22410x x --=;(2)2523x x +=;(3)(2)(35)1x x --=;(4)230.252x x +=.38.解方程:(1)27180x x --=; (2)2414x x +=.39.解方程: (1)x 2﹣5x +4=0;(2)x 2+x ﹣1=0.40.解方程:(1)23410x x ++=(公式法) (2)22730x x -+=(配方)(3)()2222x x -=-(4)()29140x --=41.解下列方程: (1)x 2﹣2x +1=25;(2)x 2﹣4x +1=0.42.解方程: (1)(2x ﹣1)2=9. (2)x 2﹣4x ﹣12=0.43.不解方程,求下列各方程的两根之和与两根之积:(1)2210x x ++=; (2)230x -=;(3)22237x x x +=+; (4)25564x x -=-.44.解下列方程: (1)x 2+4x ﹣1=0; (2)(x ﹣1)(x +3)=5(x ﹣1).45.解下列方程: (1)2289x x x -=-; (2)24490x x ++=.46.用直接开平方法解下列方程. (1)2160x -=;(2)2(2)9x -=.47.解方程:(1)22310x x --=,(2)34x 2﹣2x ﹣12=048.用适当的方法解下列方程. (1)x 2+4x =2; (2)2x (x ﹣3)=7(3﹣x ).49.解方程:(1)x (x -3)-5(3-x )=0(2)()()222230x x +-+-=50.解下列一元二次方程: (1)(2x +1)2+4(2x +1)+4=0;(2)(31)(1)(41)(1)x x x x --=+-.51.解方程:(1)22(2)180x +-=(2)22530x x --=52.解方程: (1)x 2﹣2x ﹣5=0;(2)(x +1)﹣2(x 2﹣1)=0.53.解下列一元二次方程: (1)3x (x ﹣1)=2﹣2x ; (2)2x 2﹣x ﹣1=0(配方法).54.解方程: (1)()2219x +=; (2)210240x x -+=.55.计算:解方程:(1)2(1)4x x +=;(2)2(4)5(4)x x +=+;56.解方程:(1)2412x x -=(2)2310x x -+=57.解方程(1)22-0x x =(2)x 2―6x +4=058.解方程: (1)2820x -=;(2)()22x x x -=-.59.解方程:(1)228100x x --=(2)()()22213x x -=+60.解方程:(1)210250x x ++=,(2)2410x x -+=.61.解方程: (1)230x x -=(2)2410x x --=62.解下列一元二次方程: (1)2(1)4x -=(2)(5)x x x +=63.解方程: (1)2660x x --=(2)22(3)(3)x x x =++64.解方程: (1)256x x -=(2)()()2333x x x -=-65.解方程: (1)24120x x +-=.(2)()()2454x x +=+.66.解方程: (1)24x 9=; (2)2x -x-20=.67.解方程 (1)2610x x --=(2)()()22213x x -=-68.用适当的方法解下列方程: (1)x 2-x -1=0;(2)3x (x -2)=x -2;(3)x 2-+1=0;(4)(x +8)(x +1)=-12.69.按要求完成下列各小题, (1)解方程:2(3)(21)(3)x x x -=--(2)解方程:2320x x -+=70.解方程: (1)x 2-2x -3=0 (2)(x ﹣3)2=2x ﹣671.解方程: (1)x 2-x -2=0; (2)3x (x -2)=2-x .72.解下列方程: (1)()()2121x x -=-;(2)()2322x x +=+.73.选择适当方法解下列方程: (1)220x x +=; (2)232x x +=.74.解下列方程:(1)2410x x -+=(配方法) (2)24630x x --=(运用公式法)(3)()()223523x x -=-(分解因式法)75.解一元二次方程: (1)()()31231x x x +=+ (2)23410x x --=76.解方程: (1)245x x -=(2)()()2312x x --=77.解下列方程 (1)22410x x -+=(2)()()21210x x x ---=.78.用合适的方法解下列方程 (1)2510x x -+=(2)()()22550x x x -+-=79.用适当的方法解下列方程: (1)2-430x x(2)()3-2-2x x x =80.用适当方法解下列方程: (1)3x 2﹣2x ﹣1=0;(2)x (x +2)=2x +4.81.请选择适当的方法解下列一元二次方程: (1)2x 2﹣x ﹣3=0;(2)(x +2)2=3(x +2).82.解方程: (1)22x x =(2)2450x x -=+83.解下列方程: (1)28x x =(2)3(1)22x x x -=-84.解方程: (1)x 2-2x -3=0(2)2x 2+1=3x85.解方程: (1)260x x -=;(2)24120x x --=.86.解方程: (1)24250x -=(2)2240x x --=87.解方程:(1)解方程:2420x x--=;(2)解方程:53 212x x=+-.88.解方程:(1)2420x x++=(配方法)(2)2551x x x+=--(公式法)89.解方程.(1)()222180x--=;(2)24810x x-+=.90.解方程,(1)2x2+2x-1=0(2)5(x+3)2=x2-991.用适当的方法解一元二次方程.(1)x(x-3)=-(x-3)(2)x2+4x-3=092.解方程:(1)x(x-2)+x-2=0(2)x2﹣8x+6=0(配方法)93.我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法,请你任意挑选择两个方程,并选择你认为适当的方法解方程.①210x x +-=;①2(1)2x -=;①2(1)(1)0x x +++=; ①222x x -=.94.用适当的方法解下列方程:(1)214x ()-=;(2)2340x x --=.95.解方程: (1)230x x +=;(2)212(1)x x -=+.96.解下列方程: (1)22350x x --=;(2)(32)23x x x -=-.97.解方程:(1)220x x -= (2)2310x x ++=98.用适当的方法解下列一元二次方程 (1)22730x x -+=(2)()2362x x -=-99.解方程: (1)2234x x -=(2)()252156x x -=-100.解方程: (1)241x x -=(2)()2133x x +=+参考答案1.(1)x 1=-2,x 2=0.(2)x 1,x 2【分析】(1)采用因式分解法即可求解; (2)直接用公式法即可求解. 解:(1)原方程左边因式分解, 得:(2)0x x +=, 即有:x 1=-2,x 2=0; (2)①24942(1)170b ac ⨯⨯>-=--=,①x =①1x =,2x =. 【点拨】本题考查了用因式分解法和公式法解一元二次方程的知识,掌握求根公式是解答本题的关键.2.(1)10x =,22x = (2)123x x ==【分析】 (1)直接利用因式分解法解方程即可;(2)用因式分解法解方程即可.(1)解:x (x −2)=0,x 1=0,x 2=2;(2)解: (x −3)2=0,x 1=x 2=3.【点拨】此题考查了一元二次方程的解法,解题的关键是熟练掌握各种解法.3.11x =,2=1x 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解:去分母得:24(2)x x x =--- ,解得:11x =,2=1x经检验11x =,2=1x①原分式方程的解为11x =,2=1x【点拨】本题考查了解分式方程以及解一元二次方程,熟练掌握步骤是解题的关键,需要注意的是最后要记得检验是不是分式方程的解.4.(1)x 1=23,x 2=2(2):x 1=﹣3,x 2=2【分析】(1)移项后分解因式,即可得出两个一元一次方程,再求出方程的解即可;(2)整理后分解因式,即可得出两个一元一次方程,再求出方程的解即可.(1)解:(1)(x ﹣2)2=4x ﹣2x 2,(x ﹣2)2+2x (x ﹣2)=0,(x ﹣2+2x )(x ﹣2)=0,x ﹣2+2x =0或x ﹣2=0,解得:x1=23,x2=2;(2)解:(x﹣1)(x+2)=4,整理,得x2+x﹣6=0,(x+3)(x﹣2)=0,x+3=0或x﹣2=0,解得:x1=﹣3,x2=2.【点拨】本题考查了解一元二次方程,能选择适当的方法求解是解此题的关键,解一元二次方程的方法有直接开平方法,公式法,配方法,因式分解法等.5.(1)x1=﹣,x2=﹣2(2)x1=2,x2=3【分析】(1)先把常数项移到方程的右边,然后把方程进行配方得到(x+2)2=6,再直接开方即可;(2)先移项再提取公因式(x﹣2)得到(x﹣2)(x﹣3)=0,然后解两个一元一次方程即可.(1)解:①x2+4x﹣2=0①x2+4x=2①x2+4x+4=6①(x+2)2=6①x+2=①x1=﹣x2=﹣2;(2)解:①3(x﹣2)2=x(x﹣2)①(x﹣2)(3x﹣6﹣x)=0①(x﹣2)(x﹣3)=0①x﹣2=0或x﹣3=0①x1=2,x2=3.【点拨】此题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法、配方法、公式法、因式分解法;解题的关键是要根据方程的特点灵活选用合适的方法.6.(1)12x=或72x=(2)12x=-【分析】(1)先将二次项系数化为1,再根据平方根的定义即可求解;(2)先将常数项移到等式右边,再根据立方根的定义即可求解.(1)解:()242-9x =,二次项系数化1得:()292-4x =, 开平方得:322x -=±, 解得:12x =或72x =. (2)解:()32180x -+=移项得:()3218x -=-,开立方得:212x -=-, 解得:12x =-.【点拨】本题主要考查了利用平立方根及立方根解方程,解题的关键是熟记开平方及开立方的定义.7.(1)122,5x x == (2)1222x x ==-【分析】(1)用因式分解法解方程即可;(2)用配方法解方程即可.(1)解:()()215140x x ---+=, ()()14110x x ----=,()()520x x --=,20x -=,50x -=,122,5x x ==.(2)解:21x +=,21x -=-,2515x -+=-+,2(4x =,2x =±,1222x x ==-【点拨】本题考查了一元二次方程的解法,解题关键是熟练掌握因式分解法和配方法,准确解方程.8.(1)12x x ==x 1=-4,x 2=1 【分析】(1)先计算判别式的值,然后利用公式法解方程;(2)先移项得到(x +4)2-5(x +4)=0,然后利用因式分解法解方程.(1)解: 3x 2-4x -1=0,①a =3,b =-4,c =-1,①Δ=b 2-4ac =(-4)2-4×3×(-1)=16+12=28>0.①x ==,①12x x = (2)解:(x +4)2=5(x +4),(x +4)2-5(x +4)=0,(x +4)(x +4-5)=0,①x +4=0或x -1=0,①x 1=-4,x 2=1.【点拨】本题主要考查解一元二次方程的能力,解题的关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.9.(1)13x =,29x =(2)1x =2x = 【分析】(1)先移项,然后利用平方差公式及因式分解法解方程即可得;(2)利用公式法解一元二次方程即可得.(1)解:()22239x x -=-,()()()223330x x x --+-=, ()()()32330x x x ⎡⎤---+=⎣⎦,()()390x x --=,∴30x -=或90x -=,∴13x =,29x =;(2)解:22310x x +-=,其中2a =,3b =,1c =-,∴()2243421170b ac =-=-⨯⨯-=>,x =,∴1x =2x =. 【点拨】题目主要考查解一元二次方程的方法:因式分解法与公式法,熟练掌握解方程的方法是解题关键.10.(1)x 1=x 2=3(2)x 1x 2【分析】(1)先将二次项系数化为1,再将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得;(2)利用公式法求解即可.(1)解:∵2x 2﹣12x ﹣12=0,∴x 2﹣6x ﹣6=0,∴x 2﹣6x =6,∴x 2﹣6x +9=6+9,即(x ﹣3)2=15,∴x ﹣3∴x 1=x 2=3(2)解:整理成一般式,得:x 2+5x +5=0,∴a =1,b =5,c =5,∴Δ=52﹣4×1×5=5>0,则x∴x 1x 2 【点拨】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.11.(1)1x =,2x =(2)13x =,29x =. 【分析】(1)用公式法解方程即可;(2)用因式分解法解方程即可.(1)解:2247x x +=化简得,22740x x -+=,274a b c ==-=,,,224(7)424170b ac -=--⨯⨯=>,方程有两个不相等的实数根,x ==1x =,2x =. (2)解:()22239x x -=-,()223(3)(3)0x x x ---+=, ()(3)90x x --=,3090x x -=-=,,13x =,29x =.【点拨】本题考查了一元二次方程的解法,解题关键是熟练运用公式法和因式分解法解方程.12.(1)x 1=﹣x 2=﹣22)x 1=2,x 2=-1【分析】(1)利用公式法解方程即可;(2)利用因式分解法解方程即可.解:(1)①x 2+4x ﹣1=0,①a =1,b =4,c =﹣1,①①=16+4=20,①x 2=-①12x =-22x =-(2)x (x -2)+x -2=0,因式分解得:(x ﹣2)(x +1)=0,可得x ﹣2=0或x +1=0,解得:x 1=2,x 2=﹣1.【点拨】本题主要考查了一元二次方程的求解,掌握解一元二次方程的方法与步骤,准确利用公式法和因式分解法解方程是关键.13.(1)121,3x x =-=-;(2)12x x == 【分析】(1)利用因式分解法解方程即可得;(2)利用公式法解方程即可得.解:(1)2430x x ++=,(1)(3)0x x ++=,10x +=或30x +=,1x =-或3x =-,即121,3x x =-=-;(2)2310x x --=,此方程中的3,1,1a b c ==-=-,则x =x =,12x x == 【点拨】本题考查了解一元二次方程,熟练掌握方程的解法是解题关键.14.(1)4x =或2x =-;(2)2x =2x =【分析】(1)根据题意利用直接开方法进行一元二次方程的求解即可;(2)根据题意利用配方法进行一元二次方程的求解即可.解:(1)2(x -1)2=182(1)9x -=所以13x -=或13x -=-,解得:4x =或2x =-;(2)x 2-2x =2x +12410x x --=2(2)410x ---=2(2)5x -=所以2x -=2x -=解得:2x =2x =【点拨】本题考查解一元二次方程,熟练掌握并适当地选择一元二次方程求解的方法是解题的关键.15.(1)11x =,23x =;(2)10x =,2113x =. 【分析】(1)利用十字相乘法解一元二次方程求解即可;(2)利用提公因式法解一元二次方程求解即可.解:(1)2430x x -+= ()()310x x --=30x -=或10x -=,解得:11x =,23x =;(2)23110x x -=()3110x x -=0x =或3110x -=,解得:10x =,2113x =.【点拨】本题考查了一元二次方程的解法.解题的关键是熟练掌握一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.16.(1)12x =,243x =-;(2)11x =,21x = 【分析】(1)先移项,然后利用开平方法解一元二次方程即可;(2)利用配方法解一元二次方程即可.解:(1)①()231250x --=,①()23125x -=,①315x -=±,①12x =,243x =-; (2)①2260x x --=,①226x x -=,①2217x x -+=即()217x -=,①1x -=①11x =21x =【点拨】本题主要考查了解一元二次方程,解题的关键在于能够熟练掌握解一元二次方程的方法.17.(1)1x =2x =(2)112x =-,21x = 【分析】(1)用公式法解方程即可;(2)利用因式分解法解方程即可.解:(1)2314x x -=23410x x --= 341a b c ==-=-,,224=(4)43(1)28b ac ---⨯⨯-=x ==1x =2x =(2)()2(21)321x x +=+()2(21)3210x x +-+=(21)(213)0x x ++-=210x +=或220x -=112x =-,21x = 【点拨】本题考查了一元二次方程的解法,解题关键是熟练运用恰当的方法解一元二次方程.18.(1)x 1,x 22)x 1=2,x 2=5 【分析】(1)利用公式法求解即可;(2)先移项,然后利用因式分解法求解即可.解:(1)①22310x x --=,①a =2,b =﹣3,c =﹣1,①()()2243421170b ac ∆=-=--⨯⨯-=>,①x ==①x 1x =2x = (2)①x 2﹣7x =﹣10,①x 2﹣7x +10=0,则(x ﹣2)(x ﹣5)=0,①x ﹣2=0或x ﹣5=0,解得x 1=2,x 2=5.【点拨】本题主要考查了解一元二次方程,解题的关键在于能够熟练掌握解一元二次方程的方法.19.(1)135x ,235x ;(2)13x =,21x =【分析】(1)根据配方法对方程进行配方再解出方程即可.(2)移项后提取公因式,用因式分解法求出两个解即可.解:(1)2640x x -+=,264x x ∴-=-,26949x x ∴-+=-+,即()235x -=, 则35x ,13x ∴=235x ; (2)()()2323x x x -=--,()()23230x x x ∴-+-=,则()()3330x x --=,30x ∴-=或330x -=,解得13x =,21x =.【点拨】本题考查用配方法,因式分解法解一元二次方程,掌握这些解题方法是解决本题的关键.20.(1)1222,33x x ==-;(2)1255x x ==【分析】(1)移项、合并,然后把二次项系数化为1,再开平方即可;(2)将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得.解:(1)9x 2﹣1=3,9x 2=4,x 2=49, ①x =23, ①x 1=23,x 2=﹣23;(2)x 2﹣10x +22=0,x 2﹣10x =﹣22,x 2﹣10x +25=﹣22+25,即(x ﹣5)2=3,①x ﹣5=①x 1=x 2=5【点拨】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.21.(1)12x =,22x = ;(2)15x =-,21x =.【分析】(1)首先把常数项移到右边,方程两边同时加上一次项系数一半的平方配成完全平方公式,然后开方求解即可;(2)根据十字相乘法解一元二次方程求解即可.解:(1)2430x x --=()222434434272x x x x x x -=-+=+-=-=解得:12x =22x =;(2)2450x x -=+()()510x x +-=解得:15x =-,21x =.【点拨】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.配方法的步骤:配方法的一般步骤为:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.22.①x 1x 2;①x 1=52,x 2=2 【分析】①用公式法解方程即可得出答案;①利用因式分解法解方程即可;解:①①a =2,b =﹣2,c =﹣1,①Δ=(﹣2)2﹣4×2×(﹣1)=12>0,则x ,即x 1x 2 ①①x (2x ﹣5)=4x ﹣10,①x (2x ﹣5)﹣2(2x ﹣5)=0,①(2x ﹣5)(x ﹣2)=0,则2x ﹣5=0或x ﹣2=0,解得x 1=52,x 2=2; 【点拨】本题考查了公式法解一元二次方程、因式分解法解一元二次方程,熟悉各方法并合理运用是解题的关键.23.(1)1x =2x =2)132x =-,212x = 【分析】(1)用公式法求解即可;(2)用因式分解法求解即可.解:(1)①a =2,b =-9,c =8①224(9)428170b ac ∆=-=--⨯⨯=>①x①1x =2x =(2)移项得:()()2234230x x +-+=左边分解因式得:(23)(21)0x x +-=①230x +=或210x -= ①132x =-,212x = 【点拨】本题考查解一元二次方程,要根据方程的特点选用恰当的方法来解. 24.(1)1231x x ,=-=;(2)120 2.5x x ==,【分析】(1)使用十字相乘法进行因式分解解方程;(2)使用提公因式法进行因式分解解方程;解:(1)2230x x +-=()()310x x +-=①3010x x +=-=;①1231x x ,=-=(2)2250x x -=()250x x -=①0250x x =-=;①120 2.5x x ==,【点拨】本题考查的是一元二次方程的解法,解题的关键是会选择合适的解法解方程.25.(1)x 1=2021,x 2=﹣2019;(2)x 1=﹣1,x 2=5;(3)y 1=﹣2,y 2=7;(4)x 1=﹣12,x 2=3【分析】(1)利用直接开平方法解一元二次方程即可求解;(2)利用因式分解法解一元二次方程即可求解;(3)利用因式分解法解一元二次方程即可求解;(4)利用因式分解法解一元二次方程即可求解;解:(1)直接开平方得:x ﹣1=±2020,①x 1=2021,x 2=﹣2019;(2)原方程化为:(x +1)(x ﹣5)=0,①x +1=0或x ﹣5=0,①x 1=﹣1,x 2=5;(3)原方程化为:(y +2)(y ﹣7)=0,①y +2=0或y ﹣7=0,①y 1=﹣2,y 2=7;(4)原方程化为:(2x +1)(x ﹣3)=0,①2x +1=0或x ﹣3=0,①x 1=﹣12,x 2=3. 【点拨】本题考查解一元二次方程,熟练掌握一元二次方程的解法并灵活运用是解答的关键.26.(1)1x =,2x =2)14x =,26x =. 【分析】 (1)直接利用公式法解方程得出答案.(2)移项后直接利用分解因式解方程即可;解:(1)210x x +-=,其中:1a =,1b =,1c =-,∴22=4=141-1=5b ac --⨯⨯(),①x =解得:1x ,2x =; (2)()()2424x x -=-(4)2(4)0x x ---=,()()460x x --=则40x -=或60x -=,解得:14x =,26x =.【点拨】此题主要考查了因式分解法以及公式法解方程,正确掌握相关解方程的方法是解题关键.27.(1)122,3x x =-=-(2)1211x x ==【分析】(1)用因式分解法解方程即可;(2)用配方法解方程即可.解:(1)2560x x ++=.(2)(3)0x x ++=,20,30x x +=+=,122,3x x =-=-(2)2240x x --=.224x x -=,2215x x -+=,2(1)5x -=,1x -=,1211x x ==【点拨】本题考查了一元二次方程的解法,解题关键是熟练运用因式分解法和配方法解方程.28.(1)120,2x x ==;(2)122x x ==【分析】(1)用因式分解法求解即可;(2)用配方法求解即可.解:(1)x 2=2x ,x 2﹣2x =0,x (x ﹣2)=0,解得:x 1=0,x 2=2;(2)x 2-4x +1=0,x 2-4x +4-3=0,(x -2)2=3,x -2=解得:x 1x 2=2【点拨】本题考查了因式分解法和配方法解解一元二次方程.掌握配方法的一般步骤是解答本题的关键.29.(1)x 1=-6,x 2=0;(2)x 1=-3,x 2=1.【分析】(1)根据题意直接利用因式分解法进行方程的求解即可;(2)根据题意直接进行十字交叉相乘利用因式分解法进行方程的求解即可.(1)解: (x +3+3)(x +3-3)=0.(x +6)x =0,x +6=0或x =0,①x 1=-6,x 2=0.(2)解: (x +3)(x -1)=0,x +3=0或x -1=0,①x 1=-3,x 2=1.【点拨】本题考查解一元二次方程,熟练掌握并灵活运用一元二次方程的各种解法是解题的关键.30.(1)10x =,24x =.(2)112x =,23x =.(3)15x =-,21x =- 【分析】(1)根据因式分解法解一元二次方程求解即可;(2)首先把等式右边的()321x -移到左边,然后根据因式分解法解一元二次方程求解即可;(3)首先把等式右边的4移到左边,然后根据因式分解法解一元二次方程求解即可. 解:(1)因式分解,得()240x x -=.于是有20x =或40x -=,①10x =,24x =.(2)原方程整理,得:(21)3(21)0x x x ---=,(21)(3)0x x --=, 210x -=或30x -=, ①221,32x x ==. (3)原方程整理,得()2340x +-=.因式分解,得()()32320x x +++-=.于是有50x +=或10x +=.①15x =-,21x =-.【点拨】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.31.(①)x 1=0,x 2=4;(①)x 1x 2【分析】(1)利用因式分解法求解即可;(2)利用公式法求解即可.解:(1)x 2﹣4x =0,分解因式得:x (x ﹣4)=0,解得:x 1=0,x 2=4;(2)3x 2﹣x ﹣1=0,①a =3,b =﹣1,c =﹣1,①①=b 2﹣4ac =1﹣4×3×(﹣1)=13,①x =①x 1x 2 【点拨】本题考查了解一元二次方程,灵活运用简便的方法来求解一元二次方程是解决本题的关键.32.(1)1x =5,2x =﹣1;(2)1x =-1,2x =0.5【分析】(1)利用配方法求解即可;(2)利用因式分解法求解即可.解:(1)①2x ﹣4x =5,①2x ﹣4x +4=5+4,即2(2)x -=9,则x ﹣2=3±,①1x =5,2x =﹣1;(2)①2x (x +1)﹣(x +1)=0,①(x +1)(2x ﹣1)=0,则x +1=0或2x ﹣1=0,解得1x =-1,2x =0.5.【点拨】本题考查了一元二次方程的配方法,因式分解法求解,根据方程的特点,灵活选择解题方法是解题的关键.33.(1)13x =,21x =;(2)14x =,26x =【分析】(1)利用因式分解法求解一元二次方程即可;(2)将2x -看成整体,利用因式分解法求解一元二次方程即可.解:(1)2430x x -+=(3)(1)0x x --=解得:13x =,21x =(2)()()226280x x ---+= ()()22240x x ----=604)()(x x --=解得:14x =,26x =【点拨】此题考查了因式分解法求解一元二次方程,解题的关键是掌握因式分解的方法以及整体思想的利用.34.(1)14x =,22x =-,(2)11x =21x =【分析】(1)用直接开方法解方程即可;(2)用公式法解方程即可.解:(1)()2190x --= , ()219x -=,13x -=±,13x -=或13x -=-,14x =,22x =-,(2)2250x x --=,1=25a b c =-=-,,,224(2)41(5)24b ac -=--⨯⨯-=,22x ==11x =21x =【点拨】本题考查了一元二次方程的解法,解题关键是熟练运用直接开方法和公式法解一元二次方程.35.(1)2x =-或4x =;(2)52x =或32x =-;(3)3x =或52x =- 【分析】(1)根据十字相乘法解一元二次方程求解即可;(2)根据直接开方法解一元二次方程求解即可;(3)根据提公因式法解一元二次方程求解即可.解:(1)2280x x --= ()()240x x +-=20x ∴+=或40x -=,解得:2x =-或4x =;(2)()221160x --= ()22116x -=,214x ∴-=或214x -=-, 解得52x =或32x =-; (3)()()23530x x x ---=` 解:2(3)5(3)0x x x -+-=,(3)(25)0x x ∴-+=,30x ∴-=或250x +=,解得:3x =或52x =-. 【点拨】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.36.(1)15=x ,21x =-;(2)13x =,21x =-;(3)1x =2x =(4)10x =,212x = 【分析】(1)本题利用直接开平方法解方程即可;(2)本题将3移项到等号的左边,通过因式分解法解方程即可;(3)先将4x 移项到等号左边,化成一般式,利用公式法解方程即可;(4)将2(1)x -移项到等号左边,利用因式分解法解方程即可.解:(1)直接开平方得23x -=±,解得15=x ,21x =-;(2)由已知得(3)(3)0x x x -+-=,则(1)(3)0x x +-=,解得11x =-,23x =;(3)由已知得23410x x --=,2(4)43(1)28∆=--⨯⨯-=,①x =解得1x =,2x = (4)由已知得22(31)(1)0x x ---=,利用因式分解法可得2(42)0x x -=,解得10x =,212x =. 【点拨】本题考查解一元二次方程的方法,可以利用直接开平方法,公式法或因式分解法,选择正确的方法解方程是解题的关键.37.(1)1211x x ==(2)12312x x ==-,;(3)12x x ==(4)没有实数根.【分析】先把各方程整理成一般形式()200++=≠ax bx c a ,然后计算24b ac ∆=-,再用求根公式x =计算即可. (1)解:22410x x --=,①241a b c ==-=-,,,① ()()224442124b ac ∆=-=--⨯⨯-=,① x =,即:1211x x == (2)解:23520x x --=,①352a b c ==-=-,,,① ()()2245432=49b ac ∆=-=--⨯⨯-,① 576x ±=, 即:12312x x ==-,; (3)解:2311+90x x -=,①3119a b c ==-=,,,① ()22411439=13b ac ∆=-=--⨯⨯,① x =,①12x x == (4)2250015x x +-=,①21550a b c ==-=,,,① ()2241542501750b ac ∆=-=-⨯⨯=-<,①此方程没有实数根.【点拨】本题考查求根公式法解一元二次方程,比较基础.38.(1)129,2x x ==-;(2)1212x x ==【分析】找出a ,b ,c 的值,计算出根的判别式的值,代入求根公式计算即可求出解.(1)解:①1,7,18a b c ==-=-,①224(7)41(18)1210b ac -=--⨯⨯-=>,①7112x ±==, 即129,2x x ==-;(2)解:24410x x -+=,①4,4,1a b c ==-=,①224(4)4410b ac -=--⨯⨯=, ①(4)01242x --±==⨯, 即1212x x ==. 【点拨】此题考查了解一元二次方程−公式法,熟练掌握求根公式是解本题的关键.39.(1)11x =,24x =;(2)1x ,2x =. 【分析】(1)利用因式分解法解一元二次方程即可;(2)利用公式法解一元二次方程即可.解:(1)将左边分解因式得:()()140x x --=,①10x -=或40x -=,①11x =,24x =;(2)①1a =,1b =,1c =-,①()224141150b ac ∆=-=-⨯⨯-=>,①x ===,①1x =,2x =. 【点拨】本题考查了解一元二次方程,熟练掌握一元二次方程的解法是解题的关键. 40.(1)121,13x x ;(2)12317,44x x =-=(3)1252,2x x ==(4)1215,33x x == 【分析】(1)先计算4,= 再利用求根公式计算即可;(2)把原方程化为:273022x x -+=,再配方可得:272544x ⎛⎫-= ⎪⎝⎭,再利用直接开平方法解方程即可;(3)先移项,再提取公因式:()2,x - 再解方程即可;(4)可移项后把方程化为:()2419x -=,再利用直接开平方法解方程即可. (1)解:由24b ac ∆=-=16-4×3×1=4>0,故原方程有两个不同的解.x =42,6x -±= 121,13x x ∴=-=- (2)解:273022x x -+= 222777302442x x ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭ 272544x ⎛⎫-= ⎪⎝⎭ 7542x ∴-=或75,42x -=- 12317,.44x x ∴=-= (3)解:()()22210x x ⎡⎤---=⎣⎦()()2250x x --=20x ∴-=或250,x -=1252,.2x x ∴== (4)解:()2419x -= 所以:213x -=± 1215,.33x x ∴== 【点拨】本题考查一元二次方程的各种解法,熟练掌握每种解法是解本题关键.41.(1)126,4x x ==-;(2)1222x x ==【分析】(1)根据配方法解一元二次方程的步骤计算可得答案;(2)移项后根据配方法解一元二次方程的步骤计算可得答案;.解:(1)22125x x -+=2(1)25x ∴-=15x ∴-=±126,4x x ∴==-;(2)①x 2﹣4x +1=0①2443x x -+=①()223x -=①2x -=①1222x x ==【点拨】本题考查解一元二次方程,涉及配方法等知识,是重要考点,难度较易,掌握相关知识是解题关键.42.(1)12x =,21x =-;(2)16x =,22x =-.【分析】(1)用直接开平方法求解即可;(2)根据分解因式法求解.解:(1)①(2x ﹣1)2=9,①2x ﹣1=3或2x ﹣1=﹣3,解得:12x =,21x =-;(2)x 2﹣4x ﹣12=0原方程可变形为()()620x x -+=,①x -6=0或x +2=0,①16x =,22x =-.【点拨】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.43.(1)12122,1x x x x +=-=;(2)12123x x x x +==-;(3)121213,55x x x x +=-=-;(4)121251,66x x x x +==. 【分析】(1)(2)是一般式,先根据判别式确定根的情况,再利用韦达定理即可;(3)(4)先整理成一般式,再根据判别式确定根的情况,然后利用韦达定理即可.解:(1)①1,2,1a b c ===,且24440b ac -=-=, ①12122,1b c x x x x a a+=-=-==;(2)①1,3a b c ===-,且24212140b ac -=+=>,①12123b c x x x x a a+=-===-; (3)方程化为2530x x +-=,①5,1,3a b c ===-,且24160610b ac -=+=>, ①121213,55b c x x x x a a +=-=-==-; (4)方程化为26510x x -+=,①6,5a b ==-,1c =,且24252410b ac -=-=>,①121251,66b c x x x x a a +=-===. 【点拨】本题考查了一元二次方程根的判别式及根与系数的关系,掌握相关公式是解决本题的关键.44.(1)x 1=﹣x 2=﹣22)x 1=1,x 2=2.【分析】(1)利用公式法求解即可;(2)利用因式分解法求解即可.解:(1)x 2+4x ﹣1=0,①a =1,b =4,c =﹣1,①①=42﹣4×1×(﹣1)=20>0,则x =﹣2即x 1=﹣x 2=﹣2(2)(x ﹣1)(x +3)=5(x ﹣1),(x ﹣1)(x +3)﹣5(x ﹣1)=0,(x ﹣1)(x ﹣2)=0,则x ﹣1=0或x ﹣2=0,解得x 1=1,x 2=2.【点拨】本题考查了一元二次方程的解法,解题关键是熟记求根公式,熟练运用因式分解法解一元二次方程.45.(1)121,9x x ==;(2)无解【分析】(1)先将原方程整理为一般式,然后运用公式法求解即可;(2)先求出原方程的根的判别式∆<0,即可求解.解:(1)原方程化为 21090x x -+= ,2241049640b ac ∆=-=-⨯=> ,由求根公式得,=x 1082±=, 所以原方程的解为121,9x x == ;(2)22444491280b ac ∆=-=-⨯⨯=-< ,∴原方程无实数根.【点拨】本题主要考查了解一元二次方程——公式法,理解运用公式法解一元二次方程时要先求出根的判别式以确定根的情况是解题的关键.46.(1)14x =,24x =-;(2)15=x ,21x =-【分析】(1)移项,得216x =,根据平方根的定义,得4x =±.即14x =,24x =-.(2)根据平方根的定义,得23x -=±,即15=x ,21x =-.解:(1)2160x -=①2=16x①4x =±解得14x =,24x =-(2)2(2)9x -=①23x -=±①15=x ,21x =-【点拨】本题主要考查了用开方法解一元二次方程,解题的关键在于能够熟练掌握开方法.47.(1)1x =,2x =;(2)12x x ==. 【分析】(1)先判断0∆>,然后利用公式法解一元二次方程,即可得到答案;(2)先整理方程,判断0∆>,然后利用公式法解一元二次方程,即可得到答案; 解:(1)22310x x --=,224(3)42(1)170b ac ∆=-=--⨯⨯-=>,①x =①1x =,2x =; (2)2312042x x --=,则23820x x --=224(8)43(2)6424880b ac ∆=-=--⨯⨯-=+=>,则x ,解得:124433x x ==. 【点拨】本题考查了公式法解一元二次方程,解题的关键是熟练掌握公式法解方程.48.(1)1222x x =-=-2)1273,2x x ==- 【分析】(1)利用配方法求解可得答案;(2)利用因式分解法求解即可.解:(1)①x 2+4x =2,①x 2+4x +4=2+4,即(x +2)2=6,①x +2=,①1222x x =-=-(2)①2x (x ﹣3)=7(3﹣x ),①2x (x ﹣3)+7(x ﹣3)=0,则(x ﹣3)(2x +7)=0,①x ﹣3=0或2x +7=0, ①1273,2x x ==-. 【点拨】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.49.(1)123,5x x ==-;(2)121,3x x ==-.【分析】根据因式分解法解一元二次方程的方法求解即可.解:(1)x (x -3)-5(3-x )=0()()3530x x x -+-=()()350x x -+=解得:123,5x x ==-.(2)()()222230x x +-+-= ()()23210x x +-++=()()130x x -+=解得:121,3x x ==-.【点拨】此题考查了因式分解法解一元二次方程的方法,解题的关键是熟练掌握因式分解法解一元二次方程的方法.50.(1)1232x x ==-;(2)11x =,22x =- 【分析】(1)可以用完全平方公式因式分解解一元二次方程;(2)可以用提公因式法解一元二次方程.解:(1)(2x +1)2+4(2x +1)+4=0,(2x +1+2)2=0.即2(23)0x +=,①1232x x ==-. (2)移项,得(3x -1)(x -1)-(4x +1)(x -1)=0,即 -(x -1)(x +2)=0,所以11x =,22x =-.【点拨】本题考查了一元二次方程的解法,熟练因式分解法解一元二次方程是解题的关键.51.(1)x 1=1,x 2=-5;(2)x 1=12-,x 2=3 【分析】(1)移项后利用直接开平方法求解可得;(2)利用公式法求解可得.解:(1)22(2)180x +-=,①22(2)18x +=,①2(2)9x +=,①23x +=或23x ,解得:x 1=1,x 2=-5;(2)22530x x --=,①a =2,b =-5,c =-3,①①=25-4×2×(-3)=49>0,①x 解得:x 1=12-,x 2=3. 【点拨】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.52.(1)x 1=x 2=2)x 1=﹣1,x 2=32. 【分析】(1)利用配方法法解方程;(2)利用因式分解法解方程.解:(1)∵x 2﹣2x ﹣5=0,。
南京外国语学校2022-2023学年九年级上学期阶段练习(一)数学试卷考试注意事项:1、考生须诚信考试,遵守考场规则和考试纪律,并自觉服从监考教师和其他考试工作人员管理;2、监考教师发卷后,在试卷指定的地方填写本人准考证号、姓名等信息;考试中途考生不准以任何理由离开考场;3、考生答卷用笔必须使用同一规格同一颜色的笔作答(作图可使用铅笔) ,不准用规定以外的笔答卷,不准在答卷上作任何标记。
考生书写在答题卡规定区域外的答案无效。
4、考试开始信号发出后,考生方可开始作答。
一、选择题(每题2分,共12分)1.下列是一元二次方程的是()A.ax2+bx+0=0B.x﹣2=x2C.x2﹣2=x(x﹣2)D.2.一元二次方程(x+1)(x﹣2)=﹣3x﹣3的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根3.如图,AB是⊙O的直径,弦CD交AB于点E,连接AC、AD.若∠BAC=28°,则∠D 的度数是()A.56°B.58°C.60°D.62°4.如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为()A.144πB.256πC.400πD.441π5.如图,AB是圆O的直径,弦AD平分∠BAC,过点D的切线交AC于点E,∠EAD=25°,则下列结论错误的是()A.AE⊥DE B.AE∥OD C.DE=OD D.∠BOD=50°6.我国古代数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载过一元二次方程(正根)的几何解法.以方程x2+2x﹣35=0即x(x+2)=35为例说明,记载的方法是:构造如图,大正方形的面积是(x+x+2)2.同时它又等于四个矩形的面积加上中间小正方形的面积,即4×35+22,因此x=5.则在下面四个构图中,能正确说明方程x2﹣5x﹣6=0解法的构图是()A.B.C.D.二、填空题(第8题每空1分,其余每空2分,共21分)7.已知一元二次方程的二次项系数是3,它的两个根分别是、1,写出这个方程.8.在圆内接四边形ABCD中,已知∠A=30°,∠B与∠C的度数之比是1:3,则∠B =°,∠C=°,∠D=°.9.如图,△ABC是⊙O的内接三角形.若∠ABC=45°,AC=,则⊙O的半径是.10.如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O 于点D.若∠APD是所对的圆周角,则∠APD的度数是.11.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC,与⊙O交于点D,连接OD.若∠AOD=82°,则∠C=°.12.如图,PA与⊙O相切于点A,PO与⊙O相交于点B,点C在AmB上,且与点A、B 不重合.若∠P=26°,则∠C的度数为°.13.已知AB为⊙O的直径,AB=6,C为⊙O上一点,连接CA、CB.如图,若AC=2,OD为⊙O的半径,且OD⊥CB,垂足为E,过点D作⊙O的切线,与AC的延长线相交于点F,则FD的长为.14.如图,木工用角尺的短边紧靠⊙O于点A,长边与⊙O相切于点B,角尺的直角顶点为C.已知AC=6cm,CB=8cm,则⊙O的半径为cm.15.如图,在△ABC中,AC=2,BC=4,点O在BC上,以OB为半径的圆与AC相切于点A.D是BC边上的动点,当△ACD为直角三角形时,AD的长为.16.如图,在扇形AOB中,点C,D在上,将沿弦CD折叠后恰好与OA,OB相切于点E,F.已知∠AOB=120°,OA=6,则的度数为,折痕CD的长为.三、解答题(共87分)17.请用两种方法解方程x2+mx﹣2m2=0(m为常数).18.小明在解一元二次方程时,发现有这样一种解法:如:解方程x(x+4)=6.解:原方程可变形,得:[(x+2)﹣2][(x+2)+2]=6.(x+2)2﹣22=6,(x+2)2=6+22,(x+2)2=10.直接开平方并整理,得.x1=﹣2+,x2=﹣2﹣.我们称小明这种解法为“平均数法”.(1)下面是小明用“平均数法”解方程(x+3)(x+7)=5时写的解题过程.解:原方程可变形,得:[(x+a)﹣b][(x+a)+b]=5.(x+a)2﹣b2=5,(x+a)2=5+b2.直接开平方并整理,得.x1=c,x2=d.上述过程中的a、b、c、d表示的数分别为,,,.(2)请用“平均数法”解方程:(x﹣5)(x+3)=6.19.已知关于x的方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2﹣4x+k=0与x2+mx﹣1=0有一个相同的根,求此时m的值.20.直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元/件的小商品进行直播销售,如果按每件60元销售,那么每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中所求的售价,则该商品至少需打折销售.21.(8分)如图,半径为6的⊙O与Rt△ABC的边AB相切于点A,交边BC于点C,D,∠B=90°,连结OD,AD.(1)若∠ACB=20°,求的长(结果保留π).(2)求证:AD平分∠BDO.22.证明:垂直于弦AB的直径CD平分弦以及弦所对的两条弧.23.(6分)作图题(要求;保留作图痕迹,写出简要作图步骤)(1)如图①,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B、M均为格点.以格点O为圆心,AB为直径画圆,请你只用无刻度的直尺,在上找出一点P,使=;(2)现有半圆形纸片,如图②,点O是圆心,直径AB的长是12cm,分别取半圆弧上的点E、F和直径AB上的点G,H.使得剪下的由这四个点顺次连接构成的四边形是一个边长为6cm的菱形.请用直尺和圆规在图中作出一个符合条件的菱形.24.如图,AB是⊙O的直径,CD是⊙O的一条弦,AB⊥CD,连接AC,OD.(1)求证:∠BOD=2∠A;(2)连接DB,过点C作CE⊥DB,交DB的延长线于点E,延长DO,交AC于点F.若F为AC的中点,求证:直线CE为⊙O的切线.25.(13分)△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD 与直线AE交于点F.(1)如图,若点D在△ABC内,∠DBC=20°,求∠BAF的度数;(2)现将△DCE绕点C旋转1周,在这个旋转过程中,①∠AFB的度数是否改变?请说明理由;②线段AF长度的最大值是,最小值是.南京外国语学校2022-2023学年九年级上学期阶段练习(一)数学试卷参考答案与试题解析一、选择题(每题2分,共12分)1.下列是一元二次方程的是()A.ax2+bx+0=0B.x﹣2=x2C.x2﹣2=x(x﹣2)D.【分析】根据一元二次方程的定义逐个判断即可.解:A.当a=0时,方程不是一元二次方程,故本选项不符合题意;B.方程是一元二次方程,故本选项符合题意;C.x2﹣2=x(x﹣2),x2﹣2=x2﹣2x,2x﹣2=0,方程是一元一次方程,不是一元二次方程,故本选项不符合题意;D.方程是分式方程,不是整式方程,不是一元二次方程,故本选项不符合题意;故选:B.【点评】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键,只含有一个未知数,并且所含未知数的项的最高次数是2的整式方程,叫一元二次方程.2.一元二次方程(x+1)(x﹣2)=﹣3x﹣3的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【分析】化为一般形式,求出判别式Δ即可得答案.解:将原方程整理得x2+2x+1=0,∵Δ=22﹣4×1×1=0,∴方程有两个相等的实数根,故选:A.【点评】此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.3.如图,AB是⊙O的直径,弦CD交AB于点E,连接AC、AD.若∠BAC=28°,则∠D 的度数是()A.56°B.58°C.60°D.62°【分析】连接BC,根据直径所对的圆周角是直角可得∠ACB=90°,从而利用直角三角形的两个锐角互余可得∠B=62°,然后利用同弧所对的圆周角相等即可解答.解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=28°,∴∠B=90°﹣∠BAC=62°,∴∠B=∠D=62°,故选:D.【点评】本题考查了圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.4.如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为()A.144πB.256πC.400πD.441π【分析】根据垂径定理,勾股定理求出OB2,再根据圆面积的计算方法进行计算即可.解:如图,连接OB,过点O作OD⊥AB于D,∵OD⊥AB,OD过圆心,AB是弦,∴AD=BD=AB=(AC+BC)=×(11+21)=16,∴CD=BC﹣BD=21﹣16=5,在Rt△COD中,OD2=OC2﹣CD2=132﹣52=144,在Rt△BOD中,OB2=OD2+BD2=144+256=400,∴S⊙O=π×OB2=400π,即这个花坛的面积为400π.故选:C.【点评】本题考查垂径定理、勾股定理以及圆面积的计算,掌握垂径定理、勾股定理以及圆面积的计算公式是正确解答的前提.5.如图,AB是圆O的直径,弦AD平分∠BAC,过点D的切线交AC于点E,∠EAD=25°,则下列结论错误的是()A.AE⊥DE B.AE∥OD C.DE=OD D.∠BOD=50°【分析】根据切线的性质得到OD⊥DE,证明OD∥AC,由此判断A、B选项;过点O 作OF⊥AC于F,利用矩形的性质、直角三角形的性质判断C选项;利用三角形外角性质求得∠BOD的度数,从而判断D选项.解:∵弦AD平分∠BAC,∠EAD=25°,∴∠OAD=∠ODA=25°.∴∠BOD=2∠OAD=50°.故选项D不符合题意;∵∠OAD=∠CAD,∴∠CAD=∠ODA,∴OD∥AC,即AE∥OD,故选项B不符合题意;∵DE是⊙O的切线,∴OD⊥DE.∴DE⊥AE.故选项A不符合题意;如图,过点O作OF⊥AC于F,则四边形OFED是矩形,∴OF=DE.在直角△AFO中,OA>OF.∵OD=OA,∴DE<OD.故选项C符合题意.故选:C.【点评】本题主要考查了切线的性质和圆周角定理.切线的性质:如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.6.我国古代数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载过一元二次方程(正根)的几何解法.以方程x2+2x﹣35=0即x(x+2)=35为例说明,记载的方法是:构造如图,大正方形的面积是(x+x+2)2.同时它又等于四个矩形的面积加上中间小正方形的面积,即4×35+22,因此x=5.则在下面四个构图中,能正确说明方程x2﹣5x﹣6=0解法的构图是()A.B.C.D.【分析】根据题意,画出方程x2﹣5x﹣6=0,即x(x﹣5)=6的拼图过程,由面积之间的关系可得出答案.解:方程x2﹣5x﹣6=0,即x(x﹣5)=6的拼图如图所示;中间小正方形的边长为x﹣(x﹣5)=5,其面积为25,大正方形的面积:(x+x﹣5)2=4x(x﹣5)+25=4×6+25=49,其边长为7,因此,D选项所表示的图形符合题意,故选:D.【点评】本题考查一元二次方程的应用,完全平方公式的几何背景,通过图形直观,得出面积之间的关系,并用代数式表示出来是解决问题的关键.二、填空题(第8题每空1分,其余每空2分,共21分)7.已知一元二次方程的二次项系数是3,它的两个根分别是、1,写出这个方程3x2﹣4x+1=0.【分析】由一元二次方程的二次项系数是3,可设这个方程为3x2+bx+c=0,利用根与系数的关系,可求出b,c的值,进而可得出该一元二次方程.解:∵一元二次方程的二次项系数是3,∴设这个方程为3x2+bx+c=0.∵该方程的两个根分别是,1,∴﹣=+1,=×1,∴b=﹣4,c=1,∴这个方程为3x2﹣4x+1=0.故答案为:3x2﹣4x+1=0.【点评】本题考查了根与系数的关系,牢记“两根之和等于﹣,两根之积等于”是解题的关键.8.在圆内接四边形ABCD中,已知∠A=30°,∠B与∠C的度数之比是1:3,则∠B=50°,∠C=150°,∠D=130°.【分析】根据圆内接四边形的性质可知,圆内接四边形的对角互补,已知∠A=30°,可求出∠C=150°,已知∠B与∠C的度数之比是1:3,求出∠B=50°,进而求出∠D=130°.解:∵∠A=30°,∠A+∠C=180°,∴∠C=150°,∵∠B与∠C的度数之比是1:3,∴∠B=50°,∵∠B+∠D=180°,∴∠D=130°.故答案为:50,150,130.【点评】本题考查了圆内接四边形的性质,解题的关键是熟练掌握性质并灵活运用,圆内接四边形的对角互补.9.如图,△ABC是⊙O的内接三角形.若∠ABC=45°,AC=,则⊙O的半径是1.【分析】连接AO并延长交⊙O于点D,连接CD,根据直径所对的圆周角是直角可得∠ACD=90°,再利用同弧所对的圆周角相等可得∠ADC=45°,然后在Rt△ACD中,利用锐角三角函数的定义求出AD的长,从而求出⊙O的半径,即可解答.解:连接AO并延长交⊙O于点D,连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∵∠ABC=45°,∴∠ADC=∠ABC=45°,∴AD===2,∴⊙O的半径是1,故答案为:1.【点评】本题考查了三角形的外接圆与外心,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.10.如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O 于点D.若∠APD是所对的圆周角,则∠APD的度数是30°.【分析】由垂径定理得出,由圆心角、弧、弦的关系定理得出∠AOD=∠BOD,进而得出∠AOD=60°,由圆周角定理得出∠APD=∠AOD=30°,得出答案.解:∵OC⊥AB,∴,∴∠AOD=∠BOD,∵∠AOB=120°,∴∠AOD=∠BOD=∠AOB=60°,∴∠APD=∠AOD=×60°=30°,故答案为:30°.【点评】本题考查了圆周角定理,垂径定理,圆心角、弧、弦的关系,熟练掌握圆周角定理,垂径定理,圆心角、弧、弦的关系定理是解决问题的关键.11.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC,与⊙O交于点D,连接OD.若∠AOD=82°,则∠C=49°.【分析】根据AC是⊙O的切线,可以得到∠BAC=90°,再根据∠AOD=82°,可以得到∠ABD的度数,然后即可得到∠C的度数.解:∵AC是⊙O的切线,∴∠BAC=90°,∵∠AOD=82°,∴∠ABD=41°,∴∠C=90°﹣∠ABD=90°﹣41°=49°,故答案为:49.【点评】本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,利用数形结合的思想解答.12.如图,PA与⊙O相切于点A,PO与⊙O相交于点B,点C在AmB上,且与点A、B 不重合.若∠P=26°,则∠C的度数为32°.【分析】连接OA,根据切线的性质得到OA⊥PA,根据直角三角形的性质求出∠AOP,再根据圆周角定理计算即可.解:连接OA,∵PA与⊙O相切于点A,∴OA⊥PA,∵∠P=26°,∴∠AOP=90°﹣∠C=64°,∴∠C=∠AOP=32°,故答案为:32.【点评】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.13.已知AB为⊙O的直径,AB=6,C为⊙O上一点,连接CA、CB.如图,若AC=2,OD为⊙O的半径,且OD⊥CB,垂足为E,过点D作⊙O的切线,与AC的延长线相交于点F,则FD的长为2.【分析】根据圆周角定理得到∠ACB=90°,∠CAB=∠CBA,进而求出∠CAB,根据切线的性质得到OD⊥DF,证明四边形FCED为矩形,根据矩形的性质得到FD=EC,根据勾股定理求出BC,根据垂径定理解答即可.解:∵AB为⊙O的直径,∴∠ACB=90°,∵DF是⊙O的切线,∴OD⊥DF,∵OD⊥BC,∠FCB=90°,∴四边形FCED为矩形,∴FD=EC,在Rt△ABC中,∠ACB=90°,AC=2,AB=6,则BC==4,∵OD⊥BC,∴EC=BC=2,∴FD=2,故答案为:2.【点评】本题考查的切线的性质、垂径定理、矩形的判定和性质,掌握圆的切线垂直于过切点的半径是解题的关键.14.如图,木工用角尺的短边紧靠⊙O于点A,长边与⊙O相切于点B,角尺的直角顶点为C.已知AC=6cm,CB=8cm,则⊙O的半径为cm.【分析】连接OA,OB,过点A作AD⊥OB于点D,利用矩形的判定与性质得到BD=AC=6cm,AD=BC=8cm,设⊙O的半径为rcm,在Rt△OAD中,利用勾股定理列出方程即可求解.解:连接OA,OB,过点A作AD⊥OB于点D,如图,∵长边与⊙O相切于点B,∴OB⊥BC,∵AC⊥BC,AD⊥OB,∴四边形ACBD为矩形,∴BD=AC=6cm,AD=BC=8cm.设⊙O的半径为rcm,则OA=OB=rcm,∴OD=OB﹣BD=(r﹣6)cm,在Rt△OAD中,∵AD2+OD2=OA2,∴82+(r﹣6)2=r2,解得:r=.故答案为:.【点评】本题主要考查了圆的切线的性质定理,勾股定理,矩形的判定与性质,依据题意添加适当的辅助线是解题的关键.15.如图,在△ABC中,AC=2,BC=4,点O在BC上,以OB为半径的圆与AC相切于点A.D是BC边上的动点,当△ACD为直角三角形时,AD的长为或.【分析】根据切线的性质定理,勾股定理,直角三角形的等面积法解答即可.解:连接OA,过点A作AD⊥BC于点D,∵圆与AC相切于点A.∴OA⊥AC,由题意可知:D点位置分为两种情况,①当∠CAD为90°时,此时D点与O点重合,设圆的半径=r,∴OA=r,OC=4﹣r,∵AC=2,在Rt△AOC中,根据勾股定理可得:r2+4=(4﹣r)2,解得:r=,即AD=AO=;②当∠ADC=90°时,AD=,∵AO=,AC=2,OC=4﹣r=,∴AD=,综上所述,AD的长为或,故答案为:或.【点评】本题主要考查了切线的性质和勾股定理,熟练掌握这些性质定理是解决本题的关键.16.如图,在扇形AOB中,点C,D在上,将沿弦CD折叠后恰好与OA,OB相切于点E,F.已知∠AOB=120°,OA=6,则的度数为60°,折痕CD的长为4.【分析】设翻折后的弧的圆心为O′,连接O′E,O′F,OO′,O′C,OO′交CD 于点H,可得OO′⊥CD,CH=DH,O′C=OA=6,根据切线的性质可证明∠EO′F =60°,则可得的度数;然后根据垂径定理和勾股定理即可解决问题.解:如图,设翻折后的弧的圆心为O′,连接O′E,O′F,OO′,O′C,OO′交CD 于点H,∴OO′⊥CD,CH=DH,O′C=OA=6,∵将沿弦CD折叠后恰好与OA,OB相切于点E,F.∴∠O′EO=∠O′FO=90°,∵∠AOB=120°,∴∠EO′F=60°,则的度数为60°;∵∠AOB=120°,∴∠O′OF=60°,∵O′F⊥OB,O′E=O′F=O′C=6,∴OO′===4,∴O′H=2,∴CH===2,∴CD=2CH=4.故答案为:60°,4.【点评】本题考查了翻折变换,切线的性质,解决本题的关键是掌握翻折的性质.三、解答题(共87分)17.请用两种方法解方程x2+mx﹣2m2=0(m为常数).【分析】根据公式法以及因式分解法即可求出答案.【解答】解法一:x2+mx﹣2m2=0,a=1,b=m,c=﹣2m2,Δ=m2﹣4×1×(﹣2m2)=9m2,x==,x1=﹣2m,x2=m.解法二:x2+mx﹣2m2=0,(x﹣m)(x+2m)=0,x﹣m=0或x+2m=0,x1=﹣2m,x2=m.【点评】本题考查一元二次方程,解题的关键是熟练运用公式法以及因式分解法,本题属于基础题型.18.小明在解一元二次方程时,发现有这样一种解法:如:解方程x(x+4)=6.解:原方程可变形,得:[(x+2)﹣2][(x+2)+2]=6.(x+2)2﹣22=6,(x+2)2=6+22,(x+2)2=10.直接开平方并整理,得.x1=﹣2+,x2=﹣2﹣.我们称小明这种解法为“平均数法”.(1)下面是小明用“平均数法”解方程(x+3)(x+7)=5时写的解题过程.解:原方程可变形,得:[(x+a)﹣b][(x+a)+b]=5.(x+a)2﹣b2=5,(x+a)2=5+b2.直接开平方并整理,得.x1=c,x2=d.上述过程中的a、b、c、d表示的数分别为5,±2,﹣2,﹣8.(2)请用“平均数法”解方程:(x﹣5)(x+3)=6.【分析】(1)根据阅读材料中的信息确定出上述过程中的a、b、c、d表示的数即可;(2)利用“平均数法”解方程即可.解:(1)原方程可变形,得:[(x+5)﹣2][(x+5)+2]=5.(x+5)2﹣22=5,(x+5)2=5+22.直接开平方并整理,得.x1=﹣2,x2=﹣8.上述过程中的a、b、c、d表示的数分别为5、±2、﹣2、﹣8,故答案为:5、±2、﹣2、﹣8;(2)原方程可变形,得:[(x﹣1)﹣4][(x﹣1)+4]=6.(x﹣1)2﹣42=6,(x﹣1)2=6+42.x﹣1=±,∴x=1±,直接开平方并整理,得.x1=1+,x2=1﹣.【点评】此题考查了一元二次方程的应用,弄清题中的新定义是解本题的关键.19.已知关于x的方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2﹣4x+k=0与x2+mx﹣1=0有一个相同的根,求此时m的值.【分析】(1)求出一元二次方程根的判别式,根据题意列出不等式,解不等式即可;(2)根据题意确定k的值,计算即可.解:(1)Δ=(2k﹣3)2﹣4×(k﹣1)(k+1)=4k2﹣12k+9﹣4k2+4=﹣12k+13,∵方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根,∴﹣12k+13>0,解得,k<,又k﹣1≠0,∴k<且k≠1时,方程有两个不相等的实数根;(2)∵k是符合条件的最大整数,∴k=0,x2﹣4x=0,x=0或4,当x=0时,x2+mx﹣1=0无意义;当x=4时,42+4m﹣1=0m=.【点评】本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:①当Δ>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根.上面的结论反过来也成立.20.直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元/件的小商品进行直播销售,如果按每件60元销售,那么每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中所求的售价,则该商品至少需打八折销售.【分析】(1)设每件售价应定为x元,则每件的销售利润为(x﹣40)元,每天可售出(140﹣2x)件,利用总利润=每件的销售利润×每天的销售量,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论;(2)设该商品打y折销售,利用售价=原价×折扣率,结合售价不超过50元,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.解:(1)设每件售价应定为x元,则每件的销售利润为(x﹣40)元,每天可售出20+10×=(140﹣2x)件,依题意得:(x﹣40)(140﹣2x)=(60﹣40)×20,整理得:x2﹣110x+3000=0,解得:x1=50,x2=60,又∵商家想尽快销售完该款商品,∴x=50.答:每件售价应定为50元.(2)设该商品打y折销售,依题意得:62.5×≤50,解得:y≤8,∴该商品至少需打八折销售.故答案为:八.【点评】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.21.(8分)如图,半径为6的⊙O与Rt△ABC的边AB相切于点A,交边BC于点C,D,∠B=90°,连结OD,AD.(1)若∠ACB=20°,求的长(结果保留π).(2)求证:AD平分∠BDO.【分析】(1)连结OA,由∠ACB=20°,得∠AOD=40°,由弧长公式即得的长为;(2)根据AB切⊙O于点A,∠B=90°,可得OA∥BC,有∠OAD=∠ADB,而OA=OD,即可得∠ADB=∠ODA,从而AD平分∠BDO.【解答】(1)解:连结OA,如图:∵∠ACB=20°,∴∠AOD=40°,∴==;(2)证明:∵OA=OD,∴∠OAD=∠ODA,∵AB切⊙O于点A,∴OA⊥AB,∵∠B=90°,∴OA∥BC,∴∠OAD=∠ADB,∴∠ADB=∠ODA,∴AD平分∠BDO.【点评】本题考查与圆有关的计算及圆的性质,解题的关键是掌握弧长公式及圆的切线的性质.22.证明:垂直于弦AB的直径CD平分弦以及弦所对的两条弧.【分析】先根据已知画图,然后写出已知和求证,再进行证明即可.【解答】如图,CD为⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为M.求证:AM=BM,,.证明:连接OA、OB,∵OA=OB,∴△OAB是等腰三角形,∵AB⊥CD,∴AM=BM,∠AOC=∠BOC,∴,.【点评】本题考查了垂径定理,根据命题画出图形并根据圆的隐含条件半径相等进行证明是解题的关键.23.(6分)作图题(要求;保留作图痕迹,写出简要作图步骤)(1)如图①,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B、M均为格点.以格点O为圆心,AB为直径画圆,请你只用无刻度的直尺,在上找出一点P,使=;(2)现有半圆形纸片,如图②,点O是圆心,直径AB的长是12cm,分别取半圆弧上的点E、F和直径AB上的点G,H.使得剪下的由这四个点顺次连接构成的四边形是一个边长为6cm的菱形.请用直尺和圆规在图中作出一个符合条件的菱形.【分析】(1)取格点C,连接CM,BC,BM,由勾股定理可得OM=OB=BC=CM,则四边形MOBC为菱形,可得∠ABM=∠CBM,延长BC,交于点P,即可得,则点P即为所求.(2)分别以点A,B为圆心,线段OA的长为半径画弧,分别交半圆于点E,F,取点A为点G,点O为点H,点B为点G',连接EG,EF,FH,EH,FG',则可得∠EHG=∠EHF=∠FHG'=60°,进而可得四边形EFHG与四边形EFG'H为边长为6cm的菱形.解:(1)如图①,取格点C,连接CM,BC,BM,并延长BC,交于点P,则点P即为所求.(2)如图②,分别以点A,B为圆心,线段OA的长为半径画弧,分别交半圆于点E,F,取点A为点G,点O为点H,点B为点G',连接EG,EF,FH,EH,FG',则四边形EFHG或四边形EFG'H即为所求.【点评】本题考查作图﹣应用与设计作图、圆周角定理、勾股定理、菱形的判定与性质等知识,熟练掌握相关知识点是解答本题的关键.24.如图,AB是⊙O的直径,CD是⊙O的一条弦,AB⊥CD,连接AC,OD.(1)求证:∠BOD=2∠A;(2)连接DB,过点C作CE⊥DB,交DB的延长线于点E,延长DO,交AC于点F.若F为AC的中点,求证:直线CE为⊙O的切线.【分析】(1)连接AD,首先利用垂径定理得,知∠CAB=∠BAD,再利用同弧所对的圆心角等于圆周角的一半可得结论;(2)连接OC,首先由点F为AC的中点,可得AD=CD,则∠ADF=∠CDF,再利用圆的性质,可说明∠CDF=∠OCF,∠CAB=∠CDE,从而得出∠OCD+∠DCE=90°,从而证明结论.【解答】证明:(1)如图,连接AD,∵AB是⊙O的直径,AB⊥CD,∴,∴∠CAB=∠BAD,∵∠BOD=2∠BAD,∴∠BOD=2∠A;(2)如图,连接OC,∵F为AC的中点,∴DF⊥AC,∴AD=CD,∴∠ADF=∠CDF,∵,∴∠CAB=∠DAB,∵OA=OD,∴∠OAD=∠ODA,∴∠CDF=∠CAB,∵OC=OD,∴∠CDF=∠OCD,∴∠OCD=∠CAB,∵,∴∠CAB=∠CDE,∴∠CDE=∠OCD,∵∠E=90°,∴∠CDE+∠DCE=90°,∴∠OCD+∠DCE=90°,即OC⊥CE,∵OC为半径,∴直线CE为⊙O的切线.【点评】本题主要考查了圆周角定理,垂径定理,圆的切线的判定等知识,熟练掌握圆周角定理是解题的关键.25.(13分)△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD 与直线AE交于点F.(1)如图,若点D在△ABC内,∠DBC=20°,求∠BAF的度数;(2)现将△DCE绕点C旋转1周,在这个旋转过程中,①∠AFB的度数是否改变?请说明理由;②线段AF长度的最大值是,最小值是4﹣.【分析】(1)证明△ACE≌△BCD(SAS),推出∠CAE=∠CBD=20°,可得结论;(2)①结论:∠AFB的度数是60°,为定值.利用全等三角形的性质,“8字型“的性质解决问题即可;②P判断出点F的运动轨迹,分别求出AF的最大值和最小值即可.解:(1)如图1中∵△ABC,△DCE都是等边三角形,∴CA=CNB,CD=CE,∠ACB=∠DCE=60°,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴∠CAE=∠CBD=20°,∵∠BAC=60°,∴∠BAF=∠BAC+∠CAE=20°;(2)①结论:∠AFB的度数是60°,为定值.理由:如图1中,设AC交BF于点J.∵△ACE≌△BCD(SAS),∴∠CAE=∠CBD,∵∠BJC=∠AJF,∴∠AFJ=∠BCJ=60°,∴∠AFB是定值;②如图2中,∵∠AFB=∠ACB=60°,∴点F在△ABC的外接圆⊙O上运动,即图2中弧MN上运动.过点O作OH⊥AB于点H.在Rt△AOH中,∠AHO=90°,AH=BH=,∠OAH=30°,∴AO===,∴AF的最大值为2OA=,当CD⊥BF时,AF的值最小如图3中,此时M,F重合.连接CF∵△ACE≌△BCD,∴∠AEC=∠CDB=90°,∵AC=5,CE=3,∴AE===4,∵∠CDF=∠CEF=90°,CD=CE,CF=CF,∴Rt△CFD≌Rt△CFE(HL),∴∠DCF=∠ECF=30°,∴EF=CE•tan30°=,∴AF的最小值=AE﹣CF=4﹣.故答案为:,4﹣.【点评】本题属于几何变换综合题,考查了等边三角形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。
人教版九年级上册数学第二十一章一元二次方程尖子生练习题11.如图,在Rt△ABC中,∠B=90°,AB=8cm,BC=10cm,点P由点A出发,沿AB边以1cm/s的速度向点B移动;点Q由点B出发,沿BC边以2cm/s的速度向点C移动.如果点P,Q分别从点A,B同时出发,问:(1)经过几秒后,AP=CQ?(2)经过几秒后,△PBQ的面积等于15cm2?2.如图1,在△ABC中,∠A=90°,AB=12cm,AC=8cm,现有动点P从点B出发,沿射线BA方向运动,动点Q从点C出发,沿射线CA方向运动,已知点P的速度是2cm/s,点Q 的速度是1cm/s,它们同时出发,设运动时间是ts(t>0).(1)当t=4时,求△APQ的面积.(2)经过多少秒时,△APQ的面积是△ABC面积的一半.3.10月份,是柚子上市的季节,柚子味酸甜,略带苦味,含有丰富的维生素c和大量的营养元素.有健胃补血,降血糖等功效,百果园大型水果超市的红心柚与沙田柚这两种水果很受欢迎,红心柚售价12元/千克,沙田柚售价9元/千克.(1)若第一周红心柚的销量比沙田柚的销量多200千克,要使这两种水果的总销售额不低于6600元,则第一周至少销售红心柚多少千克?(2)若该水果超市第一周按照(1)中红心柚和沙田柚的最低销量销售这两种水果,并决定第二周继续销售这两种水果,第二周红心柚售价降低了a%,销量比第一周增加了a%,沙田柚的售价保持不变,销量比第一周增加了a%,结果这两种水果第二周的总销售额比第一周增加了%,求a的值.4.如图,△ABC中,∠C=90°,AC=8cm,BC=4cm,一动点P从点C出发沿着CB方向以1cm/s的速度运动,另一动点Q从A出发沿着AC边以2cm/s的速度运动,P,Q两点同时出发,运动时间为t(s).(1)若△PCQ的面积是△ABC面积的,求t的值?(2)△PCQ的面积能否为△ABC面积的一半?若能,求出t的值;若不能,说明理由.5.某学校机房有100台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都被感染?6.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元:如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买了这种服装x 件.(1)当x=12时,小丽购买的这种服装的单价为;(2)小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?7.学校课外生物小组的试验园地是长20米宽15米的长方形.为了便于管理,现要在中间开辟一横两纵等宽的小道(如图),要使种植面积为252平方米,求小道的宽.8.如图,把长为40cm,宽为30cm的长方形铁片的四角截去一个大小相同的正方形,然后把每边折起来,做成一个无盖的盒子,使它的底面积(阴影部分)是原来铁片面积的一半,求盒子的高.。
初三数学上册第一章练习题含答案一、选择题1. 题目:请问以下哪个数不是自然数?A. 1B. 0C. 2D. 3答案:B2. 题目:若a + b = 7,且a - b = 3,则a的值为多少?A. 2B. 4C. 5D. 7答案:C3. 题目:小明的体重是45公斤,小红比小明轻12公斤。
请问小红的体重是多少?A. 12公斤B. 33公斤C. 45公斤D. 57公斤答案:B4. 题目:已知正整数a的平方等于16,求a的值为多少?A. 2B. 3C. 4D. 5答案:C5. 题目:计算9 ÷ 0.3的值。
A. 0.9B. 3C. 30D. 90答案:C二、填空题1. 题目:已知正整数m的平方等于100,m的值为____。
答案:102. 题目:已知20 - n = 13,求n的值为____。
答案:73. 题目:某书店有一种图书共500本,其中红色封面的图书占总数的20%,则红色封面图书的数量为____本。
答案:1004. 题目:如图所示,在△ABC中,∠A = 60°,则∠B = ____°,∠C = ____°。
答案:∠B = ∠C = 60°5. 题目:若6的4次方等于n,则n的值为____。
答案:1,296三、解答题1. 题目:请计算下列各式的结果:(a) 3 × (4 + 5)(b) 8 + 2 × 5答案:(a) 3 × (4 + 5) = 3 × 9 = 27(b) 8 + 2 × 5 = 8 + 10 = 182. 题目:某书店举行促销活动,一本原价20元的书打7折出售。
请问购买3本这种书需要多少钱?答案:20元 × 0.7 × 3 = 42元3. 题目:玩具汽车原价180元,现促销打9折,请问现在的售价为多少?答案:180元 × 0.9 = 162元4. 题目:某班级有35名男生和25名女生,男生人数比女生人数多多少?答案:35 - 25 = 105. 题目:三个整数a、b、c的和为100,已知a = 3,c = 2。
一元一次方程测试题一、填一填!1、若3x+6=17,移项得_____, x=____。
2、代数式5m +14与5(m -14)的值互为相反数,则m 的值等于______。
3、如果x=5是方程ax+5=10-4a 的解,那么a=______4、在解方程123123x x -+-=时,去分母得 。
5、若(a -1)x |a|+3=-6是关于x 的一元一次方程,则a =__;x =___。
6、当x=___时,单项式5a2x+1b 2 与8a x+3b 2是同类项。
7、方程5x 4x 123-+-=,去分母可变形为______。
8、如果2a+4=a -3,那么代数式2a+1的值是________。
9、从1999年11月1日起,全国储蓄存款需征收利息税,利息税的税率是20%,张老师于2003年5月1日在银行存入人民币4万元,定期一年,年利率为1.98%,存款到期后,张老师净得本息和共计______元。
10、当x 的值为-3时,代数式-3x 2+ a x -7的值是-25,则当x =-1时,这个代数式的值为 。
11、若()022=-+-y y x ,则x+y=___________ 12、某学校为保护环境,绿化家园,每年组织学生参加植树活动,去年植树x 棵,今年比去年增加20%,则今年植树___________棵.二、慧眼识真!1. 1、下列各题中正确的是( )A. 由347-=x x 移项得347=-x xB. 由231312-+=-x x 去分母得)3(31)12(2-+=-x x C. 由1)3(3)12(2=---x x 去括号得19324=---x xD. 由7)1(2+=+x x 移项、合并同类项得x =52、方程2-2x 4x 7312--=-去分母得___。
A 、2-2(2x -4)=-(x -7) B 、12-2(2x -4)=-x -7C 、24-4(2x -4)=-(x -7)D 、12-4x +4=-x +73、一批宿舍,若每间住1人,则有10人无法安排;若每间住3人,则有10间无人住。
初三数学第一单元练习题
本篇文章旨在提供初三数学第一单元的相关练习题,帮助同学们巩
固所学知识,为日后的数学学习打下良好基础。
以下是一些练习题供
大家参考。
1. 简答题
a) 请解释什么是最大公约数(GCD)和最小公倍数(LCM)。
b) 解释并比较直角三角形和等边三角形的特征。
c) 解释什么是平均数、中位数和众数。
2. 选择题
a) 在有30名学生的班级中,数学分数最高的学生是75分,最低的
学生是59分。
请问哪个数值能够准确代表这个班级学生数学平均水平?
1) 70
2) 64
3) 77
4) 62
b) 某班级有25名男生和15名女生,男生的平均身高是160厘米,
女生的平均身高是155厘米。
那么整个班级的平均身高是多少?
1) 157厘米
2) 158厘米
3) 159厘米
4) 160厘米
3. 计算题
a) 计算最大公约数(GCD)和最小公倍数(LCM):
16和24
b) 计算正方形的面积和周长:
一边长度为8厘米的正方形
c) 解方程:
2x + 5 = 17
4. 解答题
a) 请用完整的步骤解决以下问题:甲、乙、丙三个水桶分别有容量为12升、8升、5升,其中只有甲桶装满了水,请问如何平分这12升的水?
b) 请解释什么是比例,并提供一个例子进行说明。
c) 现有一个三角形ABC,角A为90度,AB=5cm,BC=12cm。
请计算角B和角C的度数。
以上是初三数学第一单元练习题,希望通过这些练习题,同学们能够巩固所学的数学知识,并提升解题能力。
祝大家学业进步!。
河北省邯郸经济技术开发区实验学校2024-2025学年九年级上学期第一次月考数学试卷一、单选题1.若方程3x -=□是关于x 的一元二次方程,则“W ”可以是( )A .2x -B .22C .22xD .2y2.抛物线2(3)5y x =--+与y 轴的交点坐标为( )A .()0,5B .()0,5-C .()0,4D .()0,4- 3.将一元二次方程23810x x -=-化成一般形式为2380x x c -+=,则c 的值为( ) A .10 B .−10 C .8 D .34.关于x 的一元二次2440x x ++=的解为( )A .12x =,22x =-B .122x x ==-C .2x =-D .11x =-,22x =- 5.老师设计了接力游戏,用合作的方式完成“求抛物线2284y x x =++的顶点坐标”,规则如下:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成解答.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有甲B .丙和丁C .甲和丁D .乙和丙 6.若关于x 的一元二次方程260x x m -+=有两个不相等的实数根,则实数m 的值可以是( ) A .13 B .12 C .11 D .87.已知抛物线2y ax bx =+经过点(3,3)A --,且该抛物线的对称轴经过点A ,则该抛物线的解析式为( )A .2123y x x =+B .2123y x x =+C .2123y x x =-D .y =2123x x -- 8.随着新能源电动汽车的快速增加,绵阳市正在快速推进全市电动汽车的充电桩建设,已知到2023年底,绵阳全市约有3.5万个充电桩,根据规划到2025年底,全市的充电桩数量将会达到5.04万个,则从2023年底到2025年底,全市充电桩数量的年平均增长率为( )A .10%B .15%C .20%D .25%9.在同一平面直角坐标系中,一次函数1122y ax a =+与二次函数2y ax a =-的图象可能是( ) A . B . C .D .10.已知三角形的两边长分别是3和5,第三边的长是一元二次方程212320x x -+=的一个实数根,则该三角形的面积是( )A .6或10B .10C .6D .12或1011.抛物线2y x bx c =++的图象与x 轴交于点()20A t -,,()20B t +,,t 为常数,则y 的最小值为( )A .1-B .2-C .3-D .4-12.在学习“二次函数的性质”时,初三某班数学兴趣小组的同学们做了以下研究:如图,将抛物线21:(1)2C y x =-++平移到抛物线22:(2)1C y x =---,点()1,P m n ,()2,Q m n 分别在抛物线1C ,2C 上.甲:无论m 取何值,都有20n <.乙:若点P 平移后的对应点为P ',则点P 移动到点P '的最短路程为丙:当31m -<<时,随着m 的增大,线段PQ 先变长后变短,下列判断正确的是( )A .只有丙说得错B .只有乙说得错C .只有甲说得对D .甲、乙、丙说得都对二、填空题13.将一元二次方程22125x x +=配方后得到22()x c b +=,则b c +=.14.已知抛物线24y x x k =++与x 轴没有交点,则k 的取值范围是.15.对于两个不相等的实数a b ,,我们规定符号{}max ,a b 表示a b ,中较大的数,如:{}max 1,33-=,则方程{}2max 21,6x x x x +=+的解为.16.如图,抛物线2y ax bx c =++的对称轴是1x =,下列结论:①0abc >;②20a b +=;③当0x >时,y 随x 的增大而减小;④30a c +>.则正确的结论是.(填序号即可)三、解答题17.解下列方程:(1)()()3121x x x -=-;(2)210x x +-=.18.已知二次函数2281y x x =-++.(1)求抛物线的开口方向、对称轴及顶点坐标;(2)若()()1122,,A x y B x y ,是二次函数图像上的两个点,且120x x <<,请比较1y 与2y 的大小.19.已知关于x 的方程()22320m x x --+=.(1)若1x =是方程的解,求m 的值;(2)若原方程有实数根,求m 的取值范围;(3)若方程的两根分别为12x x ,,且121x x =,求m 的值.20.如图,抛物线212y x bx c =-++经过()1,0A -、()3,0B 两点,与y 轴交于点C ,点G 为抛物线的顶点,(1)求抛物线的解析式及点G 的坐标;(2)连接AC ,将线段AC 向右水平移动m 个单位长度,若它与抛物线只有一个交点,求出m 的取值范围.21.交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定,某头盔经销商销售A 品牌头盔,此种头盔的进价为30元/个,经测算,当售价为40元/个时,月销售量为600个,若在此基础上售价每上涨1元/个,则月销售量将减少10个.(1)当售价为50元/个时,月销售量为______个.(2)为使月销售利润达到10000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?22.【新情境】如图1是一个高脚杯的剖面图,杯体CPD 呈抛物线形(杯体厚度不计),点P是抛物线的顶点,杯底AB =,点O 是AB 的中点,且6cm OP AB OP CD ⊥==,,杯子的高度(即CD ,AB 之间的距离)为15cm .以O 为原点,AB 所在直线为x 轴,OP 所在直线为y 轴建立平面直角坐标系(1个单位长度表示1cm )..(1)求杯体CPD 所在抛物线的解析式;(2)将杯子向右平移2cm ,并倒满饮料,如图2,过D 点放一根吸管,吸管底部碰触到杯壁后不再移动,喝过一次饮料后,发现剩余饮料的液面高度(即液面到点P 所在水平线的距离)低于1cm ,设吸管所在直线的解析式为y kx b =+,求b 的取值范围.23.为实现“全民健身”,某区政府准备开发城北一块长为32m ,宽为21m 的矩形空地.(1)方案一:如图1,将这块空地种上草坪,中间修一条弯曲的小路,则这块草坪的面积为________2m ;(2)方案二:如图2,将这块空地种上草坪,修纵横两条宽度为m x 的小路,使这块草地的面积为2620m ,求x 的值;(3)方案三:修建一个面积为2432m 的矩形篮球场,使相邻两边的差为6m ,若比赛用的篮球场要求长为m a ,宽为m b ,且满足24301320a b ≤≤≤≤,.这个篮球场能用做比赛吗?并说明理由.24.如图,二次函数2y x bx c =++的图像与x 轴交于A B ,两点,与y 轴交于C 点,其中()()1,00,3B C ,.(1)求这个二次函数的解析式;(2)在抛物线上有一点P ,使得3ABC ABP S S =V V ,求点P 的坐标;(3)在抛物线的对称轴上,是否存在点Q ,使QBC △的周长最小?若存在,求出点Q 的坐标及QBC △的周长的最小值,若不存在,请说明理由.。
九年级数学上册21-1《一元二次方程》基础课时练习题(含答案)1、只含有个未知数,并且未知数的次数是2的方程,叫做一元二次方程,它的一般形式为.2、下列方程中,关于x的一元二次方程是().A. 1x2+1x−2=0B. 3(x+1)2=2(x+1)C. kx2−3x+1=0D. x2+2x=x2−13、方程2x2−6x−1=0的二次项系数为,一次项系数为,常数项为.4、把下列关于x的一元二次方程化为一般式,并写出二次项系数,一次项系数及常数项.(2x−1)(3x+2)=0.5、方程(m−1)x2+mx+1=0是关于x的一元二次方程,则m的值是()A. 任意实数B. m≠0C. m≠1D. m≠−16、当m为何值时,方程(m−1)x m2+1+2mx+3=0是关于x的一元二次方程?7、已知一元二次方程x2+kx−3=0有一个根为1,则k的值为().A. −2B. 2C. −4D. 48、已知关于x的一元二次方程x2+ax+b=0有一个非零根−b,则a−b的值为().A. 1B. −1C. 0D. −29、一元二次方程ax2+bx+c=0,若x=1是它的一个根,则a+b+c=;若a−b+c=0,则方程必有一个根是.10、若x1、x2是方程x2+x−1=0的两根,则(x12+x1−2)(x22+x2−2)的值为().A. 2B. −2C. −1D. 111、如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为().A. 10×6−4×6x=32B. (10−2x)(6−2x)=32C. (10−x)(6−x)=32D. 10×6−4x2=3212、在一次初三学生数学交流会上,每两名学生握手一次,统计共握手253次.若设参加此会的学生为x名,据题意可列方程为().A. x(x+1)=253B. x(x−1)=253x(x+1)=253C. 12x(x−1)=253D. 1213、某种服装每天可销售20件,每件盈利44元.若单价每降1元,则每天可多销售5件.若每天要盈利1600元,则每件服装应降价多少元?(只列方程,不必求解)14、下列方程中,一定是关于x的一元二次方程的是().A. ax2+bx+c=0B. 2x2−5x+7=0C. 2y2−x−3=0D. mx2−2x=x2+115、一元二次方程4x2+x=1的二次项系数、一次项系数、常数项分别是().A. 4,0,1B. 4,1,1C. 4,1,−1D. 4,1,016、3y(y+1)=7(y+2)−5化成一般形式为,其中二次项系数是,一次项系数是,常数项是.17、已知(m−1)x|m+1|+mx−1=0是关于x的一元二次方程,则m=.18、若(m−2)x m2−2+x−3=0是关于x的一元二次方程,则m的值是.19、已知x=1是一元二次方程x2−2mx+1=0的一个解,则m的值是().A. 1B. 0C. 0或1D. 0或−120、若2n(n≠0)是关于x的方程x2−2mx+2n=0的根,则m−n的值为.21、已知关于x的一元二次方程ax2+bx+c=0,若4a−2b+c=0,则该方程一定有一个根为().A. 0B. 2C. −2D. −122、已知a是一元二次方程x2−2020x+1=0的一个根,求a2−2019a+2020的值.a2+123、王叔叔从市场上买了一块长80cm,宽70cm的矩形铁皮,准备制作一个工具箱.如图,他将矩形铁皮的四个角各剪掉一个边长xcm的正方形后,剩余的部分刚好能围成一个底面积为3000cm2的无盖长方体工具箱,根据题意列方程为().A. (80−x)(70−x)=3000B. 80×70−4x2=3000C. (80−2x)(70−2x)=3000D. 80×70−4x2−(70+80)x=300024、2017−2018赛季中国男子篮球职业联赛,采用双循环制(每两队之间都要进行两场比赛),比赛总场数为380场,若设参赛队有x支,则可列方程为().x(x−1)=380A. 12B. x(x−1)=380x(x+1)=380C. 12D. x(x+1)=38025、某商店购进一种商品,进价为30元.试销中发现这种商品每天的销售量P(件)与每件的销售价x(元)满足关系:P=100−2x.若商店在试销期间每天销售这种商品获得200元的利润,根据题意,下面所列方程正确的是().A. (x−30)(100−2x)=200B. x(100−2x)=200C. (30−x)(100−2x)=200D. (x−30)(2x−100)=2001 、【答案】1;最高;ax2+bx+c=0(a≠0);【解析】只含有1个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程,它的一般形式为ax2+bx+c=0(a≠0).2 、【答案】 B;【解析】根据一元二次方程定义,只有B是关于x的一元二次方程.故选B.3 、【答案】2;−6;−1;【解析】2x2−6x−1=0的二次项系数为2,一次项系数为−6,常数项系数为−1.4 、【答案】6x2+x−2=0,6,1,−2.;【解析】原方程可化为6x2+x−2=0,其中二次项系数为6,一次项系数为1,常数项为−2.5 、【答案】 C;【解析】∵(m−1)x2+mx+1=0是关于x的一元二次方程,∴m−1≠0,解得m≠1.故选C.6 、【答案】−1.;【解析】当m2+1=2且m−1≠0时,方程(m−1)x m2+1+2mx+3=0是关于x的一元二次方程.由m2+1=2,得m2=1,即m=±1.由m−1≠0,得m≠1.所以当m=−1时,方程(m−1)x m2+1+2mx+3=0是关于x的一元二次方程.7 、【答案】 B;【解析】把x=1代入方程得1+k−3=0,解得k=2.故选:B.8 、【答案】 A;【解析】∵关于x的一元二次方程x2+ax+b=0有一个非零根−b,∴b2−ab+b=0,∵−b≠0,∴b≠0,方程两边同时除以b,得b−a+1=0,∴a−b−1=0.∴a−b=1.故选A.9 、【答案】0;x=−1;【解析】 1. x=1满足方程ax2+bx+c=0,代入方程得a+b+c=0.2. a−b+c=0,即x=−1满足方程ax2+bx+c=0,所以必有一根x=−1.10 、【答案】 D;【解析】∵x1,x2是方程x2+x−1=0两根,∴x12+x1−1=0,x22+x2−1=0,∴(x12+x1−2)÷(x22+x2−2)=(x12+x1−1−1)(x22+x2−1−1)=1.故选D.11 、【答案】 B;【解析】设剪去的小正方形边长是xcm,则纸盒底面的长为(10−2x)cm,宽为(6−2x)cm,根据题意得:(10−2x)(6−2x)=32.12 、【答案】 D;【解析】参加此会的学生为x名,每个学生都要握手(x−1)次,x(x−1)=253,∴可列方程为12故选:D.13 、【答案】(44−x)(20+5x)=1600.;【解析】设每件服装应降价x元,根据题意列方程,得(44−x)(20+5x)=1600.14 、【答案】 B;【解析】在ax2+bx+c=0中,当a=0且b≠0时,该方程为关于x的一元一次方程;2x2−5x+7=0为一元二次方程;2y2−x−3=0中含有两个未知数,故不是关于x的一元二次方程;mx2−2x=x2+1中,当m=1时,该方程为一元一次方程;故选B .15 、【答案】 C;【解析】方程整理得:4x2+x−1=0,则二次项系数、一次项系数、常数项分别是4,1,−1.故选C.16 、【答案】3y2−4y−9=0;3;−4;−9;【解析】方程3y(y+1)=7(y+2)−5整理得:3y2−4y+9=0,其中二次项系数为3,一次项系数是−4,常数项是−9.17 、【答案】−3;【解析】∵(m−1)x|m+1|+mx−1=0是一元二次方程,∴|m+1|=2且m−1≠0.由|m+1|=2,得m+1=±2.解得m=1或m=−3.由m−1≠0,得m≠1.∴m=−3.18 、【答案】−2;【解析】∵(m−2)x m2−2+x−3=0是关于x的一元二次方程,∴m−2≠0,m2−2=2,解得:m=−2,19 、【答案】 A;【解析】由题可知,将x=1代入x2−2mx+1=0得12−2m×1+1=0,∴m=1.故选A.20 、【答案】12;【解析】∵2n(n≠0)是关于x的方程x2−2mx+2n=0的根,∴4n2−4mn+2n=0,∴4n−4m+2=0,∴m−n=12.故答案是:12.21 、【答案】 C;【解析】a,b,c满足4a−2b+c=0,即a⋅(−2)2+b⋅(−2)+c=0,∴x=−2满足ax2+bx+c=0.该方程必有一个根为x=−2.22 、【答案】2019.;【解析】因为a是x2−2020x+1=0的一个根,所以a2−2020a+1=0,所以a2=2020a−1,a2+1=2020a,所以a2−2019a+2020a2+1=2020a−1−2019a+20202020a=a−1+1a=a 2−a+1a=a2+1−aa=2020a−aa=2019.23 、【答案】 C;【解析】由题意可得(80−2x)(70−2x)=3000.24 、【答案】 B;【解析】每队都要和其他队打比赛,故每队打(x−1)场,共x支队,故x(x−1)=380.故答案为B.25 、【答案】 A;【解析】∵每件商品的利润为(x−30)元,可售出(100−2x)件,∴根据每天的利润为200元可列的方程为(x−30)(100−2x)=200.。
初三数学第一学期基础题练习(1)
班级: 姓名: 学号: 分数:
一、选择题
1.二次三项式243x x -+配方的结果是( )
A .2(2)7x -+
B .2(2)1x --
C .2(2)7x ++
D .2(2)1x +-
2.在Rt △ABC 中,∠C=90°,a =4,b =3,则cosA 的值是( )
A .45
B .35
C .43
D .54
3、方程3)3(2-=-x x 的根是( )
A 、4=x
B 、3=x
C 、4,321==x x
D 、4,321-==x x
4、点1(2,)A y -,2(1,)B y -都在反比例函数4y x
= 图象上,则12,y y 的大小关系是( ) A 、1y > 2y B 、1y < 2y C 、1y =2y D 、不能确定
5.下列命题中,不正确的是( )
A .顺次连结菱形各边中点所得的四边形是矩形
B .有一个角是直角的菱形是正方形
C .对角线相等且垂直的四边形是正方形
D .有一个角是60°的等腰三角形是等边三角形
6.某钢铁厂今年1月份产量为4万吨,三月份产量为4.84万吨,每月的增长率相同,问2、3月份平均每月的增长率是多少?设平均每月的增长率为x, 则可列方程( )
A .4.84(1-2x )=4
B .4.842)1(x -=4
C .42
)1(x +=4.84 D .4x )1(x +=4.84
7、张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为 ( )
A 、3.2米
B 、4.8米
C 、5.2米
D 、5.6米
8、函数y =-x 和x y 2=在同一直角坐标系中的图象大致是( )
9. 如果等腰三角形ABC 的周长为30,底边长为x ,一腰长为y ,则y 与x 的函数关系是( ) A 、)300(30<<-=x x
y B 、)150(30<<-=x x y C 、)300(2115<<-=x x y D 、)150(2
115<<-=x x y 10.如图,矩形ABCD ,R 是CD 的中点,点M 在BC 边上运动,
E ,
F 分别是AM ,MR 的中点,则EF 的长随着M 点的运动( )
A .变短
B .变长
C .不变
D .无法确定
二、填空题
11.已知菱形的周长为20cm ,一条对角线长为8cm ,则菱形的面积为___________
12.计算︒+︒-︒60tan 245cos 330sin =
13.掷一颗普通的正方体骰子,则“点数大于4”的概率为 。
O O
O O y y
y y x x x
x A B C D
14.某商店将进货为8元的商品按每件10元售出,每天可销售200件,现在采用提高商品售价减少销售量的办法增加利润,如果这种商品按每件的销售价每提高0.5元其销售量就减少10件,问应将每件售价定为多少元时,才能使每天利润为640元?
设每件提降价x 元,所列的方程为
15、如图,已知点A 在反比例函数x
k y =的图像上,AB ⊥x 轴于点B , 若OA=5,点B 的坐标为(4,0),则K 的值为 。
16、一元二次方程01)2(2=++-+m x m x 有两个不相等的实数根,则m 的取值范围是
三、解答题
17.如图所示,课外活动中,小明在离旗杆AB 的10米C 处,用测角仪测得旗杆顶部A 的仰角为40︒,已知测角仪器的高CD=1.5米,求旗杆AB 的高.(精确到0.1米) (:sin400≈0.64,cos400≈0.77,tan400≈0.84)
18、如图,已知一次函数y kx b =+的图象与反比例函数8y x =-
的图象交于A 、B 两点,且
点A 的横坐标和点B 的纵坐标都是2-.求:
(1)A 、B 两点的坐标;
(2) 求一次函数的解析式.
(3)写出反比例函数值大于一次函数值时x 的取值范围.。