二重积分奇偶性判定
- 格式:doc
- 大小:323.00 KB
- 文档页数:6
归纳二重积分的计算方法摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限.关键词 :函数极限;计算方法;洛必达法则; 四则运算前言二重积分的概念和计算是多元函数微积分学的重要部分,在几何\物理\力学等方面有着重要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧.1. 预备知识1.1二重积分的定义]1[设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和都有()1,niiii f J ξησε=∆-<∑,则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作(),DJ f x y d σ=⎰⎰,其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域.1.2二重积分的若干性质1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),Dkf x y d σ⎰⎰(),Dk f x y d σ=⎰⎰.1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且()()[,,]Df x yg x y d σ±⎰⎰()(),,DDf x y dg x y d σσ=±⎰⎰⎰⎰.1.23 若(),f x y 在1D 和2D 上都可积,且1D 与2D 无公共内点,则(),f x y 在12D D 上也可积,且()12,D D f x y d σ⎰⎰()()12,,D D f x y d f x y d σσ=±⎰⎰⎰⎰1.3在矩形区域上二重积分的计算定理设(),f x y 在矩形区域D [][],,a b c d =⨯上可积,且对每个[],x a b ∈,积分(),dcf x y dy ⎰存在,则累次积分(),b dacdx f x y dy ⎰⎰也存在,且(),Df x y d σ⎰⎰(),b dacdx f x y dy =⎰⎰.同理若对每个[],y c d ∈,积分(),baf x y dx ⎰存在,在上述条件上可得(),Df x y d σ⎰⎰(),d bcady f x y dx =⎰⎰2.求的二重积分的几类理论依据二重积分类似定积分,可看成一个函数在有界区域内的积分,它计算的主要思路是把重积分化为我们学过的累次积分的计算,在这思想下如何化为更容易求的累次积分成为问题关键,下文介绍了把区域化为简单的X -型\Y -型区域及把复杂的函数通过变量变换化为简单函数的几种计算技巧,另外还列举几类特殊二重积分的简单求法.2.1在直角坐标系下,对一般区域二重积分的计算X -型区域: ()()(){}12,,D x y y x y y x a x b =≤≤≤≤Y -型区域: ()()(){}12,,D x y x y x x y c y d =≤≤≤≤定理:若(),f x y 在X -区域D 上连续,其中()1y x ,()2y x 在[],a b 上连续,则(),Df x y d σ⎰⎰()()()21,by x ay x dx f x y dy =⎰⎰即二重积分可化为先对y ,后对x 的累次积分.同理在上述条件下,若区域为Y -型,有(),Df x y d σ⎰⎰()()()21,dx y cx y dx f x y dy =⎰⎰例1求两个底面半径相同的直交圆柱所围立体的体积V . 解:设圆柱底面半径为a ,两个圆柱方程为 222x y a +=与222x z a +=.只要求出第一卦限部分的体积,然后再乘以8即得所求的体积.第一卦限部分的立体式以z =,以四分之一圆域D :00,y x a ⎧⎪≤≤⎨≤≤⎪⎩为底的曲顶柱体,所以2230012()83a a DV dx a x dx a σ===-=⎰⎰于是3163V a =. 另外,一般常见的区域可分解为有限个X -型或Y -型区域,用上述方法求得各个小区域上的二重积分,再根据性质1.23求得即可.2.2 二重积分的变量变换公式定理: 设(),f x y 在有界闭域D 上可积,变换T : (),x x u v =, (,)y y u v =将平面uv 由按段光滑封闭曲线所围成的闭区域∆一对一地映成xy 平面上的闭区域D,函数(),x x u v =,(,)y y u v =在∆内分别具有一阶连续偏导数且它们的函数行列式()()(),,0,x y J u v u v ∂=≠∂, (),u v ∈∆,则()()()()(),,,,,Df x y dxdy f x u v y u v J u v dudv ∆=⎰⎰⎰⎰.用这个定理一般有两个目的,即被积函数化简单和积分区域简单化. 例1 求x y x yDedxdy -+⎰⎰,其中D 是由0x =,0y =,1x y +=所围区域.解 为了简化被积函数,令u x y =-,v x y =+.为此作变换T :1()2x u v =+,1()2y u v =-,则()11122,011222J u v ==>-. 即111100111()2224x y u u v x yvvv De e edxdy e dudv dv e du v e e dv ---+-∆-==-=⎰⎰⎰⎰⎰⎰⎰ 例2 求抛物线2y mx =,2y nx =和直线y x β=,y x α=所围区域D 的面积()D μ(0,0)m n αβ<<<<.解D 的面积()DD dxdy μ=⎰⎰.为了简化积分区域,作变换T : 2u x v =,uy v=.它把xy 平面上的区域D 对应到uv 平面上的矩形区域[][],,m n αβ∆=⨯.由于()234212,01uu v v J u v u v vv-==>-,(),u v ∈∆, 所以()()22334433()6n m D n m udv D dxdy dudv udu v v βαβαμαβ∆--====⎰⎰⎰⎰⎰⎰ 2.3 用极坐标计算二重积分定理: 设(),f x y 在有界闭域D 上可积,且在极坐标变换T :cos sin x r y r θθ=⎧⎨=⎩ 0r ≤<+∞,02θπ≤≤下,xy 平面上有界闭区域D 与r θ平面上区域∆对应,则成立()(),cos ,sin (,)Df x y dxdy f r r J r drd θθθθ∆=⎰⎰⎰⎰.其中cos sin (,)sin cos r J r r r θθθθθ-==.当积分区域是源于或圆域的一部分,或者被积函数的形式为()22,f x y 时,采用该极坐标变换.二重积分在极坐标下化累次积分的计算方法:(i )若原点O D ∉,且xy 平面上射线θ=常数与D 边界至多交与两点,则∆必可表示成12()()r r r θθ≤≤,αθβ≤≤,于是有21()()(,)(cos ,sin )r r Df x y dxdy d f r r rdr βθαθθθθ=⎰⎰⎰⎰类似地,若xy 平面上的圆r =常数与D 的边界多交于两点,则∆必可表示成12()()r r θθθ≤≤,12r r r ≤≤,所以2211()()(,)(cos ,sin )r r r r Df x y dxdy rdr f r r d θθθθθ=⎰⎰⎰⎰.(ii )若原点为D 的内点,D 的边界的极坐标方程为()r r θ=,则∆可表示成0()r r θ≤≤,02θπ≤≤.所以2()(,)(cos ,sin )r Df x y dxdy d f r r rdrπθθθθ=⎰⎰⎰⎰.(iii)若原点O 在D 的边界上,则∆为0()r r θ≤≤,αθβ≤≤, 于是()(,)(cos ,sin )r Df x y dxdy d f r r rdr βθαθθθ=⎰⎰⎰⎰例1 计算22()xy DI e d σ-+=⎰⎰,其中D 为圆域: 222x y R +≤.解 利用极坐标变换,由公式得2220(1)Rr R I re dr e ππ--==-⎰⎰.与极坐标类似,在某些时候我们可以作广义极坐标变换:T :cos sin x ar y br θθ=⎧⎨=⎩0r ≤<+∞,02θπ≤≤,cos sin (,)sin cos a ar J r abr b br θθθθθ-==.如求椭球体2222221x y z a b c++≤的体积时,就需此种变换.2.4利用二重积分的几何意义求其积分当(,)0f x y ≥时,二重积分(,)Df x y dxdy ⎰⎰在几何上就表示以(,)z f x y =为曲顶,D 为底的曲顶体积.当(,)1f x y =时,二重积分(,)Df x y dxdy ⎰⎰的值就等于积分区域的面积.例6计算:DI σ=,其中D :22221x y a b +≤.解因为被积函数z =0≥,所以I 表示D为底的z =为顶的曲顶柱体体积.由平行xoy 面的截面面积为()(1)A x ab z π=-,(01)z ≤≤,根据平行截面面积为已知的立体体积公式有101(1)3I ab z dz ab ππ=-=⎰2.5 积分区域的边界曲线是由参数方程表示的二重积分有关计算 2.51利用变量代换计算设D 为有界闭域,它的边界曲线,()t αβ≤≤且{}(,),()D x y a x b c y y x =≤≤≤≤,当x a =时,t α=;当x b =时,t β=。
计算二重积分的几种简便方法摘要:本文旨在探讨计算二重积分的几种简便方法,通过对不同方法的比较和分析,旨在提高计算效率和准确性。
文章首先介绍了二重积分的基本概念及其在计算中的重要性,随后详细阐述了极坐标法、换元法、对称性法,并结合具体实例展示了这些方法的应用过程。
关键词:二重积分;极坐标法;换元法;对称性法一、引言二重积分是数学分析中的重要内容,广泛应用于物理、工程、经济等领域。
然而,二重积分的计算往往较为复杂,需要选择合适的方法进行简化。
因此,本文旨在探讨计算二重积分的简便方法,为相关领域的研究者提供实用的计算工具。
二、二重积分的基本概念与重要性1.二重积分的定义二重积分是多元函数积分学中的一个基本概念,它描述了一个二元函数在某一给定二维区域上的面积积分。
具体而言,二重积分可以看作是函数值在二维平面上某区域内所有点的累积和,或者理解为函数曲面在指定区域内与坐标平面所围成的体积。
形式上,二重积分可以表示为对两个变量的连续积分,通常写成∫∫f(x,y)dxdy的形式。
2.二重积分的几何与数值意义从几何角度看,二重积分可以表示某个二维区域内函数曲面的面积或者体积。
当被积函数为1时,二重积分计算的就是该区域的面积;当被积函数表示某种密度或强度时,二重积分则计算的是该区域内的总质量或总强度。
因此,二重积分在几何和物理领域具有广泛的应用。
从数值角度看,二重积分提供了一种计算函数在一定区域内平均值的方法。
此外,通过二重积分还可以研究函数的极值、曲线的长度等性质,进而揭示函数图形的变化规律。
3.二重积分的应用领域与范围二重积分在自然科学、工程技术和社会科学等多个领域具有广泛的应用。
在物理学中,二重积分用于计算质心、转动惯量、引力势能等;在经济学中,可以用于计算总收入、总成本等经济指标;在图像处理、计算机视觉等领域,二重积分也被用于计算图像特征、积分变换等。
此外,二重积分还广泛应用于地理学、气象学、生物医学等领域,用于解决各种实际问题。
考研数学中二重积分的计算方法与技巧顾 贞 洪 港 高恒嵩高等数学作为大多数专业研究生考试的必考科目,其有自己固有的特点,大纲几乎不变,注重基本知识点的考察,注重学生的综合应用能力,也考察学生解题的技巧.二重积分作为考研数学必考的知识点,在解题方面有一定的技巧可循,本文针对研究生考试中二重积分的考察给出具有参考性的解题技巧.二重积分的一般计算步骤如下:(1) 画出积分区域D 的草图;(2) 根据积分区域D 以及被积函数的特点确定合适的坐标系;(3) 在相应坐标系下确定积分次序,化为二次积分; (4) 确定二次积分的上、下限,做定积分运算.但是在历年考试题中,越来越多的题目注重解题技巧的考查,考题经常以下列几种情况出现:1分段函数的二重积分如果被积函数中含有函数关系min max,以及绝对值函数,则需要对二重积分进行分区域积分.例1:(2008年试题)计算⎰⎰Ddxdy xy }1,max{,其中}20,20),({≤≤≤≤=y x y x D .解:积分区域如图1所示:因为⎩⎨⎧>≤=111}1,max{xy xy xy xy ,所以有:max{,1}Dxy dxdy ⎰⎰1122222111022x xdx dy dx dy dx xydy=++⎰⎰⎰⎰⎰⎰2ln 419)ln 21(21ln 2ln 2212212+=-+-+⨯=x x2交换二重积分的次序交换积分次序的步骤如下: (1) 先验证二次积分是否是二重积分的二次积分(积分下限小于上限)(2) 由所给二次积分的上、下限写出积分区域D 的不等式组(3) 依据不等式组画出积分区域D 的草图(4) 根据积分区域D 的草图写出另一种积分次序下的二次积分。
例2:计算dy e dx xy ⎰⎰-222解:积分区域如图2所示:因为⎰-22xy dy e 不可积,所以交换二重积分次序,则有:)1(214022022222-----===⎰⎰⎰⎰⎰⎰e dx dy e dx e dy dy e dx yy yy xy图1 图2 图3 图43利用积分区域的对称性计算二重积分(1)利用积分区域的对称性,被积函数的奇偶性计算 设()y x f ,在积分区域D 上连续,D 关于y 轴对称,1D 为D 中0≥x 的部分.则有:()()⎰⎰⎰⎰⎪⎩⎪⎨⎧-=-=-=DD y x f y x f y x f y x f d y x f d y x f ),(),(0),(),(,2,1σσ设()y x f ,在积分区域D 上连续,D 关于x 轴对称,1D 为D 中0≥y 的部分.则有:()()⎰⎰⎰⎰⎪⎩⎪⎨⎧-=-=-=D D y x f y x f y x f y x f d y x f d y x f ),(),(0),(),(,2,1σσ 例3:(2017年试题)已知平面区域22{(,)2}D x y x y y =+≤,计算二重积分2(1).Dx dxdy +⎰⎰解析:积分区域具有对称性如图3,首先考虑使用奇偶性,其次,因为积分区域为圆域,需要使用极坐标进行求解。
利用区域对称性及函数奇偶性简化二重积分的计算归纳一、 设D 关于y 轴对称:1. 若f 关于x 为奇函数,则I =0.2. 若f 关于x 为偶函数,则I =2∬f (x,y )dσD 1,其中D 1={(x,y)∈D:x ≥0},即D 1为D 中位于y 轴右边的那一部分区域.3. 若f 关于x 没有奇偶性,则I =∬[f (x,y )+f(−x,y)]dσD 1,其中D 1={(x,y)∈D:x ≥0},即D 1为D 中位于y 轴右边的那一部分区域.(这是因为任意一个函数f(x)都可以表示成“奇函数+偶函数”的形式,即f (x )=f (x )+f(−x)2+f (x )−f(−x)2.)二、 设D 关于X 轴对称:1. 若f 关于y 为奇函数,则I =0.2. 若f 关于y 为偶函数,则I =2∬f (x,y )dσD 2,其中D 2={(x,y)∈D:y ≥0},即D 1为D 中位于X 轴上边的那一部分区域.3. 若f 关于y 没有奇偶性,则I =∬[f (x,y )+f(x,−y)]dσD 1,其中D 1={(x,y)∈D:y ≥0},即D 1为D 中位于X 轴上边的那一部分区域.三、 设D 关于原点对称:1. 若f 关于x,y 为奇函数,则I =0.2. 若f 关于x,y 为偶函数,则I =2∬f (x,y )dσD 3,其中D 3={(x,y)∈D:x ≥0},即D 3为D 在上半平面的那一部分区域.四、 设D 关于y =x 对称:1. 若f (x,y )=−f (y,x ),则I =0.2. 若f (x,y )=f(y,x),则I =2∬f (x,y )dσD 4,其中D 4={(x,y)∈D:y ≥x},即D 4为D 在直线y =x 以上的那一部分区域.注:三重积分利用区域对称性与函数奇偶性简化计算与二重积分类似.例题.计算I =∭e |x|dxdydz Ω,其中Ω为:x 2+y 2+z 2≤1.解:设Ω在第一象限内的区域为Ω1,由于Ω关于三个坐标面均对称,同时,函数e |x|关于x,y,z 都为偶函数,所以I =∭e |x|dxdydz Ω=8∭e |x|dxdydz =8∭e x dxdydz Ω1Ω1. 由于Ω1在X 轴上的投影区间为[0,1],在Ω1上垂直于X 轴的截面区域D x 为y ≥0,z ≥0,y 2+z 2≤1−x 2,所以I =8∫dx 10∬e x D x dxdy =8∫e x 1014π(1−x 2)dx =2π∫e x (1−x 2)dx =2π10. 注:此题利用三重积分的对称性既简化了计算,又去掉了被函数中的绝对值符号,降低了计算的难度.若此题用球面坐标法计算,尽管积分限很简单,但被积函数的积分却不易求得.。
二重积分的对称性
对称性计算二重积分:当被积函数integrand是奇函数时,在对称于原点的区域内积
分为0。
被积函数或被积函数的一部分是否关於某个坐标对称,积分区间是否对称,如果
可以就可以用对称性,只用积分一半再乘以2。
性质须知:
1、被内积函数提供更多不定积分内积出的函数,虽然看看可以探讨原函数的奇偶性,但是探讨分数函数回去奇偶性时,考量的仅仅就是被内积函数。
2、有界性:设函数f(x)在区间x上有定义,如果存在m\ue0,对于一切属于区间x 上的x,恒有|f(x)|≤m,则称f(x)在区间x上有界,否则称f(x)在区间上无界。
3、单调性:设立函数f(x)的定义域为d,区间i涵盖于d。
如果对于区间上任一两点x1及x2,当x1\ucx2时,恒存有f(x1)\ucf(x2),则表示函数f(x)在区间i上
就是单调递减的。
归纳二重积分的计算方法摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限.关键词 :函数极限;计算方法;洛必达法则; 四则运算前言二重积分的概念和计算是多元函数微积分学的重要部分,在几何\物理\力学等方面有着重要的应用。
重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分。
求二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧。
1。
预备知识1。
1二重积分的定义]1[设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和都有()1,niiii f J ξησε=∆-<∑,则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作(),DJ f x y d σ=⎰⎰,其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域.1.2二重积分的若干性质1。
21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),Dkf x y d σ⎰⎰(),Dk f x y d σ=⎰⎰。
1。
22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且()()[,,]Df x yg x y d σ±⎰⎰()(),,DDf x y dg x y d σσ=±⎰⎰⎰⎰。
1.23 若(),f x y 在1D 和2D 上都可积,且1D 与2D 无公共内点,则(),f x y 在12D D 上也可积,且()12,D D f x y d σ⎰⎰()()12,,D D f x y d f x y d σσ=±⎰⎰⎰⎰1。
二重积分的计算方法在数学的广袤领域中,二重积分是一个重要的概念,它在许多实际问题和理论研究中都有着广泛的应用。
理解和掌握二重积分的计算方法,对于我们解决诸如计算平面区域的面积、物体的质量、重心等问题具有关键意义。
首先,让我们来明确一下二重积分的定义。
二重积分是用来计算在一个平面区域上的函数的累积量。
简单来说,就是把这个区域划分成无数个小的部分,对每个小部分上的函数值乘以小部分的面积,然后把这些乘积加起来。
接下来,我们探讨几种常见的二重积分计算方法。
直角坐标系下的计算方法是基础且重要的。
当积分区域是一个矩形时,计算相对简单。
假设积分区域为$D =\{(x,y) | a \leq x \leq b, c \leq y \leq d\}$,被积函数为$f(x,y)$,则二重积分可以表示为:\\iint_D f(x,y) \,dx\,dy =\int_a^b \left(\int_c^d f(x,y) \,dy \right)dx\这意味着我们先对$y$ 进行积分,把$x$ 看作常数,得到一个关于$x$ 的函数,然后再对$x$ 进行积分。
如果积分区域不是矩形,而是由直线围成的一般区域,比如$D =\{(x,y) |\varphi_1(x) \leq y \leq \varphi_2(x), a \leq x \leq b\}$,那么二重积分可以表示为:\\iint_D f(x,y) \,dx\,dy =\int_a^b \left(\int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) \,dy \right)dx\这种情况下,我们先对$y$ 积分,然后对$x$ 积分。
极坐标系下的计算方法在处理具有圆形或扇形特征的积分区域时非常有用。
在极坐标系中,点的坐标表示为$(r,\theta)$,其中$r$ 表示点到原点的距离,$\theta$ 表示极角。
如果积分区域可以用极坐标表示为$D =\{(r,\theta) |\alpha \leq \theta \leq \beta, \varphi(\theta) \leq r \leq \psi(\theta)\}$,被积函数为$f(x,y) = f(r\cos\theta, r\sin\theta)$,那么二重积分可以表示为:\\iint_D f(x,y) \,dx\,dy =\int_{\alpha}^{\beta} \left(\int_{\varphi(\theta)}^{\psi(\theta)} f(r\cos\theta, r\sin\theta) r \,dr \right)d\theta\这里需要注意的是,多了一个$r$ ,这是因为在极坐标下,面积元素$dx\,dy$ 要换成$r\,dr\,d\theta$ 。