新人教版八年级数学下册《十七章 勾股定理 17.1.2勾股定理应用 利用勾股定理解决平面几何问题》教案_10
- 格式:doc
- 大小:61.00 KB
- 文档页数:3
17.1 勾股定理第2课时勾股定理的应用课前预习1.应用勾股定理的前提条件是在直角三角形中.如果三角形不是直角三角形,要先构建直角三角形,再利用勾股定理求未知边的长.2.利用勾股定理可以解决与直角三角形有关的计算和证明,其主要应用如下:(1)已知直角三角形的任意两边求第三边;(2)已知直角三角形的任意一边,确定另外两边的关系;(3)证明包含平方关系的几何问题;(4)构造方程(或方程组)计算有关线段的长.3.一般地,n为正整数),通常是利用勾股定理作图.课堂练习知识点1 勾股定理的实际应用1.如图,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=___2___.2.【核心素养·数学抽象】如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要___7___米.3.(教材改编)如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑___0.5___米.【解析】在Rt△ACB中,根据勾股定理,得AC=22-=2.在2.5 1.5AB CB-=22Rt△ECD中,根据勾股定理,得CE=22-=1.5.∴AE=AC -ED CD2.52-=22CE=2-1.5=0.5.即滑竿顶端A下滑0.5米.故答案为0.5.4.如图,小旭放风筝时,风筝线断了,风筝挂在了树上.他想知道风筝距地面的高度﹒于是他先拉住风筝线垂直到地面上,发现风筝线多出1米,然后把风筝线沿直线向后拉开5米,发现风筝线未端刚好接触地面.请你帮小旭求出风筝距离地面的高度AB.解:根据题意,得AC=AB+1,BC=5米.在Rt△ABC中,BC2+AB2=(1+AB)2.解得AB=12(米).答:风筝距离地面的高度AB 为12米.5.放学以后,小东和晓晓从学校分手,分别沿东南方向和西南方向回家,若小东和晓晓行走的速度都是40米/分钟,小东用15分钟到家,晓晓用20分钟到家,求小东和晓晓家的直线距离.解:根据题意作图,由图可知△ABO是直角三角形,OA=40×20=800(米),OB=40×15=600(米).在Rt△OAB中,根据勾股定理,得(米).答:小东和晓晓家的直线距离为1 000米.知识点2 在数轴上表示无理数6.(2020玉溪红塔区期末)如图,数轴上的点A表示的数是-2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为(C).7.用直尺和圆规在如图所示的数轴上作出表示解:∵32+22=13,3和2的直角三角形的斜边长.∴课时作业练基础1.如图是由4个边长为1的正方形构成的“田字格”,只用没有刻度的直尺在这___8___条.30°,则以它的腰长为边2.有一个面积为的正方形的面积为___20___.3.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树顶飞到另一棵树的树顶,小鸟至少飞行(B)A.8米B.10米C.12米D.14米4.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1,图2,推开双门,双门间隙C,D的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10 寸),则AB的长是(C)A.50.5寸B.52寸C.101寸D.104寸5.(2020盘龙区期末)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为 1.5米,则小巷的宽为(C)A.2.5米B.2.6米C.2.7米D.2.8米【解析】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B2,∴BD2+1.52=6.25.∴BD2=4.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.故选C.6.如图,在平面直角坐标系中,点P的坐标为(-2,3),以点O为圆心,OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标在(B)A.-3和-2之间B.-4和-3之间C.-5和-4之间D.-6和-5之间7.如图,在边长为1的正方形网格中,△ABC的三边a,b,c的大小关系是(B)A.c<b<aB.c<a<bC.a<c<bD.a<b<c8.(教材改编)小明拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放比门高出1尺,斜放就恰好等于门的对角线,已知门宽4尺,求竹竿的长和门的高. 解:根据题意作图,由图可知AD=4尺.设门高AB为x尺,则竹竿的长BD为(x+1)尺.在Rt△ABD中,由勾股定理得AB2+AD2=BD2,即x2+42=(x+1)2,解得x=7.5.则x+1=8.5.答:竹竿的长为8.5尺,门高为7.5尺.9.【核心素养·数学抽象】一根直立的旗杆AB长 8 m,一阵大风吹过,旗杆从C点处折断,顶部(B)着地,离杆脚(A)4 m,如图.工人在修复的过程中,发现在折断点C的下面1.25 m 的D处,有一明显伤痕,如果下次大风将旗杆从D 处刮断,则杆脚周围多大范围内有被砸伤的危险?解:在Rt △ABC 中,设AC 的长为x m ,则BC 的长为(8-x )m.根据勾股定理,得AC 2+AB 2=BC 2,即x 2+42=(8-x )2.解得x=3,即AC=3.当从点D 处折断时,AD=AC-CD=3-1.25=1.75,∴BD=8-1.75=6.25.∴AB=3675.125.62222=-=-AD BD =6 (m ).答:杆脚周围6 m 范围内有被砸伤的危险.10.如图,铁路上A ,B 两站(视为直线上的两点)相距25 km ,DA ⊥AB 于点A ,CB ⊥AB 于点B ,DA=15 km ,CB=10 km ,现要在铁路上建设一个土特产收购站E ,使得C ,D 两村到收购站E 的距离相等,则收购站E 应建在距离A 站多少km 处?解:∵C ,D 两村到E 点的距离相等,∴CE=DE.在Rt △DAE 和Rt △CBE 中,根据勾股定理,得DE 2=AD 2+AE 2,CE 2=BE 2+BC 2,∴AD 2+AE 2=BE 2+BC 2.设AE=x km ,则BE=(25-x )km.x 2+152=(25-x)2+102.解得x=10.答:收购站E 应建在距离A 站10 km 处.提能力11.如图,小正方形的边长为1,连接小正方形的三个顶点,可得△ABC ,则BC 边上的高是( A )A.223 B.1055 C.553 D.554【解析】由图形,根据勾股定理可得ABC 的面积为2×2-12×1×1-12×1×2-12×1×2=4-12-2=32,再根据△ABC 面积的不同计算方法得32=12BC 边上的高.故选A. 12.有一辆装满货物的卡车,高5 m ,宽3.2 m (货物的顶部是水平的),要通过如图所示的截面的上半部分是半圆,下半部分是长方形的隧道,已知半圆的直径为4 m ,长方形竖直的一条边长是4.6 m.这辆卡车能否通过此隧道?请说明理由.解:能通过. 理由如下:如图,设O 为半圆的圆心,AB 为半圆的直径,在OB 上截取OE=3.2÷2=1.6(m ),过点E 作EF ⊥AB 交半圆于点F ,连接OF.在Rt △OEF 中,OF 2=OE 2+EF 2,即22=1.62+EF 2,解得EF=1.2 m.因为1.2+4.6=5.8(m )>5 m ,所以这辆卡车能通过此隧道.。
新人教版第十七章勾股定理教案第十七章勾股定理第1课时勾股定理(1)教学目标:1.知识与技能:掌握勾股定理的内容,会用面积法证明勾股定理,能够应用勾股定理进行简单的计算和实际运用。
2.过程与方法:通过观察、猜想、归纳、验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想。
3.情感态度与价值观:在探索勾股定理的过程中,体验获得成功的快乐。
教学重点:知道勾股定理的结果,并能运用于解题。
教学难点:进一步发展学生的说理和简单推理的意识及能力。
教学准备:彩色粉笔、三角尺、图片、四个全等的直角三角形。
教学过程:一、课堂导入2002年世界数学家大会在我国北京召开,出示了本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号。
今天我们就来一同探索勾股定理。
二、合作探究让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。
这个事实是我国古代3000多年前有一个叫XXX的人发现的。
他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话的意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。
讨论:32+42与52有何关系?52+122和132有何关系?通过计算得到32+42=52,52+122=132,于是有勾2+股2=弦2.那么对于任意的直角三角形也有这个性质吗?用四个全等的直角三角形拼成如图所示的图形,其等量关系为:4S△+S小正=S大正,即4×ab+(b-a)2=c2,化简可得a2+b2=c2.三、证明定理勾股定理的证明方法达300余种。
下面这个古老的精彩的证法出自我国古代无名数学家之手。
已知:如图,在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
人教版数学八年级下册17.1第2课时《勾股定理的应用》说课稿一. 教材分析《勾股定理的应用》是人教版数学八年级下册17.1第2课时的一节内容。
本节课主要让学生掌握勾股定理的应用,能够运用勾股定理解决实际问题。
教材通过引入古希腊数学家毕达哥拉斯的故事,引导学生探究直角三角形三边的关系,从而得出勾股定理。
学生通过前面的学习,已经掌握了勾股定理的证明,本节课则是将勾股定理应用到实际问题中,进一步巩固学生的数学思维和解决问题的能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对勾股定理有了初步的认识。
但是,他们在解决实际问题时,可能会因为不能准确地找出直角三角形中的直角边和斜边而感到困惑。
因此,在教学过程中,我将会引导学生正确地找出直角三角形中的直角边和斜边,并通过实际问题,让学生理解并掌握勾股定理的应用。
三. 说教学目标1.知识与技能:学生能够理解勾股定理的含义,并能运用勾股定理解决实际问题。
2.过程与方法:学生通过观察、操作、思考,培养数形结合的思维方式,提高解决问题的能力。
3.情感态度与价值观:学生体验到数学与生活的紧密联系,增强对数学的兴趣和自信心。
四. 说教学重难点1.教学重点:学生能够运用勾股定理解决实际问题。
2.教学难点:学生能够准确地找出直角三角形中的直角边和斜边,并运用勾股定理进行计算。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等,引导学生主动探究、积极参与。
2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,提高教学效果。
六. 说教学过程1.导入:通过讲述毕达哥拉斯的故事,引导学生回顾勾股定理的证明过程,激发学生的学习兴趣。
2.新课导入:介绍勾股定理的应用,让学生尝试解决实际问题。
3.案例分析:分析一组实际问题,引导学生找出直角三角形中的直角边和斜边,并运用勾股定理进行计算。
4.小组讨论:学生分组讨论,交流解题心得,互相学习,共同提高。
人教版数学八年级下册17.1《勾股定理的应用》(第2课时)说课稿一. 教材分析《勾股定理的应用》是人教版数学八年级下册第17.1节的内容,属于几何学的范畴。
本节内容是在学生已经掌握了勾股定理的基础上进行学习的,主要是让学生能够运用勾股定理解决实际问题。
教材通过引入古希腊数学家毕达哥拉斯的故事,让学生了解勾股定理的发现过程,进而引导学生运用勾股定理解决实际问题。
教材内容丰富,既有理论知识的讲解,又有实际问题的应用,能够激发学生的学习兴趣,提高学生的数学素养。
二. 学情分析学生在学习本节内容前,已经掌握了勾股定理的基本知识,能够熟练地运用勾股定理进行计算。
但是,对于如何将实际问题转化为数学问题,如何运用勾股定理解决实际问题,学生的掌握情况参差不齐。
因此,在教学过程中,我将会注重引导学生将实际问题转化为数学问题,培养学生运用勾股定理解决实际问题的能力。
三. 说教学目标1.知识与技能目标:让学生掌握勾股定理的应用,能够将实际问题转化为数学问题,运用勾股定理解决实际问题。
2.过程与方法目标:通过小组合作、讨论交流的方式,培养学生合作学习的能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生积极思考、探索问题的习惯。
四. 说教学重难点1.教学重点:让学生掌握勾股定理的应用,能够将实际问题转化为数学问题,运用勾股定理解决实际问题。
2.教学难点:如何引导学生将实际问题转化为数学问题,如何运用勾股定理解决实际问题。
五. 说教学方法与手段在教学过程中,我将采用讲授法、提问法、小组合作法、讨论交流法等教学方法,结合多媒体课件、教学道具等教学手段,引导学生主动探究,提高学生的学习效果。
六. 说教学过程1.导入:通过回顾勾股定理的知识,引导学生进入本节内容的学习。
2.知识讲解:讲解勾股定理的应用,引导学生将实际问题转化为数学问题,运用勾股定理解决实际问题。
3.例题解析:分析并解析典型例题,让学生掌握解题思路和方法。
教学设计教学目标:能说出勾股定理,能使用勾股定理的数学模型解决现实世界的实际问题.1.通过从实际问题中抽象出直角三角形这个模型,强化转化思想,培养学生解决现实问题的意识和水平.2.经历探究勾股定理在实际问题中的应用过程,进一步体会勾股定理的应用方法.在例题分析和解决过程中,让学生感受勾股定理在实际生活中的应用.同时在学习过程中体会获得成功的喜悦,提升学生学习数学的兴趣和信心.教学重点:【重点】使用勾股定理解决实际问题.【难点】勾股定理的灵活使用.教学准备:【教师准备】教学中出示的教学插图和例题.【学生准备】三角板、三角形模型.教学过程:一、新课导入:导入一:电视的尺寸是屏幕对角线的长度.小华的爸爸买了一台29英寸(74 cm)的电视机,小华量电视机的屏幕后,发现屏幕只有58 cm长和46 cm宽.他觉得一定是售货员搞错了,你同意他的想法吗?你能解释是为什么吗?引导学生回忆勾股定理的内容,学生再尝试解决上面的问题.[设计意图]让学生回忆勾股定理的内容,并注意文字语言、图形语言、符号语言的规范统一,尝试解决生活中的实际问题,以激发学生学习的兴趣和探究的欲望.导入二:?上节课,我们学习了勾股定理,它的具体内容是什么呢?它有什么作用呢教师出示问题:求出下列直角三角形中未知的边.提出问题后让一位学生板演,剩下的学生在课堂作业本上完成.教师巡视指导答疑,在活动中重点注重:(1)学生能否准确应用勾股定理实行计算;(2)在解决直角三角形的问题时,需知道直角三角形的两个条件且至少有一个条件是边;(3)让学生了解在直角三角形中斜边最长.[设计意图]通过简单的提问协助学生回顾勾股定理,加深定理的记忆理解,为学习新课做好准备.二、新知建构:[过渡语] 勾股定理应用比较广泛,我们一起来看看下面几个问题.1.木板进门问题思路一(1)分析导入一提出的问题.教师在学生讨论基础上明确解决问题的方法:计算电视机对角线的长度,看是否为74 cm.解:根据勾股定理,得≈74(cm).所以,这台电视机符合规格.(2)自学教材第25页例1.教师提问:门框能通过薄木板的最大宽度是多少?学生带着问题阅读题目,试写解答过程.(3)变式练习:长方体盒内长、宽、高分别为3 cm,2.4 cm和1.8 cm,盒内可放的棍子最长为 cm.本题需先求出长和宽组成的长方形的对角线长,为=(cm).这根最长的棍子和长方体的高,以及长和宽组成的长方形的对角线组成了直角三角形,则棍子最长为=3(cm).教师引导学生小结:遇到求木板进门或将物体放入立体图形内的问题,常常需要找到能通过(放入)物体的最大长度,与物体的长度比较大小,从而判断是否能够通过(放入).[设计意图]通过讲练结合,引导学生独立分析,自主学习,提升学生使用勾股定理解决简单问题的水平.思路二(教材例1)一个门框的尺寸如图所示,一块长3 m,宽2.2 m的长方形薄木板能否从门框内通过?为什么?逐步引导提问:(1)木板的短边比门的高还要长,是否一定不能通过?还能够分析比较哪两个长度?(2)这两个长度一个是木板的短边长,另一个是长方形的对角线的长,能求吗?如何求?学生先尝试后发现:木板横着进,竖着进,都不能从门框内通过.再试一试斜着能否通过.门框对角线AC的长度是斜着能通过的最大长度.求出AC,再与木板的宽比较,就能知道木板能否通过.解:如图所示,在Rt△ABC中,根据勾股定理,得AC2=AB2+BC2=12+22=5.AC=≈2.24.因为AC大于木板的宽2.2 m,所以木板能从门框内通过.[解题策略]在遇到木板进门或将物体放入立体图形内的问题,常常需要找到能通过(放入)物体的最大长度,与物体的长度比较大小,从而判断是否能够通过(放入).[设计意图]使用转化思想,将求门框的对角线的长转化为已知两直角边长求斜边长,从而用勾股定理解决.2.梯子靠墙问题如图所示,一架2.6 m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4 m.如果梯子的顶端A沿墙下滑0.5 m,那么梯子底端B也外移0.5 m吗?引导学生分析:利用勾股定理算出梯子底端B外移多少即可,转化为BD=OD-OB,需要根据勾股定理先计算OD,OB的长度.解:能够看出,BD=OD-OB.在Rt△AOB中,根据勾股定理,得OB2=AB2-OA2=2.62-2.42=1,OB==1.在Rt△COD中,根据勾股定理,得OD2=CD2-OC2=2.62-(2.4-0.5)2=3.15,OD=≈1.77.BD=OD-OB≈1.77-1=0.77.所以梯子的顶端沿墙下滑0.5 m时,梯子底端并不是也外移0.5 m,而是外移约0.77 m. [解题策略]已知直角三角形的两边长,能够根据勾股定理求出第三边长.已知直角三角形的一边长及两边之间的关系,也能够求出各边长.在求锐角三角形或钝角三角形的边长时,能够将其转化为直角三角形,应用勾股定理求解.[设计意图]巩固性练习,本题涉及已知斜边长和一直角边长求另一直角边长,也用勾股定理解决.3.表面距离最短问题(补充)如图所示,一只蚂蚁沿棱长为a的正方体表面从顶点A爬到顶点B,则它走过的最短路程为 ()A.aB.(1+)aC.3aD.a解析:将正方体侧面展开,部分展开图如图所示.由图知AC=2a,BC=a.根据勾股定理,得AB===a.故选D.[解题策略]平面图中,能够直接用勾股定理求两点之间的距离,而在求表面距离最短的问题时,需要将立体图形展开后,将实际问题转化成能够用勾股定理实行计算的问题.[设计意图]通过例题分析解决,建立数学模型,提升学生分析问题和解决问题的水平.[知识拓展]勾股定理应用的条件必须是直角三角形,所以要应用勾股定理必须构造直角三角形.常见的应用类型为:①化非直角三角形为直角三角形;②将实际问题转化为直角三角形模型.三、课堂小结:用勾股定理计算时,要先画好图形,并标好图形,理清各边之间的关系,再灵活使用勾股定理计算.在利用勾股定理实行相关计算和证明时,要注意使用方程的思想;求直角三角形相关线段的长,有时还要使用转化的数学思想,或利用添加辅助线的方法构造直角三角形,再使用勾股定理求解.四、检测反馈:1.小明用火柴棒摆直角三角形,已知他摆两条直角边分别用了6根和8根火柴棒,他摆完这个直角三角形共用火柴棒 ()A.20根B.14根C.24根D.30根解析:∵摆两直角边分别用了6根、8根长度相同的火柴棒,∴由勾股定理,得摆斜边需用火柴棒=10(根),∴他摆完这个直角三角形共用火柴棒6+8+10=24(根).故选C.2.为迎接新年的到来,同学们做了很多花布置教室,准备召开新年晚会.小刘搬来一架高2.5米的木梯,木梯放好后,顶端与地面的距离为2.4米,则梯脚与墙脚的距离应为 ()A.0.7米B.0.8米C.0.9米D.1.0米解析:仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解即可.梯脚与墙脚距离为=0.7(米).故选A.3.(2019·厦门中考节选)已知A,B,C三地的位置如图所示,∠C=90°,A,C两地相距4 km,B,C两地相距3 km,则A,B两地的距离是km.解析:∵∠C=90°,A,C两地的距离是4 km,B,C两地的距离是3 km,∴AB===5(km).故填5.4.(2019·潍坊中考)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是尺.解析:将圆柱平均分成五段,将最下边一段圆柱的侧面展开,并连接其对角线,即为每段的最短长度,为=5,所以葛藤的最短长度为5×5=25(尺).故填25.5.如图(1)所示,两点A,B都与平面镜CD相距4米,且A,B两点相距6米,一束光由A点射向平面镜,反射之后恰好经过B点,求B点与入射点间的距离.解:如图(2)所示,作出B点关于CD的对称点B',连接AB',交CD于点O,则O点就是光的入射点,连接OB.因为AC=BD,∠ACO=∠BDO=90°,∠AOC=∠BOD,所以△AOC≌△BOD.所以OC=OD=AB=3米.在Rt△ODB中,OD2+BD2=OB2,所以OB2=32+42=25,所以OB=5米.五、板书设计:第2课时1.木板进门问题例12.梯子靠墙问题例23.表面距离最短问题例3六、作业布置:一、教材作业【必做题】教材第26页练习第1,2题;教材第28页习题17.1第2,3,4,5题.【选做题】教材第29页习题17.1第9,10,11题.二、课后作业【基础巩固】1.如图所示,有两棵树,一棵高10 m,另一棵高4 m,两树相距8 m.一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行 ()A.8 mB.10 mC.12 mD.14 m2.如图所示的是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤133.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.4.如图所示,在长方形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A 落在对角线BD上的点A'处,则AE的长为 .【水平提升】5.(2019·龙东中考)一圆锥体形状的水晶饰品,母线长是10 cm,底面圆的直径是5 cm,点A为圆锥底面圆周上一点,从A点开始绕圆锥侧面缠一圈彩带回到A点,则彩带最少用(接头处重合部分忽略不计) ()A.10π cmB.10 cmC.5π cmD.5 cm6.如图所示,某会展中心准备在高5 m,长13 m,宽2 m的楼梯上铺地毯,已知地毯每平方米18元,请你协助计算一下,铺完这个楼梯至少需要元钱.7.如图所示,要制作底边BC的长为44 cm,顶点A到BC的距离与BC长的比为1∶4的等腰三角形木衣架,则腰AB的长至少需要 cm.(结果保留根号的形式)8.甲、乙两位探险者到沙漠实行探险,没有了水,需要寻找水源.为了不至于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙两人相距多远?还能保持联系吗?9.如图所示,有一块直角三角形的绿地,量得两直角边长分别为6 m,8 m.现在要将绿地扩充成等腰三角形,且扩充部分是以8 m为直角边长的直角三角形,求扩充后等腰三角形绿地的周长.六、教学反思:本节课使用勾股定理解决实际问题,整节课注重基础,通过度类探索,由浅入深,注重讲练结合,引导学生独立分析,自主学习,提升学生使用勾股定理解决简单问题的水平;虽然仅仅勾股定理的实际应用这个知识点,但是涉及生产生活的各个方面,受时间约束无法一一列举,本课中的三个例子缺乏开放性.。
第17章勾股定理17.1勾股定理第2课时勾股定理的应用1.熟练运用勾股定理解决实际问题;(重点)2.掌握勾股定理的简单应用,探究最短距离问题.(难点)一、情境导入如图,在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A 处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?二、合作探究探究点一:勾股定理的实际应用【类型一】勾股定理在实际问题中的应用如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米(假设绳子始终是直的,结果保留根号)?解析:开始时,AC=5米,BC=13米,即可求得AB的值,6秒后根据BC,AC长度即可求得AB的值,然后解答即可.解:在Rt△ABC中,BC=13米,AC=5米,则AB=BC2-AC2=12米.6秒后,B′C=13-0.5×6=10米,则AB′=B′C2-AC2=53(米),所以船向岸边移动的距离为(12-53)米.方法总结:本题直接考查勾股定理在实际生活中的运用,可建立合理的数学模型,将已知条件转化到同一直角三角形中求解.【类型二】利用勾股定理解决方位角问题如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了1003km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.解析:根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.解:∵AD∥BE,∴∠ABE=∠DAB=60°.∵∠CBF=30°,∴∠ABC=180°-∠ABE-∠CBF=180°-60°-30°=90°.在Rt△ABC中,AB=1003km,BC=100km,∴AC=AB2+BC2=(1003)2+1002=200(km),∴A、C两点之间的距离为200km.方法总结:先确定△ABC是直角三角形,再根据各边长,用勾股定理可求出AC的长.【类型三】利用勾股定理解决立体图形最短距离问题如图,长方体的长BE=15cm,宽AB=10cm,高AD=20cm,点M在CH上,且CM=5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点M,需要爬行的最短距离是多少?解:分两种情况比较最短距离:如图①所示,蚂蚁爬行最短路线为AM,AM=102+(20+5)2=529(cm),如图②所示,蚂蚁爬行最短路线为AM,AM=202+(10+5)2=25(cm).∵529>25,∴第二种短些,此时最短距离为25cm.答:需要爬行的最短距离是25cm.方法总结:因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况:前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.【类型四】运用勾股定理解决折叠中的有关计算如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C=3,则AM的长是()A.1.5B.2C.2.25D.2.5解析:连接BM,MB′.设AM=x,在Rt△ABM中,AB2+AM2=BM2. 在Rt△MDB′中,MD2+DB′2.∵MB=MB′,∴AB2+AM2=BM2=B′M2=MD2+DB′2,即92+x2=(9-x)2+(9-3)2,解得x=2,即AM=2.故选B.方法总结:解题的关键是设出适当的线段的长度为x,然后用含有x的式子表示其他线段,然后在直角三角形中利用勾股定理列方程解答.【类型五】勾股定理与方程思想、数形结合思想的应用如图,在树上距地面10m的D处有两只猴子,它们同时发现地面上C处有一筐水果,一只猴子从D处向上爬到树顶A处,然后利用拉在A处的滑绳AC滑到C处,另一只猴子从D处先滑到地面B,再由B跑到C,已知两猴子所经过的路程都是15m,求树高AB.解析:在Rt△ABC中,∠B=90°,则满足AB2+BC2=AC2. 设AD=x m,根据两只猴子经过的路程一样可列方程组,从而求出x的值,即可计算树高.解:在Rt△ABC中,∠B=90°,设AD=x m.∵两猴子所经过的路程都是15m,则10+BC=x+AC=15.∴ BC=5,AC=15-x,AB=x+10.又∵在Rt△ABC中,由勾股定理得(10+x)2+52=(15-x)2,解得x=2,即AD=2米.∴AB=AD+DB=2+10=12(米).答:树高AB为12米.方法总结:勾股定理表达式中有三个量,如果条件中只有一个己知量,通常需要巧设未知数,灵活地寻找题中的等量关系,然后利用勾股定理列方程求解.探究点二:勾股定理与数轴如图所示,数轴上点A所表示的数为a,则a的值是()A.5+1 B .-5+1 C.5-1 D. 5解析:先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A 点的坐标.图中的直角三角形的两直角边为1和2,∴斜边长为12+22=5,∴-1到A 的距离是 5.那么点A 所表示的数为5-1.故选C.方法总结:本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A 的位置,再根据A 的位置来确定a 的值.➢ 练习1 如图,有两棵树,一棵高10m ,另一棵高4m ,两树相距8m.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行( )A.8mB.10mC.12mD.14m【解析】如图,设大树高为AB =10m ,小树高为CD =4m ,过C 点作CE ⊥AB 于E ,四边形EBDC 是长方形,连接AC ,⊥EB =4m ,EC =8m ,AE =AB -EB =6 m ,在Rt⊥AEC 中,m 1022=+=EC AE AC . 故选B.➢ 练习2 如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1m 处折断,树尖B恰好碰到地面,经测量AB =2m ,则树高为( ) A.5m B.3m C.(5+1)m D.3m【解析】在Rt △ABC 中,AC=1m ,AB=2m ,由勾股定理,得m 522=+=EC AE BC ;∴树的高度为AC+BC=(5+1)m. 故选C.➢ 练习3 如图,图中有一长、宽、高分别为5cm ,4cm ,3cm 的木箱,在它里面放入一根细木条(木条的粗细、变形忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是( )A.41cmB.34cmC.25cmD.35cm【解析】如图,连接BC ,BD ,在Rt △ABC 中,AB=5cm ,AC=4cm ,根据勾股定理,m 25222=++=CD AC AB 体对角线. 故选C.➢ 练习4 如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB于B ,已知DA =15km ,CB =10km ,现在要在铁路AB 附近建一个土特产收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在距A 站多少千米处?【解析】设AE =x km ,则AE =(25-x ) km ,因为C ,D 两村到E 站的距离相等,所以DE =CE ,即DE 2=CE 2,由勾股定理,得152+x 2=102+(25-x )2,解得x =10.故E 点应建在距A 站10km 处.➢ 练习5 如图所示,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P是母线BC 上一点且PC=32BC. 一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是 ( ) A.⎪⎭⎫ ⎝⎛+π64cm B.5 cm C.53cm D.7 cm【解析】圆柱的侧面展开图如图所示,则蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离为线段AP 的长. 在Rt⊥ACP 中,AC=621⨯=3(cm),PC=32BC=4cm ,所以AP=√32+42=5(cm). 故选B.【归纳整合】应用勾股定理解决实际问题(1) 解决两点间距离问题:正确画出图形,已知直角三角形两边,利用勾股定理求第三边.(2) 解决折叠问题:正确画出折叠前、后的图形,运用勾股定理及方程思想解题.(3) 解决梯子问题:梯子架到墙上,梯子、墙、地面可构成直角三角形,利用勾股定理等知识解题.(4) 解决侧面展开问题:将立体图形的侧面展开成平面图形,利用勾股定理解决表面距离最短的问题.三、板书设计1.勾股定理的应用方位角问题;路程最短问题;折叠问题;数形结合思想.2.勾股定理与数轴本节课充分锻炼了学生动手操作能力、分类比较能力、讨论交流能力和空间想象能力,让学生充分体验到了数学思想的魅力和知识创新的乐趣,突现教学过程中的师生互动,使学生真正成为主动学习者.。
用勾股定理解决平面几何问题
教学目标:
1、理解和掌握掌握勾股定理;
2、通过交流、探究发现勾股定理在平面几何中的应用;
3、掌握方程思想在平面几何中的应用。
教学重点:
用勾股定理解决平面几何问题。
教学难点:
用勾股定理解决有特殊角的三角形的计算问题。
教学方法:
引导,探究,交流。
教学过程
1、课前复习:
勾股定理:如果直角三角形的两直角边分别为a,b,斜边为c,那么a2 + b2 = c2. 即直角三角形两直角边的平方和等于斜边的平方.
2、新授:
例1:(1)求出下列直角三角形中未知的边.
在解决上述问题时,每个直角三角形需已知几个条件?
(2)如图求AB的长
(3)如图,在四边形ABCD 中,∠BAD =90°,∠DBC = 90° , AD = 3,AB = 4,BC = 12, 求CD ;
例2、(1)已知:在Rt △ABC 中,∠C=90°,CD ⊥AB 于D ,∠A=60°,CD=3,求线段AB 的长。
(2)在△ABC 中,∠C=30°,AC=4cm ,AB=3cm ,求BC 的长.
3、小试牛刀:
(1)已知:如图,△ABC 中,BC=4,∠A=45°,∠B=60°,求AB.
(2)已知:如图,△ABC 中,AB=15,BC=14,AC=13,求△ABC 的面积
.
4、课堂小结:
通过本节课的学习,我们学习了那些知识?
(1)本节课你有那些收获?
(2)学习中时的疑难问题解决了吗?你还有那些疑惑?
5、作业布置:
(1)课本P28页7,8,11题;
(2)完成绩优学案本课时的习题。
6、教学反思:
本节课重点是用勾股定理解决平面几何问题,学生对于简单的已知直角三角形的两边求第三边已掌握,故本节课弱化这方面的应用,重点是用勾股定理解决有特殊角的三角形的边的相关计算;而学生对于用方程的思想解决几何问题有点生疏,课堂中适当加以引导突破重、难点。
在课堂延伸中,注重了这方面的训练,加强了知识的掌握。