勾股定理中的折叠问题+平面最短路径(基础版)
- 格式:ppt
- 大小:545.50 KB
- 文档页数:6
专题01 勾股定理中的最短路径问题与翻折问题(五大题型)【题型1 与长方形有关的最短路径问题】【题型2 与圆柱有关的最短路径问题】【题型3 与台阶有关的最短路径问题】【题型4将军饮马与最短路径问题】【题型5几何图形中翻折、旋转问题】【方法技巧】长方体最短路径基本模型如下:几何体中最短路径基本模型如下:基本思路:将立体图形展开成平面图形,利用两点之间线段最短确定最短路线,构造直角三角形,利用勾股定理求解【题型1 与长方体有关的最短路径问题】【典例1】(2023•丹江口市模拟)如图,地面上有一个长方体盒子,一只蚂蚁在这个长方体盒子的顶点A处,盒子的顶点C′处有一小块糖粒,蚂蚁要沿着这个盒子的表面A处爬到C′处吃这块糖粒,已知盒子的长和宽为均为20cm,高为30cm,则蚂蚁爬行的最短距离为()cm.A.10B.50C.10D.70【变式1-1】(2022秋•新都区期末)一个长方体盒子的长、宽、高分别为15cm,10cm,20cm,点B离点C的距离是5cm,一只蚂蚁想从盒底的点A沿盒的表面爬到点B,蚂蚁爬行的最短路程是()A.10cm B.25cm C.5cm D.5cm【变式1-2】(2023春•光泽县期中)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25C.D.35【变式1-3】(2023春•灵丘县月考)如图,正方体的棱长为3cm,已知点B与点C之间的距离为1cm,一只蚂蚁沿着正方体的表面从点A爬到点C,需要爬行的最短距离为()A.B.5cm C.4cm D.【变式1-4】(2022秋•莲湖区期末)如图,正方体盒子的棱长为2,M为EH的中点,现有一只蚂蚁位于点B处,它想沿正方体的表面爬行到点M处获取食物,则蚂蚁需爬行的最短路程为()A.B.C.D.【变式1-5】(2022秋•汝阳县期末)如图,在长为3,宽为2,高为1的长方体中,一只蚂蚁从顶点A出发沿着长方体的表面爬行到顶点B,那么它爬行的最短路程是()A.B.C.D.【变式1-7】(2022秋•平昌县期末)如图是一个长方体盒子,其长,宽、高分别为4,2,9,用一根细线绕侧面绑在点A,B处,不计线头,细线的最短长度为()A.12B.15C.18D.21【变式1-8】(2023•陇县三模)如图,长方体的底面边长分别为2厘米和4厘米,高为5厘米.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为()厘米.A.8B.10C.12D.13【变式1-10】(2022春•五华区期末)如图,正方体的棱长为2cm,点B为一条棱的中点.蚂蚁在正方体表面爬行,从点A爬到点B的最短路程是()A.cm B.4cm C.cm D.5cm【题型2 与圆柱有关的最短路径问题】(2023春•防城区期中)如图,一圆柱高BC=12πcm,底面周长是16πcm,【典例2】P为BC的中点,一只蚂蚁从点A沿圆柱外壁爬到点P处吃食,要爬行的最短路程是()A.12πcm B.11πcm C.10πcm D.9πcm【变式2-1】(2023春•德州期中)如图,圆柱形玻璃容器高18cm,底面圆的周长为48cm,在外侧底部点A处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧顶端的点B处有一只苍蝇,则蜘蛛捕获苍蝇所走的最短路线长度()A.52cm B.30cm C.D.60cm【变式2-2】(2023春•夏津县期中)葛藤是一种多年生草本植物,为获得更多的雨露和阳光,其茎蔓常绕着附近的树干沿最短路线盘旋而上.如果把树干看成圆柱体,它的底面周长是50cm,当一段葛藤绕树干盘旋2圈升高为2.4m 时,这段葛藤的长是()m.A.3B.2.6C.2.8D.2.5【变式2-3】(2023春•东港区校级月考)如图所示,已知圆柱的底面周长为36,高AB=5,P点位于圆周顶面处,小虫在圆柱侧面爬行,从A点爬到P点,然后再爬回C点,则小虫爬行的最短路程为()A.26B.13+C.13D.2【变式2-4】(2023春•富顺县校级月考)如图,一个底面圆周长为24cm,高为9cm的圆柱体,一只蚂蚁从距离上边缘4cm的点A沿侧面爬行到相对的底面上的点B所经过的最短路线长为()A.cm B.15cm C.14cm D.13cm【变式3-5】(2022秋•蒲城县期末)今年9月23日是第五个中国农民丰收节,小彬用3D打印机制作了一个底面周长为20cm,高为20cm的圆柱粮仓模型.如图BC是底面直径,AB是高.现要在此模型的侧面贴一圈彩色装饰带,使装饰带经过A,C两点(接头不计),则装饰带的长度最短为()A.20πcm B.40πcm C.D.【变式2-6】(2023春•宣化区期中)如图,圆柱底面半径为,高为18cm,点A、B分别是圆柱两底面圆周上的点,且点B在点A的正上方,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为()A.21cm B.24cm C.30cm D.32cm【变式2-7】(2023春•随县期末)如图是学校艺术馆中的柱子,高4.5m.为迎接艺术节的到来,工作人员用一条花带从柱底向柱顶均匀地缠绕3圈,一直缠到起点的正上方为止.若柱子的底面周长是2m,则这条花带至少需要m.【题型3 与台阶有关的最短路径问题】【典例3】(2023春•连山区期末)如图是楼梯的一部分,若AD=2,BE=1,AE=3,一只蚂蚁在A处发现C处有一块糖,则这只蚂蚁吃到糖所走的最短路程为()A.B.3C.D.2【变式3-1】(2022春•郾城区期末)如图,台阶阶梯每一层高20cm,宽30cm,长50cm,一只蚂蚁从A点爬到B点,最短路程是()cm.A.10B.50C.120D.130【变式3-2】(2023春•西塞山区期中)如图,在一个长为20m,宽为16m的矩形草地上放着一根长方体木块,已知该木块的较长边和场地宽AD平行,横截面是边长为2m的正方形,一只蚂蚁从点A处爬过木块到达点C处需要走的最短路程是m.【变式3-3】(2022秋•叙州区期末)如图是一个三级台阶,它的每一级的长、宽、高分别是4米、0.7米、0.3米,A、B是这个台阶上两个相对的顶点,A 点处有一只蚂蚁,它想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是米.【题型4将军饮马与最短路径问题】【典例4】(2022秋•辉县市校级期末)如图,圆柱形玻璃杯,高为12cm,底面周长为18cm.在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为()cm.A.15B.C.12D.18【变式4-1】(2022春•吴江区期末)如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则该蚂蚁要吃到饭粒需爬行的最短路径长是()A.13cm B.3cm C.cm D.2cm【变式4-2】(2023春•临潼区期末)如图,桌上有一个圆柱形玻璃杯(无盖),高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的内壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖处的最短距离是厘米.【变式4-3】(2022秋•牡丹区月考)如图是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为2.5m的半圆,其边缘AB=CD=20m.小明要在AB上选取一点E,能够使他从点D滑到点E再滑到点C的滑行距离最短,则他滑行的最短距离约为()(π取3)m.A.30B.28C.25D.22【变式4-4】(2022秋•雁峰区校级期末)如图,圆柱形玻璃杯高为11cm,底面周长为30cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B 处的爬行最短路线长为(杯壁厚度不计)()A.12cm B.17cm C.20cm D.25cm【变式4-5】(2022秋•郫都区期末)如图,圆柱形玻璃杯高为22cm,底面周长为30cm,在杯内壁离杯上沿3cm的点B处粘有一粒面包渣,此时一只蚂蚁正好在杯外壁,离杯底5cm与面包渣相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).【题型5几何图形中翻折、旋转问题】【典例5】(2022秋•大东区校级期末)如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE的长为()A.3B.4C.5D.6【变式5-1】(2022春•安乡县期中)如图,在△ABC中,∠ACB=90°,AC=12,BC=10,点D为BC的中点,点E为AC边上一动点,连接DE.将△CDE沿DE折叠,点C的对应点为点C'.若△AEC'为直角三角形,则AE的长为.【变式5-2】(2023春•长沙期末)如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.【变式5-3】(2022秋•绥德县期中)如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米.(1)求BF与FC的长.(2)求EC的长.【变式5-4】(2020秋•海宁市期中)如图,Rt△ABC中,∠C=90°,AC=3,BC=4,D为BC上一点,将△ABD沿AD折叠至△AB′D,AB′交线段CD 于点E.当△B′DE是直角三角形时,点D到AB的距离等于.【变式5-5】(2020•浙江自主招生)将一直径为25cm的圆形纸片(如图①)剪成如图②所示形状的纸片,再将纸片沿虚线折叠得到正方体形状的纸盒(如图③),则这样的纸盒体积最大为cm3.【变式5-6】(2022秋•和平区期中)一长方体容器(如图1),长、宽均为2,高为8,里面盛有水,水面高为5,若沿底面一棱进行旋转倾斜,倾斜后的长方体容器的主视图如图2所示,若倾斜容器使水恰好倒出容器,则CD=.【变式5-7】(2022春•温州期末)图1是一款平衡荡板器材,示意图如图2,A,D为支架顶点,支撑点B,C,E,F在水平地面同一直线上,G,H为荡板上固定的点,GH∥BF,测量得AG=GH=DH,Q为DF上一点且离地面1m,旋转过程中,AG始终与DH保持平行.如图3,当旋转至A,Q,H在同一直线上时,连结G′Q,测得G′Q=1.6m,∠DQG′=90°,此时荡板G′H′距离地面0.6m,则点D离地面的距离为m.【变式5-8】(2022•公安县模拟)某厂家设计一种双层长方体垃圾桶,AB=84cm,BC=30cm,CP=36cm,侧面如图1所示,EF为隔板,等分上下两层.下方内桶BCFG绕底部轴(CP)旋转打开,如图2,将其打开后点G卡在隔板上,此时可完全放入下方内桶的球体的最大直径为25.2cm,求BG的长度为cm.。
3、如图,长方体的长为 15cm ,宽为10cm ,高为20cm ,点B 到点C 的距离为5cm ,一只 蚂蚁如果要沿着长方体的表面从A 点爬到B 点,需要爬行的最短距离是多少? 勾股定理解决最短路径问题及折叠问题 1、如图,长方体的长为 15,宽为10,高为20,点B 离点C 的距离为 沿着长方体的表面从点 A 爬到点B ,需要爬行的最短距离是多少? 5,—只蚂蚁如果要2、如图,长方体的底面边长分别为 1cm 和3cm ,高为6cm .如果用一根细线从点 A 开始 经过4个侧面缠绕一圈到达点 B ,那么所用细线最短需要 ____________ cm ;如果从点 A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要 I"4、如图所示,正方形ABCD 的面积为12, △ ABE 是等边三角形,点E 在正方形 ABCD 内,在对角线 AC 上有一点P ,使PD PE 的和最小,求这个最小值5、恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世 •著名的恩施大峡谷 (A )和世界级自然保护区星斗山(B )位于笔直的沪渝高速公路X 同侧,AB = 50km , A 、B 到直线X 的距离分别为10km 和40km ,要在沪渝高速公路旁修建一服务区P,向A 、B两景区运送游客•小民设计了两种方案,图1是方案一的示意图(AP 与直线X 垂直,垂足为P ), P 到A 、B 的距离之和Si = PA+PB,图2是方案二的示意图(点 A 关于直线X 的对 称点是A',连接BA'交直线X 于点P ), P 到A 、B 的距离之和 ◎= PA+PB.(1 )求S 、S 2,并比较它们的大小; (2 )请你说明PA+PB 的值为最小; (3 )拟建的恩施到张家界高速公路Y 与沪渝高速公路垂直,建立如图 3所示的直角C30km,请你在X旁和Y旁各修建一服务区P、Q,使P、A、.并求出这个最小值.坐标系,B到直线Y的距离为B、Q组成的四边形的周长最小YkCt6、如图,在锐角厶ABC中,AB= ,2,/ BAC= 45°,/ BAC的平分线交BC于点D, M N分别是AD和AB上的动点,则BM+M的最小值是.7、如题,在长方形ABCD中,将?ABC沿AC对折至?AEC位置,CE与AD 交于点F.(1)试说明:AF=FC⑵如果AB=3 BC=4,求AF的长。
勾股定理是数学中的经典定理,被广泛应用于解决直角三角形中的各种问题。
其中,勾股定理最短路径问题是一个常见而又有一定挑战性的问题,需要我们对勾股定理的应用进行深入理解和掌握。
下面,我将共享一些在做勾股定理最短路径问题时的一些技巧和注意事项,希望能对大家有所帮助。
1. 确定直角三角形在解决勾股定理最短路径问题时,首先需要确定问题中是否存在直角三角形。
通常情况下,我们可以通过问题描述中给出的线段长度或角度信息来判断是否为直角三角形。
一旦确定存在直角三角形,我们便可以应用勾股定理来解决最短路径问题。
2. 确认最短路径在确定了直角三角形后,接下来我们需要确认问题中所要求的最短路径。
这个最短路径可能是直角三角形中的某条边,也可能是直角三角形内部的某一段路径。
在实际问题中,我们经常需要根据具体情况来判断最短路径的具体位置。
3. 应用勾股定理一旦确定了直角三角形和最短路径,我们就可以开始应用勾股定理来求解问题了。
勾股定理的表达式为a^2 + b^2 = c^2,其中a、b分别为直角三角形的两条直角边,c为斜边。
我们可以根据勾股定理的这一表达式来进行问题的推理和计算,从而得出最终的最短路径结果。
4. 注意特殊情况在应用勾股定理解决最短路径问题时,我们还需要特别注意一些特殊情况。
当直角三角形的两条直角边长度相等时,斜边也将会最短,这种情况下我们可以直接应用勾股定理来得出结果。
另外,当直角三角形的两条直角边长度有一个为0时,斜边也将为另一条直角边,这时最短路径也就不言而喻了。
5. 结合实际问题当我们应用勾股定理解决最短路径问题时,需要将数学知识与实际问题相结合,确保解答的合理性和可行性。
我们可以通过画图、列方程等方法来辅助求解,从而得出准确的最短路径结果。
在解决勾股定理最短路径问题时,我们需要确保对勾股定理的基本原理有充分的理解,同时要灵活运用对问题进行分析和求解。
希望以上共享的技巧和注意事项能够帮助大家在做题时更加得心应手,解决问题时得心应手。
勾股定理求最短路径方法技巧摘要:1.引言2.勾股定理简介3.求最短路径方法技巧4.应用实例与分析5.结论正文:【引言】在数学领域中,勾股定理及其求最短路径方法一直是备受关注的热点。
本文将详细介绍勾股定理求最短路径的方法和技巧,帮助读者更好地理解和应用这一理论。
【勾股定理简介】勾股定理,又称毕达哥拉斯定理,是指在直角三角形中,直角边平方和等于斜边的平方。
其数学表达式为:a + b = c。
其中a、b为直角边,c为斜边。
【求最短路径方法技巧】利用勾股定理求最短路径,关键在于找到起点和终点之间的直角三角形,然后运用勾股定理计算出路径长度。
这里有两种求最短路径的方法:1.直接法:在平面上给定两个点A和B,找出一条直线路径,使得这条路径上的所有点与A、B两点的距离之和最小。
可以通过构建直角三角形,利用勾股定理求解路径长度。
2.间接法:先找到起点和终点之间的中间点C,然后分别计算从起点到C 点和从C点到终点的路径长度。
最后在所有路径中选择长度最短的一条。
同样可以利用勾股定理计算路径长度。
【应用实例与分析】以一个简单的平面直角坐标系为例,设有两点A(0, 0)和B(3, 4)。
现在需要求从A点到B点的最短路径。
首先,求出AB的中点C:(1.5, 2)。
然后,分别计算从A到C和从C到B 的路径长度。
AC的长度:√((1.5-0) + (2-0)) = √(2.25 + 4) = √6.25BC的长度:√((3-1.5) + (4-2)) = √(1.25 + 4) = √5.25现在可以计算出从A点到B点的最短路径长度:√6.25 + √5.25 ≈ 7.27【结论】通过以上分析,我们可以看出,利用勾股定理求最短路径方法是简单且实用的。
只需找到起点和终点之间的直角三角形,然后运用勾股定理计算路径长度,最后在所有路径中选择长度最短的一条。
勾股定理最短路径问题
勾股定理最短路径问题是一种在数学和计算机科学领域中常见的问题。
该问题
的目标是找到两个给定点之间的最短路径,并且路径中的每个线段都恰好满足勾股定理。
勾股定理是一个基本的几何定理,它表明在一个直角三角形中,斜边的平方等
于两个直角边的平方和。
勾股定理最短路径问题则是将这个定理应用到路径规划中。
为了解决这个问题,我们可以使用图论中的最短路径算法,如Dijkstra算法或
A*算法。
首先,我们将给定的起点和终点转化为图中的节点,节点之间的连接表
示可以直接连接的路径。
在每个节点中,我们需要计算到达该节点的路径长度。
以起点为起始节点,我
们开始遍历每个相邻节点,并通过计算其与起点的距离来更新节点的路径长度。
这个过程会持续进行,直到所有节点的路径长度都被计算出来。
接下来,我们需要根据勾股定理来评估路径的长度。
对于连接起点和终点的路
径上的每一段线段,我们可以根据勾股定理计算其长度。
通过将每一段线段的长度累加,我们可以得到整条路径的长度。
最后,我们可以使用最短路径算法来确定具有最短长度的路径。
这将帮助我们
找到勾股定理最短路径问题的解决方案。
总结而言,勾股定理最短路径问题是一个涉及路径规划和数学定理应用的问题。
通过使用最短路径算法,我们可以找到满足勾股定理的最短路径,从而有效地解决这个问题。
勾股定理的应用最短路径问题1. 引言大家好,今天咱们聊聊一个古老又有趣的数学概念——勾股定理。
可能有人会问:“这跟我有什么关系呢?”嘿,等着听,勾股定理可不是干巴巴的公式,它其实在我们日常生活中随处可见,特别是在寻找最短路径的时候!想想吧,咱们出门去超市、上班、约会,总是希望能走条最短的路,不是吗?1.1 勾股定理是什么?首先,让我给你简单科普一下,勾股定理就是“直角三角形的两条直角边的平方和等于斜边的平方”。
哎哟,这听起来可能有点抽象,但是举个例子就明白了。
想象一下,你在一个小区里,想从家里去朋友家,结果发现可以选择两条路:一条是笔直的,另一条是绕来绕去的。
咱们用勾股定理算一下,直走那条路肯定最省劲,走得快,又不费力,简直是“稳得一批”!1.2 最短路径的日常应用所以说,勾股定理就像是我们日常生活中的导航仪。
无论是行走还是开车,只要涉及到找路,勾股定理就在那里默默支撑着我们。
有时候你可能会觉得“哎,我怎么就走错了路呢?”其实啊,咱们常常是没有用到这个小聪明,走了冤屈的弯路。
所以,学会利用勾股定理,让我们在出门时不再“走火入魔”,多出点时间来享受生活,简直是“赚到了”!2. 勾股定理在生活中的真实案例接下来,我来给大家分享几个勾股定理在生活中实际应用的例子。
想象一下,你家后院有个长方形的游泳池,你想在旁边建个阳光棚。
你需要测量一下,从池边到棚子的某个点的距离。
这里用上勾股定理就能轻松搞定!假如你从池子的一个角落走到对面的边,再直线走到阳光棚的底部,咱们就能通过计算,得到最短的距离,省得你东跑西颠了。
2.1 工作中的应用再说说工作吧,假设你是一名送货员,天天跑腿送快递。
为了提高效率,你需要计算每次送货的最短路径。
只要把送货点的坐标设定好,运用勾股定理,你就能算出最近的送货路线。
这样一来,工作起来简直是“如虎添翼”,还能多挣点外快,何乐而不为呢?2.2 健身房里的运动还有一种情况,比如你在健身房里锻炼,跑步机上那条直线可不是随便走走的!你想把心率调到最佳状态,搞个“HIIT”训练,结果一不小心跑偏了。
教学设计授课教师单位授课时间课题勾股定理与平面展开图—最短路径问题教材版本人教版课型专题课教学目标1. 能把几何体表面展开成平面图形,找到最短路径。
2. 通过展开图形,构建直角三角形,运用勾股定理求出最短路径。
教学重点勾股定理来解决最短路径问题教学难点正方体长方体展开后有多条路线及如何分类观察从而归纳整理教法讲授法、讨论法、演示法(几何画板)学法合作探究学习教学准备制作正方体、长方体、圆柱等教具.教学过程设计意图复习引入1.有一只闯荡几何世界的蚂蚁,它想从点A到点B处吃食物,蚂蚁怎样走最近,为什么?两点之间,线段最短.2.在几何体不同平面上的两点如何寻找最短路径?带着问题我们来学习:勾股定理与平面展开图—最短路径问题活动一、圆柱中的最短路径问题例1 如图,一圆柱底面周长为6cm,高为4cm,一只蚂蚁从点A爬到对角的点B处吃食物,想一想,蚂蚁怎么走最近?最短路程是多少?(学生独立思考,举手回答,教师板演)C用“小蚂蚁”的问题引起学生兴趣,复习“两点之间,线段最短”并思考不同平面上的两点如何确定最短路径,从而引出课题。
解:如图将圆柱侧面展开,由题意得AC =4,BC =3 在Rt △ABC 中,∠ACB=90°∴ AB ==+22AB AC 53422=+ 答:蚂蚁爬行的最短路程是5cm. 练习1.有一圆形油罐底面圆的周长为6m ,高为4m ,一只蚂蚁从距底面1m 的A 处爬行到对角B 处吃食物,它爬行的最短路线长为 米.2. 如图,有一圆柱油罐,已知油罐的底面圆的直径是4米,高是5米,要从点A 起环绕油罐建梯子,梯子的顶端正好到达点A 的正上方点B ,则梯子最短需 米.(π取3)归纳:求立体图形中最短路径的一般步骤:1. 展 立体—平面2. 找 起点、终点3. 连 两点之间,线段最短。
4. 求 勾股定理5. 答 答题活动二、正方体中的最短路径问题例2 如图,是棱长为1的正方体,蚂蚁从点A 到点B 处吃食物,问怎样爬行路径最短,最短路程是多少?它有几种最短爬行方法?(注:每个面均能爬行)(学生准备正方体,小组探究蚂蚁爬行的最短路线,由小组代表展讲)活动三、长方体中的最短路径问题通过学生的合作探究,先确定最短路径。
小专题(一):利用勾股定律解决最短路径问题勾股定律是数学中的一个重要定理,它可以被广泛用于解决最短路径问题。
最短路径问题是在图论中常见的问题,指的是在一个加权有向图或无向图中找到从一个起点到一个终点的最短路径。
理论基础勾股定律可以用于计算两点之间的距离,它表述如下:在直角三角形中,直角边的平方等于另外两个边的平方和。
根据勾股定律,我们可以计算出两点之间的直线距离,然后利用这个距离来比较各条路径的长度,从而找到最短路径。
解决步骤解决最短路径问题可以按照以下步骤进行:1. 确定起点和终点:首先,我们需要确定问题的起点和终点,这两个点将决定我们要找到的最短路径。
2. 创建图并添加权重:根据实际情况,我们需要创建一个加权有向图或无向图,并为图中的边(路径)添加权重。
权重可以代表两点之间的距离、时间或其他衡量指标。
3. 计算距离:利用勾股定律计算两点之间的距离,将其作为边的权重。
4. 应用最短路径算法:根据图的类型和问题要求,选择合适的最短路径算法,如迪杰斯特拉算法或弗洛伊德算法。
5. 输出最短路径:根据算法计算结果,输出起点到终点的最短路径。
示例以下是一个简单的示例,展示如何利用勾股定律解决最短路径问题:假设我们有一个无向图,其中包含5个节点A、B、C、D和E,节点之间的边权重如下:- AB: 3- AC: 4- BD: 2- CE: 5- DE: 3现在我们想找到从节点A到节点E的最短路径。
根据勾股定律,我们可以计算出各路径的长度:- AB: 3- AC: 4- AD: 5- AE: √(3^2 + 4^2) = 5根据距离,我们可以得出最短路径为A -> B -> D -> E,路径长度为7。
结论利用勾股定律可以解决最短路径问题。
通过计算两点之间的距离,我们可以比较各条路径的长度,并找到起点到终点的最短路径。
在实际应用中,我们可以根据具体情况选择合适的最短路径算法来解决问题。
第03讲勾股定理的应用(3种题型)【知识梳理】一.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.二.平面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.【考点剖析】题型一.勾股定理的实际应用例1.如图,一棵树从3m处折断了,树顶端离树底端距离4m,那么这棵树原来的高度是() A.8m B.5m C.9m D.7m【变式】如图在实践活动课上,小华打算测量学校旗杆的高度,她发现旗杆顶端的绳子垂到地面后还多出1m,当她把绳子斜拉直,且使绳子的底端刚好接触地面时,测得绳子底端距离旗杆底部5m,由此可计算出学校旗杆的高度是()A.8m B.10m C.12m D.15m例2.如图,一个直径为20cm的杯子,在它的正中间竖直放一根小木棍,木棍露出杯子外2cm,当木棍倒向杯壁时(木棍底端不动),木棍顶端正好触到杯口,求木棍长度.【变式】小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,求旗杆的高.题型二.平面展开-最短路径问题例3.如图,长方体的底面边长是1cm和3cm,高是6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么用细线最短需要()A.12cm B.10cm C.13cm D.11cm例4.一个上底和下底都是等边三角形的盒子,等边三角形的高为70cm,盒子的高为240cm,M为AB的中点,在M处有一只飞蛾要飞到E处,它的最短行程多少?【变式】如图①,有一个圆柱,它的高等于12cm,底面半径等于3cm,在圆柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点的食物,需要爬行的最短路程是多少?(π取3)题型三:勾股定理中的折叠问题例5.如图,矩形纸片ABCD中,4AB=,3AD=,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1B.43C.32D.2【变式】如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知3CE cm=,8AB cm=,求图中阴影部分的面积.【过关检测】一.选择题1.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺2.如图,已知圆柱底面的周长为12cm,圆柱高为8cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.10cm B.20cm C.cm D.100cm3.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为()A.0.8米B.2米C.2.2米D.2.7米4.如图,台阶阶梯每一层高20cm,宽30cm,长50cm,一只蚂蚁从A点爬到B点,最短路程是()A.10B.50C.120D.1305.如图,圆柱的高为8cm,底面半径为2cm,在圆柱下底面的A点处有一只蚂蚁,它想吃到上底面B处的食物,已知四边形ADBC的边AD、BC恰好是上、下底面的直径,问:蚂蚁吃到食物爬行的最短距离是cm.(π取3)6.《九章算术》中的“引葭赴岸”问题:今有池方一丈,葭(一种芦苇类植物)生其中央,出水一尺.引葭赴岸,适与岸齐,水深几何?其大意是:有一个边长为10尺的正方形池塘,一棵芦苇生长在它的正中央,高出水面1尺.如果把该芦苇拉向岸边,那么芦苇的顶部恰好碰到岸边(如图所示),则水深________尺.7.《九章算术》是我国古代一部著名的数学专著,其中记载了一个“折竹抵地”问题:今有竹高一丈,未折抵地,去本三尺,问折者高几何?其意思是:有一根与地面垂直且高一丈的竹子(1丈10尺),现被大风折断成两截,尖端落在地面上,竹尖与竹根的距离为三尺,问折断处离地面的距离为.8.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根四尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB =10,BC=4,求AC的长.9.如图,一架25米长的梯子AB斜靠在一竖直的墙AO上,梯子底端B离墙AO有7米.(1)求梯子靠墙的顶端A距地面有多少米?(2)小燕说“如果梯子的顶端A沿墙下滑了4米,那么梯子的底端B在水平方向就滑动了4米.”她的说法正确吗?若不正确,请说明理由.10.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?11.我国古代的数学名著《九章算术》中记载“今有竹高一丈,末折抵地,去本三尺.问:折者高几何?”译文:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好着地,着地处离原竹子根部3尺远.问:尺)原处还有多高的竹子?(1丈1012.如图,一个梯子AB,顶端A靠在墙AC上,这是梯子的顶端距地面的垂直高度为24米,若梯子的顶端下滑4米,底端将水平滑动了8米,求滑动前梯子底端与墙的距离CB是多少?13.(2022春•蜀山区期中)在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,(1)求高台A比矮台B高多少米?(2)求旗杆的高度OM;(3)玛丽在荡绳索过程中离地面的最低点的高度MN.14.如图,四边形ABCD是舞蹈训练场地,要在场地上铺上草坪网.经过测量得知:∠B=90°,AB=24m,BC =7m,CD=15m,AD=20m.(1)判断∠D是不是直角,并说明理由;(2)求四边形ABCD需要铺的草坪网的面积.15.如图,A,B两村在河L的同侧,A,B到河L的距离分别为1.5km和2km,AB=1.3km,现要在河边建一供水厂,同时向A,B 1.8万元,问水厂与A村的水平距离为多远时,能使铺设费用最省,并求出总费用约多少万元.。
勾股定理最短路径引言勾股定理是初中数学中的重要定理之一,它描述了直角三角形中三条边之间的关系。
而最短路径是图论中的一个经典问题,它涉及寻找两个顶点之间最短的路径。
本文将探讨如何利用勾股定理来解决最短路径问题。
最短路径问题最短路径问题是在一个图中寻找两个顶点之间的最短路径。
在图论中,图由一组顶点和一组边组成,边连接两个顶点并表示它们之间的关系。
最短路径问题有着广泛的应用,例如在网络路由、物流规划和导航系统中都需要找到最短路径。
勾股定理勾股定理是由古希腊数学家毕达哥拉斯提出的。
它表述为:直角三角形的斜边的平方等于两个直角边的平方和。
即a2+b2=c2,其中c为斜边的长度,a和b为两个直角边的长度。
最短路径算法解决最短路径问题的算法有很多种,其中最著名的一种是迪杰斯特拉算法。
该算法通过动态规划的思想,逐步更新起始点到其他所有点的最短路径。
具体步骤如下:1.创建一个集合S,用于存放已经找到最短路径的顶点。
2.初始化起始点到其他所有点的距离为无穷大,起始点到自身的距离为0。
3.选择一个距离最小的顶点v,将其加入集合S。
4.更新起始点到v的邻接点的距离,如果经过v的路径比当前路径短,则更新距离。
5.重复步骤3和4,直到集合S包含了所有顶点。
6.最终得到起始点到其他所有点的最短路径。
勾股定理最短路径算法在某些特殊情况下,我们可以利用勾股定理来求解最短路径问题。
假设我们有一个平面上的图,其中每个顶点表示一个点的坐标,边表示两个点之间的距离。
如果我们要求解从起始点到目标点的最短路径,并且只能沿着直角边移动,那么我们可以利用勾股定理来解决这个问题。
具体步骤如下:1.将平面上的点表示为二维坐标(x,y),其中x和y分别表示点在x轴和y轴上的坐标。
2.计算起始点到所有其他点的直线距离,并将其作为初始最短路径。
3.对于每个顶点,计算其到目标点的直线距离,并利用勾股定理计算出最短路径。
4.选择最短路径最小的顶点作为下一个移动的目标点。
勾股定理中的最短路径问题1. 勾股定理的基础1.1 勾股定理的来历哎,你知道吗?勾股定理这玩意儿可真是数学界的明星!想想看,两个直角边的平方和,等于斜边的平方,简直就像是数学的秘密武器。
古希腊的数学家毕达哥拉斯可是大名鼎鼎,他的这个定理为我们揭开了许多几何谜团。
不过,咱们可不能把它当成死板的公式,生活中处处都有它的影子。
1.2 勾股定理的应用想象一下,你和朋友在公园里散步,结果你们发现了一条小径。
这条小径绕来绕去,走得可费劲了,但其实你们只需要沿着一条直线走到目的地。
这个时候,勾股定理就像你的导航,告诉你怎么走最省事。
无论是爬山、越野,还是走街串巷,最短路径的问题无处不在,真是“走一步算一步”的好帮手。
2. 最短路径的趣味探讨2.1 最短路径的魅力说到最短路径,简直可以用“行走在正确的道路上”来形容。
想象一下,你在迷宫里游荡,四周都是墙壁,脑袋都要炸了。
这个时候,找到那条直达出口的路,那种心里一亮的感觉,真的是无与伦比!而勾股定理就像你的秘密武器,让你用最少的步数找到最佳出口,真是“智者千虑,必有一失”,谁都想少走弯路嘛!2.2 日常生活中的最短路径不过,最短路径可不仅限于数学题。
比如说,假设你要去隔壁的超市,走着走着,突然发现原来有一条小巷子可以穿过去,走起来省时又省力,心里那个爽啊,简直像捡到了一分钱。
生活中总是有这样的小发现,就像勾股定理教给我们的道理——有时候,直接一点,反而是最好的选择。
3. 总结与思考3.1 勾股定理的哲理勾股定理不仅是个数学公式,它其实还给我们带来了一些人生的哲理。
我们常常在生活中绕来绕去,寻找看似完美的路径,但实际上,简单的直线才是最有效的。
有时候,想太多反而让我们迷失方向,真的是“越想越糊涂”。
所以,咱们在面对选择时,别忘了用勾股定理的思维,寻找那条最短、最简单的路。
3.2 实际应用的启示最终,勾股定理和最短路径的问题不仅仅是数学的事,更是生活的智慧。
我们在每一次选择中,都可以尝试运用这种思维,尽量少走弯路,快速达到目标。
勾股定理在最短路径问题中的应用标题:勾股定理的在最短路径问题中的应用导言:最短路径问题是一类在图论中广泛应用的数学问题,它关注着在给定的网络中寻找两个节点之间最短路径所需经过的边或弧的集合。
数学家们在求解最短路径问题的过程中,经过了数不清的探索和尝试。
本文将介绍勾股定理在最短路径问题中的应用,通过深入讨论和具体案例分析,旨在帮助读者更加深入、全面地理解这一主题。
一、勾股定理概述1.1 勾股定理定义勾股定理,也称毕达哥拉斯定理,是三角学中一个经典的定理。
它表明,在一个直角三角形中,设直角边的长度分别为a和b,斜边长度为c,则有a² + b² = c²。
二、最短路径问题介绍2.1 最短路径问题的定义最短路径问题是一个经典的图论问题,它要求在给定的加权有向图或无向图中,求解两个顶点之间的最短路径。
这种路径可能经过一些中间节点,但其总权值和需要最小。
三、勾股定理在最短路径问题中的应用3.1 最短路径问题的建模在最短路径问题中,我们需要将问题建模为一个加权有向图或无向图。
对于一个直角三角形,我们可以将直角边的长度作为边的权值,斜边的长度作为两个节点之间的距离。
3.2 以勾股定理为基础的最短路径算法基于勾股定理的最短路径算法利用了直角三角形的特性,将直角边长度作为边的权值,通过计算两个节点之间的距离来求解最短路径。
3.3 实例分析:勾股定理在最短路径问题中的具体应用通过一个具体的实例,我们可以更好地理解勾股定理在最短路径问题中的应用。
假设我们有一个城市地图,有一辆车位于城市的某个节点A上,我们需要找到车从节点A到达另一个节点B的最短路径。
4. 总结与回顾通过本文的讨论,我们了解了勾股定理在最短路径问题中的应用。
勾股定理提供了一种有效的方法来计算两个节点之间的距离,从而为最短路径问题的求解提供了便利。
通过建立一个适当的数学模型,我们可以利用勾股定理来解决各种实际应用中的最短路径问题。
勾股定理的最短路径问题解题思路
勾股定理是初中数学中比较基础的一个定理,但是在计算机科学中也有其应用。
其中一个比较典型的应用就是最短路径问题。
下面介绍一下如何运用勾股定理解决最短路径问题。
首先,我们假设有一个起点A和一个终点B,它们之间存在一些障碍物(例如,墙壁、建筑物等),我们需要找到一条最短的路径,使得从起点A到终点B的路径避开这些障碍物。
接下来,我们将地图分成一个个小方格,每个方格可以看做是一个节点。
我们可以使用广度优先搜索或Dijkstra算法来找到从起点A到终点B的最短路径。
但是,如果我们将勾股定理应用于这个问题中,我们可以更快地找到最短路径。
我们可以将地图上的每个点都看做是一个直角坐标系中的点,然后将起点A和终点B之间的连线视为斜边。
接着,我们可以将每一条直线段都看做是勾股定理中的直角边,然后根据勾股定理计算出它们的斜边长度。
最后,我们可以将所有的直线段的长度相加,得到从起点A到终点B的最短路径长度。
在实际操作中,我们可以将地图上的每个点都标记为1或0,1表示该点是障碍物,0表示该点可以通行。
然后,我们可以使用勾股定理计算每条直线段的长度,然后将长度相加,得到最短路径的长度。
综上所述,勾股定理可以帮助我们更快地找到最短路径。
在实际的应用中,我们可以将地图上的每个点看做是勾股定理中的一个直角坐标系中的点,然后通过计算斜边长度来确定每条直线段的长度,最
终得到最短路径的长度。
专题1.4 勾股定理中的最短路径问题目标导航1、熟练掌握勾股定理的最短路径问题(主要包含:长方体、圆柱、圆锥、将军饮马等)。
2、解决实际问题时,要善于构造直角三角形,把实际问题抽象成几何问题.知识精讲知识点01 最短路径问题平面展开图-最短路径问题几何体中最短路径基本模型如下:基本思路:将立体图形展开成平面图形,利用两点之间线段最短确定最短路线,构造直角三角形,利用勾股定理求解。
【知识拓展1】圆柱有关的最短路径问题【微点拨】计算跟圆柱有关的最短路径问题时,要注意圆柱的侧面展开图为矩形,利用两点之间线段最短结合勾股定理进行求解,注意展开后两个端点的位置,有时候需要用底面圆的周长进行计算,有时候需要用底面圆周长的一半进行计算。
要点总结:1)运用勾股定理计算最短路径时,按照展开—定点—连线—勾股定理的步骤进行计算;2)缠绕类题型可以求出一圈的最短长度后乘以圈数。
例1.(2022·山东青岛·八年级期末)如图,一个圆桶,底面直径为16cm,高为18cm,则一只小虫从下底点A处爬到上底B处再回到A处,则小虫所爬的最短路径长是()( 取3)A.60cm B.40cm C.30cm D.20cm【答案】A【分析】先将圆柱的侧面展开为一矩形,而矩形的长就是底面周长的一半,高就是圆柱的高,再根据勾股定理就可以求出其值.【详解】解:展开圆柱的侧面如图,根据两点之间线段最短就可以得知AB最短.由题意,得AC=3×16÷2=24,在Rt△ABC中,由勾股定理,得2222241830AB AC BC=+=+=cm.∵一只小虫从下底点A处爬到上底B处再回到A处,∴最短路径长为60cm.故选:A.【点睛】本题考查了圆柱侧面展开图的运用,两点之间线段最短的运用,勾股定理的运用.在解答时将圆柱的侧面展开是关键.【即学即练】1.(2022·吉林长春·八年级期末)如图,有一个圆柱,底面圆的直径AB=24πcm,高BC=10cm,在BC的中点P处有一块蜂蜜,聪明的蚂蚁能够找到距离食物的最短路径,则蚂蚁从点A爬到点P的最短路程为_____cm.【答案】13【分析】化“曲”为“平”,在平面内,得到两点的位置,再根据两点之间线段最短和勾股定理求解即可.【详解】将圆柱体的侧面展开,如图所示:AB=12底面周长=12×π×24π=12(cm),BP=12BC=5(cm),所以AP=22125=13+(cm),故蚂蚁从A点爬到P点的最短距离为13cm,故答案为:13.【点睛】本题考查最短距离问题,化“曲”为“平”,在平面内,利用两点之间线段最短和勾股定理是常用求解方法.2.(2022·浙江金华初三月考)如图,圆柱底面半径为4πcm,高为18cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为()A.24cm B.30cm C.21D.97cm【答案】B【分析】要求圆柱体中两点之间的最短路径,最直接的作法,就是将圆柱体展开,然后利用两点之间线段最短解答.【解析】解:圆柱体的展开图如图所示:用一棉线从A顺着圆柱侧面绕3圈到B的运动最短路线是:AC→CD→DB;即在圆柱体的展开图长方形中,将长方形平均分成3个小长方形,A沿着3个长方形的对角线运动到B的路线最短;∵圆柱底面半径为4πcm,∴长方形的宽即是圆柱体的底面周长:2π×4π=8cm;又∵圆柱高为18cm,∴小长方形的一条边长是6cm;根据勾股定理求得AC=CD=DB=10cm;∴AC+CD+DB=30cm;故选:B.【点睛】本题主要考查了圆柱的计算、平面展开−−路径最短问题.圆柱的侧面展开图是一个长方形,此长方形的宽等于圆柱底面周长,长方形的长等于圆柱的高.本题就是把圆柱的侧面展开成长方形,“化曲面为平面”,用勾股定理解决.【知识拓展2】长方体有关的最短路径问题想【微点拨】计算跟长方体有关的最短路径问题时,要熟悉长方体的侧面展开图,利用两点之间线段最短结合勾股定理进行求解,注意长方体展开图的多种情况和分类讨论。
勾股定理中的最短路径在数学的世界里,有个神奇的家伙叫勾股定理,嘿,这个名字听起来就很酷,是吧?它的本事可大着呢!勾股定理告诉我们,在一个直角三角形中,直角两边的平方和,正好等于斜边的平方。
哎呀,这可不是简单的数学公式,它还蕴含着一条最短路径的秘密哦。
想象一下,你要从一个地方A跑到另一个地方B,走得多远才算最短呢?答案就是,走直线!这不就像打游戏时直接往目标地点冲,而不是东拐西绕吗?我们生活中的各种选择就像那三角形的边,可能你总是在考虑各种复杂的路线,比如选择职业、买房、甚至选偶。
心里想的可是千条路,最后还是要找到一条最短的,最合适的。
这就像是我们脑袋里的那个勾股定理,简单明了,却能帮我们省下不少时间和精力。
说到这里,不得不提一个例子。
想象一下,你和朋友约好去看电影,你在家磨蹭,最后还是选择了最近的电影院,省下的时间可是能让你多点一份爆米花呢。
再来聊聊这个定理背后的故事。
古希腊的数学家们可真是牛啊,他们发现了这个定理,简直是打开了新世界的大门。
想想看,几千年前的人们就能用这么简单的逻辑,推导出复杂的几何图形,那简直就像是开启了智慧的宝箱。
就像老祖宗说的:“千里之行,始于足下。
”有了这个定理,大家就能更轻松地计算出各种三角形的边长,绝对是个实用的工具,像是数学界的瑞士军刀。
生活中的实际应用更是数不胜数。
比如建筑师在设计房屋时,得确保墙壁是笔直的,不然建出来的房子就成了歪歪的“斜塔”,谁会愿意住在那样的地方呢?工程师在建桥、修路时,勾股定理也是他们必不可少的“法宝”。
这些看似枯燥的数字背后,隐藏着多少人类智慧的结晶啊。
搞数学的可不仅仅是为了计算,更是为了理解这个世界。
勾股定理的存在,让我们意识到,很多事情其实是有规律可循的。
就像我们的人生,虽然有时候会觉得一团乱麻,但只要找到正确的方向,还是能理出头绪的。
人生就像一场旅行,偶尔迷路也无妨,关键是要记得回到那条“直线”上的感觉。
说到这里,我总是忍不住想起那些年我们一起学习的时候,面对那些抽象的公式,心里是多么的抗拒。