圆的方程A组题
- 格式:doc
- 大小:75.00 KB
- 文档页数:4
圆的⽅程练习题圆的⽅程【基础练习】A 组1.已知点A(3,-2),B(-5,4),以线段AB 为直径的圆的⽅程为2.过点A (1,-1)、B (-1,1)且圆⼼在直线x +y -2=0上的圆的⽅程是3.已知圆C 的半径为2,圆⼼在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的⽅程4.圆22420x y x y c +-++=与y 轴交于A 、B 两点,圆⼼为P ,若∠APB=120°,则实数c 值为_ _5.如果⽅程220x y Dx Ey F ++++=()2240D E F +->所表⽰的曲线关于直线y x =对称,那么必有__ _6.设⽅程22242(3)2(14)1690x y m x m y m +-++-++=,若该⽅程表⽰⼀个圆,求m 的取值范围及这时圆⼼的轨迹⽅程。
7.⽅程224(1)40ax ay a x y +--+=表⽰圆,求实数a 的取值范围,并求出其中半径最⼩的圆的⽅程。
8.求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的⽅程.9.设圆满⾜:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的⽐为3:1,在满⾜条件①、②的所有圆中,求圆⼼到直线l :x -2y =0的距离最⼩的圆的⽅程.10.在平⾯直⾓坐标系xoy 中,已知圆⼼在第⼆象限、半径为C 与直线y x =相切于坐标原点O .椭圆22219x y a +=与圆C 的⼀个交点到椭圆两焦点的距离之和为10. (1)求圆C 的⽅程;(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.【基础练习】B 组1.关于x,y 的⽅程Ax 2+Bxy+Cy 2+Dx+Ey+F=0表⽰⼀个圆的充要条件是2.过点P(-8,-1),Q(5,12),R(17,4)三点的圆的圆⼼坐标是3.若两直线y=x+2k 与y=2x+k+1的交点P 在圆x 2+y 2=4的内部,则k 的范围是4.已知圆⼼为点(2,-3),⼀条直径的两个端点恰好落在两个坐标轴上,则这个圆的⽅程是5.直线y=3x+1与曲线x 2+y 2=4相交于A 、B 两点,则AB 的中点坐标是6.⽅程1x -=表⽰的曲线是_7.圆2)4()3(22=++-y x 关于直线0=+y x 的对称圆的⽅程是8.如果实数x 、y 满⾜等式()2223x y -+=,那么y x的最⼤值是 9.已知点)1,1(-A 和圆4)7()5(:22=-+-y x C ,求⼀束光线从点A 经x 轴反射到圆周C 的最短路程为______10.求经过点A(5,2),B(3,2),圆⼼在直线2x─y─3=0上的圆的⽅程;11. ⼀圆与y 轴相切,圆⼼在直线x -3y =0上,且直线y =x 截圆所得弦长为27,求此圆的⽅程直线与圆的位置关系【基础练习】A 组1.若直线4x -3y -2=0与圆x 2+y 2-2ax +4y +a 2-12=0总有两个不同交点,则a 的取值范围是2.直线x -y +4=0被圆x 2+y 2+4x -4y +6=0截得的弦长等于3.过点P(2,1)且与圆x 2+y 2-2x +2y +1=0相切的直线的⽅程为 .4..设集合(){}22,|25=+≤M x y x y ,()(){}22,|9=-+≤N x y x a y ,若M ∪N=M ,则实数a 的取值范围是5.M (2,-3,8)关于坐标平⾯x O y 对称点的坐标为6.已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ).(1)证明:不论m 取什么实数,直线l 与圆恒交于两点;(2)求直线被圆C 截得的弦长最⼩时l 的⽅程.7.已知圆O : 122=+y x ,圆C : 1)4()2(22=-+-y x ,由两圆外⼀点),(b a P 引两圆切线PA 、PB ,切点分别为A 、B ,满⾜|PA|=|PB|.(1)求实数a 、b 间满⾜的等量关系;(2)是否存在以P 为圆⼼的圆,使它与圆O 相内切并且与圆C 相外切?若存在,求出圆P 的⽅程;若不存在,说明理由.8.已知圆C 与两坐标轴都相切,圆⼼C 到直线y x =-(1)求圆C 的⽅程.(2)若直线:1x y l m n +=(2,2)m n >>与圆C相切,求证:6mn ≥+9.如图,在平⾯直⾓坐标系x O y 中,平⾏于x 轴且过点A(33,2)的⼊射光线l 1被直线l :y =33x 反射.反射光线l 2交y 轴于B 点,圆C 过点A 且与l 1, l 2都相切.(1)求l 2所在直线的⽅程和圆C 的⽅程;(2)设P ,Q 分别是直线l 和圆C 上的动点,求PB+PQ 的最⼩值及此时点P 的坐标.【基础练习】B 组1.圆x 2+y 2-4x=0在点P(1,3)处的切线⽅程为2.直线3x +y -23=0截圆x 2+y 2=4得的劣弧所对的圆⼼⾓为3.已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是4.设m>0,则直线2(x+y)+1+m=0与圆x 2+y 2=m 的位置关系为5.圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于1的点有个数为6.点P 从(1,0)出发,沿单位圆122=+y x 逆时针⽅向运动32π弧长到达Q 点,则Q 的坐标为 7.若圆04122=-++mx y x 与直线1-=y 相切,且其圆⼼在y 轴的左侧,则m 的值为 8.已知P(3,0)是圆x 2+y 2-8x-2y+12=0内⼀点则过点P 的最短弦所在直线⽅程是,过点P 的最长弦所在直线⽅程是9.设P 为圆122=+y x 上的动点,则点P 到直线01043=--y x 的距离的最⼩值为 .10. 已知与曲线C :x 2+y 2-2x-2y+1=0相切的直线L 交x 轴、 y 轴于A 、B 两点, O 为原点, 且|OA|=a, |OB|=b (a>2,b>2)(1)求证曲线C 与直线L 相切的条件是(a-2)(b-2)=2 (2)求ΔAOB ⾯积的最⼩值..11.已知平⾯区域00240x y x y ≥??≥??+-≤?恰好被⾯积最⼩的圆222:()()C x a y b r -+-=及其内部所覆盖.(1)试求圆C 的⽅程.(2)若斜率为1的直线l 与圆C 交于不同两点,.A B 满⾜CA CB ⊥,求直线l 的⽅程.12、已知⊙O :221x y +=和定点(2,1)A ,由⊙O 外⼀点(,)P a b 向⊙O 引切线PQ ,切点为Q ,且满⾜||||PQ PA =.(1) 求实数a b 、间满⾜的等量关系;(2) 求线段PQ 长的最⼩值;(3) 若以P 为圆⼼所作的⊙P 与⊙O 有公共点,试求半径取最⼩值时的⊙P ⽅程.。
圆的方程考点一:求圆的方程1.过两点P (2,2)、Q (4,2),且圆心在直线x -y =0上的圆的标准方程是( )A .(x -3)2+(y -3)2=2B .(x +3)2+(y +3)2=2C .(x -3)2+(y -3)2= 2D .(x +3)2+(y +3)2= 22.求经过点A (10,5)、B (-4,7),半径为10的圆的方程.3. 求以A (2,2)、B (5,3)、C (3,-1)为顶点的三角形的外接圆的标准方程.4. 已知A (3,-2),B (-5,4),则以AB 为直径的圆的方程是( )A .(x -1)2+(y +1)2=25B .(x +1)2+(y -1)2=25C .(x -1)2+(y +1)2=100D .(x +1)2+(y -1)2=1005.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的范围是( )A .a <-2或a >23B .-23<a <2 C .-2<a <0 D .-2<a <23 6.220x y x y R +-++=表示一个圆,则R 的取值范围是( ) A .(],2-∞ B .(),2-∞ C .1,2⎛⎫-∞ ⎪⎝⎭ D .1,2⎛⎤-∞ ⎥⎝⎦ 7. 已知方程x 2+y 2+2mx -2y +m 2+5m =0表示圆,求:(1)实数m 的取值范围; (2)圆心坐标和半径.8.ABC ∆的三个顶点坐标分别为()()()1,5,2,2,5,5A B C ---,求其外接圆的方程.7.一圆经过点)3,4(-P ,圆心在直线012=+-y x 上,且半径为5,求该圆的标准方程。
点关于直线对称8.圆12-)1(22=+-)(y x 关于直线02=--y x 对称的圆的方程为( ) 9.圆14)3(22=++-)(y x 关于直线0=+y x 对称的圆的方程是( ) A.14)3(22=-++)(y x B.13)4(22=++-)(y x C.13)4(22=-++)(y x D.14)3(22=-+-)(y x10.经过两点P (-2,4)、Q (3,-1),且在x 轴上截得的弦长为6的圆的方程.11.已知直线01=-+y x 与圆心为C 的圆4a -)1(22=+-)(y x 相交于B A ,两点,若ABC ∆为等边三角形,则实数=a ( )A.6-B.6C.6±D.61±12.圆心在x 轴上,半径长为2,且过点),(12-的圆的方程为( ) A.2)1(22=++y x B.2222=++)(y x C.2)3(22=++y x C.2)1(22=++y x 或2)3(22=++y x13.点P (1,-2)和圆C :x 2+y 2+m 2x +y +m 2=0的位置关系是______ 外14.圆(x +2)2+y 2=5关于原点(0,0)对称的圆的方程是( )A .(x -2)2+y 2=5B .x 2+(y -2)2=5C .(x +2)2+(y +2)2=5D .x 2+(y +2)2=5周长最小15.圆过点)4,1(),2,1(--B A ,求:(1)周长最小的圆的方程(2)圆心在直线042=--y x 上的圆的方程。
高考数学复习圆的方程专项练习(附解析)圆的标准方程(x-a)+(y-b)=r中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定。
以下是圆的方程专题练习,请考生查缺补漏。
一、填空题1.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是________.[解析] 设圆心C(a,b)(a0,b0),由题意得b=1.又圆心C到直线4x-3y=0的距离d==1,解得a=2或a=-(舍).因此该圆的标准方程为(x-2)2+(y-1)2=1.[答案] (x-2)2+(y-1)2=12.(2021南京质检)已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的圆心坐标为________.[解析] 因为点P关于直线x+y-1=0的对称点也在圆上,该直线过圆心,即圆心满足方程x+y-1=0,因此-+1-1=0,解得a=0,因此圆心坐标为(0,1).[答案] (0,1)3.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________.[解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x联立可求得圆心为(1,-4).半径r=2,所求圆的方程为(x-1)2+(y+4)2=8.[答案] (x-1)2+(y+4)2=84.(2021江苏常州模拟)已知实数x,y满足x2+y2-4x+6y+12=0,则|2x-y |的最小值为________.[解析] x2+y2-4x+6y+12=0配方得(x-2)2+(y+3)2=1,令x=2+cos ,y=-3+sin ,则|2x-y|=|4+2cos +3-sin |=|7-sin (-7-(tan =2).[答案] 7-5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0(a0,b0)对称,则+的最小值是________.[解析] 由圆的对称性可得,直线2ax-by+8=0必过圆心(-2,4),因此a+b =2.因此+=+=++52+5=9,由=,则a2=4b2,又由a+b=2,故当且仅当a=,b =时取等号.[答案] 96.(2021南京市、盐都市高三模拟)在平面直角坐标系xOy中,若圆x2 +(y-1)2=4上存在A,B两点关于点P(1,2)成中心对称,则直线AB的方程为________.[解析] 由题意得圆心与P点连线垂直于AB,因此kOP==1,kAB=-1,而直线AB过P点,因此直线AB的方程为y-2=-(x-1),即x+y-3=0.[答案] x+y-3=07.(2021泰州质检)若a,且方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a =________.[解析] 要使方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a2+(2a)2-4(2a2 +a-1)0,解得-20)关于直线x+y+2=0对称.(1)求圆C的方程;(2)设Q为圆C上的一个动点,求的最小值.[解] (1)设圆心C(a,b),由题意得解得则圆C的方程为x2+y2=r2,将点P的坐标代入得r2=2,故圆C的方程为x2+y2=2.(2)设Q(x,y),则x2+y2=2,=(x-1,y-1)(x+2,y+2)=x2+y2+x+y-4=x+y-2.令x=cos ,y=sin ,=x+y-2=(sin +cos )-2=2sin-2,因此的最小值为-4.10.已知圆的圆心为坐标原点,且通过点(-1,).(1)求圆的方程;(2)若直线l1:x-y+b=0与此圆有且只有一个公共点,求b的值;(3)求直线l2:x-y+2=0被此圆截得的弦长.[解] (1)已知圆心为(0,0),半径r==2,因此圆的方程为x2+y2=4.(2)由已知得l1与圆相切,则圆心(0,0)到l1的距离等于半径2,即=2,解得b=4.(3)l2与圆x2+y2=4相交,圆心(0,0)到l2的距离d==,所截弦长l=2=2= 2.一样说来,“教师”概念之形成经历了十分漫长的历史。
人教A 版圆的标准方程精选课时练习(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题 1.()()22 111x y ++-=的圆心在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.已知点()()4,4,5,3A B 都在圆C 上,且()()6,0,2,6M N 仅有一点在圆C 上,则圆C 的标准方程为A .2297122x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭ B .()22125x y -+= C .()()22525x y -+-= D .()()22352x y -+-= 3.已知两点()()1,3,3,A B a -,以线段AB 为直径的圆经过原点,则该圆的标准方程为 A .()()22125x y -+-=B .()()221240x y -+-= C .()()22118x y -+-= D .()()221132x y -+-= 4.若方程22448430x y x y +-+-=表示圆,则其圆心为( )A .1(1,)2-- B .1(1,)2 C .1(1,)2- D .1(1,)2- 5.若圆C 的半径为1,其圆心与点(1,0)关于直线y x =对称,则圆C 的标准方程为 A .()2211x y -+=B .()2211y x ++= C .()2211y x -+= D .()2211x y ++=6.方程2220x y ax ++-=表示圆心在直线x+y=0上的圆,则该圆的半径为A B .C D .6 7.函数y =f (x )的图象是以原点为圆心、1为半径的两段圆弧,如图所示.则不等式f (x )>f (-x )+x 的解集为( )A .25[1,-∪(0,1]B .[-1,0)∪25C .25[1,5--∪25(0,5D .25[1,5--∪5(1]58.圆2cos ,{2sin 2x y θθ==+的圆心坐标是( )A .(0,2)B .(2,0)C .(0,-2)D .(-2,0) 9.已知三点(1,0)A ,3)B ,3)C ,则ABC △外接圆的圆心到原点的距离为( ).A .43B 25C 21D .5310.圆220x y ax ++=的圆心横坐标为1,则a 等于( ).A .1B .2C .1-D .2- 11.以点(-3,4)为圆心,且与x 轴相切的圆的方程是( )A .(x -3)2+(y +4)2=16B .(x +3)2+(y -4)2=16C .(x -3)2+(y +4)2=9D .(x +3)2+(y -4)2=912.已知圆2260x y ax y +++=的圆心在直线10x y --=上,则a 的值为( ) A .4 B .5 C .7 D .813.已知三点()((1,0,3,3A B C ,则ABC ∆外接圆的圆心到原点的距离为( )A .53B 21C 25D .4314.过点()0,2A 和()1,1B -,且圆心在直线10x y --=上的圆的方程是( ) A .()2215x y -+=B .()2215x y +-=C .()()22115x y -+-=D .()()22115x y -++=15.方程x = )A .两个半圆B .两个圆C .圆D .半圆 16.圆22240x y x y ++-=的圆心坐标为( )A .(1,2)-B .(1,2)-C .(1,2)D .(1,2)-- 17.(2018·河南天一大联考段考)以(a,1)为圆心,且与两条直线2x -y +4=0与2x -y -6=0同时相切的圆的标准方程为( )A .(x -1)2+(y -1)2=5B .(x +1)2+(y +1)2=5C .(x -1)2+y 2=5D .x 2+(y -1)2=518.(2018·长春二模)圆(x -2)2+y 2=4关于直线y x 对称的圆的方程是( )A .(x 2+(y -1)2=4B .(x )2+(y )2=4C .x 2+(y -2)2=4D .(x -1)2+(y 2=419.若直线10ax by -+=(0a >,0b >)平分圆222410x y x y ++-+=的周长,则11a b+的最小值为( )A .3+B .C .12D .3+20.圆:C 2220x y x +-=的圆心坐标和半径分别是( )A .(1,0),2B .(1,0),1C .(1,0),2-D .(1,0),1- 21.以两点A (-3,-1)和B (5,5)为直径端点的圆的标准方程是( )A .(x -1)2+(y -2)2=10B .(x -1)2+(y -2)2=100C .(x -1)2+(y -2)2=5D .(x -1)2+(y -2)2=2522.圆心在直线2x =上的圆C 与y 轴交于两点()0,4A -,()0,2B -,则圆C 的方程为 ( )A .()()22235x y -++=B .()()22228x y -++= C .()()22329x y -++= D .()()22215x y -++= 23.若2223340a b c +-=,则直线0ax by c ++=被圆221x y +=所截得的弦长为( )A .23B .1C .12D .3424.过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,分别过,A B 作准线的垂线,垂足分别为11,A B 两点,以11A B 为直径的圆C 过点(2,3)M -,则圆C 的方程为( )A .22(1)(2)2x y ++-=B .22(1)(1)17x y +++=C .22(1)(1)5x y ++-=D .22(1)(2)26x y +++=25.以(2,-1)为圆心,4为半径的圆的标准方程为( )A .(x +2)2+(y -1)2=4B .(x +2)2+(y -1)2=16C .(x -2)2+(y +1)2=16D .(x -2)2+(y +1)2=426.以()2,1为圆心且与直线10y +=相切的圆的方程为( )A .()()22214x y -+-=B .()()22212x y -+-= C .()()22214x y +++= D .()()2221x y +++ 27.已知圆的圆心为(-2,1),其一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是( )A .224250x y x y ++--=B .224250x y x y +-+-=C .22420x y x y ++-=D .22420x y x y +-+=二、填空题28.圆心为()3,0且与直线0x +=相切的圆的方程为________.29.已知圆的圆心在曲线10)xy x =>(上,且与直线4130x y ++=相切,当圆的面积最小时,其标准方程为_______.30.圆C 的圆心为点(8,3)-,且经过点(5,1)A ,则圆C 的方程为______________.31.已知圆M 与圆O :x 2+y 2=3+相内切,且和x 轴的正半轴,y 轴的正半轴都相切,则圆M 的标准方程是________.32.已知圆C 的圆心在直线20x y -=上,且经过(6,2)A ,(4,8)B 两点,则圆C 的标准方程是__________.33.圆22230x y x y ++-=的圆心坐标为__________.34.若直线y =ax +b 通过第一、二、四象限,则圆(x +a )2+(y +b )2=1的圆心位于第________象限.35.圆22230x y x y +-+=的圆心坐标为________.36.已知圆C 经过点()0,6A -,()1,5B -,且圆心在直线:10l x y -+=上,则圆C 的标准方程为__________.37.若圆C 过两点(0,4),(4,6)A B ,且圆心C 在直线x -2y -2=0上,则圆C 的标准方程为_________.三、解答题38.若圆C 经过坐标原点,且圆心在直线23y x =-+上运动,求当圆C 半径最小时圆C 的标准方程.39.已知椭圆2212x y +=的左焦点为F ,O 为坐标原点 (1)求过点O 、F ,并且与直线:2l x =-相切的圆的方程;(2)设过点F 且不与坐标轴垂直交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.40.圆C 与直线250x y +-=相切于点()2,1,且与直线2150x y ++=也相切,求圆C 的方程.41.在Rt △ABO 中,∠BOA=90°,|OA|=8,|OB|=6,点P 为它的内切圆C 上任一点,求点P 到顶点A ,B ,O 的距离的平方和的最大值和最小值.42.已知直线l 过点(2,1)和点(5,4).(1)求直线l 的方程.(2)若圆C 的圆心在直线l 上,且与y 轴相切于(0,3)点,求圆C 的方程. 43.求过P (5,-3)、Q (0,6)两点,并且圆心在直线2x-3y-6=0上的圆的方程. 44.求圆心C 在直线2y x =上,且经过原点及点()3,1M 的圆C 的方程.45.已知过点()()1,3,1,1-且圆心在直线1y x =-上的圆C 与x 轴相交于,A B 两点,曲线Γ上的任意一点P 与,A B 两点连线的斜率之积为34-. (1)求曲线Γ的方程;(2)过原点O 作射线,OM ON ,分别平行于,PA PB ,交曲线Γ于,M N 两点,求OM ON ⋅的取值范围.46.已知椭圆2222:1(0)x y C a b a b+=>>的焦距为2c ,离心率为12,圆222:O x y c +=,12,A A 是椭圆的左右顶点,AB 是圆O 的任意一条直径,1A AB ∆面积的最大值为2. (1)求椭圆C 及圆O 的方程;(2)若l 为圆O 的任意一条切线,l 与椭圆E 交于两点,P Q ,求PQ 的取直范围.47.已知抛物线2:2C x y =的焦点为F ,过抛物线上一点M 作抛物线C 的切线l ,l 交y 轴于点N .(1)判断MNF ∆的形状;(2) 若,A B 两点在抛物线C 上,点(1,1)D 满足0AD BD +=u u u v u u u v v,若抛物线C 上存在异于,A B 的点E ,使得经过,,A B E 三点的圆与抛物线在点E 处的有相同的切线,求点E的坐标.48.已知双曲线22:1C x y -=.(1)求以右焦点为圆心,与双曲线C 的渐近线相切的圆的方程;(2)若经过点(0,1)P -的直线与双曲线C 的右支交于不同两点M 、N ,求线段MN 的中垂线l 在y 轴上截距t 的取值范围.49.某市为改善市民出行,大力发展轨道交通建设.规划中的轨道交通s 号线线路示意图如图所示.已知,M N 是东西方向主干道边两个景点,,P Q 是南北方向主干道边两个景点,四个景点距离城市中心O 均为52km ,线路AB 段上的任意一点到景点N 的距离比到景点M 的距离都多10km ,线路BC 段上的任意一点到O 的距离都相等,线路CD 段上的任意一点到景点Q 的距离比到景点P 的距离都多10km ,以O 为原点建立平面直角坐标系xOy .(1)求轨道交通s 号线线路示意图所在曲线的方程;(2)规划中的线路AB 段上需建一站点G 到景点Q 的距离最近,问如何设置站点G 的位置?50.已知圆C 经过()1,1A 和()2,2B -,且圆C 在直线:3410l x y -+=上, (1)求圆C 的标准方程;(2)若直线m 垂直于直线l 且与圆C 相切.求直线m 的方程.参考答案1.B2.B3.A4.D5.C6.C7.C8.A9.C10.D11.B12.A13.B14.A15.D16.B17.A18.D19.A20.B21.D22.A23.B24.C25.C26.A27.C28.()2233x y -+=29.221(2)()172x y -+-=30.22(8)(3)25x y -++=31.(x -1)2+(y -1)2=132.22(2)(4)20x y -+-=33.31,2⎛⎫- ⎪⎝⎭ 34.四35.3(1,)2-36.22(3)(2)25x y +++=37.22(4)(1)25x y -+-= 38.22639555x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭39.(1)2219()(.24x y ++±=(2)1(,0).2-40.()()222120x y +++=.41.88,7242.(1)1y x =-;(2)22(4)(3)16x y -+-= 43.22323445(19)()39x y -+-=. 44.()()22125x y -+-=.45.(1)()221243x y x +=≠±;(2)7]2.46.(1) 椭圆方程为22143x y +=,圆的方程为221x y += (2)[3,347.(1) MNF ∆为等腰三角形.(2) 点E 的坐标为1(1,)2-.答案第3页,总3页 48.(1) (221x y +=;(2)(2,)+∞.49.(1) 25x x y y +=- (2) 站点G的坐标为⎛ ⎝,可使G 到景点Q 的距离最近50.(1)()()223225x y +++=;(2)43430x y ++=.。
圆的方程1、已知圆与y 轴相切,圆心在直线x-3y=0,且被直线y=x 截得的弦长为72,求该圆的方程.2、动点P 在圆4:22=+y x C 上运动,求它与定点A (3,1)相连的线段的中点Q 的轨迹方程。
()对称的圆的方程。
关于、求圆0241:322=+-=+-y x y x C1、已知一圆过P(4,-2)、Q(-1,3)两点,且在y 轴上截得的线段长为43,求圆的方程.2、的方程。
求圆两点,且轴的正半轴交于与轴相切于点与圆C B A y T x C 2,|AB |,),0,1(=3、过原点O 作圆C:x 2+y 2-8x=0的弦OA 。
(1)求弦OA 中点M 的轨迹方程;(2)过圆C 上任意一点A 作x 轴的垂线到B ,求AB 中点N 点的轨迹方程.4、圆C 与圆22(1)1x y -+=关于直线y x =-对称,求圆C 的方程。
5、求与直线x +y -2=0和曲线x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程.6、已知点P(0,5)及圆C :x 2+y 2+4x -12y +24=0.(1)若直线l 过点P 且被圆C 截得的线段长为43,求l 的方程;(2)求圆C 内过点P 的弦的中点的轨迹方程.题型二 直线与圆的位置关系1、已知圆C 的方程为03222=--+y y x ,过点(1,2)P -的直线l 与圆C 交于,A B 两点,若使AB 最大,则直线l 的方程是________________;若使AB 最小,则直线l 的方程是________________。
2、过点P(-1,6)且与圆4)2()3(22=-++y x 相切的直线方程是________________.3、若曲线21x y -=与直线b x y +=有一个交点,则b 的取值范围是 ;若有两个交点,则b 的取值范围是 .4、若实数x ,y 满足x 2+y 2-6y+5=0.求: (1)的取值范围;11y -+x (2)的取值范围;y x -3;(3)().422的取值范围y x +-.()()()()()理由。
课时规范练A 组 基础对点练1.(2018·合肥质检)已知圆C :(x -6)2+(y +8)2=4,O 为坐标原点,则以OC 为直径的圆的方程为( C ) A .(x -3)2+(y +4)2=100 B .(x +3)2+(y -4)2=100 C .(x -3)2+(y +4)2=25 D .(x +3)2+(y -4)2=252.直线x -2y -2k =0与直线2x -3y -k =0的交点在圆x 2+y 2=9的外部,则k 的取值范围为( A ) A .k <-35或k >35 B.-35<k <35 C .-34<k <34D.k <-34或k >343.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( A ) A .(x -2)2+(y +1)2=1 B.(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4D.(x +2)2+(y -1)2=14.已知圆x 2+y 2-4ax +2by +b 2=0(a >0,b >0)关于直线x -y -1=0对称,则ab 的最大值是( B ) A.12 B.18 C.14D.245.(2016·高考天津卷)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为__(x -2)2+y 2=9__.6.(2016·高考浙江卷)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是__(-2,-4)__,半径是__5__.7.若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为__x 2+(y -1)2=1__.8.过点M (1,2)的直线l 与圆C :(x -3)2+(y -4)2=25交于A ,B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程是__x +y -3=0__.9.在平面直角坐标系xOy 中,经过函数f (x )=x 2-x -6的图象与两坐标轴交点的圆记为圆C .(1)求圆C 的方程;(2)求经过圆心C 且在坐标轴上截距相等的直线l 的方程.解析:(1)设圆的方程为x 2+y 2+Dx +Ey +F =0,函数f (x )=x 2-x -6的图象与两坐标轴交点为(0,-6),(-2,0),(3,0),由⎩⎨⎧36-6E +F =0,4-2D +F =0,9+3D +F =0,解得⎩⎨⎧D =-1,E =5,F =-6,所以圆的方程为x 2+y 2-x +5y -6=0.(2)由(1)知圆心坐标为⎝ ⎛⎭⎪⎫12,-52,若直线经过原点,则直线l 的方程为5x +y =0;若直线不过原点,设直线l 的方程为x +y =a ,则a =12-52=-2,即直线l 的方程为x +y +2=0.综上可得,直线l 的方程为5x +y =0或x +y +2=0.10.(2018·广州测试)已知定点M (1,0)和N (2,0),动点P 满足|PN |=2|PM |. (1)求动点P 的轨迹C 的方程;(2)若A ,B 为(1)中轨迹C 上两个不同的点,O 为坐标原点.设直线OA ,OB ,AB 的斜率分别为k 1,k 2,k .当k 1k 2=3时,求k 的取值范围. 解析:(1)设动点P 的坐标为(x ,y ), 因为M (1,0),N (2,0),|PN |=2|PM |, 所以(x -2)2+y 2=2(x -1)2+y 2, 整理得x 2+y 2=2.所以动点P 的轨迹C 的方程为x 2+y 2=2.(2)设点A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +b .由⎩⎨⎧x 2+y 2=2,y =kx +b消去y ,整理得(1+k 2)x 2+2bkx +b 2-2=0.(*) 由Δ=(2bk )2-4(1+k 2)(b 2-2)>0,得b 2<2+2k 2.① 由根与系数的关系,得x 1+x 2=-2bk1+k 2,x 1x 2=b 2-21+k 2.②由k 1·k 2=y 1x 1·y 2x 2=kx 1+b x 1·kx 2+bx 2=3,得(kx 1+b )(kx 2+b )=3x 1x 2,即(k 2-3)x 1x 2+bk (x 1+x 2)+b 2=0.③ 将②代入③,整理得b 2=3-k 2.④由④得b 2=3-k 2≥0,解得-3≤k ≤ 3.⑤ 由①和④,解得k <-33或k >33.⑥ 要使k 1,k 2,k 有意义,则x 1≠0,x 2≠0,所以0不是方程(*)的根,所以b 2-2≠0,即k ≠1且k ≠-1.⑦由⑤⑥⑦,得k 的取值范围为[-3,-1)∪⎝ ⎛⎭⎪⎫-1,-33∪⎝ ⎛⎭⎪⎫33,1∪(1,3].B 组 能力提升练1.(2018·贵阳监测)经过三点A (-1,0),B (3,0),C (1,2)的圆的面积S =( D ) A .π B.2π C .3πD.4π解析:法一 设圆的方程为x 2+y 2+Dx +Ey +F =0,将A (-1,0),B (3,0),C (1,2)的坐标代入圆的方程可得⎩⎨⎧1-D +F =0,9+3D +F =0,1+4+D +2E +F =0,解得D =-2,E =0,F =-3,所以圆的方程为(x -1)2+y 2=4,所以圆的半径r =2,所以S =4π.故选D.法二 根据A ,B 两点的坐标特征可知圆心在直线x =1上,设圆心坐标为(1,a ),则r =4+a 2=|a -2|,所以a =0,r =2,所以S =4π,故选D.2.圆C 的圆心在y 轴正半轴上,且与x 轴相切,被双曲线x 2-y 23=1的渐近线截得的弦长为3,则圆C 的方程为( A ) A .x 2+(y -1)2=1 B.x 2+(y -3)2=3 C .x 2+(y +1)2=1D.x 2+(y +3)2=3解析:依题意得,题中的双曲线的一条渐近线的斜率为3,倾斜角为60°,结合图形(图略)可知,所求的圆C 的圆心坐标是(0,1)、半径是1,因此其方程是x 2+(y -1)2=1,故选A.3.方程|y |-1=1-(x -1)2表示的曲线是( D ) A .一个椭圆B.一个圆C .两个圆 D.两个半圆解析:由题意知|y |-1≥0,则y ≥1或y ≤-1,当y ≥1时,原方程可化为(x -1)2+(y -1)2=1(y ≥1),其表示以(1,1)为圆心、1为半径、直线y =1上方的半圆;当y ≤-1时,原方程可化为(x -1)2+(y +1)2=1(y ≤-1),其表示以(1,-1)为圆心、1为半径、直线y =-1下方的半圆.所以方程|y |-1=1-(x -1)2表示的曲线是两个半圆,故选D.4.已知圆M 的圆心在抛物线x 2=4y 上,且⊙M 与y 轴及抛物线的准线都相切,则圆M 的方程是( A ) A .x 2+y 2±4x -2y +1=0 B .x 2+y 2±4x -2y -1=0 C .x 2+y 2±4x -2y +4=0 D .x 2+y 2±4x -2y -4=0解析:抛物线x 2=4y 的准线为y =-1,设圆心M 的坐标为(x 0,y 0)(y 0>0),则|x 0|=y 0+1,又x 20=4y 0,所以联立⎩⎨⎧|x 0|=y 0+1,x 20=4y 0,解得⎩⎨⎧x 0=±2,y 0=1,因此圆M 的方程为(x ±2)2+(y -1)2=22,展开整理得x 2+y 2±4x -2y +1=0,故选A.5.已知△ABC 的三个顶点坐标分别为A (-2,3),B (-2,-1),C (6,-1),以原点为圆心的圆与此三角形有唯一的公共点,则该圆的方程为( D ) A .x 2+y 2=1 B .x 2+y 2=4 C .x 2+y 2=4D .x 2+y 2=1或x 2+y 2=37 解析:如图,易知AC 所在直线的方程为x +2y -4=0.点O 到直线x +2y -4=0的距离d =|-4|5=455>1,OA =(-2)2+32=13,OB =(-2)2+(-1)2=5,OC =62+(-1)2=37,∴以原点为圆心的圆若与△ABC 有唯一的公共点,则公共点为(0,-1)或(6,-1), ∴圆的半径为1或37,则该圆的方程为x 2+y 2=1或x 2+y 2=37.故选D.6.一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 ⎝ ⎛⎭⎪⎫x -322+y 2=254 .解析:由题意知,圆过椭圆的三个顶点(4,0),(0,2),(0,-2),设圆心为(a,0),其中a >0,由4-a =a 2+4,解得a =32,所以该圆的标准方程为⎝ ⎛⎭⎪⎫x -322+y 2=254.7.已知平面区域⎩⎨⎧x ≥0,y ≥0,x +2y -4≤0恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2及其内部所覆盖,则圆C 的方程为__(x -2)2+(y -1)2=5__.解析:由题意知,此平面区域表示的是以O (0,0),P (4,0),Q (0,2)所构成的三角形及其内部,∴覆盖它的且面积最小的圆是其外接圆.∵△OPQ 为直角三角形,∴圆心为斜边PQ 的中点(2,1),半径r =|PQ |2=5,因此圆C 的方程为(x -2)2+(y -1)2=5. 8.在平面直角坐标系xOy 中,以点(2,1)为圆心且与直线mx +y -2m =0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为__(x -2)2+(y -1)2=1__.解析:直线mx +y -2m =0过定点(2,0),则以点(2,1)为圆心且与直线mx +y -2m =0(m ∈R )相切的所有圆中,半径最大的圆的半径为1,∴半径最大的圆的标准方程为(x -2)2+(y -1)2=1.9.直线l :x 4+y3=1与x 轴、y 轴分别相交于A ,B 两点,O 为坐标原点,则△OAB 内切圆的方程为__(x -1)2+(y -1)2=1__.解析:由题意设△OAB 的内切圆的圆心为M (m ,m ),则半径为|m |. 直线l 的方程x 4+y3=1可化为3x +4y -12=0,由题意可得|3m +4m -12|32+42=m ,解得m =1或m =6(不符合题意,舍去).∴△OAB 内切圆的方程为(x -1)2+(y -1)2=1.10.如图,已知圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2.(1)圆C 的标准方程为 (x -1)2+(y -2)2=2 ; (2)圆C 在点B 处的切线在x 轴上的截距为 -2-1 .解析:(1)过点C 作CM ⊥AB 于M ,连接AC (图略),则|CM |=|OT |=1,|AM |=12|AB |=1,所以圆的半径r =|AC |=|CM |2+|AM |2=2,从而圆心C (1,2),即圆的标准方程为(x -1)2+(y -2)2=2.(2)令x =0得,y =2±1,则B (0,2+1), 所以直线BC 的斜率为k =(2+1)-20-1=-1.由直线与圆相切的性质知,圆C 在点B 处的切线的斜率为1,则圆C 在点B 处的切线方程为y -(2+1)=1×(x -0),即y =x +2+1.令y =0得,x =-2-1,故所求切线在x 轴上的截距为-2-1.11.在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程;(2)若点P 到直线y =x 的距离为22,求圆P 的方程. 解析:(1)设P (x ,y ),圆P 的半径为r .由题意可得y 2+2=r 2,x 2+3=r 2,从而y 2+2=x 2+3.故P 点的轨迹方程为y 2-x 2=1. (2)设P (x 0,y 0).由已知得|x 0-y 0|2=22.又P 点在双曲线y 2-x 2=1上, 从而得⎩⎨⎧|x 0-y 0|=1,y 20-x 20=1.由⎩⎨⎧ x 0-y 0=1,y 20-x 20=1得⎩⎨⎧x 0=0,y 0=-1.此时,圆P 的半径r = 3. 由⎩⎨⎧ x 0-y 0=-1,y 20-x 20=1得⎩⎨⎧x 0=0,y 0=1. 此时,圆P 的半径r = 3.∴圆的方程为x 2+(y +1)2=3或x 2+(y -1)2=3.12.(2018·重庆六校联考)已知定点Q (3,0),P 为圆N :(x +3)2+y 2=24上任意一点,线段QP 的垂直平分线交NP 于点M .(1)当P 点在圆周上运动时,求点M 的轨迹C 的方程;(2)若直线l 与曲线C 交于A ,B 两点,且OA →·OB →=0(O 为坐标原点),证明直线l 与某个定圆相切,并求出定圆的方程.解析:(1)连接MQ ,依题意可得圆N 的圆心N (-3,0),半径为26,|MP |=|MQ |, 则|MN |+|MQ |=|MN |+|MP |=|NP |=26>23=|NQ |,根据椭圆的定义,得点M 的轨迹是以N ,Q 为焦点,长轴的长为26的椭圆, 即2a =26,2c =23,所以b =a 2-c 2= 3. 所以点M 的轨迹C 的方程为x 26+y 23=1.(2)当直线l 的斜率存在时,设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),联立直线与椭圆的方程⎩⎨⎧x 2+2y 2=6,y =kx +m ,消去y 并整理得(1+2k 2)x 2+4kmx +2m 2-6=0, 由Δ=16k 2m 2-4(1+2k 2)(2m 2-6)>0,得m 2<6k 2+3.①由根与系数的关系得x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2,所以y 1y 2=(kx 1+m )(kx 2+m )=m 2-6k 21+2k 2.因为OA →·OB →=0,所以x 1x 2+y 1y 2=0,即2m 2-61+2k 2+m 2-6k 21+2k 2=0,整理得m 2=2k 2+2,满足①式, 所以|m |k 2+1=2,即原点到直线的距离为2, 所以直线l 与圆x 2+y 2=2相切. 当直线l 的斜率不存在时,设直线l 的方程为x =t (-6<t <6), 不妨设A ⎝⎛⎭⎪⎫t ,6-t 22,B ⎝⎛⎭⎪⎫t ,-6-t 22. 因为OA →·OB →=0,所以t 2-3+t 22=0⇒t =±2.此时直线l 的方程为x =±2,显然也与圆x 2+y 2=2相切. 综上,直线l 与定圆相切,且定圆的方程为x 2+y 2=2.。
第二章 2.4.2圆的一般方程A 级——基础过关练1.已知圆C 过点M (1,1),N (5,1),且圆心在直线y =x -2上,则圆C 的方程为( ) A .x 2+y 2-6x -2y +6=0 B .x 2+y 2+6x -2y +6=0 C .x 2+y 2+6x +2y +6=0D .x 2+y 2-2x -6y +6=0【答案】A 【解析】MN 的垂直平分线方程为x =3.由⎩⎪⎨⎪⎧ y =x -2,x =3,得⎩⎪⎨⎪⎧x =3,y =1,所以圆心坐标为(3,1).又r =3-12+1-12=2,所以圆的方程为x 2+y 2-6x -2y +6=0.2.方程x 2+y 2+2ax -2y +a 2+a =0表示圆,则实数a 的取值范围是( ) A .a ≤1 B .a <1 C .a >1D .0<a <1【答案】B 【解析】由D 2+E 2-4F >0,得(2a )2+(-2)2-4(a 2+a )>0,即4-4a >0,解得a <1.3.已知圆的圆心为(-2,1),其一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是( )A .x 2+y 2+4x -2y -5=0B .x 2+y 2-4x +2y -5=0C .x 2+y 2+4x -2y =0D .x 2+y 2-4x +2y =0【答案】C 【解析】设直径的两个端点分别A (a,0),B (0,b ),圆心C 为(-2,1),由中点坐标公式得a +02=-2,0+b2=1,解得a =-4,b =2,∴半径r =-2+42+1-02= 5.∴圆的方程是(x +2)2+(y -1)2=5,即x 2+y 2+4x -2y =0.4.圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( ) A .-43B .-34C .3D .2【答案】A 【解析】圆x 2+y 2-2x -8y +13=0化为标准方程为(x -1)2+(y -4)2=4,故圆心为(1,4),d =|a +4-1|a 2+1=1,解得a =-43.5.已知点E (1,0)在圆x 2+y 2-4x +2y +5k =0的外部,则k 的取值范围是________. 【答案】⎝⎛⎭⎫35,1 【解析】方程表示圆的条件是(-4)2+22-4×5k >0,即k <1;点E 在圆的外部的条件为12+02-4×1+2×0+5k >0,解得k >35,所以k 的取值范围为⎝⎛⎭⎫35,1. 6.动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为________.【答案】x 2+y 2=16 【解析】设P (x ,y ),则由题意可知2x -22+y 2=x -82+y 2,化简整理,得x 2+y 2=16.7.已知圆C :x 2+y 2-2x +2y -3=0,AB 为圆C 的一条直径,点A (0,1),则点B 的坐标为________.【答案】(2,-3) 【解析】由x 2+y 2-2x +2y -3=0,得(x -1)2+(y +1)2=5,所以圆心为C (1,-1).设B (x 0,y 0),由中点坐标公式得⎩⎪⎨⎪⎧ x 0+0=2,y 0+1=-2,解得⎩⎪⎨⎪⎧x 0=2,y 0=-3,所以点B 的坐标为(2,-3).8.若点(a +1,a -1)在圆x 2+y 2-2ay -4=0的内部(不含边界),则a 的取值范围是________.【答案】a <1 【解析】点(a +1,a -1)在圆x 2+y 2-2ay -4=0的内部(不含边界),则(a +1)2+(a -1)2-2a (a -1)-4<0,解得a <1.9.求经过三点A (1,-1),B (1,4),C (4,-2)的圆的一般方程. 解:设圆的方程为x 2+y 2+Dx +Ey +F =0, 将A ,B ,C 三点的坐标代入方程,得 ⎩⎪⎨⎪⎧D -E +F =-2,D +4E +F =-17,4D -2E +F =-20,解得⎩⎪⎨⎪⎧D =-7,E =-3,F =2,故所求的圆的一般方程为x 2+y 2-7x -3y +2=0.10.已知圆经过点(4,2)和(-2,-6),该圆与两坐标轴的四个截距之和为-2,求圆的方程.解:设圆的一般方程为x 2+y 2+Dx +Ey +F =0. 因为圆经过点(4,2)和(-2,-6),所以⎩⎪⎨⎪⎧4D +2E +F +20=0①,2D +6E -F -40=0②.设圆与x 轴的交点横坐标为x 1,x 2,它们是方程x 2+Dx +F =0的两个根,得x 1+x 2=-D .设圆与y 轴的交点纵坐标为y 1,y 2,它们是方程y 2+Ey +F =0的两个根,得y 1+y 2=-E .由已知,得-D +(-E )=-2,即D +E -2=0③. 联立①②③,解得D =-2,E =4,F =-20. 所以所求圆的方程为x 2+y 2-2x +4y -20=0.B 级——能力提升练11.已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x -2)2+(y +2)2=1B .(x +2)2+(y -2)2=1C .(x -2)2+(y -2)2=1D .(x -2)2+(y -1)2=1【答案】A 【解析】圆C 1的圆心为C 1(-1,1),设圆C 2的圆心为C 2(a ,b ),依题意得⎩⎪⎨⎪⎧a -12-b +12-1=0,b -1a +1=-1,解得⎩⎪⎨⎪⎧a =2,b =-2.又圆C 2的半径与圆C 1的半径相等,所以圆C 2的方程为(x -2)2+(y +2)2=1.12.(多选)已知方程x 2+y 2-2(m +3)x +2(1-4m 2)y +16m 4+9=0表示一个圆,则实数m 可能的取值为( )A .-1B .0C .12D .75【答案】BC 【解析】由题意可得4(m +3)2+4×(1-4m 2)2-4(16m 4+9)>0,所以(7m +1)(m -1)<0,解得-17<m <1.故选BC .13.设A 为圆C :(x -1)2+y 2=1上的动点,P A 是圆的切线且|P A |=1,则P 点的轨迹方程是____________.【答案】(x -1)2+y 2=2 【解析】如图,设P (x ,y ),则|PC |=x -12+y 2=|AC |2+|P A |2=2,即(x -1)2+y 2=2.14.若点M (3,0)是圆x 2+y 2-8x -4y +10=0内一点,则过点M (3,0)的最长的弦所在的直线方程是________.【答案】2x -y -6=0 【解析】圆x 2+y 2-8x -4y +10=0的圆心坐标为(4,2),则过点M (3,0)且过圆心(4,2)的弦最长.由k =2-04-3=2,所以所求方程为y =2(x -3),即2x -y -6=0.15.已知Rt △ABC 的斜边为AB ,且A (-1,0),B (3,0),求: (1)直角顶点C 的轨迹方程; (2)直角边BC 中点M 的轨迹方程. 解:(1)方法一,设顶点C (x ,y ). 因为AC ⊥BC ,且A ,B ,C 三点不共线,所以x ≠3且x ≠-1.又k AC =y x +1,k BC =yx -3,且k AC ·k BC =-1,所以y x +1·yx -3=-1,化简得x 2+y 2-2x -3=0.所以直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(x ≠3且x ≠-1). 方法二,同方法一得x ≠3且x ≠-1. 由勾股定理得|AC |2+|BC |2=|AB |2, 即(x +1)2+y 2+(x -3)2+y 2=16, 化简得x 2+y 2-2x -3=0.所以直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(x ≠3且x ≠-1). 方法三,设AB 中点为D ,由中点坐标公式得D (1,0). 由直角三角形的性质知|CD |=12|AB |=2.由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,以2为半径长的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点). 设C (x ,y ),则直角顶点C 的轨迹方程为(x -1)2+y 2=4(x ≠3且x ≠-1). (2)设点M (x ,y ),点C (x 0,y 0), 因为B (3,0),M 是线段BC 的中点,由中点坐标公式,得x =x 0+32(x ≠3且x ≠1),y =y 02,于是有x 0=2x -3,y 0=2y .由(1)知,点C 在圆(x -1)2+y 2=4(x ≠3且x ≠-1)上运动, 将x 0,y 0代入该方程得(2x -4)2+(2y )2=4, 即(x -2)2+y 2=1.所以动点M 的轨迹方程为(x -2)2+y 2=1(x ≠3且x ≠1).16.等腰三角形的顶点是A (4,2),底边一个端点是B (3,5),求另一个端点C 的轨迹方程,并说明它的轨迹是什么.解:设另一端点C 的坐标为(x ,y ). 依题意,得|AC |=|AB |, 所以x -42+y -22=4-32+2-52,整理得(x -4)2+(y -2)2=10.此为以点A (4,2)为圆心、10为半径的圆,如图所示.又因为A ,B ,C 为三角形的三个顶点,所以A ,B ,C 三点不共线, 即点B ,C 不能重合且B ,C 不能为圆A 的一直径的两个端点. 因为B ,C 不能重合,所以点C 不能为(3,5). 又因为B ,C 不能为一直径的两个端点,所以x +32≠4,或y +52≠2,即点C 不能为(5,-1).故端点C 的轨迹方程是(x -4)2+(y -2)2=10(除去点(3,5)和(5,-1)), 它的轨迹是以点A (4,2)为圆心,10为半径的圆,但除去(3,5)和(5,-1)两点.C 级——探究创新练17.已知圆C :x 2+y 2+2x +ay -3=0(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则圆心为________,半径为________.【答案】(-1,1)5 【解析】由题意可得圆C 的圆心⎝⎛⎭⎫-1,-a2在直线x -y +2=0上,将⎝⎛⎭⎫-1,-a 2代入直线方程得-1-⎝⎛⎭⎫-a2+2=0,解得a =-2.故圆C 的方程为x 2+y 2+2x -2y -3=0,即(x +1)2+(y -1)2=5,因此圆心为(-1,1),半径为 5.18.已知圆C :x 2+y 2-4x -14y +45=0,及点Q (-2,3). (1)P (a ,a +1)在圆上,求线段PQ 的长及直线PQ 的斜率; (2)若M 为圆C 上任一点,求|MQ |的最大值和最小值. 解:(1)因为点P (a ,a +1)在圆上, 所以a 2+(a +1)2-4a -14(a +1)+45=0, 解得a =4,所以P (4,5). 所以|PQ |=4+22+5-32=210,k PQ =3-5-2-4=13.(2)因为圆心C 坐标为(2,7), 所以|QC |=2+22+7-32=42,圆的半径是22,点Q 在圆外, 所以|MQ |max =42+22=62, |MQ |min =42-22=2 2.。
专题06圆的方程【知识梳理】1、圆的标准方程222()()x a y b r -+-=,其中(),a b 为圆心,r 为半径.2、点和圆的位置关系如果圆的标准方程为222()()x a y b r -+-=,圆心为(),C a b ,半径为r ,则有(1)若点()00M x y ,在圆上()()22200||CM r x a y b r ⇔=⇔-+-=(2)若点()00M x y ,在圆外()()22200||CM r x a y b r ⇔>⇔-+->(3)若点()00M x y ,在圆内()()22200||CM r x a y b r ⇔<⇔-+-<3、圆的一般方程当2240D E F +->时,方程220x y Dx Ey F ++++=叫做圆的一般方程.,22D E ⎛⎫-- ⎪⎝⎭为圆心,为半径.诠释:由方程220x y Dx Ey F ++++=得22224224D E D E F x y +-⎛⎫⎛⎫+++=⎪ ⎪⎝⎭⎝⎭(1)当2240D E F +-=时,方程只有实数解,22D Ex y =-=-.它表示一个点(,)22D E--.(2)当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.(3)当2240D E F +->时,可以看出方程表示以,22D E ⎛⎫-- ⎪⎝⎭为半径的圆.4、用待定系数法求圆的方程的步骤求圆的方程常用“待定系数法”.用“待定系数法”求圆的方程的大致步骤是:(1)根据题意,选择标准方程或一般方程.(2)根据已知条件,建立关于a b r 、、或D E F 、、的方程组.(3)解方程组,求出a b r 、、或D E F 、、的值,并把它们代入所设的方程中去,就得到所求圆的方程.5、轨迹方程求符合某种条件的动点的轨迹方程,实质上就是利用题设中的几何条件,通过“坐标法”将其转化为关于变量,x y 之间的方程.(1)当动点满足的几何条件易于“坐标化”时,常采用直接法;当动点满足的条件符合某一基本曲线的定义(如圆)时,常采用定义法;当动点随着另一个在已知曲线上的动点运动时,可采用代入法(或称相关点法).(2)求轨迹方程时,一要区分“轨迹”与“轨迹方程”;二要注意检验,去掉不合题设条件的点或线等.(3)求轨迹方程的步骤:①建立适当的直角坐标系,用(,)x y 表示轨迹(曲线)上任一点M 的坐标;②列出关于,x y 的方程;③把方程化为最简形式;④除去方程中的瑕点(即不符合题意的点);⑤作答.【专题过关】【考点目录】考点1:圆的标准方程考点2:圆的一般方程考点3:点与圆的位置关系考点4:二元二次方程表示的曲线与圆的关系考点5:定点问题考点6:轨迹问题【典型例题】考点1:圆的标准方程1.(2021·广东·深圳市南山区华侨城中学高二期中)已知以点()2,,0C t t R t t ⎛⎫∈≠ ⎪⎝⎭为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O 、B ,其中O 为坐标原点.(1)试写出圆C 的标准方程;(2)求证:OAB 的面积为定值;(3)设直线24y x =-+与圆C 交于M ,N 两点,若=OM ON ,求圆C 的标准方程.2.(2020·内蒙古·包头市第四中学高二期中)已知点(4,2)A 和(0,2)B -(1)求直线AB 的方程;(2)若圆C 经过,A B 两点,且圆心在直线23x y -=上,求圆C 的方程3.(2021·河北唐山·高二期中)圆心在直线2x -3y -1=0上的圆与x 轴交于A (1,0)、B (3,0)两点,则圆的方程为________.4.(2022·上海金山·高二期中)过直线2x y +=与直线0x y -=的交点,圆心为(1,1)C -的圆的标准方程是_____.5.(2022·全国·高二期中)已知点()6,8C ,O 为坐标原点,则以OC 为直径的圆的方程是______.6.(2021·江西省铜鼓中学高二期中(文))与圆224670x y x y +-++=同圆心且过点(1,1)P -的圆的方程是_____________.7.(2020·四川·泸州老窖天府中学高二期中(理))圆22(1)(2)4x y -++=关于直线y x =对称的圆的方程为______________.8.(2021·云南·楚雄师范学院附属中学高二期中)已知ABC 顶点的坐标为43(5,2),()1,(,0)A B C ,,则其外接圆的标准方程为_________.9.(2021·福建宁德·高二期中)某圆经过()()010610A B ,,,两点,圆心在直线21x y -=上,则该圆的标准方程为()A .()()223534x y +++=B .()()223534x y -++=C .()()223534x y ++-=D .()()223534x y -+-=考点2:圆的一般方程10.(2021·福建·厦门大学附属科技中学高二期中)已知ABC 的三个顶点分别为()()()4,0,0,2,2,2A B C --,求:(1)AB 边中线所在的直线方程(2)ABC 的外接圆的方程11.(2020·安徽·六安市城南中学高二期中(理))一圆经过A (4,2),B (-1,3)两点,且在两坐标轴上的四个截距的和为2,求此圆的方程.12.(2021·四川成都·高二期中(理))在平面直角坐标系中,有()0,1A ,()2,1B ,()3,4C ,()1,D a -四点,若它们在同一个圆周上,则=a ________.13.(2020·上海·华师大二附中高二期中)已知三角形的三边所在直线为1x y +=-,21x y -=,23x y +=,则三角形的外接圆方程为________14.(2021·江苏无锡·高二期中)直线142xy+=与x 轴,y 轴分别交于点A ,B ,以线段AB 为直径的圆的方程为()A .22420x y x y +--=B .224210x y x y +---=C .224210x y x y +--+=D .22240x y x y +--=15.(2021·重庆·巴南中学校高二期中)已知圆22620x y x y ++-=,则该圆的圆心和半径分别是().A .()3,1--B .()3,1-,10C .()3,1-D .()3,1-,1016.(2021·山西·太原市第六十六中学校高二期中)过点(2,1)M -,且经过圆224440x y x y +--+=与圆2240x y +-=的交点的圆的方程为()A .2260x y x y +++-=B .2280x y x y ++--=C .2220x y x y +-+-=D .2240x y x y +---=考点3:点与圆的位置关系17.(2021·湖北宜昌·高二期中)若点()1,1A -在圆2220x y x y a +---=外,则实数a 的取值范围为()A .3a <B .3a <-C .534a <<D .534a -<<考点4:二元二次方程表示的曲线与圆的关系18.(2021·全国·高二期中)已知关于x ,y 的二元二次方程()()2224232141690x y t x t y t +-++-++=.(1)当t 在什么范围内取值时,方程表示圆?(2)当t 为何值时,方程表示的圆的半径最大?求出半径最大时圆的方程.19.(2021·四川巴中·高二期中)已知方程[)()2222cos 4sin 4sin sin 100,2x y x y αααααπ+-⋅-⋅+-+=∈表示圆.(1)求α的取值范围.(2)求该圆半径的最大值.20.(2021·福建宁德·高二期中)已知方程222450x y mx y +-++=表示圆,则m 的取值范围是____________.21.(2021·山东省实验中学高二期中)若曲线222:245160C x y ax ay a +-++-=上所有的点均在第二象限内,则a 的取值范围是______.22.(2022·四川·泸县五中高二期中(文))已知点A (1,2)在圆C :22220x y mx y ++-+=外,则实数m 的取值范围为()A .()()3,22,--+∞B .()()3,23,--⋃+∞C .()2,-+∞D .()3,-+∞23.(2021·广东·湛江市第四中学高二期中)已知方程x 2+y 2-2x +2k +3=0表示圆,则k 的取值范围是()A .(-∞,-1)B .(3,+∞)C .(-∞,-1)∪(3,+∞)D .3(,)2-+∞24.(2020·四川巴中·高二期中(文))若方程2222210x y ax a a +++-+=表示圆,则a 的取值范围为()A .0a ≠B .0a >C .1a >D .12a >25.(2021·湖南·高二期中)若方程22210x y y m +-+-=表示圆,则实数m 的取值范围为()A .(),1-∞B .()1,+∞C .(),0∞-D .()0,∞+26.(2021·重庆·高二期中)若方程2220x y kx k ++-+=表示圆,则k 的取值范围是()A .(1,7)B .[1,7]C .(,1)(7,)-∞+∞D .(,1][7,)-∞⋃+∞考点5:定点问题27.(2021·全国·高二期中)已知动圆C 经过坐标原点O ,且圆心C 在直线:24l x y +=上.(1)求半径最小时的圆C 的方程;(2)求证:动圆C 恒过一个异于点O 的定点.28.(2020·湖南娄底·高二期中)已知曲线C :()()2211480a x a y x ay +++-+=.(1)当a 取何值时,方程表示圆?(2)求证:不论a 为何值,曲线C 必过两定点.(3)当曲线C 表示圆时,求圆面积最小时a 的值.29.(2021·浙江省东阳市第二高级中学高二期中)点(),P x y 是直线250x y +-=上任意一点,O 是坐标原点,则以OP 为直径的圆经过定点()A .()0,0和()1,1B .()0,0和()2,2C .()0,0和()1,2D .()0,0和()2,1考点6:轨迹问题30.(2021·安徽省六安中学高二期中(文))在平面直角坐标系xOy 中,曲线223y x x =--与两坐标轴的交点都在圆C 上.(1)求圆C 的方程;(2)已知O 为坐标原点,点A 在圆C 上运动,求线段OA 的中点M 的轨迹方程.31.(2020·四川巴中·高二期中(文))已知圆C 经过点A (3,1)、B (-1,3),且它的圆心在直线320x y --=上.(1)求圆C 的标准方程;(2)若点D 为圆C 上任意一点,且点E (3,0),求线段ED 中点M 的轨迹方程.32.(2021·四川巴中·高二期中)已知圆C 经过(-1,3),(5,3),(2,0)三点.(1)求圆C 的方程;(2)设点A 在圆C 上运动,点158,2B ⎛⎫⎪⎝⎭,且点M 满足2AM MB =,求点M 的轨迹方程.33.(2021·云南·楚雄师范学院附属中学高二期中)已知圆22:4O x y +=上的一定点()2,0A ,点()1,1B 为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若90PBQ ∠=︒,求线段PQ 中点的轨迹方程.34.(2021·四川省江油市第一中学高二期中(文))在平面直角坐标系xOy 中,曲线223y x x =--与两条坐标轴的三个交点都在圆C 上.(1)求圆C 的方程;(2)若过点T (2,0)的直线l 与圆C 交于P ,Q 两点,线段PQ 的中点为M ,求M 的轨迹方程.35.(2021·广东·广州奥林匹克中学高二期中)1.已知圆C 过点(2,3)-,(0,3)-,(0,1)-.(1)求圆C 的标准方程;(2)已知点P 是直线210x y +-=与直线210x y ++=的交点,过点P 作直线与圆C 交于点A ,B ,求弦AB 的中点M 的轨迹方程.36.(2021·广东·珠海市第二中学高二期中)在平面直角坐标系xoy 中,已知ABC 的顶点(3,0)B -,(3,0)C ,且||2||AB AC =,(1)设ABC 的外接圆为M ,请写出M 周长最小时的M 标准方程.(2)设顶点(,)A x y ,求顶点A 的轨迹方程及ABC 面积的最大值.37.(2021·湖南·衡阳市田家炳实验中学高二期中)已知等腰三角形ABC 的一个顶点为()4,2A ,底边的一个端点为()3,5B ,求底边的另一个端点C 的轨迹方程,并说明它是什么图形.38.(2021·山西·侯马市第一中学校高二期中)已知圆C :()()22119x y -+-=,过点A (2,3)作圆C 的任意弦,则这些弦的中点P 的轨迹方程为________________.39.(2021·四川·树德中学高二期中(文))若两定点A ,B 的距离为3,动点M 满足2MA MB =,则M 点的轨迹围成区域的面积为()A .πB .2πC .3πD .4π40.(2021·北京·牛栏山一中高二期中)已知点A 的坐标是(-1,0),点M 满足|MA |=2,那么M 点的轨迹方程是()A .x 2+y 2+2x -3=0B .x 2+y 2-2x -3=0C .x 2+y 2+2y -3=0D .x 2+y 2-2y -3=0。
教学过程1.确定一个圆的方程,需要三个独立条件.“选形式,定参数”是求圆的方程的基本方法,即根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数,同时注意利用几何法求圆的方程时,要充分利用圆的性质.2.解答圆的问题,应注意数形结合,充分运用圆的几何性质,简化运算.3.求圆的方程时,一般考虑待定系数法,但如果能借助圆的一些几何性质进行解题,不仅能使解题思路简化,而且还能减少计算量.如弦长问题,可借助垂径定理构造直角三角形,利用勾股定理解题.课堂巩固一、填空题1.(2014·南京模拟)已知点A(1,-1),B(-1,1),则以线段AB为直径的圆的方程是________.2.若圆x2+y2-2ax+3by=0的圆心位于第三象限,那么直线x+ay+b=0一定不经过第________象限.3.(2014·银川模拟)圆心在y轴上且过点(3,1)的圆与x轴相切,则该圆的方程是________.4.两条直线y=x+2a,y=2x+a的交点P在圆(x-1)2+(y-1)2=4的内部,则实数a的取值范围是________.5.(2014·东营模拟)点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是________.6.已知点M(1,0)是圆C:x2+y2-4x-2y=0内的一点,那么过点M的最短弦所在直线的方程是________.7.(2014·南京调研)已知直线l:x-y+4=0与圆C:(x-1)2+(y-1)2=2,则圆C上各点到l的距离的最小值为______.8.若圆x2+(y-1)2=1上任意一点(x,y)都使不等式x+y+m≥0恒成立,则实数m的取值范围是________.教学效果分析。
2.4 圆的方程 2.4.1 圆的标准方程1.已知圆的方程是(x-2)2+(y-3)2=4,则点P (3,2)( )A.是圆心B.在圆上C.在圆内D.在圆外(3-2)2+(2-3)2=2<4,∴点P 在圆内.2.已知点A (-4,-5),B (6,-1),则以线段AB 为直径的圆的方程是( ) A.(x+1)2+(y-3)2=29 B.(x+1)2+(y-3)2=116 C.(x-1)2+(y+3)2=29D.(x-1)2+(y+3)2=116A (-4,-5),B (6,-1),所以线段AB 的中点为C (1,-3),所求圆的半径r=12|AB|=12√102+42=√29,所以以线段AB 为直径的圆的方程是(x-1)2+(y+3)2=29,故选C .3.方程x=√1-y 2表示的图形是( ) A.两个半圆 B.两个圆 C.圆D.半圆x ≥0,方程两边同时平方并整理得x 2+y 2=1,由此确定图形为半圆,故选D .4.一个动点在圆x 2+y 2=1上移动时,它与定点A (3,0)的连线中点的轨迹方程是( ) A.(x+3)2+y 2=4 B.(x-3)2+y 2=1 C.(2x-3)2+4y 2=1D.x+322+y 2=12M (x 0,y 0)为圆上的动点,则有x 02+y 02=1,设线段MA 的中点为P (x ,y ),则x=x 0+32,y=y 0+02,则x 0=2x-3,y 0=2y ,代入x 02+y 02=1,得(2x-3)2+(2y )2=1,即(2x-3)2+4y 2=1.5.圆(x-2)2+(y+3)2=2的圆心是 ,半径是 .-3) √26.圆(x+1)2+y 2=5关于直线y=x 对称的圆的标准方程为 .(x+1)2+y 2=5的圆心坐标为(-1,0),它关于直线y=x 的对称点坐标为(0,-1),即所求圆的圆心坐标为(0,-1),所以所求圆的标准方程为x 2+(y+1)2=5.2+(y+1)2=57.若直线3x-4y+12=0与两坐标轴交点为A ,B ,则以线段AB 为直径的圆的方程是 .解析由题意得A (0,3),B (-4,0),AB 的中点-2,32为圆的圆心,直径AB=5,以线段AB 为直径的圆的标准方程为(x+2)2+y-322=254. 答案(x+2)2+y-322=2548.已知圆M 过A (1,-1),B (-1,1)两点,且圆心M 在直线x+y-2=0上. (1)求圆M 的方程;(2)若圆M 上存在点P ,使|OP|=m (m>0),其中O 为坐标原点,求实数m 的取值范围.设圆M 的方程为(x-a )2+(y-b )2=r 2(r>0),根据题意得{a +b -2=0,(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,解得{a =1,b =1,r =2,所以圆M 的方程为(x-1)2+(y-1)2=4. (2)如图,m=|OP|∈[2-√2,2+√2].关键能力提升练9.若直线y=kx 与圆(x-2)2+y 2=1的两个交点关于直线2x+y+b=0对称,则k ,b 的值分别为( ) A.12,-4B.-12,4C.12,4D.-12,-4y=kx与圆(x-2)2+y2=1的两个交点关于直线2x+y+b=0对称,直线2x+y+b=0的斜率为-2,所以k=12,并且直线2x+y+b=0经过已知圆的圆心,所以圆心(2,0)在直线2x+y+b=0上,所以4+0+b=0,所以b=-4.故选A.10.已知圆O:x2+y2=1,点A(-2,0)及点B(2,a),从A点观察B点,要使视线不被圆O挡住,则实数a的取值范围是()A.(-∞,-1)∪(-1,+∞)B.(-∞,-2)∪(2,+∞)C.-∞,-4√33∪4√33,+∞D.(-∞,-4)∪(4,+∞)方法1)(直接法)写出直线方程,将直线与圆相切转化为点到直线的距离来解决.过A,B两点的直线方程为y=a4x+a2,即ax-4y+2a=0,令d=√a2+16=1,化简后,得3a2=16,解得a=±4√33.再进一步判断便可得到正确答案为C.(方法2)(数形结合法)如图,设直线AB切圆O于点C在Rt△AOC中,由|OC|=1,|AO|=2,可求出∠CAO=30°.在Rt△BAD中,由|AD|=4,∠BAD=30°,可求得BD=4√33,再由图直观判断,故选C.11.(2020四川成都石室中学高二上期中)已知实数x,y满足x2+y2=1,则√3x+y的取值范围是()A.(-2,2)B.(-∞,2]C.[-2,2]D.(-2,+∞)解析因为x2+y2=1,所以设x=sin α,y=cos α,则√3x+y=√3sin α+cos α=2sinα+π6,所以√3x+y的取值范围是[-2,2].故选C.12.(多选题)若经过点P(5m+1,12m)可以作出圆(x-1)2+y2=1的两条切线,则实数m的取值可能是()A.110B.113C.-113D.-12P 可作圆的两条切线,说明点P 在圆的外部,所以(5m+1-1)2+(12m )2>1,解得m>113或m<-113,对照选项知AD 可能.13.(多选题)设有一组圆C k :(x-k )2+(y-k )2=4(k ∈R ),下列命题正确的是( ) A.不论k 如何变化,圆心C 始终在一条直线上 B.所有圆C k 均不经过点(3,0) C.经过点(2,2)的圆C k 有且只有一个 D.所有圆的面积均为4π(k ,k ),在直线y=x 上,故A 正确;令(3-k )2+(0-k )2=4,化简得2k 2-6k+5=0,∵Δ=36-40=-4<0,∴2k 2-6k+5=0无实数根,故B 正确;由(2-k )2+(2-k )2=4,化简得k 2-4k+2=0,∵Δ=16-8=8>0,有两个不等实根,∴经过点(2,2)的圆C k 有两个,故C 错误;由圆的半径为2,得圆的面积为4π,故D 正确.故选ABD .14.已知点A (8,-6)与圆C :x 2+y 2=25,P 是圆C 上任意一点,则|AP|的最小值是 .82+(-6)2=100>25,故点A 在圆外,从而|AP|的最小值为√82+(-6)2-5=10-5=5.15.已知圆C 的半径为2,圆心在x 轴的正半轴上,且圆心到直线3x+4y+4=0的距离等于半径长,则圆C 的标准方程为 .(a ,0),且a>0,则点(a ,0)到直线3x+4y+4=0的距离为2,即√32+42=2,所以3a+4=±10,解得a=2或a=-143(舍去),则圆C 的标准方程为(x-2)2+y 2=4.x-2)2+y 2=416.矩形ABCD 的两条对角线相交于点M (2,1),AB 边所在直线的方程为x-2y-4=0,点T (-1,0)在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.因为AB 边所在直线的方程为x-2y-4=0,且AD 与AB 垂直,所以直线AD 的斜率为-2.又因为点T (-1,0)在直线AD 上,所以AD 边所在直线的方程为y-0=-2(x+1),即2x+y+2=0.(2)由{x -2y -4=0,2x +y +2=0,解得{x =0,y =-2,所以点A 的坐标为(0,-2),因为矩形ABCD 两条对角线的交点为M (2,1),所以M 为矩形外接圆的圆心.又|AM|=√(2-0)2+(1+2)2=√13,从而矩形ABCD 外接圆的方程为(x-2)2+(y-1)2=13.学科素养创新练17.设A(x A,y A),B(x B,y B)为平面直角坐标系内的两点,其中x A,y A,x B,y B∈Z.令Δx=x B-x A,Δy=y B-y A,若|Δx|+|Δy|=3,且|Δx|·|Δy|≠0,则称点B为点A的“相关点”,记作B=τ(A).(1)求点(0,0)的“相关点”的个数.(2)点(0,0)的所有“相关点”是否在同一个圆上?若在,写出圆的方程;若不在,请说明理由.因为|Δx|+|Δy|=3(Δx,Δy为非零整数),所以|Δx|=1,|Δy|=2或|Δx|=2,|Δy|=1,所以点(0,0)的“相关点”有8个.(2)是.设点(0,0)的“相关点”的坐标为(x,y).由(1)知|Δx|2+|Δy|2=5,即(x-0)2+(y-0)2=5,所以所有“相关点”都在以(0,0)为圆心,√5为半径的圆上,所求圆的方程为x2+y2=5.。
圆与方程试题及答案1.圆(x+2)^2+y^2=5关于原点P(0,0)对称的圆的方程为(B)x+(y-2)^2=5.2.若P(2,-1)为圆(x-1)^2+y^2=25的弦AB的中点,则直线AB的方程是(A)x-y-3=0.3.圆x+y-2x-2y+1=0上的点到直线x-y=2的距离最大值是(C)1+√2.4.将直线2x-y+λ=0,沿x轴向左平移1个单位,所得直线与圆x^2+y^2+2x-4y=0相切,则实数λ的值为(B)-2或8.5.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有(C)3条。
6.圆x+y-4x=0在点P(1,3)处的切线方程为(B)x+3y-4=0.二、填空题1.若经过点P(-1,0)的直线与圆x^2+y^2+4x-2y+3=0相切,则此直线在y轴上的截距是(2)2.2.由动点P向圆x^2+y^2=1引两条切线PA,PB,切点分别为A,B,∠APB=60,则动点P的轨迹方程为(x^2+y^2-1)^2=3(x^2+y^2).3.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(-2,-4)、B(2,4),则圆C的方程为(x-3)^2+(y+1)^2=9.4.已知圆(x-3)^2+y^2=4和过原点的直线y=kx的交点为P,Q,则OP·OQ的值为2,则圆C的方程为(x-3)^2+(y-kx)^2=4+k^2.三、解答题1.点P(a,b)在直线x+y+1=0上,求a^2+b^2-2a-2b+2的最小值。
解:因为点P在直线x+y+1=0上,所以a+b+1=0,即a=-b-1.将a=-b-1代入a^2+b^2-2a-2b+2中,得到a^2+b^2-2a-2b+2=2b^2+2b+4,这是关于b的二次函数,因此最小值为该函数的顶点,即b=-1,此时a=0,所以最小值为6.2.求以A(-1,2)、B(5,-6)为直径两端点的圆的方程。
解:圆的直径AB的中点为M(2,-2),半径为AM的长度,即√((2-(-1))^2+(-2-2)^2)=√26/2,所以圆的方程为(x-2)^2+(y+2)^2=13.3.求过点A(1,2)和B(1,10)且与直线x-2y-1=0相切的圆的方程。
圆的一般方程 [A 组 基础巩固]1.若圆的方程为(x -1)(x +2)+(y -2)(y +4)=0,则圆心坐标为( )A .(1,-1) B.⎝ ⎛⎭⎪⎫12,-1 C .(-1,2)D.⎝ ⎛⎭⎪⎫-12,-1 解析:将圆的方程化为⎝⎛⎭⎪⎫x +122+(y +1)2=454, 即可得到圆心坐标为⎝ ⎛⎭⎪⎫-12,-1. 答案:D2.若关于x ,y 的方程x 2+mxy +y 2+2x -y +n =0表示的曲线是圆,则m +n 的取值范围是( )A.⎝ ⎛⎭⎪⎫-∞,54 B.⎝ ⎛⎦⎥⎤-∞,54 C.⎝ ⎛⎭⎪⎫54,+∞ D.⎣⎢⎡⎭⎪⎫54,+∞ 解析:依题意应有⎩⎪⎨⎪⎧m =0,4+1-4n >0,所以⎩⎨⎧m =0,n <54,于是m +n <54.答案:A3.经过点(-1,1)和(1,3),且圆心在x 轴上的圆的方程是( ) A .x 2+y 2-4y -6=0 B .x 2+y 2-4x -4y -6=0 C .x 2+y 2-4x -6=0D .x 2+y 2-4x +4y +6=0解析:设圆的方程是x 2+y 2+Dx +Ey +F =0,依题意有⎩⎨⎧-D +E +F =-2,D +3E +F =-10,-E2=0,解得⎩⎪⎨⎪⎧D =-4,E =0,F =-6.故所求圆的方程是x 2+y 2-4x -6=0. 答案:C4.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( )A .(x -2)2+(y +1)2=1B .(x -2)2+(y +1)2=4C .(x +4)2+(y -2)2=1D .(x +2)2+(y -1)2=1解析:设圆上任意一点的坐标为(x 1,y 1),其与点P 连线的中点为(x ,y ),则⎩⎨⎧x =x 1+42,y =y 1-22,即⎩⎪⎨⎪⎧x 1=2x -4,y 1=2y +2,代入x 2+y 2=4,得(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1.答案:A5.圆x 2+y 2-2x -2y +1=0的圆心到直线x -y -2=0的距离为________.解析:已知圆的圆心坐标为(1,1),由点到直线的距离公式得圆心到直线x -y -2=0的距离d =|1-1-2|12+12= 2. 答案: 26.已知点A (2,0),动点Q 在圆x 2+y 2=4上,则线段AQ 的中点P 的轨迹方程是________.解析:设点Q 的坐标为(x 0,y 0),点P 的坐标为(x ,y ),由已知得x =2+x 02,y =y 02,于是x 0=2x -2,y 0=2y ,由点Q 在圆x 2+y 2=4上,得x 20+y 20=4,所以(2x -2)2+(2y )2=4,整理得(x -1)2+y 2=1. 答案:(x -1)2+y 2=17.若实数x ,y 满足x 2+y 2-6x +8y +24=0,则x 2+y 2的最大值等于________.解析:依题意,点P (x ,y )在圆x 2+y 2-6x +8y +24=0上,即(x -3)2+(y +4)2=1,而x 2+y 2表示点P 与原点O 距离的平方.由于已知圆的圆心为C (3,-4),半径r =1,又|OC |=5,所以点P 与原点O 距离的最大值为1+5=6,从而x 2+y 2的最大值是36.答案:368.点M ,N 在圆x 2+y 2+kx +2y -4=0上,且点M ,N 关于直线x -y +1=0对称,则该圆的面积是________.解析:将x 2+y 2+kx +2y -4=0化为⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=5+k 24,故圆心坐标是⎝⎛⎭⎪⎫-k 2,-1.由题意知,直线x -y +1=0过圆心,故-k2+1+1=0,解得k =4,此时圆的半径为3,圆的面积是9π.答案:9π9.圆心在直线2x -y -7=0上的圆C 与y 轴交于A (0,-4),B (0,-2)两点,求圆C 的方程.解析:设圆C 的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 则圆心C (-D 2,-E2)在直线2x -y -7=0上, 所以2×(-D 2)-(-E2)-7=0, 即D -E2+7=0. ① 又∵A (0,-4),B (0,-2)在圆上,∴⎩⎪⎨⎪⎧(-4)2-4E +F =0, ②(-2)2-2E +F =0. ③由①②③解得D =-4,E =6,F =8, ∴圆C 的方程为x 2+y 2-4x +6y +8=0.10.自A (4,0)引圆x 2+y 2=4的割线ABC ,求弦BC 中点P 的轨迹方程.解析:设P (x ,y ),连接OP ,则OP ⊥BC , 当x ≠0时,k OP ·k AP =-1, 即y x ·yx -4=-1,即x 2+y 2-4x =0.①当x =0时,P 点坐标(0,0)是方程①的解,∴BC 中点P 的轨迹方程为x 2+y 2-4x =0在圆x 2+y 2=4内的部分.[B 组 能力提升]1.经过圆x 2+2x +y 2=0的圆心C ,且与直线x +y =0垂直的直线方程是( )A .x +y +1=0B .x +y -1=0C .x -y +1=0D .x -y -1=0解析:∵与直线x +y =0垂直,∴所求直线的斜率为1. ∵过圆心C (-1,0), ∴y =x +1,即x -y +1=0. 答案:C2.由方程x 2+y 2+x +(m -1)y +12m 2=0所确定的圆中,最大圆的面积是( )A.π4B.π2C.3π4D .π解析:r 2=1+(m -1)2-4×12m 24=-m 2-2m +24. 所以当m =-1时,r 2max =34,则S max =3π4.答案:C3.设圆C 的方程为x 2+y 2-4x -5=0,若此圆的一条弦AB 的中点为P (3,1),则直线AB 的方程为________.解析:由题可设直线AB 的斜率为k , 由圆的知识可知:CP ⊥AB . 所以k CP ·k =-1. 又k CP =1-03-2=1⇒k =-1. 所以直线AB 的方程为y -1=-(x -3),即x +y -4=0. 答案:x +y -4=04.当动点P 在圆x 2+y 2=2上运动时,它与定点A (3,1)连线中点Q 的轨迹方程为________.解析:设Q (x ,y ),P (a ,b ),由中点坐标公式,得⎩⎨⎧x =a +32y =b +12,所以⎩⎪⎨⎪⎧a =2x -3b =2y -1,因为点P (2x -3,2y -1)满足圆x 2+y 2=2的方程,所以(2x -3)2+(2y -1)2=2,化简,得(x -32)2+(y -12)2=12,此即为点Q 的轨迹方程. 答案:(x -32)2+(y -12)2=125.已知方程x 2+y 2+4x -2y -4=0,求x 2+y 2的最大值. 解析:方程x 2+y 2+4x -2y -4=0可以化为(x +2)2+(y -1)2=9,它表示圆心为A (-2,1),半径为3的圆,如图所示.x 2+y 2=((x -0)2+(y -0)2)2表示圆上的点到坐标原点O 的距离的平方, 显然,连接OA 并延长交圆较远一端于点B , 则|OB |2为最大值,即x 2+y 2的最大值为|OB |2=(|OA |+3)2=(5+3)2=14+6 5. 6.已知A (-2,0),B (0,2),M ,N 是圆x 2+y 2+kx -2y =0上两个不同的点,P 是圆上的动点.如果M ,N 两点关于直线x -y -1=0对称.(1)求圆心坐标及半径; (2)求△P AB 面积的最大值.。
第二章 2.4.1圆的标准方程A 级——基础过关练1.以两点A (-3,-1)和B (5,5)为直径端点的圆的方程是( )A .(x -1)2+(y -2)2=25B .(x +1)2+(y +2)2=25C .(x +1)2+(y +2)2=100D .(x -1)2+(y -2)2=100【答案】A 【解析】由题意可得,圆心为线段AB 的中点C (1,2),半径为r =12|AB |=1282+62=5,故要求的圆的方程为(x -1)2+(y -2)2=25.2.点(2a ,a -1)在圆x 2+(y -1)2=5的内部,则a 的取值范围是( )A .-1<a <1B .0<a <1C .-1<a <15D .-15<a <1 【答案】D 【解析】因为点(2a ,a -1)在圆x 2+(y -1)2=5的内部,所以(2a )2+(a -1-1)2<5,整理得5a 2-4a -1<0,解得-15<a <1. 3.点P (m,5)与圆x 2+y 2=24的位置关系是( )A .在圆外B .在圆内C .在圆上D .不确定【答案】A 【解析】因为m 2+25>24,所以点P 在圆外.4.圆心在x +y =0上,且与x 轴交于点A (-3,0)和B (1,0)的圆的方程为( )A .(x +1)2+(y -1)2=5B .(x -1)2+(y +1)2=5C .(x -1)2+(y +1)2=5D .(x +1)2+(y -1)2=5【答案】A 【解析】由题意得圆心在直线x =-1上,又圆心在直线x +y =0上,所以圆心M 的坐标为(-1,1).又A (-3,0),半径|AM |=-1+32+1-02=5,则圆的方程为(x +1)2+(y -1)2=5.5.一圆与圆C :(x +2)2+(y +1)2=3为同心圆且面积为圆C 面积的两倍,此圆的标准方程为________.【答案】(x +2)2+(y +1)2=6 【解析】圆C :(x +2)2+(y +1)2=3,此圆的半径为3,而要求的圆的面积是已知圆的面积的两倍,所以所求圆的半径为2× 3=6×.所以所求圆的方程为(x +2)2+(y +1)2=6.6.圆心在x 轴上,半径长为2,且过点(-2,1)的圆的方程为____________.【答案】(x +1)2+y 2=2或(x +3)2+y 2=2【解析】设圆心坐标为(a,0),则由题意知a +22+0-12=2,解得a =-1或a =-3,故圆的方程为(x +1)2+y 2=2或(x +3)2+y 2=2.7.已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________. 【答案】(x -2)2+y 2=9 【解析】设C (a,0)(a >0),由题意知|2a |5=455,解得a =2,所以r =22+5=3.故圆C 的方程为(x -2)2+y 2=9.8.过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |=________.【答案】46 【解析】由已知得k AB =3-21-4=-13,k CB =2--74-1=3,所以k AB ·k CB =-1.所以AB ⊥CB ,即△ABC 为直角三角形,其外接圆圆心为(1,-2),半径r =5.所以外接圆方程为(x -1)2+(y +2)2=25.令x =0,得y =±26-2.所以|MN |=4 6.9.已知A (0,1),B (2,1),C (3,4),D (-1,2),问这四点能否在同一个圆上?为什么? 解:设经过A ,B ,C 三点的圆的方程为(x -a )2+(y -b )2=r 2.则⎩⎪⎨⎪⎧ a 2+1-b 2=r 2,2-a 2+1-b 2=r 2,3-a 2+4-b 2=r 2,解得⎩⎪⎨⎪⎧ a =1,b =3,r 2=5.所以经过A ,B ,C 三点的圆的标准方程是(x -1)2+(y -3)2=5.把点D 的坐标(-1,2)代入上面方程的左边,得(-1-1)2+(2-3)2=5.所以点D 在经过A ,B ,C 三点的圆上.所以A ,B ,C ,D 四点在同一个圆上,圆的方程为(x -1)2+(y -3)2=5.10.已知圆N 的标准方程为(x -5)2+(y -6)2=a 2(a >0).(1)若点M (6,9)在圆上,求a 的值;(2)已知点P (3,3)和点Q (5,3),线段PQ (不含端点)与圆N 有且只有一个公共点,求a 的取值范围.解:(1)因为点M 在圆上,所以(6-5)2+(9-6)2=a 2.又由a >0,可得a =10.(2)由两点间距离公式可得|PN |=3-52+3-62=13, |QN |=5-52+3-62=3, 因为线段PQ (不含端点)与圆有且只有一个公共点,即P ,Q 两点一个在圆内,另一个在圆外.由于3<13,所以3<a <13,故a 的取值范围是(3,13).B 级——能力提升练11.已知实数x ,y 满足(x +5)2+(y -12)2=25,那么x 2+y 2的最小值为( )A .5B .8C .13D .18 【答案】B 【解析】由题意得x 2+y 2=x -02+y -02,表示点P (x ,y )到原点的距离,所以x 2+y 2的最小值表示圆(x +5)2+(y -12)2=25上一点到原点距离的最小值.又圆心(-5,12)到原点的距离为-52+122=13,所以x 2+y 2的最小值为13-R =8.12.(多选)瑞士数学家欧拉(Leonhard×Euler)1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知△ABC 的顶点A (-4,0),B (0,4),其欧拉线方程为x -y +2=0,则顶点C 的坐标可以是( )A .(2,0)B .(0,2)C .(-2,0)D .(0,-2)【答案】AD 【解析】设C (x ,y ),AB 的垂直平分线为y =-x ,△ABC 的外心为欧拉线x -y +2=0与直线y =-x 的交点M (-1,1),∴|MC |=|MA |=10,∴(x +1)2+(y -1)2=10①.由A (-4,0),B (0,4),△ABC 重心为⎝⎛⎭⎫x -43,y +43,代入欧拉线方程x -y +2=0,得x -y -2=0②.由①②可得x =2,y =0或x =0,y =-2.13.已知点A (1,2)不在圆C :(x -a )2+(y +a )2=2a 2的内部,则实数a 的取值范围为________.【答案】⎣⎡⎭⎫-52,0∪(0,+∞) 【解析】由题意知,点A 在圆C 上或圆C 的外部,因为(1-a )2+(2+a )2≥2a 2,所以2a +5≥0.所以a ≥-52.又a ≠0,所以a 的取值范围是⎣⎡⎭⎫-52,0∪(0,+∞).14.已知圆C 经过点A (1,4),B (3,-2),圆心C 到直线AB 的距离为10,则圆C 的方程为____________.【答案】(x +1)2+y 2=20或(x -5)2+(y -2)2=20【解析】方法一,设圆心C (a ,b ),半径为r ,易得线段AB 的中点为M (2,1).因为CM ⊥AB ,k AB =-2-43-1=-3,所以k CM =b -1a -2=13,即3b =a +1①.又因为|CM |=10,所以(a -2)2+(b -1)2=10②.联立①②,解得⎩⎪⎨⎪⎧ a =-1,b =0或⎩⎪⎨⎪⎧a =5,b =2,即C (-1,0)或C (5,2),所以r 2=|CA |2=20.故圆的方程为(x +1)2+y 2=20或(x -5)2+(y -2)2=20.方法二,因为A (1,4),B (3,-2),所以直线AB 的方程为3x +y -7=0.因为线段AB 的中点为M (2,1),所以圆心C 落在直线AB 的中垂线x -3y +1=0上.不妨设C (3b -1,b ).所以|33b -1+b -7|32+12=10,解得b =0或b =2,即C (-1,0)或C (5,2),所以r 2=|CA |2=20.故圆的方程为(x +1)2+y 2=20或(x -5)2+(y -2)2=20.15.已知以点C 为圆心的圆经过点A (-1,0)和B (3,4),且圆心在直线x +3y -15=0上. (1)求圆C 的方程;(2)设点P 在圆C 上,求△P AB 的面积的最大值.解:(1)根据题意,所求圆的圆心C 为AB 的垂直平分线和直线x +3y -15=0的交点. 因为AB 中点为(1,2),斜率为1,所以AB 的垂直平分线方程为y -2=-(x -1),即y =-x +3.联立⎩⎪⎨⎪⎧ y =-x +3,x +3y =15,解得⎩⎪⎨⎪⎧x =-3,y =6, 即圆心C (-3,6),半径r =-3+12+6-02=210,所以所求圆C 的方程为(x +3)2+(y -6)2=40.(2)|AB |=42+42=42,圆心到AB 的距离为d =42,因为点P 到AB 距离的最大值为d +r =42+210,所以△P AB 面积的最大值为124 2 (42+210)=16+8 5. 16.如图,矩形ABCD 的两条对角线相交于点M (2,0),AB 边所在直线的方程为x -3y -6=0,点T (-1,1)在AD 边所在的直线上.(1)求AD 边所在直线的方程;(2)求矩形ABCD 外接圆的方程.解:(1)因为AB 边所在直线的方程为x -3y -6=0,且AD 与AB 垂直,所以直线AD 的斜率为-3.又因为点T (-1,1)在直线AD 上,所以AD 边所在直线的方程为y -1=-3(x +1),即3x +y +2=0.(2)由⎩⎪⎨⎪⎧x -3y -6=0,3x +y +2=0,得点A 的坐标为(0,-2). 因为矩形ABCD 两条对角线的交点为M (2,0),所以M 为矩形ABCD 外接圆的圆心.又|AM |=2-02+0+22=22,从而矩形ABCD 外接圆的方程为(x -2)2+y 2=8.C 级——探究创新练17.在平面直角坐标系Oxy 中,直线l :mx -y -2m -1=0(m ∈R )过定点________,以点(1,0)为圆心且与l 相切的所有圆中,半径最大的圆的标准方程为____________.【答案】(2,-1) (x -1)2+y 2=2 【解析】因为mx -y -2m -1=m (x -2)-y -1=0,由⎩⎪⎨⎪⎧ x -2=0,y +1=0可得⎩⎪⎨⎪⎧x =2,y =-1,所以直线l 经过定点(2,-1).以点(1,0)为圆心且与l 相切的所有圆中,最大圆的半径为2-12+-1-02=2,所以所求圆的标准方程为(x -1)2+y 2=2. 18.已知圆C 的圆心在x 轴正半轴上,半径为5,且与直线4x +3y +17=0相切.(1)求圆C 的方程;(2)设点P ⎝⎛⎭⎫-1,32,过点P 作直线l 与圆C 交于A ,B 两点,若AB =8,求直线l 的方程;(3)设P 是直线x +y +6=0上的点,过P 点作圆C 的切线P A ,PB ,切点为A ,B ,求证:过A ,P ,C 三点的圆心过定点,并求出定点的坐标.(1)解:设圆心C (a,0)(a >0),则由直线和圆相切的条件d =r ,可得||4a +0+1716+9=5,解得a =2(负值舍去),即有圆C 的方程为(x -2)2+y 2=25.(2)解:若直线l 的斜率不存在,即l :x =-1, 代入圆的方程可得,y =±4,即有|AB |=8,成立;若直线l 的斜率存在,可设直线l :y -32=k (x +1), 即为2kx -2y +3+2k =0,圆心C 到直线l 的距离为d =||4k -0+3+2k 4k 2+4=||6k +34k 2+4, 由AB =8,即有225-d 2=8,即有d =3,即||6k +34k 2+4=3,解得k =34, 则直线l 的方程为3x -4y +9=0.(3)证明:由于P 是直线x +y +6=0上的点, 设P (m ,-m -6),由切线的性质可得AC ⊥P A ,经过A ,P ,C 三点的圆,即为以PC 为直径的圆, 则方程为(x -2)(x -m )+y (y +m +6)=0, 整理得(x 2+y 2-2x +6y )+m (y -x +2)=0, 令x 2+y 2-2x +6y =0,且y -x +2=0, 解得x =2,y =0,或x =-2,y =-4.则有经过A ,P ,C 三点的圆必过定点, 定点的坐标为(-2,-4).。
2.4.2 圆的一般方程参考答案1.(多选)若a ∈⎩⎨⎧⎭⎬⎫-2,0,1,23,方程x 2+y 2+2ax +2ay +2a 2+a -1=0表示圆,则a 的值可以为( ) A .-2 B .0 C .1 D.23答案 ABD解析 根据题意,若方程表示圆,则有(2a )2+(2a )2-4(2a 2+a -1)>0,解得a <1,又a ∈⎩⎨⎧⎭⎬⎫-2,0,1,23,则a 的值可以为-2,0,23. 2.已知圆的方程为x 2+y 2+2ax +9=0,圆心坐标为(5,0),则它的半径为( )A .3 B. 5 C .5 D .4答案 D解析 圆的方程x 2+y 2+2ax +9=0,即(x +a )2+y 2=a 2-9,它的圆心坐标为(-a ,0),可得a =-5, 故它的半径为a 2-9=25-9=4.3.(多选)下列结论正确的是( )A .任何一个圆的方程都可以写成一个二元二次方程B .圆的一般方程和标准方程可以互化C .方程x 2+y 2-2x +4y +5=0表示圆D .若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0答案 ABD解析 AB 显然正确;C 中方程可化为(x -1)2+(y +2)2=0,所以表示点(1,-2);D 正确.4.已知圆C :(x -a )2+(y -b )2=1过点A (1,0),则圆C 的圆心的轨迹是( )A .点B .直线C .线段D .圆答案 D解析 ∵圆C :(x -a )2+(y -b )2=1过点A (1,0),∴(1-a )2+(0-b )2=1,∴(a -1)2+b 2=1,∴圆C 的圆心的轨迹是以(1,0)为圆心,1为半径的圆.5.圆C :x 2+y 2-4x +2y =0关于直线y =x +1对称的圆的方程是( )A .(x +1)2+(y -2)2=5B .(x +4)2+(y -1)2=5C .(x +2)2+(y -3)2=5D .(x -2)2+(y +3)2=5 答案 C解析 把圆C 的方程化为标准方程为(x -2)2+(y +1)2=5,∴圆心C (2,-1).设圆心C 关于直线y =x +1的对称点为C ′(x 0,y 0),则⎩⎪⎨⎪⎧ y 0-(-1)x 0-2=-1,y 0-12=x 0+22+1,解得⎩⎪⎨⎪⎧x 0=-2,y 0=3,故C ′(-2,3), ∴圆C 关于直线y =x +1对称的圆的方程为(x +2)2+(y -3)2=5.6.若当方程x 2+y 2+kx +2y +k 2=0所表示的圆取得最大面积时,则直线y =(k -1)x +2的倾斜角α等于( )A.π2B.π4C.3π4D.π5答案 C解析 x 2+y 2+kx +2y +k 2=0化为标准式为⎝⎛⎭⎫x +k 22+(y +1)2=1-34k 2,所以当k =0时圆的半径最大,面积也最大,此时直线的斜率为-1,故倾斜角为3π4. 7.过三点O (0,0),M (1,1),N (4,2)的圆的方程为________________.答案 x 2+y 2-8x +6y =0解析 设过三点O (0,0),M (1,1),N (4,2)的圆的方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧ F =0,1+1+D +E +F =0,16+4+4D +2E +F =0,解得⎩⎪⎨⎪⎧ D =-8,E =6,F =0,故所求圆的方程为x 2+y 2-8x +6y =0.8.已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的一般方程为________________.答案 x 2+y 2-4x -5=0解析 设圆C 的圆心坐标为(a ,0)(a >0),由题意可得|2a |5=455, 解得a =2(a =-2舍去),所以圆C 的半径为22+(-5)2=3,所以圆C 的方程为x 2+y 2-4x -5=0.9.已知方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0表示一个圆.(1)求t 的取值范围;(2)求这个圆的圆心坐标和半径;(3)求该圆半径r 的最大值及此时圆的标准方程.解 (1)圆的方程化为[x -(t +3)]2+[y +(1-4t 2)]2=1+6t -7t 2.由7t 2-6t -1<0,得-17<t <1. 故t 的取值范围是⎝⎛⎭⎫-17,1. (2)由(1)知,圆的圆心坐标为(t +3,4t 2-1),半径为1+6t -7t 2.(3)r =-7t 2+6t +1 =-7⎝⎛⎭⎫t -372+167≤477. 所以r 的最大值为477,此时t =37, 故圆的标准方程为⎝⎛⎭⎫x -2472+⎝⎛⎭⎫y +13492=167. 10.如图,已知线段AB 的中点C 的坐标是(4,3),端点A 在圆(x +1)2+y 2=4上运动,求线段AB 的端点B 的轨迹方程.解 设B 点坐标是(x ,y ),点A 的坐标是(x 0,y 0),由于点C 的坐标是(4,3)且点C 是线段AB 的中点,所以4=x 0+x 2,3=y 0+y 2, 于是有x 0=8-x ,y 0=6-y .①因为点A 在圆(x +1)2+y 2=4上运动,所以点A 的坐标满足方程(x +1)2+y 2=4,即(x 0+1)2+y 20=4,②把①代入②,得(8-x +1)2+(6-y )2=4,整理,得(x -9)2+(y -6)2=4.所以点B 的轨迹方程为(x -9)2+(y -6)2=4.11.圆x 2+y 2-ax -2y +1=0关于直线x -y -1=0对称的圆的方程是x 2+y 2-4x +3=0,则a 的值为( )A .0B .1C .2D .3 答案 C解析 由于圆x 2+y 2-ax -2y +1=0的圆心为M ⎝⎛⎭⎫a 2,1,圆x 2+y 2-4x +3=0的圆心为N (2,0),又两圆关于直线x -y -1=0对称,故有1-0a 2-2×1=-1,解得a =2. 12.圆x 2+y 2-2x +6y +8=0的面积为( )A .8πB .4πC .2πD .π 答案 C解析 原方程可化为(x -1)2+(y +3)2=2,∴半径r =2,∴圆的面积为S =πr 2=2π.13.已知圆C 经过点(4,2),(1,3)和(5,1),则圆C 与两坐标轴的四个截距之和为________.答案 -2解析 设圆的方程为x 2+y 2+Dx +Ey +F =0,将(4,2),(1,3),(5,1)代入方程中,得⎩⎪⎨⎪⎧ 16+4+4D +2E +F =0,1+9+D +3E +F =0,25+1+5D +E +F =0,解得⎩⎪⎨⎪⎧ D =-2,E =4,F =-20,所以圆的方程为x 2+y 2-2x +4y -20=0.令x =0,则y 2+4y -20=0,由根与系数的关系得y 1+y 2=-4;令y =0,则x 2-2x -20=0,由根与系数的关系得x 1+x 2=2,故圆C 与两坐标轴的四个截距之和为y 1+y 2+x 1+x 2=-4+2=-2.14.设直线2x +3y +1=0和圆x 2+y 2-2x -3=0相交于点A ,B ,则弦AB 的垂直平分线的方程是____________.答案 3x -2y -3=0解析 圆的方程x 2+y 2-2x -3=0,化为标准方程为(x -1)2+y 2=4,圆心坐标为(1,0),由k AB =-23,得AB的垂直平分线的斜率为32,且过圆心,从而所求直线方程为y -0=32(x -1),即3x -2y -3=0.15.已知点P (7,3),圆M :x 2+y 2-2x -10y +25=0,点Q 为圆M 上一点,点S 在x 轴上,则|SP |+|SQ |的最小值为( )A .7B .8C .9D .10答案 C解析 由题意知圆M 的方程可化为(x -1)2+(y -5)2=1,所以圆心为M (1,5),半径为1.如图所示,作点P (7,3)关于x 轴的对称点P ′(7,-3),连接MP ′,交圆M 于点Q ,交x 轴于点S ,此时|SP |+|SQ |的值最小,否则,在x 轴上另取一点S ′,连接S ′P ,S ′P ′,S ′Q ,由于P 与P ′关于x 轴对称,所以|SP |=|SP ′|,|S ′P |=|S ′P ′|,所以|SP |+|SQ |=|SP ′|+|SQ |=|P ′Q |<|S ′P ′|+|S ′Q |=|S ′P |+|S ′Q |.故(|SP |+|SQ |)min =|P ′M |-1=(1-7)2+(5+3)2-1=9.16.在平面直角坐标系xOy 中,长度为2的线段EF 的两端点E ,F 分别在两坐标轴上运动.(1)求线段EF 的中点G 的轨迹C 的方程;(2)设轨迹C 与x 轴交于A 1,A 2两点,P 是轨迹C 上异于A 1,A 2的任意一点,直线P A 1交直线l :x =3于M 点,直线P A 2交直线l 于N 点,求证:以MN 为直径的圆C 总过定点,并求出定点坐标.解 (1)设G (x ,y ),由中点坐标公式得E (2x ,0),F (0,2y ),∴|EF |=(2x )2+(-2y )2=2,整理得x 2+y 2=1,∴线段EF 的中点G 的轨迹C 的方程为x 2+y 2=1.(2)由已知设A 1(-1,0),A 2(1,0),设P (x 0,y 0),x 0≠±1,x 20+y 20=1,直线P A 1的方程为y =y 0x 0+1(x +1), 令x =3,得y =4y 0x 0+1, 则M ⎝⎛⎭⎫3,4y 0x 0+1,同理,可求N ⎝⎛⎭⎫3,2y 0x 0-1,MN 的中点坐标为⎝⎛⎭⎫3,1-3x 0y 0,|MN |=⎪⎪⎪⎪4y 0x 0+1-2y 0x 0-1=2⎪⎪⎪⎪3-x 0y 0, ∴以MN 为直径的圆C 的方程为(x -3)2+⎝⎛⎭⎫y -1-3x 0y 02=(3-x 0)2y 20. 令y =0,得(x -3)2=-⎝⎛⎭⎫1-3x 0y 02+(3-x 0)2y 20=8-8x 20y 20=8. ∴x =3±22,圆C 总过定点,定点坐标为(3+22,0)或(3-22,0).。
习题精选精讲圆标准方程已知圆心),(b a C 和半径r ,即得圆的标准方程222)()(r b y a x =-+-;已知圆的标准方程222)()(r b y a x =-+-,即得圆心),(b a C 和半径r ,进而可解得与圆有关的任何问题.一、求圆的方程例1 (06重庆卷文) 以点)1,2(-为圆心且与直线0543=+-y x 相切的圆的方程为( )(A)3)1()2(22=++-y x (B)3)1()2(22=-++y x (C)9)1()2(22=++-y x (D)9)1()2(22=-++y x解 已知圆心为)1,2(-,且由题意知线心距等于圆半径,即2243546+++=dr ==3,∴所求的圆方程为9)1()2(22=++-y x ,故选(C).点评:一般先求得圆心和半径,再代入圆的标准方程222)()(r b y a x =-+-即得圆的方程.二、位置关系问题例2 (06安徽卷文) 直线1=+y x 与圆0222=-+ay y x )0(>a 没有公共点,则a 的取值范围是( )(A))12,0(- (B))12,12(+- (C))12,12(+--(D))12,0(+解 化为标准方程222)(a a y x =-+,即得圆心),0(a C 和半径a r =.∵直线1=+y x 与已知圆没有公共点,∴线心距ar a d =>-=21,平方去分母得22212a a a >+-,解得1212-<<--a ,注意到0>a ,∴120-<<a ,故选(A).点评:一般通过比较线心距d 与圆半径r 的大小来处理直线与圆的位置关系:⇔>r d 线圆相离;⇔=r d 线圆相切;⇔<r d 线圆相交.三、切线问题例3 (06重庆卷理) 过坐标原点且与圆0252422=++-+y x y x 相切的直线方程为( ) (A)x y 3-=或x y 31=(B)x y 3=或x y 31-= (C)x y 3-=或x y 31-= (D)x y 3=或x y 31=解 化为标准方程25)1()2(22=++-y x ,即得圆心)1,2(-C 和半径25=r .设过坐标原点的切线方程为kx y =,即0=-y kx ,∴线心距251122==++=r k k d ,平方去分母得0)3)(13(=+-k k ,解得3-=k 或31,∴所求的切线方程为x y 3-=或x y 31=,故选(A).点评:一般通过线心距d 与圆半径r 相等和待定系数法,或切线垂直于经过切点的半径来处理切线问题.四、弦长问题例4 (06天津卷理) 设直线03=+-y ax 与圆4)2()1(22=-+-y x 相交于B A 、两点,且弦AB 的长为32,则=a .解 由已知圆4)2()1(22=-+-y x ,即得圆心)2,1(C 和半径2=r .∵线心距112++=a a d,且222)2(r AB d=+,∴22222)3()11(=+++a a ,即1)1(22+=+a a ,解得0=a . 点评:一般在线心距d 、弦长AB 的一半和圆半径r 所组成的直角三角形中处理弦长问题:222)2(r AB d =+.五、夹角问题例5 (06全国卷一文) 从圆012222=+-+-y y x x 外一点)2,3(P 向这个圆作两条切线,则两切线夹角的余弦值为( )(A)21 (B)53(C)23 (D) 0解 已知圆化为1)1()1(22=-+-y x ,即得圆心)1,1(C 和半径1=r .设由)2,3(P 向这个圆作的两条切线的夹角为θ,则在切线长、半径r和PC构成的直角三角形中,522cos=θ,∴5312cos 2cos 2=-=θθ,故选(B). 点评:处理两切线夹角θ问题的方法是:先在切线长、半径r 和PC所构成的直角三角形中求得2θ的三角函数值,再用二倍角公式解决夹角θ问题.六、圆心角问题例6 (06全国卷二) 过点)2,1(的直线l 将圆4)2(22=+-y x 分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率=k .解 由已知圆4)2(22=+-y x ,即得圆心)0,2(C 和半径2=r .设)2,1(P ,则2-=PC k ;∵⊥PC 直线l 时弦最短,从而劣弧所对的圆心角最小,∴直线l 的斜率221=-=PCk k .点评:一般利用圆心角及其所对的弧或弦的关系处理圆心角问题:在同圆中,若圆心角最小则其所对的弧长与弦长也最短,若弧长与弦长最短则所对的圆心角也最小.七、最值问题例7 (06湖南卷文) 圆0104422=---+y x y x上的点到直线14-+y x 0=的最大距离与最小距离的差是( )(A) 30 (B) 18 (C)26(D)25 解 已知圆化为18)2()2(22=-+-y x ,即得圆心)2,2(C 和半径23=r .设线心距为d ,则圆上的点到直线014=-+y x 的最大距离为r d +,最小距离为r d -,∴262)()(==--+r r d r d ,故选(C).点评:圆上一点到某直线距离的最值问题一般转化为线心距d 与圆半径r 的关系解决:圆上的点到该直线的最大距离为r d +,最小距离为r d-.八、综合问题例8 (06湖南卷理) 若圆0104422=---+y x y x上至少有三个不同的点到直线0:=+by ax l 的距离为22,则直线l 的倾斜角的取值范围是( )(A)]4,12[ππ (B)]125,12[ππ (C)]3,6[ππ (D)]2,0[π解 已知圆化为18)2()2(22=-+-y x ,即得圆心)2,2(C 和半径23=r .∵圆上至少有三个不同的点到直线0:=+by ax l 的距离为22,∴2222222=-≤++=r b a ba d ,即0422≤++b ab a ,由直线l 的斜率b a k -=代入得0142≤+-k k ,解得3232+≤≤-k ,又3212tan-=π,32125tan +=π,∴直线l 的倾斜角的取值范围是]125,12[ππ,故选(B). 点评:处理与圆有关的任何问题总是先通过圆的标准方程,进而以“圆心半径线心距”的七字歌得到正确而迅速地解决.圆的方程1. 确定圆方程需要有三个互相独立的条件.圆的方程有两种形式,要注意各种形式的圆方程的适用范围.(1) 圆的标准方程:(x -a)2+(y -b)2=r 2,其中(a ,b)是圆心坐标,r 是圆的半径;(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0 (D 2+E 2-4F >0),圆心坐标为(2,2E D --),半径为r =2422FE D -+2. 直线与圆的位置关系的判定方法.(1) 法一:直线:Ax +By +C =0;圆:x 2+y 2+Dx +Ey +F =0.消元⎩⎨⎧=++++=++0022F Ey Dx y x C By Ax 一元二次方程⎪⎩⎪⎨⎧⇔<∆⇔=∆⇔>∆−−→−相离相切相交判别式000 (2) 法二:直线:Ax +By +C =0;圆:(x -a)2+(y -b)2=r 2,圆心(a ,b)到直线的距离为d =⎪⎩⎪⎨⎧⇔>⇔=⇔<→+++相离相切相交r d r d r d B A C Bb Aa 22.3. 两圆的位置关系的判定方法.设两圆圆心分别为O 1、 O 2,半径分别为r 1、 r 2, |O 1O 2|为圆心距,则两圆位置关系如下: |O 1O 2|>r 1+r 2⇔两圆外离; |O 1O 2|=r 1+r 2⇔两圆外切;|r 1-r 2|<|O 1O 2|<r 1+r 2⇔两圆相交; |O 1O 2|=|r 1-r 2|⇔两圆内切; 0<|O 1O 2|<|r 1-r 2|⇔两圆内含. ●点击双基1.方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0(t ∈R )表示圆方程,则t 的取值范围是A.-1<t <71 B.-1<t <21C.-71<t <1 D .1<t <2 解析:由D 2+E 2-4F >0,得7t 2-6t -1<0,即-71<t <1.答案:C2.点P (5a +1,12a )在圆(x -1)2+y 2=1的内部,则a 的取值范围是 A.|a |<1 B.a <131 C.|a |<51 D .|a |<131 解析:点P 在圆(x -1)2+y 2=1内部⇔(5a +1-1)2+(12a )2<1⇔|a |<131.答案:D 3.已知圆的方程为(x -a )2+(y -b )2=r 2(r >0),下列结论错误的是 A.当a 2+b 2=r 2时,圆必过原点B.当a =r 时,圆与y 轴相切 C.当b =r 时,圆与x 轴相切D .当b <r 时,圆与x 轴相交 解析:已知圆的圆心坐标为(a ,b ),半径为r ,当b <r 时,圆心到x 轴的距离为|b |,只有当|b |<r 时,才有圆与x 轴相交,而b <r 不能保证|b |<r ,故D 是错误的.故选D .答案:D●典例剖析【例2】 一圆与y 轴相切,圆心在直线x -3y =0上,且直线y =x 截圆所得弦长为27,求此圆的方程. 剖析: 利用圆的性质:半弦、半径和弦心距构成的直角三角形.解:因圆与y 轴相切,且圆心在直线x -3y =0上,故设圆方程为(x -3b )2+(y -b )2=9b 2. 又因为直线y =x 截圆得弦长为27,则有(2|3|b b -)2+(7)2=9b 2,解得b =±1.故所求圆方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9.夯实基础1.方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的曲线关于x +y =0成轴对称图形,则 A.D +E =0B. B.D +F =0 C.E +F =0 D. D +E +F =0解析:曲线关于x +y =0成轴对称图形,即圆心在x +y =0上.答案:A2.(2004年全国Ⅱ,8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有 A.1条 B.2条 C.3条 D .4条解析:分别以A 、B 为圆心,以1、2为半径作圆,两圆的公切线有两条,即为所求.答案:B3.(2005年黄冈市调研题)圆x 2+y 2+x -6y +3=0上两点P 、Q 关于直线kx -y +4=0对称,则k =____________. 解析:圆心(-21,3)在直线上,代入kx -y +4=0,得k =2.答案:2 4.(2004年全国卷Ⅲ,16)设P 为圆x 2+y 2=1上的动点,则点P 到直线3x -4y -10=0的 距离的最小值为____________. 解析:圆心(0,0)到直线3x -4y -10=0的距离d =5|10|-=2.再由d -r =2-1=1,知最小距离为1.答案:1 5.(2005年启东市调研题)设O 为坐标原点,曲线x 2+y 2+2x -6y +1=0上有两点P 、Q ,满足关于直线x +my +4=0对称,又满足OP ·OQ =0.(1)求m 的值;(2)求直线PQ 的方程.解:(1)曲线方程为(x +1)2+(y -3)2=9表示圆心为(-1,3),半径为3的圆.∵点P 、Q 在圆上且关于直线x +my +4=0对称,∴圆心(-1,3)在直线上.代入得m =-1. (2)∵直线PQ 与直线y =x +4垂直, ∴设P (x 1,y 1)、Q (x 2,y 2),PQ 方程为y =-x +b .将直线y =-x +b 代入圆方程,得2x 2+2(4-b )x +b 2-6b +1=0.Δ=4(4-b )2-4×2×(b 2-6b +1)>0,得2-32<b <2+32.由韦达定理得x 1+x 2=-(4-b ),x 1·x 2=2162+-b b .y 1·y 2=b 2-b (x 1+x 2)+x 1·x 2=2162+-b b +4b .∵·=0,∴x 1x 2+y 1y 2=0,即b 2-6b +1+4b =0.解得b =1∈(2-32,2+32).∴所求的直线方程为y =-x +1.培养能力7.已知实数x 、y 满足方程x 2+y 2-4x +1=0.求(1)xy的最大值和最小值;(2)y -x 的最小值; (3)x 2+y 2的最大值和最小值.解:(1)如图,方程x 2+y 2-4x +1=0表示以点(2,0)为圆心,以3为半径的圆.设x y=k ,即y =kx ,由圆心(2,0)到y =kx 的距离为半径时直线与圆相切,斜率取得最大、最小值.由1|02|2+-k k =3,解得k 2=3.所以k max =3,k min =-3.(2)设y -x =b ,则y =x +b ,仅当直线y =x +b 与圆切于第四象限时,纵轴截距b 取最小值.由点到直线的距离公式,得2|02|b +-=3,即b =-2±6,故(y -x )min =-2-6.(3)x 2+y 2是圆上点与原点距离之平方,故连结OC ,与圆交于B 点,并延长交圆于C ′,则(x 2+y 2)max =|OC ′|=2+3,(x 2+y 2)min =|OB |=2-3.8.(文)求过两点A (1,4)、B (3,2),且圆心在直线y =0上的圆的标准方程.并判断点M 1(2,3),M 2(2,4)与圆的位置关系. 解:根据圆的标准方程,只要求得圆心坐标和圆的半径即可.因为圆过A 、B 两点,所以圆心在线段AB 的垂直平分线上.由k AB =3124--=-1,AB 的中点为(2,3), 故AB 的垂直平分线的方程为y -3=x -2,即x -y +1=0.又圆心在直线y =0上,因此圆心坐标是方程组 x -y +1=0,y =0 半径r =22)40()11(-+--=20,所以得所求圆的标准方程为(x +1)2+y 2=20.因为M 1到圆心C (-1,0)的距离为22)03()12(-++=18,|M 1C |<r ,所以M 1在圆C 内;而点M 2到圆心C 的距离|M 2C |=22)04()12(-++=25>20,所以M 2在圆C 外.“求经过两圆04622=-++x y x和028622=-++y y x 的交点,并且圆心在直线04=--y x 上的圆的方程。
圆的方程A 级——保大分专练1.以线段AB :x +y -2=0(0≤x ≤2)为直径的圆的方程为( )A .(x +1)2+(y +1)2=2B .(x -1)2+(y -1)2=2C .(x +1)2+(y +1)2=8D .(x -1)2+(y -1)2=8解析:选B 直径的两端点分别为(0,2),(2,0),所以圆心为(1,1),半径为2,故圆的方程为(x -1)2+(y -1)2=2.2.若圆x 2+y 2+2ax -b 2=0的半径为2,则点(a ,b )到原点的距离为( )A .1B .2 C. 2D .4 解析:选B 由半径r =12D 2+E 2-4F =124a 2+4b 2=2,得a 2+b 2=2.∴点(a ,b )到原点的距离d =a 2+b 2=2,故选B.3.以(a,1)为圆心,且与两条直线2x -y +4=0与2x -y -6=0同时相切的圆的标准方程为( )A .(x -1)2+(y -1)2=5B .(x +1)2+(y +1)2=5C .(x -1)2+y 2=5D .x 2+(y -1)2=5解析:选A 由题意知,圆心到这两条直线的距离相等,即圆心到直线2x -y +4=0的距离d =|2a -1+4|5=|2a -1-6|5,解得a =1,d =5,∵直线与圆相切,∴r =d =5, ∴圆的标准方程为(x -1)2+(y -1)2=5.4.(2019·银川模拟)方程|y |-1=1-(x -1)2表示的曲线是( )A .一个椭圆B .一个圆C .两个圆D .两个半圆解析:选D 由题意知|y |-1≥0,则y ≥1或y ≤-1,当y ≥1时,原方程可化为(x -1)2+(y -1)2=1(y ≥1),其表示以(1,1)为圆心、1为半径、直线y =1上方的半圆;当y ≤-1时,原方程可化为(x -1)2+(y +1)2=1(y ≤-1),其表示以(1,-1)为圆心、1为半径、直线y =-1下方的半圆.所以方程|y |-1=1-(x -1)2表示的曲线是两个半圆,选D.5.已知a ∈R ,若方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则此圆的圆心坐标为( )A .(-2,-4)B.⎝⎛⎭⎫-12,-1 C .(-2,-4)或⎝⎛⎭⎫-12,-1 D .不确定解析:选A ∵方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,∴a 2=a +2≠0,解得a =-1或a =2.当a =-1时,方程化为x 2+y 2+4x +8y -5=0.配方,得(x +2)2+(y +4)2=25,所得圆的圆心坐标为(-2,-4),半径为5.当a =2时,方程化为x 2+y 2+x +2y +52=0,此时方程不表示圆.故选A.6.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为( )A .(x +1)2+y 2=2B .(x +1)2+y 2=8C .(x -1)2+y 2=2D .(x -1)2+y 2=8解析:选A 直线x -y +1=0与x 轴的交点(-1,0).根据题意,圆C 的圆心坐标为(-1,0).因为圆与直线x +y +3=0相切,所以半径为圆心到切线的距离,即r =d =|-1+0+3|12+12=2, 则圆的方程为(x +1)2+y 2=2.7.圆C 的直径的两个端点分别是A (-1,2),B (1,4),则圆C 的标准方程为________. 解析:设圆心C 的坐标为(a ,b ),则a =-1+12=0,b =2+42=3,故圆心C (0,3). 半径r =12|AB |=12[1-(-1)]2+(4-2)2= 2.∴圆C 的标准方程为x 2+(y -3)2=2.答案:x 2+(y -3)2=28.已知圆C 的圆心在x 轴上,并且经过点A (-1,1),B (1,3),若M (m ,6)在圆C 内,则m的取值范围为________.解析:设圆心为C(a,0),由|CA|=|CB|,得(a+1)2+12=(a-1)2+32,解得a=2.半径r=|CA|=(2+1)2+12=10.故圆C的方程为(x-2)2+y2=10.由题意知(m-2)2+(6)2<10,解得0<m<4.答案:(0,4)9.若一个圆的圆心是抛物线x2=4y的焦点,且该圆与直线y=x+3相切,则该圆的标准方程是________________.解析:抛物线x2=4y的焦点为(0,1),即圆心为(0,1),设该圆的标准方程是x2+(y-1)2=r2(r>0),因为该圆与直线y=x+3相切,所以r=d=|-1+3|2=2,故该圆的标准方程是x2+(y-1)2=2.答案:x2+(y-1)2=210.(2019·德州模拟)已知圆C的圆心在x轴的正半轴上,点M(0,5)在圆C上,且圆心到直线2x-y=0的距离为455,则圆C的标准方程为________________.解析:因为圆C的圆心在x轴的正半轴上,设C(a,0),且a>0,所以圆心到直线2x-y=0的距离d=2a5=455,解得a=2,所以圆C的半径r=|CM|=4+5=3,所以圆C的标准方程为(x-2)2+y2=9.答案:(x-2)2+y2=911.已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=410.(1)求直线CD的方程;(2)求圆P的方程.解:(1)直线AB的斜率k=1,AB的中点坐标为(1,2).所以直线CD的方程为y-2=-(x-1),即x+y-3=0.(2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0.①又直径|CD |=410,所以|PA |=210.所以(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2,所以圆心P (-3,6)或P (5,-2),所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.12.已知Rt △ABC 的斜边为AB ,且A (-1,0),B (3,0).求:(1)直角顶点C 的轨迹方程;(2)直角边BC 的中点M 的轨迹方程.解:(1)法一:设C (x ,y ),因为A ,B ,C 三点不共线,所以y ≠0.因为AC ⊥BC ,所以k AC ·k BC =-1,又k AC =y x +1,k BC =y x -3, 所以y x +1·y x -3=-1, 化简得x 2+y 2-2x -3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(y ≠0).法二:设AB 的中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知|CD |=12|AB |=2.由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,2为半径的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点).所以直角顶点C 的轨迹方程为(x -1)2+y 2=4(y ≠0).(2)设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32,y =y 0+02,所以x 0=2x -3,y 0=2y .由(1)知,点C 的轨迹方程为(x -1)2+y 2=4(y ≠0),将x 0=2x -3,y 0=2y 代入得(2x -4)2+(2y )2=4,即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(y ≠0).B 级——创高分自选1.(2019·伊春三校联考)已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -1)2=1B .(x -2)2+(y +2)2=1C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=1解析:选B 圆C 1:(x +1)2+(y -1)2=1,圆心C 1为(-1,1),半径为1.易知点C 1(-1,1)关于直线x -y -1=0对称的点为C 2,设C 2(a ,b ),则⎩⎨⎧b -1a +1=-1,a -12-b +12-1=0,解得⎩⎪⎨⎪⎧a =2,b =-2,所以C 2(2,-2),所以圆C 2的圆心为C 2(2,-2),半径为1,所以圆C 2的方程为(x -2)2+(y +2)2=1.故选B.2.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________________.解析:因为直线mx -y -2m -1=0(m ∈R )恒过点(2,-1),所以当点(2,-1)为切点时,半径最大,此时半径r =2,故所求圆的标准方程为(x -1)2+y 2=2.答案:(x -1)2+y 2=23.已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程.解:(1)把圆C 1的方程化为标准方程得(x -3)2+y 2=4,∴圆C 1的圆心坐标为C 1(3,0).(2)设M (x ,y ),∵A ,B 为过原点的直线l 与圆C 1的交点,且M 为AB 的中点,∴由圆的性质知:MC 1⊥MO ,∴MC 1―→·MO ―→=0.又∵MC 1―→=(3-x ,-y ),MO ―→=(-x ,-y ),∴x 2-3x +y 2=0.易知直线l 的斜率存在,故设直线l 的方程为y =mx ,当直线l 与圆C 1相切时,圆心到直线l 的距离d =|3m -0|m 2+1=2, 解得m =±255. 把相切时直线l 的方程代入圆C 1的方程化简得9x 2-30x +25=0,解得x =53. 当直线l 经过圆C 1的圆心时,M 的坐标为(3,0).又∵直线l 与圆C 1交于A ,B 两点,M 为AB 的中点,∴53<x ≤3. ∴点M 的轨迹C 的方程为x 2-3x +y 2=0,其中53<x ≤3,其轨迹为一段圆弧.。
圆的方程专项复习(学生版)典型例题分析A 组练习例1. 写出下列各圆的方程:(1)圆心在原点,半径是3; (2)圆心在点C (3,4例2.求下列圆的半径和圆心坐标:(1)x 2+y 2-8x+6y=0, (2)x 2+y 2+2by=0.例3. 求下列各圆的一般方程:(1)过点A(5,1),圆心在点C(8,-3);(2)过三点A(-1,5)、B(5,5)、C(6,-2).例4.已知圆的方程是x 2+y 2=1,求:(1)斜率为1的切线方程;例5.(1)已知两点P 1(4,9)和P 2(6,3),求以P 1P 2为直径的圆的方程;(2)试判断点M(6,9)、N(3,3)、Q(5,3)是在圆上,在圆内,还是在圆外?例6.求过三点O(0,0)、A(1,1)、B(4,2)的圆的方程.B 组练习例1 求经过点(5,2),(3,2)A B ,且圆心P 在直线230x y --=上的圆的方程;例2. 求经过原点,且过圆x 2+y 2+8x-6y+21=0和直线x-y+5=0的两个交点的圆的方程.例3.求圆心在直线 l :x+y=0上,且过两圆C 1∶x 2+y 2-2x+10y-24=0和C 2∶C 组练习例1.求以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦为直径的圆的方程。
例2.圆与y 轴相切,圆心P 在直线30x y -=上,且直线y x =截圆所得弦长为 例3 已知圆4)4()3(:22=-+-y x C , 点),(y x P 为圆C 上一动点。
(1)求y x的最大值与最小值;(2)若)0,1(),0,1(B A -,求22||||PB PA +的最大值与最小值。
A 组练习一、选择题:1.若圆的方程为0118622=--++y x y x ,则圆心坐标与半径为( )(A )(-3,4),3 (B )(-3,-4),3 (C )(3,-4),6 (D )(-3,4),62.圆的一条直径的端点是)2,2(),0,2(-B A ,则圆的方程是( )A 、042422=++-+y x y xB 、042422=+--+y x y xC 、042422=-+-+y x y xD 、042422=--++y x y x3.已知圆的方程为x 2 + y 2-4x + 6y = 0,下列是通过圆心直线的方程为( )A 3x + 2y + 1 = 0B 3x -2y + 1= 0C 3x -2y = 0D 3x + 2y = 04.方程014222=++-++a y x y x 表示圆,则a 的取值范围是( )A .6->aB .5->aC .5<aD .4<a5.直线l 将圆x 2+y 2-2x -4y =0平分,且与直线x +2y =0垂直,则直线l 的方程为( )A.y =2xB.y =2x -2C.y =-21x +23D.y =21x +236.圆()2211x y -+=的圆心到直线3y x =的距离是 ( )A. 12B. 2C. 1D. 7.若直线34120x y -+=与两坐标轴交点为A,B,则以线段AB 为直径的圆的方程是 ( )A 、22430x y x y ++-=B 、 22430x y x y +--=C 、224340x y x y ++--=D 、224380x y x y +--+=8.过点A (1,-1),B (-1,1)且圆心在直线x+y-2=0上的圆的方程是( )A.22(3)(1)4x y -++=B. 22(+3)(-1)4x y +=C. 22(1)(1)4x y -+-=D. 22(+1)(1)4x y ++=9.方程y )A.一条射线B.一个圆C. 两条射线D. 半个圆10. 以原点为圆心,且截直线01543=++y x 所得弦长为8的圆的方程是( ) A 、522=+y x B 、2522=+y x C 、422=+y x D 、1622=+y x二、填空题:1.已知两圆01422:,10:222221=-+++=+y x y x C y x C .则经过两圆交点的公共弦所在直线方程____ _2.若方程x 2+y 2+Dx+Ey+F=0,表示以(2,-4)为圆心,4为半径的圆,则F=_____3.过点O (0,0),A (1,1),B (1,-5)的圆方程是__________.4.点(5112)a a +,在圆22(1)1x y -+=的内部,则实数a 的取值范围是____________5.与x 轴相交与A(1,0)和B(5,0)_______.6.经过原点,圆心在x 轴的负半轴上,且半径为2的圆的标准方程是_______.7.已知圆C 的圆心坐标为C (1,3),且该圆经过坐标原点,它的标准方程为_______.8.已知圆C 经过A(5,1),B(1,3)两点,圆心在x 轴上,则C 的方程为_______.9.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为_______.10.直线240x y ++=截226210x y x y +-++=所得弦长为三、解答题:1.求下列条件所决定的圆的方程:(1)圆心为 C(3,-5),并且与直线x-7y+2=0相切;(2)过点A(3,2),圆心在直线y=2x 上,且与直线y=2x+5相切.2.(1)已知:224x y +=,求过点(1)的切线方程。
必修二第四章圆与方程题型一:求圆的方程1.已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心C在直线L:x-y+1=0上,求圆心为C的圆的标准方程。
P教材120例3(从代数角度或几何角度入手)2.求过点A(-2,-3)且与直线l:x+3y-26=0相切于点B(8,6)的圆的方程。
(P教材123补例2)3.求过三点O(0,0),M1(1,1),M2(4,2)的圆的方程,并求这个圆的半径长和圆心坐标。
P 教材122例44.如图,等腰梯形ABCD的底边长分别为6和4,高为3,求这个等腰梯形的外接圆的方程,并求这个圆的圆心坐标和半径长. P教材123 练习第3题5.已知圆的一条直径的端点分别为A(x1,y1),B(x2,y2),求证此圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0题型二:求圆的参数方程解剖:例:求函数f(θ)=sinθ-1/cosθ-2的最大值与最小值P教材122补例1题型三:求圆的轨迹方程1.已知线段AB的端点的坐标是(4,3),端点A在圆(x+1)2+y2=4上运动,求线段AB的中点M的轨迹方程。
P教材122例52.点A(3,0)为圆x2+y2=1外一点,P为圆上任意一点,动点M在直线AP上,且满足|AM|/|MP|=1/2求点M的轨迹方程。
P教材123补例33.等腰三角形的顶点A的坐标是(4,2),底边一个端点B的坐标是(3,5),求另一个端点C的轨迹方程,并说明它是什么图形。
P教材124B14.4.长为2a的线段AB的两个端点A和B分别在x轴和y轴上滑动,求线段AB的中点的轨迹方程。
P教材124 B25.5.已知点M与两个定点O(0,0),A(3,0)的距离的比为1/2,求点M的轨迹方程。
P教材124 B36.从点A(4,0)引圆x2+y2=4的割线ABC,求弦BC中点P的轨迹方程。
P教材124 补例47.已知点M(x,y)与两个定点M1,M2的距离的比是一个正数m,求点M的轨迹方程,并说明轨迹是什么图形(考虑m=1和m≠1两种情形)P教材144 B28.在△ABC中,已知|BC|=2,且AB/AC=m,求点A的轨迹方程,并说明轨迹是什么图形。
5 圆的方程
A 组
一、选择题
1.圆x 2+y 2-4x +6y =0的圆心坐标是( )
A .(2,3)
B .(-2,3)
C .(-2,-3)
D .(2,-3) 答案 D
解析 圆x 2+y 2-4x +6y =0的圆心坐标为⎝⎛⎭⎫--42
,-62,即(2,-3). 2.将圆x 2+y 2-2x -4y +1=0平分的直线是
( ) A .x +y -1=0
B .x +y +3=0
C .x -y +1=0
D .x -y +3=0 答案 C
解析 因为圆心是(1,2),所以将圆心坐标代入各选项验证知选C.
3.若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过
( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 答案 D
解析 圆x 2+y 2-2ax +3by =0的圆心为⎝
⎛⎭⎫a ,-32b , 则a <0,b >0.直线y =-1a x -b a ,k =-1a >0,-b a
>0, 直线不经过第四象限.
4.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是
( ) A .-1<a <1
B .0<a <1
C .a >1或a <-1
D .a =±1 答案 A
解析 因为点(1,1)在圆的内部,
∴(1-a )2+(1+a )2<4,∴-1<a <1.
5.若直线3x +y +a =0过圆x 2+y 2+2x -4y =0的圆心,则a 的值为 ( )
A .-1
B .1
C .3
D .-3 答案 B
解析 化圆为标准形式(x +1)2+(y -2)2=5,圆心为(-1,2).
∵直线过圆心,∴3×(-1)+2+a =0,∴a =1.
6.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为
( ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1
C .(x -1)2+(y -3)2=1
D .x 2+(y -3)2=1
答案 A 解析 设圆心坐标为(0,b ),则由题意知-2+b -2=1,解得b =2,
故圆的方程为x 2+(y -2)2=1.
二、填空题
1.若方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是______________.
答案 ⎝
⎛⎭⎫-2,23 解析 方程x 2+y 2+ax +2ay +2a 2+a -1=0
转化为⎝⎛⎭⎫x +a 22+(y +a )2=-34
a 2-a +1, 所以若方程表示圆,则有-34
a 2-a +1>0, ∴3a 2+4a -4<0,∴-2<a <23
. 2.已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为______________.
答案 (x -2)2+y 2=10
解析 设圆心坐标为(a,0),易知(a -5)2+(-1)2=(a -1)2+(-3)2,解得a =2,∴圆心为(2,0),半径为10,∴圆C 的方程为(x -2)2+y 2=10.
3.经过点A (5,2),B (3,2),圆心在直线2x -y -3=0上的圆的方程为________________.
答案 (x -4)2+(y -5)2=10
解析 设圆的方程为(x -a )2+(y -b )2=r 2,
则⎩⎪⎨⎪⎧ (5-a )2+(2-b )2=r 2(3-a )2+(2-b )2=r
22a -b -3=0
, 可得a =4,b =5,r 2=10.
三、解答题
1.根据下列条件,求圆的方程:
(1)经过P (-2,4)、Q (3,-1)两点,并且在x 轴上截得的弦长等于6;
(2)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2).
思维启迪:(1)求圆心和半径,确定圆的标准方程.
(2)设圆的一般方程,利用待定系数法求解.
解 (1)设圆的方程为x 2+y 2+Dx +Ey +F =0,
将P 、Q 点的坐标分别代入得
⎩⎪⎨⎪⎧ 2D -4E -F =20,3D -E +F =-10. ①②
又令y =0,得x 2+Dx +F =0.③
设x 1,x 2是方程③的两根,
由|x 1-x 2|=6有D 2-4F =36,④
由①、②、④解得D =-2,E =-4,F =-8,或D =-6,E =-8,F =0. 故所求圆的方程为
x 2+y 2-2x -4y -8=0,或x 2+y 2-6x -8y =0.
(2)方法一
如图,设圆心(x 0,-4x 0),依题意得4x 0-23-x 0
=1, ∴x 0=1,即圆心坐标为(1,-4),半径r =22,
故圆的方程为(x -1)2+(y +4)2=8.
方法二 设所求方程为(x -x 0)2+(y -y 0)2=r 2,
根据已知条件得⎩⎪⎨⎪⎧ y 0=-4x 0,(3-x 0)2+(-2-y 0)2=r 2,|x 0+y 0-1|2=r ,
解得⎩⎪⎨⎪⎧ x 0=1,y 0=-4,
r =2 2.
因此所求圆的方程为(x -1)2+(y +4)2=8.
2.根据下列条件求圆的方程:
(1)经过点P (1,1)和坐标原点,并且圆心在直线2x +3y +1=0上;
(2)过三点A (1,12),B (7,10),C (-9,2).
解 (1)设圆的标准方程为(x -a )2+(y -b )2=r 2,
由题意列出方程组
⎩⎪⎨⎪⎧ a 2+b 2=r 2(a -1)2+(b -1)2=r 2
2a +3b +1=0,解之得⎩⎪⎨⎪⎧ a =4,b =-3,r 2=25.
∴圆的标准方程是(x -4)2+(y +3)2=25.
(2)方法一 设圆的一般方程为
x 2+y 2+Dx +Ey +F =0,
则⎩⎪⎨⎪⎧ 1+144+D +12E +F =0,49+100+7D +10E +F =0,
81+4-9D +2E +F =0.
解得D =-2,E =-4,F =-95.
∴所求圆的方程为x 2+y 2-2x -4y -95=0. 方法二 由A (1,12),B (7,10),
得AB 的中点坐标为(4,11),k AB =-13
, 则AB 的中垂线方程为3x -y -1=0.
同理得AC 的中垂线方程为x +y -3=0.
联立⎩⎪⎨⎪⎧ 3x -y -1=0x +y -3=0,得⎩⎪⎨⎪⎧
x =1y =2, 即圆心坐标为(1,2),半径r =(1-1)2+(2-12)2=10. ∴所求圆的方程为(x -1)2+(y -2)2=100.。